1
|
Farha S, Asosingh K, Hassoun PM, Barnard J, Comhair S, Reichard A, Wanner N, Radeva M, Aldred MA, Beck GJ, Berman-Rosenzweig E, Borlaug BA, Finet JE, Frantz RP, Grunig G, Hemnes AR, Hill N, Horn EM, Jellis C, Leopold JA, Mehra R, Park MM, Rischard FP, Tang WHW, Erzurum SC. Alterations in Mitochondrial Function in Pulmonary Vascular Diseases. Antioxid Redox Signal 2025; 42:361-377. [PMID: 39655485 DOI: 10.1089/ars.2024.0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Aims: Alterations of mitochondrial bioenergetics and arginine metabolism are universally present and mechanistically linked to pulmonary arterial hypertension (PAH), but there is little knowledge of arginine metabolism and mitochondrial functions across the different pulmonary hypertension (PH) groups. We hypothesize that abnormalities in mitochondrial functions are present across all PH groups and associated with clinical phenotypes. We test the hypothesis in PH patients and healthy controls from the Pulmonary Vascular Disease Phenomics Program cohort, who had comprehensive clinical phenotyping and follow-up for at least 4 years for death or transplant status. Mitochondrial transmembrane potential, superoxide production, and mass were measured by flow cytometry in fresh platelets. Metabolomics analysis was performed on plasma samples. Global arginine bioavailability was calculated as the ratio of arginine/(ornithine+citrulline). Results: Global arginine bioavailability is consistently lower than controls in all PH groups. Although the mitochondrial mass is similar across all PH groups and controls, superoxide production and transmembrane potential vary across groups. Mitochondrial superoxide is higher in group 1 PAH and lowest in group 3 compared with other groups, while transmembrane potential is lower in group 1 PAH than controls or group 3. The alterations in mitochondrial functions of group 1 PAH are associated with changes in fatty acid metabolism. Mitochondrial transmembrane potential in group 1 PAH is associated with transplant-free survival. Conclusion: While alterations in mitochondrial function are found in all PH groups, group 1 PAH has a unique mitochondrial phenotype with greater superoxide and lower transmembrane potential linked to fatty acid metabolism, and clinically to survival. Antioxid. Redox Signal. 42, 361-377.
Collapse
Affiliation(s)
- Samar Farha
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Kewal Asosingh
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Barnard
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suzy Comhair
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Reichard
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Milena Radeva
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Micheala A Aldred
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
| | - Gerald J Beck
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - J Emanuel Finet
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert P Frantz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicholas Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Evelyn M Horn
- Division of Cardiology, Weill Cornell Medical Center, New York, New York, USA
| | - Christine Jellis
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reena Mehra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Margaret M Park
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Franz P Rischard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona, USA
| | - W H Wilson Tang
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil C Erzurum
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
2
|
Riou M, Charles AL, Enache I, Evrard C, Pistea C, Giannini M, Charloux A, Geny B. Acute Severe Hypoxia Decreases Mitochondrial Chain Complex II Respiration in Human Peripheral Blood Mononuclear Cells. Int J Mol Sci 2025; 26:705. [PMID: 39859418 PMCID: PMC11765662 DOI: 10.3390/ijms26020705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Peripheral blood mononuclear cells' (PBMCs) mitochondrial respiration is impaired and likely involved in myocardial injury and heart failure pathophysiology, but its response to acute and severe hypoxia, often associated with such diseases, is largely unknown in humans. We therefore determined the effects of acute hypoxia on PBMC mitochondrial respiration and ROS production in healthy volunteers exposed to controlled oxygen reduction, achieving an inspired oxygen fraction of 10.5%. We also investigated potential relationships with gene expression of key biomarkers of hypoxia, succinate and inflammation, as hypoxia and inflammation share common mechanisms involved in cardiovascular disease. Unlike global mitochondrial respiration, hypoxemia with a spO2 ≤ 80% significantly reduced PBMC complex II respiration (from 6.5 ± 1.2 to 3.1 ± 0.5 pmol/s/106 cell, p = 0.04). Complex II activity correlated positively with spO2 (r = 0.63, p = 0.02) and inversely correlated with the succinate receptor SUCNR1 (r = -0.68), the alpha-subunit of the hypoxia-inducible factor (HIF-1α, r = -0.61), the chemokine ligand-9 (r = -0.68) and interferon-stimulated gene 15 (r = -0.75). In conclusion, severe hypoxia specifically impairs complex II respiration in association with succinate, inflammation and HIF-1α pathway interactions in human PBMCs. These results support further studies investigating whether modulation of complex II activity might modify the inflammatory and metabolic alterations observed in heart failure.
Collapse
Affiliation(s)
- Marianne Riou
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (M.R.); (A.-L.C.); (I.E.); (C.E.); (C.P.); (M.G.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (M.R.); (A.-L.C.); (I.E.); (C.E.); (C.P.); (M.G.); (A.C.)
| | - Irina Enache
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (M.R.); (A.-L.C.); (I.E.); (C.E.); (C.P.); (M.G.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Charles Evrard
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (M.R.); (A.-L.C.); (I.E.); (C.E.); (C.P.); (M.G.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Cristina Pistea
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (M.R.); (A.-L.C.); (I.E.); (C.E.); (C.P.); (M.G.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Margherita Giannini
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (M.R.); (A.-L.C.); (I.E.); (C.E.); (C.P.); (M.G.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Anne Charloux
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (M.R.); (A.-L.C.); (I.E.); (C.E.); (C.P.); (M.G.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (M.R.); (A.-L.C.); (I.E.); (C.E.); (C.P.); (M.G.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
3
|
Johnson AR, Rao K, Zhang BB, Mullet S, Goetzman E, Gelhaus S, Tejero J, Shiva S. Myoglobin inhibits breast cancer cell fatty acid oxidation and migration via heme-dependent oxidant production and not fatty acid binding. Free Radic Biol Med 2024; 225:208-220. [PMID: 39368517 DOI: 10.1016/j.freeradbiomed.2024.10.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The monomeric heme protein myoglobin (Mb) is aberrantly expressed in approximately 40 % of breast tumors. Mb expression is associated with better patient prognosis, yet the molecular mechanisms underlying this effect are unclear. In muscle, Mb's heme moiety confers oxygen storage and delivery. However, prior studies demonstrate that low levels of Mb in cancer cells preclude this function. Several studies propose a fatty acid binding function for Mb via lysine residue K46. Because cancer cells can upregulate fatty acid oxidation (FAO) to fuel cell migration, we tested whether Mb-mediated fatty acid binding modulates FAO and migration. We demonstrate that stable expression of human Mb in MDA-MB-231 breast cancer cells decreases cell migration and FAO. Site-directed mutagenesis of Mb K46 disrupted fatty acid binding but did not improve FAO or migration. Conversely, cells expressing Apo-Mb (with disrupted heme binding) did not show impaired FAO or migration rates, suggesting Mb attenuates FAO and migration via a heme-dependent mechanism rather than through fatty acid binding. Mb's heme-dependent oxidant generation dysregulates migratory gene expression, which is reversed by catalase treatment. Collectively, these data demonstrate that Mb's heme-dependent oxidant production decreases breast cancer cell migration, prompting therapeutic strategies to modulate oxidant production and Mb in tumors.
Collapse
Affiliation(s)
- Aaron R Johnson
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Krithika Rao
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bob B Zhang
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Steven Mullet
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eric Goetzman
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Stacy Gelhaus
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jesus Tejero
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sruti Shiva
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
4
|
Natarajan N, Florentin J, Johny E, Xiao H, O'Neil SP, Lei L, Shen J, Ohayon L, Johnson AR, Rao K, Li X, Zhao Y, Zhang Y, Tavakoli S, Shiva S, Das J, Dutta P. Aberrant mitochondrial DNA synthesis in macrophages exacerbates inflammation and atherosclerosis. Nat Commun 2024; 15:7337. [PMID: 39187565 PMCID: PMC11347661 DOI: 10.1038/s41467-024-51780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
There is a large body of evidence that cellular metabolism governs inflammation, and that inflammation contributes to the progression of atherosclerosis. However, whether mitochondrial DNA synthesis affects macrophage function and atherosclerosis pathology is not fully understood. Here we show, by transcriptomic analyzes of plaque macrophages, spatial single cell transcriptomics of atherosclerotic plaques, and functional experiments, that mitochondrial DNA (mtDNA) synthesis in atherosclerotic plaque macrophages are triggered by vascular cell adhesion molecule 1 (VCAM-1) under inflammatory conditions in both humans and mice. Mechanistically, VCAM-1 activates C/EBPα, which binds to the promoters of key mitochondrial biogenesis genes - Cmpk2 and Pgc1a. Increased CMPK2 and PGC-1α expression triggers mtDNA synthesis, which activates STING-mediated inflammation. Consistently, atherosclerosis and inflammation are less severe in Apoe-/- mice lacking Vcam1 in macrophages. Downregulation of macrophage-specific VCAM-1 in vivo leads to decreased expression of LYZ1 and FCOR, involved in STING signalling. Finally, VCAM-1 expression in human carotid plaque macrophages correlates with necrotic core area, mitochondrial volume, and oxidative damage to DNA. Collectively, our study highlights the importance of macrophage VCAM-1 in inflammation and atherogenesis pathology and proposes a self-acerbating pathway involving increased mtDNA synthesis.
Collapse
Affiliation(s)
- Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Hanxi Xiao
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD program in Computational Biology, Pittsburgh, PA, USA
| | - Scott Patrick O'Neil
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Liqun Lei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Jixing Shen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Aaron R Johnson
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Krithika Rao
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Xiaoyun Li
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Yanwu Zhao
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Yingze Zhang
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Sina Tavakoli
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Wang XB, Cui NH, Fang ZQ, Gao MJ, Cai D. Platelet bioenergetic profiling uncovers a metabolic pattern of high dependency on mitochondrial fatty acid oxidation in type 2 diabetic patients who developed in-stent restenosis. Redox Biol 2024; 72:103146. [PMID: 38579589 PMCID: PMC11000186 DOI: 10.1016/j.redox.2024.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024] Open
Abstract
Although platelet bioenergetic dysfunction is evident early in the pathogenesis of diabetic macrovascular complications, the bioenergetic characteristics in type 2 diabetic patients who developed coronary in-stent restenosis (ISR) and their effects on platelet function remain unclear. Here, we performed platelet bioenergetic profiling to characterize the bioenergetic alterations in 28 type 2 diabetic patients with ISR compared with 28 type 2 diabetic patients without ISR (non-ISR) and 28 healthy individuals. Generally, platelets from type 2 diabetic patients with ISR exhibited a specific bioenergetic alteration characterized by high dependency on fatty acid (FA) oxidation, which subsequently induced complex III deficiency, causing decreased mitochondrial respiration, increased mitochondrial oxidant production, and low efficiency of mitochondrial ATP generation. This pattern of bioenergetic dysfunction showed close relationships with both α-granule and dense granule secretion as measured by surface P-selectin expression, ATP release, and profiles of granule cargo proteins in platelet releasates. Importantly, ex vivo reproduction of high dependency on FA oxidation by exposing non-ISR platelets to its agonist mimicked the bioenergetic dysfunction observed in ISR platelets and enhanced platelet secretion, whereas pharmaceutical inhibition of FA oxidation normalized the respiratory and redox states of ISR platelets and diminished platelet secretion. Further, causal mediation analyses identified a strong association between high dependency on FA oxidation and increased angiographical severity of ISR, which was significantly mediated by the status of platelet secretion. Our findings, for the first time, uncover a pattern of bioenergetic dysfunction in ISR and enhance current understanding of the mechanistic link of high dependency on FA oxidation to platelet abnormalities in the context of diabetes.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zi-Qi Fang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mi-Jie Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dan Cai
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
6
|
Onyemekwu CA, Prendergast NT, Potter KM, Toney NA, Nouraie MS, Shiva S, Girard TD. Platelet Bioenergetics and Associations With Delirium and Coma in Patients With Sepsis: A Prospective Cohort Study. CHEST CRITICAL CARE 2024; 2:100076. [PMID: 38938510 PMCID: PMC11210717 DOI: 10.1016/j.chstcc.2024.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
BACKGROUND Acute brain dysfunction during sepsis, which manifests as delirium or coma, is common and is associated with multiple adverse outcomes, including longer periods of mechanical ventilation, prolonged hospital stays, and increased mortality. Delirium and coma during sepsis may be manifestations of alteration in systemic metabolism. Because access to brain mitochondria is a limiting factor, measurement of peripheral platelet bioenergetics offers a potential opportunity to understand metabolic changes associated with acute brain dysfunction during sepsis. RESEARCH QUESTION Are altered platelet mitochondrial bioenergetics associated with acute brain dysfunction during sepsis? STUDY DESIGN AND METHODS We assessed participants with critical illness in the ICU for the presence of delirium or coma via validated assessment measures. Blood samples were collected and processed to isolate and measure platelet mitochondrial oxygen consumption. We used Seahorse extracellular flux to measure directly baseline, proton leak, maximal oxygen consumption rate, and extracellular acidification rate. We calculated adenosine triphosphate-linked, spare respiratory capacity, and nonmitochondrial oxygen consumption rate from the measured values. RESULTS Maximum oxygen consumption was highest in patients with coma, as was spare respiratory capacity and extracellular acidification rate in unadjusted analysis. After adjusting for age, sedation, modified Sequential Organ Failure Assessment score without the neurologic component, and preexisting cognitive function, increased spare respiratory capacity remained associated with coma. Delirium was not associated with any platelet mitochondrial bioenergetics. INTERPRETATION In this single-center exploratory prospective cohort study, we found that increased platelet mitochondrial spare respiratory capacity was associated with coma in patients with sepsis. Future studies powered to determine any relationship between delirium and mitochondrial respiration bioenergetics are needed.
Collapse
Affiliation(s)
- Chukwudi A Onyemekwu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Niall T Prendergast
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kelly M Potter
- Center for Research, Investigation, and Systems Modeling of Acute Illness, and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nicole A Toney
- Center for Research, Investigation, and Systems Modeling of Acute Illness, and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mehdi S Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sruti Shiva
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Timothy D Girard
- Center for Research, Investigation, and Systems Modeling of Acute Illness, and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
7
|
Johnson AR, Rao K, Zhang BB, Mullet S, Goetzman E, Gelhaus S, Tejero J, Shiva U. Myoglobin Inhibits Breast Cancer Cell Fatty Acid Oxidation and Migration via Heme-dependent Oxidant Production and Not Fatty Acid Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591659. [PMID: 38746370 PMCID: PMC11092581 DOI: 10.1101/2024.04.30.591659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The monomeric heme protein myoglobin (Mb), traditionally thought to be expressed exclusively in cardiac and skeletal muscle, is now known to be expressed in approximately 40% of breast tumors. While Mb expression is associated with better patient prognosis, the molecular mechanisms by which Mb limits cancer progression are unclear. In muscle, Mb's predominant function is oxygen storage and delivery, which is dependent on the protein's heme moiety. However, prior studies demonstrate that the low levels of Mb expressed in cancer cells preclude this function. Recent studies propose a novel fatty acid binding function for Mb via a lysine residue (K46) in the heme pocket. Given that cancer cells can upregulate fatty acid oxidation (FAO) to maintain energy production for cytoskeletal remodeling during cell migration, we tested whether Mb-mediated fatty acid binding modulates FAO to decrease breast cancer cell migration. We demonstrate that the stable expression of human Mb in MDA-MB-231 breast cancer cells decreases cell migration and FAO. Site-directed mutagenesis of Mb to disrupt Mb fatty acid binding did not reverse Mb-mediated attenuation of FAO or cell migration in these cells. In contrast, cells expressing Apo-Mb, in which heme incorporation was disrupted, showed a reversal of Mb-mediated attenuation of FAO and cell migration, suggesting that Mb attenuates FAO and migration via a heme-dependent mechanism rather than through fatty acid binding. To this end, we show that Mb's heme-dependent oxidant generation propagates dysregulated gene expression of migratory genes, and this is reversed by catalase treatment. Collectively, these data demonstrate that Mb decreases breast cancer cell migration, and this effect is due to heme-mediated oxidant production rather than fatty acid binding. The implication of these results will be discussed in the context of therapeutic strategies to modulate oxidant production and Mb in tumors. Highlights Myoglobin (Mb) expression in MDA-MB-231 breast cancer cells slows migration.Mb expression decreases mitochondrial respiration and fatty acid oxidation.Mb-dependent fatty acid binding does not regulate cell migration or respiration.Mb-dependent oxidant generation decreases mitochondrial metabolism and migration.Mb-derived oxidants dysregulate migratory gene expression.
Collapse
|
8
|
Sheppard S, Srpan K, Lin W, Lee M, Delconte RB, Owyong M, Carmeliet P, Davis DM, Xavier JB, Hsu KC, Sun JC. Fatty acid oxidation fuels natural killer cell responses against infection and cancer. Proc Natl Acad Sci U S A 2024; 121:e2319254121. [PMID: 38442180 PMCID: PMC10945797 DOI: 10.1073/pnas.2319254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Natural killer (NK) cells are a vital part of the innate immune system capable of rapidly clearing mutated or infected cells from the body and promoting an immune response. Here, we find that NK cells activated by viral infection or tumor challenge increase uptake of fatty acids and their expression of carnitine palmitoyltransferase I (CPT1A), a critical enzyme for long-chain fatty acid oxidation. Using a mouse model with an NK cell-specific deletion of CPT1A, combined with stable 13C isotope tracing, we observe reduced mitochondrial function and fatty acid-derived aspartate production in CPT1A-deficient NK cells. Furthermore, CPT1A-deficient NK cells show reduced proliferation after viral infection and diminished protection against cancer due to impaired actin cytoskeleton rearrangement. Together, our findings highlight that fatty acid oxidation promotes NK cell metabolic resilience, processes that can be optimized in NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Sam Sheppard
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Katja Srpan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Wendy Lin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Mariah Lee
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Rebecca B. Delconte
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Mark Owyong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY10065
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie and Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Daniel M. Davis
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Joao B. Xavier
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Katharine C. Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY10065
| |
Collapse
|
9
|
Singh N, Al-Naamani N, Brown MB, Long GM, Thenappan T, Umar S, Ventetuolo CE, Lahm T. Extrapulmonary manifestations of pulmonary arterial hypertension. Expert Rev Respir Med 2024; 18:189-205. [PMID: 38801029 PMCID: PMC11713041 DOI: 10.1080/17476348.2024.2361037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Extrapulmonary manifestations of pulmonary arterial hypertension (PAH) may play a critical pathobiological role and a deeper understanding will advance insight into mechanisms and novel therapeutic targets. This manuscript reviews our understanding of extrapulmonary manifestations of PAH. AREAS COVERED A group of experts was assembled and a complimentary PubMed search performed (October 2023 - March 2024). Inflammation is observed throughout the central nervous system and attempts at manipulation are an encouraging step toward novel therapeutics. Retinal vascular imaging holds promise as a noninvasive method of detecting early disease and monitoring treatment responses. PAH patients have gut flora alterations and dysbiosis likely plays a role in systemic inflammation. Despite inconsistent observations, the roles of obesity, insulin resistance and dysregulated metabolism may be illuminated by deep phenotyping of body composition. Skeletal muscle dysfunction is perpetuated by metabolic dysfunction, inflammation, and hypoperfusion, but exercise training shows benefit. Renal, hepatic, and bone marrow abnormalities are observed in PAH and may represent both end-organ damage and disease modifiers. EXPERT OPINION Insights into systemic manifestations of PAH will illuminate disease mechanisms and novel therapeutic targets. Additional study is needed to understand whether extrapulmonary manifestations are a cause or effect of PAH and how manipulation may affect outcomes.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Nadine Al-Naamani
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mary Beth Brown
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA
| | - Gary Marshall Long
- Department of Kinesiology, Health and Sport Sciences, University of Indianapolis, Indianapolis, IN
| | - Thenappan Thenappan
- Section of Advanced Heart Failure and Pulmonary Hypertension, Cardiovascular Division, University of Minnesota, Minneapolis, MN
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Corey E. Ventetuolo
- Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI
- Department of Health Services, Policy and Practice, Brown University, Providence, RI
| | - Tim Lahm
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine, University of Colorado, Aurora, CO
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| |
Collapse
|
10
|
Gonzalez-Armenta JL, Bergstrom J, Lee J, Furdui CM, Nicklas BJ, Molina AJA. Serum factors mediate changes in mitochondrial bioenergetics associated with diet and exercise interventions. GeroScience 2024; 46:349-365. [PMID: 37368157 PMCID: PMC10828137 DOI: 10.1007/s11357-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.
Collapse
Affiliation(s)
- Jenny L Gonzalez-Armenta
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA
| | - Jingyun Lee
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Section On Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara J Nicklas
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony J A Molina
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA.
| |
Collapse
|
11
|
He F, Laranjeira AB, Kong T, Lin S, Ashworth KJ, Liu A, Lasky NM, Fisher DA, Cox MJ, Fulbright MC, Antunes-Heck L, Yu L, Brakhane M, Gao B, Sykes SM, D’Alessandro A, Di Paola J, Oh ST. Multiomic profiling reveals metabolic alterations mediating aberrant platelet activity and inflammation in myeloproliferative neoplasms. J Clin Invest 2024; 134:e172256. [PMID: 38060311 PMCID: PMC10836808 DOI: 10.1172/jci172256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024] Open
Abstract
Platelets from patients with myeloproliferative neoplasms (MPNs) exhibit a hyperreactive phenotype. Here, we found elevated P-selectin exposure and platelet-leukocyte aggregates indicating activation of platelets from essential thrombocythemia (ET) patients. Single-cell RNA-seq analysis of primary samples revealed significant enrichment of transcripts related to platelet activation, mTOR, and oxidative phosphorylation in ET patient platelets. These observations were validated via proteomic profiling. Platelet metabolomics revealed distinct metabolic phenotypes consisting of elevated ATP generation accompanied by increases in the levels of multiple intermediates of the tricarboxylic acid cycle, but lower α-ketoglutarate (α-KG) in MPN patients. Inhibition of PI3K/AKT/mTOR signaling significantly reduced metabolic responses and hyperreactivity in MPN patient platelets, while α-KG supplementation markedly reduced oxygen consumption and ATP generation. Ex vivo incubation of platelets from both MPN patients and Jak2 V617F-knockin mice with α-KG supplementation significantly reduced platelet activation responses. Oral α-KG supplementation of Jak2 V617F mice decreased splenomegaly and reduced hematocrit, monocyte, and platelet counts. Finally, α-KG treatment significantly decreased proinflammatory cytokine secretion from MPN CD14+ monocytes. Our results reveal a previously unrecognized metabolic disorder in conjunction with aberrant PI3K/AKT/mTOR signaling that contributes to platelet hyperreactivity in MPN patients.
Collapse
Affiliation(s)
- Fan He
- Division of Hematology, Department of Medicine, and
| | | | - Tim Kong
- Division of Hematology, Department of Medicine, and
| | - Shuyang Lin
- Division of Hematology, Department of Medicine, and
| | - Katrina J. Ashworth
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alice Liu
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nina M. Lasky
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Lilian Antunes-Heck
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - LaYow Yu
- Division of Hematology, Department of Medicine, and
| | | | - Bei Gao
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephen M. Sykes
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jorge Di Paola
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, and
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Flora GD, Nayak MK, Ghatge M, Chauhan AK. Metabolic targeting of platelets to combat thrombosis: dawn of a new paradigm? Cardiovasc Res 2023; 119:2497-2507. [PMID: 37706546 PMCID: PMC10676458 DOI: 10.1093/cvr/cvad149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
Current antithrombotic therapies used in clinical settings target either the coagulation pathways or platelet activation receptors (P2Y12 or GPIIb/IIIa), as well as the cyclooxygenase (COX) enzyme through aspirin. However, they are associated with bleeding risk and are not suitable for long-term use. Thus, novel strategies which provide broad protection against platelet activation with minimal bleeding risks are required. Regardless of the nature of agonist stimulation, platelet activation is an energy-intensive and ATP-driven process characterized by metabolic switching toward a high rate of aerobic glycolysis, relative to oxidative phosphorylation (OXPHOS). Consequently, there has been considerable interest in recent years in investigating whether targeting metabolic pathways in platelets, especially aerobic glycolysis and OXPHOS, can modulate their activation, thereby preventing thrombosis. This review briefly discusses the choices of metabolic substrates available to platelets that drive their metabolic flexibility. We have comprehensively elucidated the relevance of aerobic glycolysis in facilitating platelet activation and the underlying molecular mechanisms that trigger this switch from OXPHOS. We have provided a detailed account of the antiplatelet effects of targeting vital metabolic checkpoints such as pyruvate dehydrogenase kinases (PDKs) and pyruvate kinase M2 (PKM2) that preferentially drive the pyruvate flux to aerobic glycolysis. Furthermore, we discuss the role of fatty acids and glutamine oxidation in mitochondria and their subsequent role in driving OXPHOS and platelet activation. While the approach of targeting metabolic regulatory mechanisms in platelets to prevent their activation is still in a nascent stage, accumulating evidence highlights its beneficial effects as a potentially novel antithrombotic strategy.
Collapse
Affiliation(s)
- Gagan D Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Manasa K Nayak
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Madankumar Ghatge
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Riou M, Enache I, Sauer F, Charles AL, Geny B. Targeting Mitochondrial Metabolic Dysfunction in Pulmonary Hypertension: Toward New Therapeutic Approaches? Int J Mol Sci 2023; 24:ijms24119572. [PMID: 37298522 DOI: 10.3390/ijms24119572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary vascular remodeling leading to right heart failure and death. To date, despite the three therapeutic approaches targeting the three major endothelial dysfunction pathways based on the prostacyclin, nitric oxide/cyclic guanosine monophosphate, and endothelin pathways, PAH remains a serious disease. As such, new targets and therapeutic agents are needed. Mitochondrial metabolic dysfunction is one of the mechanisms involved in PAH pathogenesis in part through the induction of a Warburg metabolic state of enhanced glycolysis but also through the upregulation of glutaminolysis, tricarboxylic cycle and electron transport chain dysfunction, dysregulation of fatty acid oxidation or mitochondrial dynamics alterations. The aim of this review is to shed light on the main mitochondrial metabolic pathways involved in PAH and to provide an update on the resulting interesting potential therapeutic perspectives.
Collapse
Affiliation(s)
- Marianne Riou
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - Irina Enache
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - François Sauer
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Cardiology Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - Anne-Laure Charles
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| |
Collapse
|
14
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
15
|
Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E. Elevated LDL-C, high blood pressure, and low peak V ˙ O 2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. Front Mol Biosci 2023; 10:1136975. [PMID: 37033448 PMCID: PMC10073692 DOI: 10.3389/fmolb.2023.1136975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: To evaluate the association of platelet (PL) mitochondria respiration with markers of cardiovascular health in children ages 7-10 years. Methods: PL mitochondrial respiration (n = 91) was assessed by high resolution respirometry (HRR): Routine (R) respiration, complex (C) I linked respiration (CI), and maximal uncoupled electron transport capacity of CII (CIIE) were measured. The respiratory control ratio (RCR) was calculated as the ratio of maximal oxidative phosphorylation capacity of CI and CI leak respiration (PCI/LCI). Peak V ˙ O2 (incremental bike test) and body composition (dual-energy X-ray absorptiometry) were measured. Multiple generalized linear regression analysis was used to model the association of measures by HRR with variables of interest: adiposity, low-density lipoprotein (LDL-C) and triglyceride (TG) status (normal vs. elevated) HOMA2-IR, blood pressure status (normal vs. high), and demographics. Results: R and CI-linked respiration positively associated with adiposity, high blood pressure (HBP), and peak V ˙ O2. R and CI-linked respiration had inverse association with age and elevated LDL-C. CIIE was higher in children with elevated LDL-C (log-β = -0.54, p = 0.010). HBP and peak V ˙ O2 interacted in relation to RCR (log-β = -0.01, p = 0.028). Specifically, RCR was lowest among children with HBP and low aerobic capacity (i.e., mean peak V ˙ O2 -1SD). HOMA2-IR did not associate with measures of PL mitochondria respiration. Conclusion: In PL, R and CI-linked mitochondrial respiration directly associate with adiposity, peak V ˙ O2 and HBP. Elevated LDL-C associates with lower CI-linked respiration which is compensated by increasing CII respiration. PL bioenergetics phenotypes in children associate with whole-body metabolic health status.
Collapse
Affiliation(s)
- Eva C. Diaz
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Eva C. Diaz,
| | - Sean H. Adams
- Department of Surgery, and Center for Alimentary and Metabolic Science, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Judith L. Weber
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Nursing Science, College of Nursing, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Matthew Cotter
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
16
|
Gao MJ, Cui NH, Liu X, Wang XB. Inhibition of mitochondrial complex I leading to NAD +/NADH imbalance in type 2 diabetic patients who developed late stent thrombosis: Evidence from an integrative analysis of platelet bioenergetics and metabolomics. Redox Biol 2022; 57:102507. [PMID: 36244294 PMCID: PMC9579714 DOI: 10.1016/j.redox.2022.102507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a strong indicator of late stent thrombosis (LST). Platelet bioenergetic dysfunction, although critical to the pathogenesis of diabetic macrovascular complications, remains uncharacterized in T2DM patients who developed LST. Here, we explored the mechanistic link between the alterations in platelet bioenergetics and LST in the setting of T2DM. Platelet bioenergetics, metabolomics, and their interactomes were analyzed in a nested case-control study including 15 T2DM patients who developed LST and 15 matched T2DM patients who did not develop LST (non-LST). Overall, we identified a bioenergetic alteration in T2DM patients with LST characterized by an imbalanced NAD+/NADH redox state resulting from deficient mitochondrial complex I (NADH: ubiquinone oxidoreductase) activity, which led to reduced ATP-linked and maximal mitochondrial respiration, increased glycolytic flux, and platelet hyperactivation compared with non-LST patients. Congruently, platelets from LST patients exhibited downregulation of tricarboxylic acid cycle and NAD+ biosynthetic pathways as well as upregulation of the proximal glycolytic pathway, a metabolomic change that was primarily attributed to compromised mitochondrial respiration rather than increased glycolytic flux as evidenced by the integrative analysis of bioenergetics and metabolomics. Importantly, both bioenergetic and metabolomic aberrancies in LST platelets could be recapitulated ex vivo by exposing the non-LST platelets to a low dose of rotenone, a complex I inhibitor. In contrast, normalization of the NAD+/NADH redox state, either by increasing NAD+ biosynthesis or by inhibiting NAD+ consumption, was able to improve mitochondrial respiration, inhibit mitochondrial oxidant generation, and consequently attenuate platelet aggregation in both LST platelets and non-LST platelets pretreated with low-dose rotenone. These data, for the first time, delineate the specific patterns of bioenergetic and metabolomic alterations for T2DM patients who suffer from LST, and establish the deficiency of complex I-derived NAD+ as a potential pathogenic mechanism in platelet abnormalities.
Collapse
Affiliation(s)
- Mi-Jie Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xia'nan Liu
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xue-Bin Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
17
|
Sommer N, Theine FF, Pak O, Tello K, Richter M, Gall H, Wilhelm J, Savai R, Weissmann N, Seeger W, Ghofrani HA, Hecker M. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. J Clin Med 2022; 11:jcm11144132. [PMID: 35887896 PMCID: PMC9319555 DOI: 10.3390/jcm11144132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial and immune cell dysfunction contributes to the development of pulmonary arterial hypertension (PAH). We thus aimed to investigate mitochondrial respiration and mitochondrial gene expression patterns in the peripheral blood mononuclear cells (PBMC) of patients with idiopathic and hereditary PAH and their correlation to disease parameters. Mitochondrial respiration determined using high-resolution respirometry was not significantly different in PBMC when comparing an outpatient cohort of PAH patients with healthy controls. However, when directly comparing mitochondrial respiration to the hemodynamic parameters of an inpatient PAH cohort, mitochondrial respiration negatively correlated with pulmonary vascular resistance (PVR) and positively correlated with the cardiac index (CI). Furthermore, microarray analysis shows upregulation of mitochondrial erythroid-specific 5-aminolevulinate synthase 2 (ALAS2), as well as the regulation of genes involved in iron and heme metabolism, in the PBMC of patients with PAH, with ALAS2 upregulation in PAH patients being confirmed on the protein level. Multiple regression analysis with age and gender as confounders showed that both PVR and hemoglobin content negatively correlated with maximal respiration. Therefore, we conclude that mitochondrial function in the PBMC of PAH patients is affected by disease severity. However, further studies to investigate cell-type-specific alterations and functional consequences are necessary.
Collapse
Affiliation(s)
- Natascha Sommer
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Correspondence:
| | - Finn Fabian Theine
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Oleg Pak
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Khodr Tello
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Manuel Richter
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Henning Gall
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Rajkumar Savai
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hossein A. Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias Hecker
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| |
Collapse
|
18
|
Abstract
The development of pulmonary hypertension (PH) is common and has adverse prognostic implications in patients with heart failure due to left heart disease (LHD), and thus far, there are no known treatments specifically for PH-LHD, also known as group 2 PH. Diagnostic thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and, therefore, present a challenge for basic and translational scientists actively investigating PH-LHD in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, although pulmonary vascular remodeling is thought to result from (1) increased wall stress due to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk factors. To ultimately be able to modify disease, either by prevention or treatment, a better understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications (including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here, we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential biological mechanisms underlying this disorder, and pressing questions yet to be answered about the pathobiology of PH-LHD.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiology, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (J.H.H.)
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.)
| |
Collapse
|
19
|
Metabolism, Mitochondrial Dysfunction, and Redox Homeostasis in Pulmonary Hypertension. Antioxidants (Basel) 2022; 11:antiox11020428. [PMID: 35204311 PMCID: PMC8869288 DOI: 10.3390/antiox11020428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary hypertension (PH) represents a group of disorders characterized by elevated mean pulmonary artery (PA) pressure, progressive right ventricular failure, and often death. Some of the hallmarks of pulmonary hypertension include endothelial dysfunction, intimal and medial proliferation, vasoconstriction, inflammatory infiltration, and in situ thrombosis. The vascular remodeling seen in pulmonary hypertension has been previously linked to the hyperproliferation of PA smooth muscle cells. This excess proliferation of PA smooth muscle cells has recently been associated with changes in metabolism and mitochondrial biology, including changes in glycolysis, redox homeostasis, and mitochondrial quality control. In this review, we summarize the molecular mechanisms that have been reported to contribute to mitochondrial dysfunction, metabolic changes, and redox biology in PH.
Collapse
|
20
|
Xu X, Lin JHI, Bais AS, Reynolds MJ, Tan T, Gabriel GC, Kondos Z, Liu X, Shiva SS, Lo CW. Mitochondrial Respiration Defects in Single-Ventricle Congenital Heart Disease. Front Cardiovasc Med 2021; 8:734388. [PMID: 34631832 PMCID: PMC8494974 DOI: 10.3389/fcvm.2021.734388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Congenital heart disease (CHD) with single-ventricle (SV) physiology is now survivable with a three-stage surgical course ending with Fontan palliation. However, 10-year transplant-free survival remains at 39–50%, with ventricular dysfunction progressing to heart failure (HF) being a common sequela. For SV-CHD patients who develop HF, undergoing the surgical course would not be helpful and could even be detrimental. As HF risk cannot be predicted and metabolic defects have been observed in Ohia SV-CHD mice, we hypothesized that respiratory defects in peripheral blood mononuclear cells (PBMCs) may allow HF risk stratification in SV-CHD. Methods: SV-CHD (n = 20), biventricular CHD (BV-CHD; n = 16), or healthy control subjects (n = 22) were recruited, and PBMC oxygen consumption rate (OCR) was measured using the Seahorse Analyzer. Respiration was similarly measured in Ohia mouse heart tissue. Results: Post-Fontan SV-CHD patients with HF showed higher maximal respiratory capacity (p = 0.004) and respiratory reserve (p < 0.0001), parameters important for cell stress adaptation, while the opposite was found for those without HF (reserve p = 0.037; maximal p = 0.05). This was observed in comparison to BV-CHD or healthy controls. However, respiration did not differ between SV patients pre- and post-Fontan or between pre- or post-Fontan SV-CHD patients and BV-CHD. Reminiscent of these findings, heart tissue from Ohia mice with SV-CHD also showed higher OCR, while those without CHD showed lower OCR. Conclusion: Elevated mitochondrial respiration in PBMCs is correlated with HF in post-Fontan SV-CHD, suggesting that PBMC respiration may have utility for prognosticating HF risk in SV-CHD. Whether elevated respiration may reflect maladaptation to altered hemodynamics in SV-CHD warrants further investigation.
Collapse
Affiliation(s)
- Xinxiu Xu
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jiuann-Huey Ivy Lin
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Abha S Bais
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael John Reynolds
- School of Medicine, Pittsburgh Heart, Lung, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tuantuan Tan
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C Gabriel
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zoie Kondos
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoqin Liu
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sruti S Shiva
- School of Medicine, Pittsburgh Heart, Lung, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cecilia W Lo
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Human Platelet Mitochondrial Function Reflects Systemic Mitochondrial Alterations: A Protocol for Application in Field Studies. Cells 2021; 10:cells10082088. [PMID: 34440857 PMCID: PMC8393328 DOI: 10.3390/cells10082088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 01/13/2023] Open
Abstract
Human blood cells may offer a minimally invasive strategy to study systemic alterations of mitochondrial function. Here we tested the reliability of a protocol designed to study mitochondrial respiratory control in human platelets (PLTs) in field studies, using high-resolution respirometry (HRR). Several factors may trigger PLT aggregation during the assay, altering the homogeneity of the cell suspension and distorting the number of cells added to the two chambers (A, B) of the Oroboros Oxygraph-2k (O2k). Thus, inter-chamber variability (∆ab) was calculated by normalizing oxygen consumption to chamber volume (JO2) or to a specific respiratory control state (flux control ratio, FCR) as a reliable parameter of experimental quality. The method’s reliability was tested by comparing the ∆ab of laboratory-performed experiments (LAB, N = 9) to those of an ultramarathon field study (three sampling time-points: before competition (PRE, N = 7), immediately after (POST, N = 10) and 24 h after competition (REC; N = 10)). Our results show that ∆ab JO2 changed PRE-POST, but also for LAB-POST and LAB-REC, while all ∆ab FCR remained unchanged. Thus, we conclude that our method is reliable for assessing PLT mitochondrial function in LAB and field studies and after systemic stress conditions.
Collapse
|
22
|
Cullivan S, Murphy CA, Weiss L, Comer SP, Kevane B, McCullagh B, Maguire PB, Ní Ainle F, Gaine SP. Platelets, extracellular vesicles and coagulation in pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211021036. [PMID: 34158919 PMCID: PMC8182202 DOI: 10.1177/20458940211021036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary arterial hypertension is a rare disease of the pulmonary vasculature, characterised pathologically by proliferation, remodelling and thrombosis in situ. Unfortunately, existing therapeutic interventions do not reverse these findings and the disease continues to result in significant morbidity and premature mortality. A number of haematological derangements have been described in pulmonary arterial hypertension which may provide insights into the pathobiology of the disease and opportunities to explore new therapeutic pathways. These include quantitative and qualitative platelet abnormalities, such as thrombocytopaenia, increased mean platelet volume and altered platelet bioenergetics. Furthermore, a hypercoagulable state and aberrant negative regulatory pathways can be observed, which could contribute to thrombosis in situ in distal pulmonary arteries and arterioles. Finally, there is increasing interest in the role of extracellular vesicle autocrine and paracrine signalling in pulmonary arterial hypertension, and their potential utility as biomarkers and novel therapeutic targets. This review focuses on the potential role of platelets, extracellular vesicles and coagulation pathways in the pathobiology of pulmonary arterial hypertension. We highlight important unanswered clinical questions and the implications of these observations for future research and pulmonary arterial hypertension-directed therapies.
Collapse
Affiliation(s)
- Sarah Cullivan
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Claire A. Murphy
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Neonatology, Rotunda Hospital, Dublin,
Ireland
| | - Luisa Weiss
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Shane P. Comer
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Barry Kevane
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae
University Hospital, Dublin, Ireland
| | - Brian McCullagh
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
| | - Patricia B. Maguire
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Fionnuala Ní Ainle
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae
University Hospital, Dublin, Ireland
| | - Sean P. Gaine
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
23
|
Aulak KS, Al Abdi S, Li L, Crabb JS, Ghosh A, Willard B, Stuehr DJ, Crabb JW, Dweik RA, Tonelli AR. Disease-specific platelet signaling defects in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L739-L749. [PMID: 33596129 PMCID: PMC8174825 DOI: 10.1152/ajplung.00500.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rapidly progressive disease with several treatment options. Long-term mortality remains high with great heterogeneity in treatment response. Even though most of the pathology of IPAH is observed in the lung, there is systemic involvement. Platelets from patients with IPAH have characteristic metabolic shifts and defects in activation; therefore, we investigated whether they could be used to identify other disease-specific abnormalities. We used proteomics to investigate protein expression changes in platelets from patients with IPAH compared with healthy controls. Key abnormalities of nitric oxide pathway were tested in platelets from a larger cohort of unique patients with IPAH. Platelets showed abnormalities in the prostacyclin and nitric oxide pathways, which are dysregulated in IPAH and hence targets of therapy. We detected reduced expression of G protein αs and increased expression of the regulatory subunits of the cAMP-dependent protein kinase (PKA) type II isoforms, supporting an overall decrease in the activation of the prostacyclin pathway. We noted reduced levels of the soluble guanylate cyclase (sGC) subunits and increased expression of the phosphodiesterase type 5 A (PDE5A), conditions that affect the response to nitric oxide. Ensuing analysis of 38 unique patients with IPAH demonstrated considerable variation in the levels and specific activity of sGC, a finding with novel implications for personalized therapy. Platelets have some of the characteristic vasoactive signal abnormalities seen in IPAH and may provide comprehensive ex vivo mechanistic information to direct therapeutic decisions.
Collapse
Affiliation(s)
- Kulwant S Aulak
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sami Al Abdi
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ling Li
- Proteomics Shared Laboratory Resource, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jack S Crabb
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Arnab Ghosh
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Belinda Willard
- Proteomics Shared Laboratory Resource, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Dennis J Stuehr
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - John W Crabb
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Raed A Dweik
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Pulmonary, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Adriano R Tonelli
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Pulmonary, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
24
|
Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37:101674. [PMID: 32811789 PMCID: PMC7767752 DOI: 10.1016/j.redox.2020.101674] [Citation(s) in RCA: 732] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial electron transport chain utilizes a series of electron transfer reactions to generate cellular ATP through oxidative phosphorylation. A consequence of electron transfer is the generation of reactive oxygen species (ROS), which contributes to both homeostatic signaling as well as oxidative stress during pathology. In this graphical review we provide an overview of oxidative phosphorylation and its inter-relationship with ROS production by the electron transport chain. We also outline traditional and novel translational methodology for assessing mitochondrial energetics in health and disease.
Collapse
|
25
|
New Insights into the Implication of Mitochondrial Dysfunction in Tissue, Peripheral Blood Mononuclear Cells, and Platelets during Lung Diseases. J Clin Med 2020; 9:jcm9051253. [PMID: 32357474 PMCID: PMC7287602 DOI: 10.3390/jcm9051253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease, asthma, pulmonary arterial hypertension, or idiopathic pulmonary fibrosis are major causes of morbidity and mortality. Complex, their physiopathology is multifactorial and includes lung mitochondrial dysfunction and enhanced reactive oxygen species (ROS) release, which deserves increased attention. Further, and importantly, circulating blood cells (peripheral blood mononuclear cells-(PBMCs) and platelets) likely participate in these systemic diseases. This review presents the data published so far and shows that circulating blood cells mitochondrial oxidative capacity are likely to be reduced in chronic obstructive pulmonary disease (COPD), but enhanced in asthma and pulmonary arterial hypertension in a context of increased oxidative stress. Besides such PBMCs or platelets bioenergetics modifications, mitochondrial DNA (mtDNA) changes have also been observed in patients. These new insights open exciting challenges to determine their role as biomarkers or potential guide to a new therapeutic approach in lung diseases.
Collapse
|
26
|
Chatterjee M. Platelet lipidome: Dismantling the "Trojan horse" in the bloodstream. J Thromb Haemost 2020; 18:543-557. [PMID: 31868994 DOI: 10.1111/jth.14721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
The platelet-lipid chapter in the story of atherothrombosis is an old one, recapitulated and revised in many contexts. For decades several stimulating facets have been added to it, both unraveling and increasing the perplexity of platelet-lipid interplay and its pathophysiological consequences. The recent paradigm shift in our perspective has evolved with lipidomic analysis of the intraplatelet compartment and platelet releasate. These investigations have disclosed that platelets are in constant interaction with circulatory lipids, often reflected in their lipid repertoire. In addition, they offer a shielded intracellular space for oxidative lipid metabolism generating "toxic" metabolites that escape degradation by plasma lipases and antioxidant defense, circulate undetected by conventional plasma lipid profile, and deposited at atherosclerotic lesions or thrombus. Lipidomics divulges this silent invader in platelet vehicles, thereby providing potential biomarkers of pathologic manifestations and therapeutic targets to be exploited, which is surmised in this review.
Collapse
Affiliation(s)
- Madhumita Chatterjee
- Department of Cardiology and Angiology, Internal Medicine III, University Clinic Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Maron BA, Leopold JA, Hemnes AR. Metabolic syndrome, neurohumoral modulation, and pulmonary arterial hypertension. Br J Pharmacol 2020; 177:1457-1471. [PMID: 31881099 DOI: 10.1111/bph.14968] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary vascular disease, including pulmonary arterial hypertension (PAH), is increasingly recognized to be affected by systemic alterations including up-regulation of the renin-angiotensin-aldosterone system and perturbations to metabolic pathways, particularly glucose and fat metabolism. There is increasing preclinical and clinical data that each of these pathways can promote pulmonary vascular disease and right heart failure and are not simply disease markers. More recently, trials of therapeutics aimed at neurohormonal activation or metabolic dysfunction are beginning to shed light on how interventions in these pathways may affect patients with PAH. This review will focus on underlying mechanistic data that supports neurohormonal activation and metabolic dysfunction in the pathogenesis of PAH and right heart failure as well as discussing early translational data in patients with PAH.
Collapse
Affiliation(s)
- Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
28
|
McDowell RE, Aulak KS, Almoushref A, Melillo CA, Brauer BE, Newman JE, Tonelli AR, Dweik RA. Platelet glycolytic metabolism correlates with hemodynamic severity in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L562-L569. [PMID: 32022593 DOI: 10.1152/ajplung.00389.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Group 1 pulmonary hypertension (PH), i.e., pulmonary arterial hypertension (PAH), is associated with a metabolic shift favoring glycolysis in cells comprising the lung vasculature as well as skeletal muscle and right heart. We sought to determine whether this metabolic switch is also detectable in circulating platelets from PAH patients. We used Seahorse Extracellular Flux to measure bioenergetics in platelets isolated from group 1 PH (PAH), group 2 PH, patients with dyspnea and normal pulmonary artery pressures, and healthy controls. We show that platelets from group 1 PH patients exhibit enhanced basal glycolysis and lower glycolytic reserve compared with platelets from healthy controls but do not differ from platelets of group 2 PH or dyspnea patients without PH. Although we were unable to identify a glycolytic phenotype unique to platelets from PAH patients, we found that platelet glycolytic metabolism correlated with hemodynamic severity only in group 1 PH patients, supporting the known link between PAH pathology and altered glycolytic metabolism and extending this association to ex vivo platelets. Pulmonary artery pressure and pulmonary vascular resistance in patients with group 1 PH were directly associated with basal platelet glycolysis and inversely associated with maximal and reserve glycolysis, suggesting that PAH progression reduces the capacity for glycolysis even while demanding an increase in glycolytic metabolism. Therefore, platelets may provide an easy-to-harvest, real-time window into the metabolic shift occurring in the lung vasculature and represent a useful surrogate for interrogating the glycolytic shift central to PAH pathology.
Collapse
Affiliation(s)
- Ruth E McDowell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kulwant S Aulak
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Allaa Almoushref
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Celia A Melillo
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brittany E Brauer
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jennie E Newman
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Adriano R Tonelli
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Raed A Dweik
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
29
|
Braganza A, Annarapu GK, Shiva S. Blood-based bioenergetics: An emerging translational and clinical tool. Mol Aspects Med 2020; 71:100835. [PMID: 31864667 PMCID: PMC7031032 DOI: 10.1016/j.mam.2019.100835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Accumulating studies demonstrate that mitochondrial genetics and function are central to determining the susceptibility to, and prognosis of numerous diseases across all organ systems. Despite this recognition, mitochondrial function remains poorly characterized in humans primarily due to the invasiveness of obtaining viable tissue for mitochondrial studies. Recent studies have begun to test the hypothesis that circulating blood cells, which can be obtained by minimally invasive methodology, can be utilized as a biomarker of systemic bioenergetic function in human populations. Here we present the available methodologies for assessing blood cell bioenergetics and review studies that have applied these techniques to healthy and disease populations. We focus on the validation of this methodology in healthy subjects, as well as studies testing whether blood cell bioenergetics are altered in disease, correlate with clinical parameters, and compare with other methodology for assessing human mitochondrial function. Finally, we present the challenges and goals for the development of this emerging approach into a tool for translational research and personalized medicine.
Collapse
Affiliation(s)
- Andrea Braganza
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Gowtham K Annarapu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
31
|
Fernández AI, Yotti R, González-Mansilla A, Mombiela T, Gutiérrez-Ibanes E, Pérez del Villar C, Navas-Tejedor P, Chazo C, Martínez-Legazpi P, Fernández-Avilés F, Bermejo J. The Biological Bases of Group 2 Pulmonary Hypertension. Int J Mol Sci 2019; 20:ijms20235884. [PMID: 31771195 PMCID: PMC6928720 DOI: 10.3390/ijms20235884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a potentially fatal condition with a prevalence of around 1% in the world population and most commonly caused by left heart disease (PH-LHD). Usually, in PH-LHD, the increase of pulmonary pressure is only conditioned by the retrograde transmission of the left atrial pressure. However, in some cases, the long-term retrograde pressure overload may trigger complex and irreversible biomechanical and biological changes in the pulmonary vasculature. This latter clinical entity, designated as combined pre- and post-capillary PH, is associated with very poor outcomes. The underlying mechanisms of this progression are poorly understood, and most of the current knowledge comes from the field of Group 1-PAH. Treatment is also an unsolved issue in patients with PH-LHD. Targeting the molecular pathways that regulate pulmonary hemodynamics and vascular remodeling has provided excellent results in other forms of PH but has a neutral or detrimental result in patients with PH-LHD. Therefore, a deep and comprehensive biological characterization of PH-LHD is essential to improve the diagnostic and prognostic evaluation of patients and, eventually, identify new therapeutic targets. Ongoing research is aimed at identify candidate genes, variants, non-coding RNAs, and other biomarkers with potential diagnostic and therapeutic implications. In this review, we discuss the state-of-the-art cellular, molecular, genetic, and epigenetic mechanisms potentially involved in PH-LHD. Signaling and effective pathways are particularly emphasized, as well as the current knowledge on -omic biomarkers. Our final aim is to provide readers with the biological foundations on which to ground both clinical and pre-clinical research in the field of PH-LHD.
Collapse
Affiliation(s)
- Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Enrique Gutiérrez-Ibanes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Candelas Pérez del Villar
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Paula Navas-Tejedor
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Christian Chazo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-91-586-8279
| |
Collapse
|
32
|
Rafikova O, Al Ghouleh I, Rafikov R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid Redox Signal 2019; 31:933-953. [PMID: 31169021 PMCID: PMC6765063 DOI: 10.1089/ars.2018.7673] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature characterized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts. The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid increase in pulmonary vascular resistance, which results in right heart failure. Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease, largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is multifaceted in the advanced disease, and there has been promising recent progress in identifying various pathological pathways related to the late clinical picture. Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymptomatically, making it difficult to identify and treat early. Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a more successful strategy, and it ensures better survival in PAH patients.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Imad Al Ghouleh
- Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
33
|
Winnica D, Corey C, Mullett S, Reynolds M, Hill G, Wendell S, Que L, Holguin F, Shiva S. Bioenergetic Differences in the Airway Epithelium of Lean Versus Obese Asthmatics Are Driven by Nitric Oxide and Reflected in Circulating Platelets. Antioxid Redox Signal 2019; 31:673-686. [PMID: 30608004 PMCID: PMC6708272 DOI: 10.1089/ars.2018.7627] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Asthma, characterized by airway obstruction and hyper-responsiveness, is more severe and less responsive to treatment in obese subjects. While alterations in mitochondrial function and redox signaling have been implicated in asthma pathogenesis, it is unclear whether these mechanisms differ in lean versus obese asthmatics. In addition, we previously demonstrated that circulating platelets from asthmatic individuals have altered bioenergetics; however, it is unknown whether platelet mitochondrial changes reflect those observed in airway epithelial cells. Herein we hypothesized that lean and obese asthmatics show differential bioenergetics and redox signaling in airway cells and that these alterations could be measured in platelets from the same individual. Results: Using freshly isolated bronchial airway epithelial cells and platelets from lean and obese asthmatics and healthy individuals, we show that both cell types from obese asthmatics have significantly increased glycolysis, basal and maximal respiration, and oxidative stress compared with lean asthmatics and healthy controls. This increased respiration was associated with enhanced arginine metabolism by arginase, which has previously been shown to drive respiration. Inducible nitric oxide synthase (iNOS) was also upregulated in cells from all asthmatics. However, due to nitric oxide synthase uncoupling in obese asthmatics, overall nitric oxide (NO) bioavailability was decreased, preventing NO-dependent inhibition in obese asthmatic cells that was observed in lean asthmatics. Innovation and Conclusion: These data demonstrate bioenergetic differences between lean and obese asthmatics that are, in part, due to differences in NO signaling. They also suggest that the platelet may serve as a useful surrogate to understand redox, oxidative stress and bioenergetic changes in the asthmatic airway.
Collapse
Affiliation(s)
- Daniel Winnica
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven Mullett
- Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael Reynolds
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gabrielle Hill
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stacy Wendell
- Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Loretta Que
- Department of Pulmonary and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Fernando Holguin
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Brittain EL, Thennapan T, Maron BA, Chan SY, Austin ED, Spiekerkoetter E, Bogaard HJ, Guignabert C, Paulin R, Machado RF, Yu PB. Update in Pulmonary Vascular Disease 2016 and 2017. Am J Respir Crit Care Med 2019. [PMID: 29533671 DOI: 10.1164/rccm.201801-0062up] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Evan L Brittain
- 1 Division of Cardiovascular Medicine, Department of Medicine.,2 Vanderbilt Translational and Clinical Cardiovascular Research Center.,3 Pulmonary Vascular Center, Department of Medicine, and
| | | | - Bradley A Maron
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,6 Department of Cardiology, Boston VA Healthcare System, Boston, Massachusetts
| | - Stephen Y Chan
- 7 Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric D Austin
- 3 Pulmonary Vascular Center, Department of Medicine, and.,8 Pediatric Pulmonary Hypertension Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edda Spiekerkoetter
- 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,10 Vera Moulton Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, California
| | - Harm J Bogaard
- 11 Pulmonary Hypertension Expert Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Christophe Guignabert
- 12 INSERM UMR-S 999, Le Plessis-Robinson, France.,13 Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Roxane Paulin
- 14 Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada; and
| | - Roberto F Machado
- 15 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Paul B Yu
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Nguyen QL, Wang Y, Helbling N, Simon MA, Shiva S. Alterations in platelet bioenergetics in Group 2 PH-HFpEF patients. PLoS One 2019; 14:e0220490. [PMID: 31365585 PMCID: PMC6668825 DOI: 10.1371/journal.pone.0220490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022] Open
Abstract
Background Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure but classified into subgroups based on disease etiology. It is established that systemic bioenergetic dysfunction contributes to the pathogenesis of pulmonary arterial hypertension classified as World Health Organization (WHO) Group 1. Consistent with this, we previously showed that platelets from Group 1 PH patients demonstrate increased glycolysis and enhanced maximal capacity for oxidative phosphorylation, which is due to increased fatty acid oxidation (FAO). However, it remains unclear whether identical mitochondrial alterations contribute to the pathology of other PH subgroups. The most prevalent subgroup of PH is WHO Group 2, which encompasses pulmonary venous hypertension secondary to left heart disease. Here, we hypothesized that platelets from Group 2 subjects show bioenergetic alteration compared to controls, and that these changes were similar to Group 1 PH patients. Method and results We isolated platelets from subjects with Group 2 PH and controls (n = 20) and measured platelet bioenergetics as well as hemodynamic parameters. We demonstrate that Group 2 PH platelets do not show a change in glycolytic rate but do demonstrate enhanced maximal capacity of respiration due at least partially to increased FAO. Moreover, this enhanced maximal capacity correlates negatively with right ventricular stroke work index and is not changed by administration of inhaled nitrite, a modulator of pulmonary hemodynamics. Conclusions These data demonstrate that Group 2 PH subjects have altered bioenergetic function though this alteration is not identical to that of Group 1 PH. The implications of this alteration for disease pathogenesis will be discussed.
Collapse
Affiliation(s)
- Quyen L. Nguyen
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yinna Wang
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicole Helbling
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marc A. Simon
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology & Chemical Biology, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Yang X, Lu GP, Cai XD, Lu ZJ, Kissoon N. Alterations of complex IV in the tissues of a septic mouse model. Mitochondrion 2019; 49:89-96. [PMID: 31356883 DOI: 10.1016/j.mito.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/23/2018] [Accepted: 11/04/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To characterize the mitochondrial respiratory chain complex IV(complex IV) activity and protein expression during polymicrobial sepsis. MATERIAL AND METHODS Polymicrobial peritonitis, a clinically relevant mouse model of sepsis, was generated by cecum ligation and puncture (CLP) in Sprague- Dawley rats. The rats were randomly divided into 3 groups as follows: the sepsis without resuscitation (S), sepsis and fluid resuscitated (R) group, and a control (C) group. Twelve hours after the sepsis model was established, tissue specimens were obtained from the myocardium, liver and skeletal muscle. Mitochondrial respiratory chain complex IV activity of all tissue specimens was detected by spectrophotometry. Western blot was used to measure the liver mitochondrial respiratory chain complex IV protein content. The ultrastructure changes of mitochondria were detected by transmission electron microscopy. RESULTS In myocardial cells, complex IV activity decreased significantly in the S and R groups as compared to the C group. There were no differences in complex IV activity between groups in skeletal muscle cells while in liver cells, complex IV activity and content was significantly decreased for the S group but no differences were observed between the C and R groups. Increased matrix volume and reduced density with generalized disruption of the normal cristae pattern was most extensive in the liver, followed by cardiac muscle cells with that in skeletal muscle cells been relatively mild in the S group. Mitochondrial fusion/fission and mitochondrial autophagy was also observed in the S group by transmission electron microscopy. Mitochondrial ultrastructure was preserved in the R-group and was similar to that seen in the C-group. CONCLUSIONS Changes in complex IV activity and mitochondrial ultrastructure, a manifestation of the mitochondrial dysfunction varied depending on cell type. These changes are partly reversed by fluid therapy. Therapies aimed at mitochondrial resuscitation should be explored.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatric Emergency Medicine and Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Guo-Ping Lu
- Department of Pediatric Emergency Medicine and Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao-Di Cai
- Department of Pediatric Emergency Medicine and Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Zhu-Jin Lu
- Department of Pediatric Emergency Medicine and Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Niranjan Kissoon
- Department of Child and Family Research Institute, the BC Children'sHospital, Vancouver, BC,Canada.
| |
Collapse
|
37
|
The redox physiology of red blood cells and platelets: implications for their interactions and potential use as systemic biomarkers. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Braganza A, Corey CG, Santanasto AJ, Distefano G, Coen PM, Glynn NW, Nouraie SM, Goodpaster BH, Newman AB, Shiva S. Platelet bioenergetics correlate with muscle energetics and are altered in older adults. JCI Insight 2019; 5:128248. [PMID: 31120438 DOI: 10.1172/jci.insight.128248] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Physical function decreases with age, and though bioenergetic alterations contribute to this decline, the mechanisms by which mitochondrial function changes with age remains unclear. This is partially because human mitochondrial studies require highly invasive procedures, such as muscle biopsies, to obtain live tissue with functional mitochondria. However, recent studies demonstrate that circulating blood cells are potentially informative in identifying systemic bioenergetic changes. Here, we hypothesize that human platelet bioenergetics reflect bioenergetics measured in muscle biopsies. METHODS & RESULTS We demonstrate that maximal and ATP-linked respiratory rate measured in isolated platelets from older adults (86-93 years) correlates significantly with maximal respiration (r = 0.595; P = 0.003) measured by muscle biopsy respirometry and maximal ATP production (r = 0.643; P = 0.004) measured by 31P-MRS respectively, in the same individuals. Comparison of platelet bioenergetics in this aged cohort to platelets from younger adults (18-35 years) shows aged adults demonstrate lower basal and ATP-linked respiration. Platelets from older adults also show enhanced proton leak, which is likely due to increased protein levels of uncoupling protein 2, and correlates with increased gate speed in this cohort (r = 0.58; P = 0.0019). While no significant difference in glycolysis was observed in older adults compared to younger adults, platelet glycolytic rate correlated with fatigability (r = 0.44; P = 0.016). CONCLUSIONS These data advance the mechanistic understanding of age-related changes in mitochondrial function. Further, they suggest that measuring platelet bioenergetics provides a potential supplement or surrogate for muscle biopsy measurement and may be a valuable tool to study mitochondrial involvement in age-related decline of physical function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Seyed-Mehdi Nouraie
- Vascular Medicine Institute.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | | | | | - Sruti Shiva
- Vascular Medicine Institute.,Department of Pharmacology and Chemical Biology.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Petrus AT, Lighezan DL, Danila MD, Duicu OM, Sturza A, Muntean DM, Ionita I. Assessment of platelet respiration as emerging biomarker of disease. Physiol Res 2019; 68:347-363. [PMID: 30904011 DOI: 10.33549/physiolres.934032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is currently acknowledged as a central pathomechanism of most common diseases of the 21(st) century. Recently, the assessment of the bioenergetic profile of human peripheral blood cells has emerged as a novel research field with potential applications in the development of disease biomarkers. In particular, platelets have been successfully used for the ex vivo analysis of mitochondrial respiratory function in several acute and chronic pathologies. An increasing number of studies support the idea that evaluation of the bioenergetic function in circulating platelets may represent the peripheral signature of mitochondrial dysfunction in metabolically active tissues (brain, heart, liver, skeletal muscle). Accordingly, impairment of mitochondrial respiration in peripheral platelets might have potential clinical applicability as a diagnostic and prognostic tool as well as a biomarker in treatment monitoring. The aim of this minireview is to summarize current information in the field of platelet mitochondrial dysfunction in both acute and chronic diseases.
Collapse
Affiliation(s)
- A T Petrus
- Department of Anatomy, Physiology and Pathophysiology, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania and Department of Functional Sciences - Pathophysiology, "Victor Babes" University of Medicine and Pharmacy of Timisoara, Timisoara, Romania.
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhuang W, Lian G, Huang B, Du A, Gong J, Xiao G, Xu C, Wang H, Xie L. CPT1 regulates the proliferation of pulmonary artery smooth muscle cells through the AMPK-p53-p21 pathway in pulmonary arterial hypertension. Mol Cell Biochem 2018; 455:169-183. [DOI: 10.1007/s11010-018-3480-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
|
41
|
Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sci 2018; 214:77-83. [PMID: 30355531 DOI: 10.1016/j.lfs.2018.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
The pathophysiology of pulmonary arterial hypertension (PAH) is underlined by cell proliferation and vasoconstriction of pulmonary arterioles this involves multiple molecular factors or proteins, but it is not clear what the exact roles of these factors/proteins are. In addition, there may be other factors/proteins that have not been identified that contribute to PAH pathophysiology. Therefore, research has focused on investigating novel role players, in order to facilitate a better understanding of how PAH develop. Evidence suggest that mitochondrial regulators are key role players in PAH pathophysiology, but regulators that have not received sufficient attention in PAH are metallothioneins (MTs). In PAH patients, MT expression is elevated compared to healthy individuals, suggesting that MTs may be possible biomarkers. In other disease-models, MTs have been shown to regulate cell proliferation and vasoconstriction, processes that are instrumental in PAH pathophysiology. Due to the involvement of these processes in PAH pathophysiology and the ability of MTs to modulate them, this paper propose that cellular MTs may also play a role in PAH development. This paper suggests that PAH-research should perhaps begin to investigate the involvement of cellular MTs in the development of PAH.
Collapse
|
42
|
Sowton AP, Millington-Burgess SL, Murray AJ, Harper MT. Rapid kinetics of changes in oxygen consumption rate in thrombin-stimulated platelets measured by high-resolution respirometry. Biochem Biophys Res Commun 2018; 503:2721-2727. [PMID: 30093113 PMCID: PMC6142173 DOI: 10.1016/j.bbrc.2018.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022]
Abstract
Platelet activation plays a key role in normal haemostasis and pathological thrombosis. Platelet activation is rapid; within minutes of stimulation, platelets generate bioactive phospholipids, secrete their granule contents, activate integrins and aggregate together to form a haemostatic plug. These events are dependent on ATP synthesis. Mitochondrial function in platelets from healthy volunteers and patients with a range of diseases indicate an important role for oxygen consumption in oxidative phosphorylation in normal and pathological function. Platelets also consume oxygen during oxidation reactions, such as cyclooxygenase-dependent thromboxane A2 synthesis. In this study, we used high-resolution respirometry to investigate rapid changes in oxygen consumption during platelet activation. We demonstrated a rapid, transient increase in oxygen consumption rate within minutes of platelet stimulation by the physiological activator, thrombin. This was partly inhibited by aspirin and by oligomycin. This shows that high resolution respirometry can provide information regarding rapid and dynamic changes in oxygen consumption during platelet activation. High resolution respirometry can be used to investigate the rapid kinetics of changes in platelet oxygen consumption rate. Thrombin triggers a rapid, transient increase in platelet oxygen consumption rate. Aspirin and oligomycin partially inhibit the increased oxygen consumption rate.
Collapse
Affiliation(s)
- Alice P Sowton
- Department of Pharmacology, University of Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | | | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | | |
Collapse
|
43
|
Culley MK, Chan SY. Mitochondrial metabolism in pulmonary hypertension: beyond mountains there are mountains. J Clin Invest 2018; 128:3704-3715. [PMID: 30080181 DOI: 10.1172/jci120847] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous and fatal disease of the lung vasculature, where metabolic and mitochondrial dysfunction may drive pathogenesis. Similar to the Warburg effect in cancer, a shift from mitochondrial oxidation to glycolysis occurs in diseased pulmonary vessels and the right ventricle. However, appreciation of metabolic events in PH beyond the Warburg effect is only just emerging. This Review discusses molecular, translational, and clinical concepts centered on the mitochondria and highlights promising, controversial, and challenging areas of investigation. If we can move beyond the "mountains" of obstacles in this field and elucidate these fundamental tenets of pulmonary vascular metabolism, such work has the potential to usher in much-needed diagnostic and therapeutic approaches for the mitochondrial and metabolic management of PH.
Collapse
Affiliation(s)
- Miranda K Culley
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Nguyen Q, Shiva S. Moving mitochondria - Breathing new signaling into asthmatic airways. Redox Biol 2018; 18:244-245. [PMID: 30056272 PMCID: PMC6079482 DOI: 10.1016/j.redox.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Quyen Nguyen
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
45
|
AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood 2018; 132:1180-1192. [PMID: 30018077 DOI: 10.1182/blood-2018-02-831503] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/08/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated protein kinase (AMPK) α1 is activated in platelets on thrombin or collagen stimulation, and as a consequence, phosphorylates and inhibits acetyl-CoA carboxylase (ACC). Because ACC is crucial for the synthesis of fatty acids, which are essential for platelet activation, we hypothesized that this enzyme plays a central regulatory role in platelet function. To investigate this, we used a double knock-in (DKI) mouse model in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser212 on ACC2 were mutated to prevent AMPK signaling to ACC. Suppression of ACC phosphorylation promoted injury-induced arterial thrombosis in vivo and enhanced thrombus growth ex vivo on collagen-coated surfaces under flow. After collagen stimulation, loss of AMPK-ACC signaling was associated with amplified thromboxane generation and dense granule secretion. ACC DKI platelets had increased arachidonic acid-containing phosphatidylethanolamine plasmalogen lipids. In conclusion, AMPK-ACC signaling is coupled to the control of thrombosis by specifically modulating thromboxane and granule release in response to collagen. It appears to achieve this by increasing platelet phospholipid content required for the generation of arachidonic acid, a key mediator of platelet activation.
Collapse
|