1
|
Alanazi AZ, Clark MA. Angiotensin III activates ERK1/2 mitogen activated protein kinases and proliferation of rat vascular smooth muscle cells. J Recept Signal Transduct Res 2025; 45:61-72. [PMID: 39801458 DOI: 10.1080/10799893.2025.2451890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025]
Abstract
The proliferative effects of angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) through its ability to stimulate extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway have been established. The main goal of this study was to explore whether Ang III induces ERK1/2 MAPK and VSMC proliferation in cultured Wistar VSMCs. Further, the Ang III actions were compared to those observed in VSMCs derived from the spontaneously hypertensive rat (SHR). We hypothesized that in VSMCs Ang III will have similar actions as Ang II to induce ERK1/2 MAPK and cellular proliferation and this ability may be different in VSMCs isolated from Wistar versus SHR rats. Time and/or concentration-dependent effects of Ang III and Ang II were determined in VSMCs using western blot analysis and DNA incorporation assay. The results showed that ERK1/2 MAPK phosphorylation mediated by Ang II or Ang III were concentration- and time-dependent in Wistar VSMCs. Moreover, Ang III was less effective in mediating ERK1/2 phosphorylation in SHR VSMCs as compared to effects seen in Wistar rat VSMCs. Ang III induced ERK1/2 phosphorylation through the AT1 receptors activation. Ang II and Ang III induced VSMC DNA synthesis via the AT1 receptor in a concentration-dependent manner in Wistar VSMCs. Moreover, Ang III induced VSMC proliferation and significant differences existed in the peptide's proliferation effects in Wistar versus SHR VSMCs. These results indicate that Ang III stimulates ERK1/2 MAPK and DNA synthesis in VSMCs via AT1 receptors. However, its ability to stimulate these pathways is reduced in SHR VSMCs.
Collapse
MESH Headings
- Animals
- Rats
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Cell Proliferation/drug effects
- Rats, Inbred SHR
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 1/genetics
- Rats, Wistar
- Angiotensin II/pharmacology
- Angiotensin III/metabolism
- Angiotensin III/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Phosphorylation/drug effects
- Cells, Cultured
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Male
- MAP Kinase Signaling System/drug effects
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
2
|
Sahu R, Rawal RK. Modulation of the c-JNK/p38-MAPK signaling pathway: Investigating the therapeutic potential of natural products in hypertension. PHYTOMEDICINE PLUS 2024; 4:100564. [DOI: 10.1016/j.phyplu.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Tusa I, Menconi A, Tubita A, Rovida E. Pathophysiological Impact of the MEK5/ERK5 Pathway in Oxidative Stress. Cells 2023; 12:cells12081154. [PMID: 37190064 DOI: 10.3390/cells12081154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Oxidative stress regulates many physiological and pathological processes. Indeed, a low increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, including signal transduction, gene expression, cell survival or death, as well as antioxidant capacity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative stress-elicited effects. In particular, accumulating evidence identified a prominent role of this pathway in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated response to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascular, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
4
|
Liu S, Lin Z. Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling. J Vasc Res 2021; 59:90-113. [PMID: 34937033 DOI: 10.1159/000519845] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.
Collapse
Affiliation(s)
- Shangmin Liu
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China, .,Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China,
| | - Zhanyi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China.,Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
5
|
Cadmium-induced hypertension is associated with renal myosin light chain phosphatase inhibition via increased T697 phosphorylation and p44 mitogen-activated protein kinase levels. Hypertens Res 2021; 44:941-954. [PMID: 33972751 DOI: 10.1038/s41440-021-00662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Dietary intake of the heavy metal cadmium (Cd2+) is implicated in hypertension, but potassium supplementation reportedly mitigates hypertension. This study aims to elucidate the hypertensive mechanism of Cd2+. Vascular reactivity and protein expression were assessed in Cd2+-exposed rats for 8 weeks to determine the calcium-handling effect of Cd2+ and the possible signaling pathways and mechanisms involved. Cd2+ induced hypertension in vivo by significantly (p < 0.001) elevating systolic blood pressure (160 ± 2 and 155 ± 1 vs 120 ± 1 mm Hg), diastolic blood pressure (119 ± 2 and 110 ± 1 vs 81 ± 1 mm Hg), and mean arterial pressure (133 ± 2 and 125 ± 1 vs 94 ± 1 mm Hg) (SBP, DBP, and MAP, respectively), while potassium supplementation protected against elevation of these parameters. The mechanism involved augmentation of the phosphorylation of renal myosin light chain phosphatase targeting subunit 1 (MYPT1) at threonine 697 (T697) (2.58 ± 0.36 vs 1 ± 0) and the expression of p44 mitogen-activated protein kinase (MAPK) (1.78 ± 0.20 vs 1 ± 0). While acetylcholine (ACh)-induced relaxation was unaffected, 5 mg/kg b.w. Cd2+ significantly (p < 0.001) attenuated phenylephrine (Phe)-induced contraction of the aorta, and 2.5 mg/kg b.w. Cd2+ significantly (p < 0.05) augmented sodium nitroprusside (SNP)-induced relaxation of the aorta. These results support the vital role of the kidney in regulating blood pressure changes after Cd2+ exposure, which may be a key drug target for hypertension management. Given the differential response to Cd2+, it is apparent that its hypertensive effects could be mediated by myosin light chain phosphatase (MLCP) inhibition via phosphorylation of renal MYPT1-T697 and p44 MAPK. Further investigation of small arteries and the Rho-kinase/MYPT1 interaction is recommended.
Collapse
|
6
|
Xie J, Liu W, Lv W, Han X, Kong Q, Wu Y, Liu X, Han Y, Shi C, Jia X. Transmembrane protein 16A/anoctamin 1 inhibitor T16A
inh
‐A01 reversed monocrotaline‐induced rat pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020946670. [PMID: 35154665 PMCID: PMC8826276 DOI: 10.1177/2045894020946670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Transmembrane protein 16A was involved in the development of the
monocrotaline-induced pulmonary arterial hypertension model through ERK1/2
activation, and it was considered as potential target for pulmonary arterial
hypertension treatment. A pulmonary arterial hypertension rat model was
established by intraperitoneal administration of monocrotaline. Noninvasive
pulsed-wave Doppler and histological analysis was performed, and it revealed
proliferation and remodeling of pulmonary arterioles and right ventricle
hypertrophy. In addition, transmembrane protein 16A, proliferating cell nuclear
antigen—a proliferate marker, P-ERK1/2 increased following monocrotaline
treatment. Expression of transmembrane protein 16A in the pulmonary arteries was
co-localized with a specific marker of vascular smooth muscle α-actin. Then, a
specific inhibitor of transmembrane protein 16A-T16Ainh-A01 was
administered to pulmonary arterial hypertension rats. It was found to alleviate
the remodeling of pulmonary arterioles and right ventricle hypertrophy
significantly, and decrease the upregulation of proliferating cell nuclear
antigen in monocrotaline-induced pulmonary arteries. In addition,
T16Ainh-A01 could inhibit the activation of ERK1/2 in pulmonary
arterial hypertension model. Transmembrane protein 16A mediated the
proliferation and remodeling of pulmonary arterioles in the
monocrotaline-induced pulmonary arterial hypertension model. ERK1/2 pathway is
one of downstream factors. Long-term use of T16Ainh-A01 in vivo could
alleviate remodeling and pressure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jianye Xie
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Wenyuan Liu
- Department of General MedicineFirst Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Wenjing Lv
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaohua Han
- Department of Physiology and PathophysiologyCollege of MedicineQingdao UniversityQingdaoChina
| | - Qingnuan Kong
- Department of PathologyQingdao Municipal HospitalQingdaoChina
| | - Yuhui Wu
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
- Department of CardiologyAffiliated Cardiovascular Hospital of Qingdao UniversityQingdaoChina
| | - Xin Liu
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ying Han
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chunying Shi
- Department of Human AnatomyHistology and EmbryologyCollege of MedicineQingdao UniversityQingdaoChina
| | - Xiujuan Jia
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
7
|
Alanazi AZ, Clark MA. Effects of angiotensin III on c-Jun N terminal kinase in Wistar and hypertensive rat vascular smooth muscle cells. Peptides 2020; 123:170204. [PMID: 31738968 DOI: 10.1016/j.peptides.2019.170204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) and inflammation are well known actions associated with hypertension. Angiotensin (Ang) II mediates these physiological actions through the c-Jun N terminal Kinase (JNK), mitogen-activated proteins kinase (MAPK) pathway. Ang III effects on this pathway in VSMCs are unknown. The aim of this study was to determine whether Ang III activates JNK MAPK in Wistar VSMCs and determined whether the response was different in spontaneously hypertensive rat (SHR) VSMCs. We also ascertained whether this effect leads to VSMC proliferation. Western blots were used to determine the time and concentration effects of Ang II on JNK MAPK phosphorylation in Wistar VSMCs. Similar studies were conducted for Ang III in Wistar and SHR VSMCs. Both peptides induced JNK phosphorylation in a concentration- and time-dependent manner in Wistar VSMCs. Ang III also increased JNK phosphorylation in a concentration- and time-dependent fashion in SHR VSMCs as well. However, the ability of Ang III to induce JNK MAPK was different in SHR VSMCs as the phosphorylation levels of JNK were significantly higher in Wistar VSMCs as compared to SHR VSMCs at several time points and concentrations. Further, Ang III-mediated DNA synthesis, a measure of VSMC proliferation, occurred through activation of JNK MAPK. This study is the first to show Ang III effects on the JNK MAPK pathway in VSMCs and the role of JNK in Ang III-mediated cellular proliferation. These findings impart key information for the understanding of Ang III functions, especially in VSMCs and possible cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
8
|
Zeng XL, Sun L, Zheng HQ, Wang GL, Du YH, Lv XF, Ma MM, Guan YY. Smooth muscle-specific TMEM16A expression protects against angiotensin II-induced cerebrovascular remodeling via suppressing extracellular matrix deposition. J Mol Cell Cardiol 2019; 134:131-143. [PMID: 31301303 DOI: 10.1016/j.yjmcc.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
Abstract
Cerebrovascular remodeling is the leading factor for stroke and characterized by increased extracellular matrix deposition, migration and proliferation of vascular smooth muscle cells, and inhibition of their apoptosis. TMEM16A is an important component of Ca2+-activated Cl- channels. Previously, we showed that downregulation of TMEM16A in the basilar artery was negatively correlated with cerebrovascular remodeling during hypertension. However, it is unclear whether TMEM16A participates in angiotensin II (Ang II)-induced vascular remodeling in mice that have TMEM16A gene modification. In this study, we generated a transgenic mouse that overexpresses TMEM16A specifically in vascular smooth muscle cells. We observed that vascular remodeling in the basilar artery during Ang II-induced hypertension was significantly suppressed upon vascular smooth muscle-specific overexpression of TMEM16A relative to control mice. Specifically, we observed a large reduction in the deposition of fibronectin and collagen I. The expression of matrix metalloproteinases (MMP-2, MMP-9, and MMP-14), and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were upregulated in the basilar artery during Ang II-induced hypertension, but this was suppressed upon overexpression of TMEM16A in blood vessels. Furthermore, TMEM16A overexpression alleviated the overactivity of the canonical TGF-β1/Smad3, and non-canonical TGF-β1/ERK and JNK pathways in the basilar artery during Ang II-induced hypertension. These in vivo results were similar to the results derived in vitro with basilar artery smooth muscle cells stimulated by Ang II. Moreover, we observed that the inhibitory effect of TMEM16A on MMPs was mediated by decreasing the activation of WNK1, which is a Cl--sensitive serine/threonine kinase. In conclusion, this study demonstrates that TMEM16A protects against cerebrovascular remodeling during hypertension by suppressing extracellular matrix deposition. We also showed that TMEM16A exerts this effect by reducing the expression of MMPs via inhibiting WNK1, and decreasing the subsequent activities of TGF-β1/Smad3, ERK, and JNK. Accordingly, our results suggest that TMEM16A may serve as a novel therapeutic target for vascular remodeling.
Collapse
Affiliation(s)
- Xue-Lin Zeng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Lu Sun
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Qing Zheng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guan-Lei Wang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yan-Hua Du
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Ming-Ming Ma
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yong-Yuan Guan
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Liu J, Wang W, Liu F, Li Z. Pediatric acute respiratory distress syndrome - current views. Exp Ther Med 2018; 15:1775-1780. [PMID: 29434764 PMCID: PMC5776650 DOI: 10.3892/etm.2017.5628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) mainly involves acute respiratory failure. In addition to this affected patients feel progressive arterial hypoxemia, dyspnea, and a marked increase in the work of breathing. The only clinical solution for the above pathological state is ventilation. Mechanical ventilation is necessary to support life in ARDs but it itself worsen lung injury and the term is known clinically as ‘ventilation induced lung injury’ (VILI). At the cellular level, respiratory epithelial cells are subjected to cyclic stretch, i.e. repeated cycles of positive and negative strain, during normal tidal ventilation. In aerated areas of diseased lungs, or even normal lungs subjected to injurious positive pressure mechanical ventilation, the cells are at risk of being over distended, and worsening injury by disrupting the alveolar epithelial barrier. Further, hypercapnic acidosis (HCA) in itself confers protection from stretch injury, potentially via a mechanisms involving inhibition of nuclear factor κB (NF-κB), a transcription factor central to inflammation, injury and repair. Mesenchymal stem cells are the latest in the field and are being investigated as a possible therapy for ARDS.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Wang
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Fengli Liu
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenguang Li
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
10
|
The PPI network analysis of mRNA expression profile of uterus from primary dysmenorrheal rats. Sci Rep 2018; 8:351. [PMID: 29321498 PMCID: PMC5762641 DOI: 10.1038/s41598-017-18748-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
To elucidate the mechanisms of molecular regulations underlying primary dysmenorrhea (PD), we used our previously published mRNA expression profile of uterus from PD syndrome rats to construct protein-protein interactions (PPI) network via STRING Interactome. Consequently, 34 subnetworks, including a "continent" (Subnetwork 1) and 33 "islands" (Subnetwork 2-34) were generated. The nodes, with relative expression ratios, were visualized in the PPI networks and their connections were identified. Through path and module exploring in the network, the bridges were found from pathways of cellular response to calcium ion, SMAD protein signal transduction, regulation of transcription from RNA polymerase II promoter in response to stress and muscle stretch that were significantly enriched by the up-regulated mRNAs, to the cascades of cAMP metabolic processes and positive regulation of cyclase activities by the down-regulated ones. This link is mainly dependent on Fos/Jun - Vip connection. Our data, for the first time, report the PPI network analysis of differentially expressed mRNAs in the uterus of PD syndrome rats, to give insight into screening drugs and find new therapeutic strategies to relieve PD.
Collapse
|
11
|
Vatankhah E, Prabhakaran MP, Ramakrishna S. Biomimetic microenvironment complexity to redress the balance between biodegradation and de novo matrix synthesis during early phase of vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:39-47. [DOI: 10.1016/j.msec.2017.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 06/28/2017] [Indexed: 01/12/2023]
|
12
|
Masukawa D, Koga M, Sezaki A, Nakao Y, Kamikubo Y, Hashimoto T, Okuyama-Oki Y, Aladeokin AC, Nakamura F, Yokoyama U, Wakui H, Ichinose H, Sakurai T, Umemura S, Tamura K, Ishikawa Y, Goshima Y. L-DOPA sensitizes vasomotor tone by modulating the vascular alpha1-adrenergic receptor. JCI Insight 2017; 2:90903. [PMID: 28931752 DOI: 10.1172/jci.insight.90903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 08/15/2017] [Indexed: 11/17/2022] Open
Abstract
Blood pressure is regulated by extrinsic factors including noradrenaline, the sympathetic neurotransmitter that controls cardiovascular functions through adrenergic receptors. However, the fine-tuning system of noradrenaline signaling is relatively unknown. We here show that l-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of catecholamines, sensitizes the vascular adrenergic receptor alpha1 (ADRA1) through activation of L-DOPA receptor GPR143. In WT mice, intravenous infusion of the ADRA1 agonist phenylephrine induced a transient elevation of blood pressure. This response was attenuated in Gpr143 gene-deficient (Gpr143-/y) mice. Specific knockout of Gpr143 in vascular smooth muscle cells (VSMCs) also showed a similar phenotype, indicating that L-DOPA directly modulates ADRA1 signaling in the VSMCs. L-DOPA at nanomolar concentrations alone produced no effect on the VSMCs, but it enhanced phenylephrine-induced vasoconstriction and intracellular Ca2+ responses. Phenylephrine also augmented the phosphorylation of extracellular signal-regulated kinases in cultured VSMCs from WT but not Gpr143-/y mice. In WT mice, blood pressure increased during the transition from light-rest to dark-active phases. This elevation was not observed in Gpr143-/y mice. Taken together, our findings provide evidence for L-DOPA/GPR143 signaling that exerts precursor control of sympathetic neurotransmission through sensitizing vascular ADRA1.
Collapse
Affiliation(s)
- Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Motokazu Koga
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Sezaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuka Nakao
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, and
| | | | - Aderemi Caleb Aladeokin
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Hiroshi Ichinose
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
13
|
Wilde E, Aubdool AA, Thakore P, Baldissera L, Alawi KM, Keeble J, Nandi M, Brain SD. Tail-Cuff Technique and Its Influence on Central Blood Pressure in the Mouse. J Am Heart Assoc 2017; 6:e005204. [PMID: 28655735 PMCID: PMC5669161 DOI: 10.1161/jaha.116.005204] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/24/2017] [Indexed: 12/05/2022]
Abstract
BACKGROUND Reliable measurement of blood pressure in conscious mice is essential in cardiovascular research. Telemetry, the "gold-standard" technique, is invasive and expensive and therefore tail-cuff, a noninvasive alternative, is widely used. However, tail-cuff requires handling and restraint during measurement, which may cause stress affecting blood pressure and undermining reliability of the results. METHODS AND RESULTS C57Bl/6J mice were implanted with radio-telemetry probes to investigate the effects of the steps of the tail-cuff technique on central blood pressure, heart rate, and temperature. This included comparison of handling techniques, operator's sex, habituation, and influence of hypertension induced by angiotensin II. Direct comparison of measurements obtained by telemetry and tail-cuff were made in the same mouse. The results revealed significant increases in central blood pressure, heart rate, and core body temperature from baseline following handling interventions without significant difference among the different handling technique, habituation, or sex of the investigator. Restraint induced the largest and sustained increase in cardiovascular parameters and temperature. The tail-cuff readings significantly underestimated those from simultaneous telemetry recordings; however, "nonsimultaneous" telemetry, obtained in undisturbed mice, were similar to tail-cuff readings obtained in undisturbed mice on the same day. CONCLUSIONS This study reveals that the tail-cuff technique underestimates the core blood pressure changes that occur simultaneously during the restraint and measurement phases. However, the measurements between the 2 techniques are similar when tail-cuff readings are compared with telemetry readings in the nondisturbed mice. The differences between the simultaneous recordings by the 2 techniques should be recognized by researchers.
Collapse
Affiliation(s)
- Elena Wilde
- Vascular Biology and Inflammation Section, BHF Cardiovascular Centre of Research Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| | - Aisah A Aubdool
- Vascular Biology and Inflammation Section, BHF Cardiovascular Centre of Research Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| | - Pratish Thakore
- Pharmaceutical Sciences Division, King's College London, London, United Kingdom
| | - Lineu Baldissera
- Vascular Biology and Inflammation Section, BHF Cardiovascular Centre of Research Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| | - Khadija M Alawi
- Vascular Biology and Inflammation Section, BHF Cardiovascular Centre of Research Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| | - Julie Keeble
- Pharmaceutical Sciences Division, King's College London, London, United Kingdom
| | - Manasi Nandi
- Pharmaceutical Sciences Division, King's College London, London, United Kingdom
| | - Susan D Brain
- Vascular Biology and Inflammation Section, BHF Cardiovascular Centre of Research Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Wang J, Liu K, Wang H, Li Z, Li Y, Ping S, Bardeesi ASA, Guo Y, Zhou Y, Pei T, Deng L, Sheng P, Liu S, Li C. Role of nifedipine and hydrochlorothiazide in MAPK activation and vascular smooth muscle cell proliferation and apoptosis. Herz 2016; 42:573-584. [DOI: 10.1007/s00059-016-4489-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/28/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
|
15
|
Buzaglo N, Rosen H, Ben Ami HC, Inbal A, Lichtstein D. Essential Opposite Roles of ERK and Akt Signaling in Cardiac Steroid-Induced Increase in Heart Contractility. J Pharmacol Exp Ther 2016; 357:345-56. [PMID: 26941172 DOI: 10.1124/jpet.115.230763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/16/2016] [Indexed: 03/08/2025] Open
Abstract
Interaction of cardiac steroids (CS) with the Na(+), K(+)-ATPase elicits, in addition to inhibition of the enzyme's activity, the activation of intracellular signaling such as extracellular signal-regulated (ERK) and protein kinase B (Akt). We hypothesized that the activities of these pathways are involved in CS-induced increase in heart contractility. This hypothesis was tested using in vivo and ex vivo wild type (WT) and sarcoplasmic reticulum Ca(2+) atpase1a-deficient zebrafish (accordion, acc mutant) experimental model. Heart contractility was measured in vivo and in primary cardiomyocytes in WT zebrafish larvae and acc mutant. Ca(2+) transients were determined ex vivo in adult zebrafish hearts. CS dose dependently augmented the force of contraction of larvae heart muscle and cardiomyocytes and increased Ca(2+) transients in WT but not in acc mutant. CS in vivo increased the phosphorylation rate of ERK and Akt in the adult zebrafish heart of the two strains. Pretreatment of WT zebrafish larvae or cardiomyocytes with specific MAPK inhibitors completely abolished the CS-induced increase in contractility. On the contrary, pretreatment with Akt inhibitor significantly enhanced the CS-induced increase in heart contractility both in vivo and ex vivo without affecting CS-induced Ca(2+) transients. Furthermore, pretreatment of the acc mutant larvae or cardiomyocytes with Akt inhibitor restored the CS-induced increase in heart contractility also without affecting Ca(2+) transients. These results support the notion that the activity of MAPK pathway is obligatory for CS-induced increases in heart muscle contractility. Akt activity, on the other hand, plays a negative role, via Ca(2+) independent mechanisms, in CS action. These findings point to novel potential pharmacological intervention to increase CS efficacy.
Collapse
Affiliation(s)
- Nahum Buzaglo
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hagit Cohen Ben Ami
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Adi Inbal
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Lichtstein
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
16
|
Je HD, Sohn UD, La HO. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility. Biomol Ther (Seoul) 2016; 24:57-61. [PMID: 26759702 PMCID: PMC4703353 DOI: 10.4062/biomolther.2015.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/03/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023] Open
Abstract
Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.
Collapse
Affiliation(s)
- Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Gyeongbuk 38430, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul 06974, Republic of Korea
| | - Hyen-Oh La
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| |
Collapse
|
17
|
Thoppil RJ, Adapala RK, Cappelli HC, Kondeti V, Dudley AC, Gary Meszaros J, Paruchuri S, Thodeti CK. TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation. Sci Rep 2015; 5:14257. [PMID: 26388427 PMCID: PMC4585691 DOI: 10.1038/srep14257] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022] Open
Abstract
Endothelial cell proliferation is a critical event during angiogenesis, regulated by both soluble factors and mechanical forces. Although the proliferation of tumor cells is studied extensively, little is known about the proliferation of tumor endothelial cells (TEC) and its contribution to tumor angiogenesis. We have recently shown that reduced expression of the mechanosensitive ion channel TRPV4 in TEC causes aberrant mechanosensitivity that result in abnormal angiogenesis. Here, we show that TEC display increased proliferation compared to normal endothelial cells (NEC). Further, we found that TEC exhibit high basal ERK1/2 phosphorylation and increased expression of proliferative genes important in the G1/S phase of the cell cycle. Importantly, pharmacological activation of TRPV4, with a small molecular activator GSK1016790A (GSK), significantly inhibited TEC proliferation, but had no effect on the proliferation of NEC or the tumor cells (epithelial) themselves. This reduction in TEC proliferation by TRPV4 activation was correlated with a decrease in high basal ERK1/2 phosphorylation. Finally, using a syngeneic tumor model revealed that TRPV4 activation, with GSK, significantly reduced endothelial cell proliferation in vivo. Our findings suggest that TRPV4 channels regulate tumor angiogenesis by selectively inhibiting tumor endothelial cell proliferation.
Collapse
Affiliation(s)
- Roslin J Thoppil
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272.,School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Ravi K Adapala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272.,School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Holly C Cappelli
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272.,School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Vinay Kondeti
- Department of Chemistry, University of Akron, Akron, OH 44325
| | - Andrew C Dudley
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599
| | - J Gary Meszaros
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272.,School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | | | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272.,School of Biomedical Sciences, Kent State University, Kent, OH 44240
| |
Collapse
|
18
|
Scott RA, Ramaswamy AK, Park K, Panitch A. Decorin mimic promotes endothelial cell health in endothelial monolayers and endothelial-smooth muscle co-cultures. J Tissue Eng Regen Med 2015; 11:1365-1376. [PMID: 26033955 DOI: 10.1002/term.2035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/22/2015] [Accepted: 04/21/2015] [Indexed: 01/07/2023]
Abstract
Non-specific cytotoxins, including paclitaxel and sirolimus analogues, currently utilized as anti-restenotic therapeutics, affect not only smooth muscle cells (SMCs) but also neighbouring vascular endothelial cells (ECs). These drugs inhibit the formation of an intact endothelium following vessel injury, thus emphasizing the critical need for new candidate therapeutics. Utilizing our in vitro models, including EC monolayers and both hyperplastic and quiescent EC-SMC co-cultures, we investigated the ability of DS-SILY20 , a decorin mimic, to promote EC health. DS-SILY20 increased EC proliferation and migration by 1.5- and 2-fold, respectively, which corresponded to increased phosphorylation of ERK-1/2. Interestingly, IL-6 secretion and the production of both E-selectin and P-selectin were reduced in the presence of 10 μm DS-SILY20 , even in the presence of the potent pro-inflammatory cytokine platelet-derived growth factor (PDGF). In hyperplastic and quiescent EC-SMC co-cultures, DS-SILY20 treatment reduced the secretion of IFNγ, IL-1β, IL-6 and TNFα, corresponding to a 23% decrease in p38 phosphorylation. E-selectin and P-selectin expression was further reduced following DS-SILY20 treatment in both co-culture models. These results indicate that DS-SILY20 promotes EC health and that this decorin mimic could serve as a potential therapeutic to promote vessel healing following percutaneous coronary intervention (PCI). Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rebecca A Scott
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Aneesh K Ramaswamy
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kinam Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,School of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
19
|
Je HD, Kim HD, La HO. The inhibitory effect of shikonin on the agonist-induced regulation of vascular contractility. Biomol Ther (Seoul) 2015; 23:233-7. [PMID: 25995821 PMCID: PMC4428715 DOI: 10.4062/biomolther.2014.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/21/2023] Open
Abstract
Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function.
Collapse
Affiliation(s)
- Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Gyeongbuk 712-702
| | - Hyeong-Dong Kim
- Department of Physical Therapy, College of Health Science, Korea University, Seoul, 336-871
| | - Hyen-Oh La
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|
20
|
Segedy AK, Pyle AL, Li B, Zhang Y, Babaev VR, Jat P, Fazio S, Atkinson JB, Linton MF, Young PP. Identification of small proline-rich repeat protein 3 as a novel atheroprotective factor that promotes adaptive Akt signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2014; 34:2527-36. [PMID: 25278290 DOI: 10.1161/atvbaha.114.303644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Atherosclerosis is the primary driver of cardiovascular disease, the leading cause of death worldwide. Identification of naturally occurring atheroprotective genes has become a major goal for the development of interventions that will limit atheroma progression and associated adverse events. To this end, we have identified small proline-rich repeat protein (SPRR3) as selectively upregulated in vascular smooth muscle cells (VSMCs) of atheroma-bearing arterial tissue versus healthy arterial tissue. In this study, we sought to determine the role of SPRR3 in atheroma pathophysiology. APPROACH AND RESULTS We found that atheroprone apolipoprotein E-null mice lacking SPRR3 developed significantly greater atheroma burden. To determine the cellular driver(s) of this increase, we evaluated SPRR3-dependent changes in bone marrow-derived cells, endothelial cells, and VSMCs. Bone marrow transplant of SPRR3-expressing cells into SPRR3(-/-)apolipoprotein E-deficient recipients failed to rescue atheroma burden. Similarly, endothelial cells did not exhibit a response to SPRR3 loss. However, atheromas from SPRR3-deficient mice exhibited increased TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive VSMCs compared with control. Cell death in SPRR3-deficient VSMCs was significantly increased in vitro. Conversely, SPRR3-overexpressing VSMCs exhibited reduced apoptosis compared with control. We also observed a PI3K (phosphatidylinositol 3-kinase)/Akt-dependent positive association between SPRR3 expression and levels of active Akt in VSMCs. The survival advantage seen in SPRR3-overexpressing VSMCs was abrogated after the addition of a PI3K/Akt pathway inhibitor. CONCLUSIONS These results indicate that SPRR3 protects the lesion from VSMC loss by promoting survival signaling in plaque VSMCs, thereby significantly decreasing atherosclerosis progression. As the first identified atheroma-specific VSMC prosurvival factor, SPRR3 represents a potential target for lesion-specific modulation of VSMC survival.
Collapse
Affiliation(s)
- Amanda K Segedy
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - Amy L Pyle
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - Bin Li
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - Youmin Zhang
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - Vladimir R Babaev
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - Parmjit Jat
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - Sergio Fazio
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - James B Atkinson
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - MacRae F Linton
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.)
| | - Pampee P Young
- From the Department of Pathology, Microbiology, and Immunology (A.K.S., B.L., S.F., J.B.A., P.P.Y.) and Departments of Veterans Affairs Medical Center (J.B.A., P.P.Y.), Pharmacology (M.F.L.), and Medicine (Y.Z., V.R.B., S.F., M.F.L., P.P.Y.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurodegenerative Diseases, Institute of Neurology, University College London, Queen Square, London, United Kingdom (P.J.); Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH (A.L.P.); and Department of Pathology, The Ohio State University, Columbus (A.L.P.).
| |
Collapse
|
21
|
Atef ME, Anand-Srivastava MB. Enhanced expression of Gqα and PLC-β1 proteins contributes to vascular smooth muscle cell hypertrophy in SHR: role of endogenous angiotensin II and endothelin-1. Am J Physiol Cell Physiol 2014; 307:C97-106. [DOI: 10.1152/ajpcell.00337.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vascular Gqα signaling has been shown to contribute to cardiac hypertrophy. In addition, angiotensin II (ANG II) was shown to induce vascular smooth muscle cell (VSMC) hypertrophy through Gqα signaling; however, the studies on the role of Gqα and PLC-β1 proteins in VSMC hypertrophy in animal model are lacking. The present study was therefore undertaken to examine the role of Gqα/PLC-β1 proteins and the signaling pathways in VSMC hypertrophy using spontaneously hypertensive rats (SHR). VSMC from 16-wk-old SHR and not from 12-wk-old SHR exhibited enhanced levels of Gqα/PLC-β1 proteins compared with age-matched Wistar-Kyoto (WKY) rats as determined by Western blotting. However, protein synthesis as determined by [3H]leucine incorporation was significantly enhanced in VSMC from both 12- and 16-wk-old SHR compared with VSMC from age-matched WKY rats. Furthermore, the knockdown of Gqα/PLC-β1 in VSMC from 16-wk-old SHR by antisense and small interfering RNA resulted in attenuation of protein synthesis. In addition, the enhanced expression of Gqα/PLC-β1 proteins, enhanced phosphorylation of ERK1/2, and enhanced protein synthesis in VSMC from SHR were attenuated by the ANG II AT1 and endothelin-1 (ET-1) ETA receptor antagonists losartan and BQ123, respectively, but not by the ETB receptor antagonist BQ788. In addition, PD98059 decreased the enhanced expression of Gqα/PLC-β1 and protein synthesis in VSMC from SHR. These results suggest that the enhanced levels of endogenous ANG II and ET-1 through the activation of AT1 and ETA receptors, respectively, and MAP kinase signaling, enhanced the expression of Gqα/PLC-β1 proteins in VSMC from 16-wk-old SHR and result in VSMC hypertrophy.
Collapse
Affiliation(s)
- Mohammed Emehdi Atef
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Madhu B. Anand-Srivastava
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Scott R, Panitch A. Decorin mimic regulates platelet-derived growth factor and interferon-γ stimulation of vascular smooth muscle cells. Biomacromolecules 2014; 15:2090-103. [PMID: 24806357 PMCID: PMC4052849 DOI: 10.1021/bm500224f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Indexed: 01/24/2023]
Abstract
Following balloon injury, smooth muscle cells (SMCs) serve as targets for many of the pro-inflammatory and pro-fibrotic factors, including platelet-derived growth factor (PDGF) and interferon-γ (IFN-γ) released from activated inflammatory cells and platelets. Previously, our lab designed a mimic of the proteoglycan decorin, termed DS-SILY20, that suppressed vascular SMC proliferation, migration, and protein synthesis in vitro, and injured vessels treated with DS-SILY20 demonstrated reduced hyperplasia in vivo. Here we characterize the effects of DS-SILY20 on modulating PDGF and IFN-γ stimulation in both proliferative and quiescent human SMCs to further evaluate the potential impact of DS-SILY20-SMC interaction on restenosis. Nanomolar dissociation constants were observed between DS-SILY20 and both PDGF and IFN-γ. PDGF significantly increased migration, proliferation, and protein and cytokine expression, as well as increased ERK-1/2 and p38 MAPK phosphorylation in both quiescent and proliferative cultures. However, DS-SILY20 inhibited these increases, presumably through sequestration of the PDGF. Consistent with the complex responses seen with IFN-γ in SMC physiology in the literature, the response of SMC cultures to IFN-γ was variable and complex. However, where increased activity was seen with IFN-γ, DS-SILY20 attenuated this activity. Overall, the results suggest that DS-SILY20 would be an ideal alternative to traditional therapeutics used and may be an effective therapy for the prevention of intimal hyperplasia after balloon angioplasty.
Collapse
Affiliation(s)
- Rebecca
A. Scott
- Weldon
School of Biomedical
Engineering Purdue University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Weldon
School of Biomedical
Engineering Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Zhao Y, Lv W, Piao H, Chu X, Wang H. Role of platelet-derived growth factor-BB (PDGF-BB) in human pulmonary artery smooth muscle cell proliferation. J Recept Signal Transduct Res 2014; 34:254-60. [PMID: 24804810 DOI: 10.3109/10799893.2014.908915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) and suppressed apoptosis. Platelet-derived growth factor (PDGF) is a potent mitogen involved in cell proliferation and migration. PDGF-BB induces the proliferation and migration of PASMCs and has been proposed to be a key mediator in the progression of PAH. Previous studies have shown that PDGF and its receptor are substantially elevated in lung tissues and PASMCs isolated from patients and animals with PAH, but the underlying mechanisms are still poorly manifested. MAP kinases, including extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun NH2-terminal kinase1/2 (JNK1/2), and p38 are the key intracellular signals for stimuli-induced cell proliferation, survival, and apoptosis. Therefore, the purpose of this study is to determine whether PDGF-BB on cell proliferation process is mediated through the MAP kinases pathway in human PASMCs (HPASMCs). Our results showed PDGF-BB-induced proliferating cell nuclear antigen (PCNA), Cyclin A and Cyclin E expression in a concentration-dependent manner. The expression levels of phosphorylated JNK (p-JNK) was upregulated with 20 ng/ml PDGF-BB treatment, while PDGF-BB could not increase phosphorylated ERK1/2 (p-ERK1/2) and p-38 (p-p38) expression. The effects of PDGF-BB on cell proliferation and survival were weakened after the administration of antagonist of the JNK pathway or si-JNK. In addition, PDGF-BB protected against the loss of mitochondrial membrane potentials evoked by serum deprivation (SD) in a JNK-dependent manner. These results suggest that PDGF-BB promotes HPASMCs proliferation and survival, which is likely to be mediated via the JNK pathway.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Clinical Pharmacy, Daqing Oilfield General Hospital , Daqing , China and
| | | | | | | | | |
Collapse
|
24
|
Je HD, Kim HD, La HO. The Inhibitory Effect of Apigenin on the Agonist-Induced Regulation of Vascular Contractility via Calcium Desensitization-Related Pathways. Biomol Ther (Seoul) 2014; 22:100-5. [PMID: 24753814 PMCID: PMC3975479 DOI: 10.4062/biomolther.2014.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 01/21/2023] Open
Abstract
Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of apigenin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Apigenin significantly relaxed fluoride-, thromboxane A2 mimetic- or phorbol ester-induced vascular contraction, which suggests that apigenin could be an anti-hypertensive that reduces agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, apigenin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels, which suggests the mechanism involving the inhibition of Rho-kinase and MEK activity and the subsequent phosphorylation of MYPT1 and ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of apigenin on agonist-induced vascular contraction regardless of endothelial function.
Collapse
Affiliation(s)
- Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Gyeongbuk 712-702, Republic of Korea
| | - Hyeong-Dong Kim
- Department of Physical Therapy, College of Health Science, Korea University, Seoul 336-871, Republic of Korea
| | - Hyen-Oh La
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|
25
|
Potential role of proteasome on c-jun related signaling in hypercholesterolemia induced atherosclerosis. Redox Biol 2014; 2:732-8. [PMID: 25009774 PMCID: PMC4085352 DOI: 10.1016/j.redox.2014.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/24/2022] Open
Abstract
Atherosclerosis and its complications are major causes of death all over the world. One of the major risks of atherosclerosis is hypercholesterolemia. During atherosclerosis, oxidized low density lipoprotein (oxLDL) regulates CD36-mediated activation of c-jun amino terminal kinase-1 (JNK1) and modulates matrix metalloproteinase (MMP) induction which stimulates inflammation with an invasion of monocytes. Additionally, inhibition of proteasome leads to an accumulation of c-jun and phosphorylated c-jun and activation of activator protein-1 (AP-1) related increase of MMP expression. We have previously reported a significant increase in cluster of differentiation 36 (CD36) mRNA levels in hypercholesterolemic rabbits and shown that vitamin E treatment prevented the cholesterol induced increase in CD36 mRNA expression. In the present study, our aim is to identify the signaling molecules/transcription factors involved in the progression of atherosclerosis following CD36 activation in an in vivo model of hypercholesterolemic (induced by 2% cholesterol containing diet) rabbits. In this direction, proteasomal activities by fluorometry and c-jun, phospo c-jun, JNK1, MMP-9 expressions by quantitative RT-PCR and immunoblotting were tested in aortic tissues. The effects of vitamin E on these changes were also investigated in this model. As a result, c-jun was phosphorylated following decreased proteasomal degradation in hypercholesterolemic group. MMP-9 expression was also increased in cholesterol group rabbits contributing to the development of atherosclerosis. In addition, vitamin E showed its effect by decreasing MMP-9 levels and phosphorylation of c-jun.
Collapse
Key Words
- AP-1
- AP-1, activator protein-1
- Atherosclerosis
- CD36, cluster of differentiation 36
- ERAD, endoplasmic-reticulum-associated protein degradation
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HPLC, high-performance liquid chromatography
- Hypercholesterolemia
- JNK, c-Jun amino terminal kinase
- JNK1
- LDL, low density lipoprotein
- MAPK, mitogen-activated protein kinase
- MDA, malondialdehyde
- MMP, matrix metallo proteinase
- Proteasome
- TBA, thiobarbituric acid
- TNF a, tumor necrosis factor a
- UPS, ubiquitin-proteasome system
- Vitamin E
- oxLDL, oxidized low density lipoprotein
Collapse
|
26
|
Abstract
The cellular metabolism of oxygen generates potentially deleterious reactive oxygen species, including superoxide anion, hydrogen peroxide and hydroxyl radical. Under normal physiologic conditions, the rate and magnitude of oxidant formation is balanced by the rate of oxidant elimination. However, an imbalance between pro-oxidants and antioxidants results in oxidative stress, which is the pathogenic outcome of the overproduction of oxidants that overwhelms the cellular antioxidant capacity. There is growing evidence that increased oxidative stress and associated oxidative damage are mediators of vascular injury in cardiovascular pathologies, including hypertension, atherosclerosis and ischemia-reperfusion. This development has evoked considerable interest because of the possibilities that therapies targeted against reactive oxygen intermediates by decreasing the generation of reactive oxygen species and/or by increasing availability of antioxidants may be useful in minimizing vascular injury. This review focuses on the vascular actions of reactive oxygen species, the role of oxidative stress in vascular damage in hypertension and the therapeutic potential of modulating oxygen radical bioavailability in hypertension. In particular, the following topics will be highlighted: chemistry and sources of reactive oxygen species, antioxidant defense mechanisms, signaling events mediated by reactive oxygen species, role of reactive oxygen species in hypertension and the putative therapeutic role of antioxidants in cardiovascular disease.
Collapse
Affiliation(s)
- Rhian M Touyz
- Clinical Research Institute of Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Haack KKV, Mitra AK, Zucker IH. NF-κB and CREB are required for angiotensin II type 1 receptor upregulation in neurons. PLoS One 2013; 8:e78695. [PMID: 24244341 PMCID: PMC3823855 DOI: 10.1371/journal.pone.0078695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/12/2013] [Indexed: 01/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) and the Ets like gene-1 (Elk-1) are two transcription factors that have been previously established to contribute to the Angiotensin II mediated upregulation of Angiotensin II type 1 receptor (AT1R) in neurons. The cAMP response element binding protein (CREB) is another transcription factor that has also been implicated in AT1R gene transcription. The goal of the current study was to determine if NF-κB and CREB association was required for AT1R upregulation. We hypothesized that the transcription of the AT1R gene occurs via an orchestration of transcription factor interactions including NF-κB, CREB, and Elk-1. The synergistic role of CREB and NFκB in promoting AT1R gene expression was determined using siRNA-mediated silencing of CREB. Electrophorectic Mobility Shift Assay studies employing CREB and NF-κB demonstrated increased protein - DNA binding as a result of Ang II stimulation which was blunted by siRNA silencing of CREB. Upstream inhibition of p38 mitogen activated protein kinase (p38 MAPK) with SB203580 or inhibition of the calmodulin kinase (CAMK) pathway using KN-62 blunted changes in CREB and NF-κB expression. These findings suggest that Ang II may activate multiple signaling pathways involving p38 MAPK leading to the activation of NF-κB and CREB, which feed back to upregulate the AT1R gene. This study provides insight into the molecular mechanisms involving multiple transcription factor activation in a coordinated fashion which may be partially responsible for sympathoexcitation in clinical conditions associated with increased activation of the renin angiotensin system.
Collapse
Affiliation(s)
- Karla K. V. Haack
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Amit K. Mitra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
28
|
Turczyńska KM, Bhattachariya A, Säll J, Göransson O, Swärd K, Hellstrand P, Albinsson S. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One 2013; 8:e65135. [PMID: 23705032 PMCID: PMC3660603 DOI: 10.1371/journal.pone.0065135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cells are constantly exposed to mechanical force by the blood pressure, which is thought to regulate smooth muscle growth, differentiation and contractile function. We have previously shown that the expression of microRNAs (miRNAs), small non-coding RNAs, is essential for regulation of smooth muscle phenotype including stretch-dependent contractile differentiation. In this study, we have investigated the effect of mechanical stretch on miRNA expression and the role of stretch-sensitive miRNAs for intracellular signaling in smooth muscle. MiRNA array analysis, comparing miRNA levels in stretched versus non-stretched portal veins, revealed a dramatic decrease in the miR-144/451 cluster level. Because this miRNA cluster is predicted to target AMPK pathway components, we next examined activation of this pathway. Diminished miR-144/451 expression was inversely correlated with increased phosphorylation of AMPKα at Thr172 in stretched portal vein. Similar to the effect of stretch, contractile differentiation could be induced in non-stretched portal veins by the AMPK activator, AICAR. Transfection with miR-144/451 mimics reduced the protein expression level of mediators in the AMPK pathway including MO25α, AMPK and ACC. This effect also decreased AICAR-induced activation of the AMPK signaling pathway. In conclusion, our results suggest that stretch-induced activation of AMPK in vascular smooth muscle is in part regulated by reduced levels of miR-144/451 and that this effect may play a role in promoting contractile differentiation of smooth muscle cells.
Collapse
|
29
|
Panzhinskiy E, Zawada WM, Stenmark KR, Das M. Hypoxia induces unique proliferative response in adventitial fibroblasts by activating PDGFβ receptor-JNK1 signalling. Cardiovasc Res 2012; 95:356-65. [PMID: 22735370 DOI: 10.1093/cvr/cvs194] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Pulmonary hypertension (PH) is a devastating condition for which no disease-modifying therapies exist. PH is recognized as proliferative disease of the pulmonary artery (PA). In the experimental newborn calf model of hypoxia-induced PH, adventitial fibroblasts in the PA wall exhibit a heightened replication index. Because elevated platelet-derived growth factor β receptor (PDGFβ-R) signalling is associated with PH, we tested the hypothesis that the activation of PDGFβ-R contributes to fibroblast proliferation and adventitial remodelling in PH. METHODS AND RESULTS Newborn calves were exposed to either ambient air (P(B) = 640 mmHg) (Neo-C) or high altitude (P(B) = 445 mm Hg) (Neo-PH) for 2 weeks. PDGFβ-R phosphorylation was markedly elevated in PA adventitia of Neo-PH calves as well as in cultured PA fibroblasts isolated from Neo-PH animals. PDGFβ-R activation with PDGF-BB stimulated higher replication in Neo-PH cells compared with that of control fibroblasts. PDGF-BB-induced proliferation was dependent on reactive oxygen species generation and extracellular signal-regulated kinase1/2 activation in both cell populations; however, only Neo-PH cell division via PDGFβ-R activation displayed a unique dependence on c-Jun N-terminal kinase1 (JNK1) stimulation as the blockade of JNK1 with SP600125, a pharmacological antagonist of the JNK pathway, and JNK1-targeted siRNA selectively blunted Neo-PH cell proliferation. CONCLUSIONS Our data strongly suggest that hypoxia-induced modified cells engage the PDGFβ-R-JNK1 axis to confer distinctively heightened proliferation and adventitial remodelling in PH.
Collapse
Affiliation(s)
- Evgeniy Panzhinskiy
- Department of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| | | | | | | |
Collapse
|
30
|
Vetterkind S, Saphirstein RJ, Morgan KG. Stimulus-specific activation and actin dependency of distinct, spatially separated ERK1/2 fractions in A7r5 smooth muscle cells. PLoS One 2012; 7:e30409. [PMID: 22363435 PMCID: PMC3283592 DOI: 10.1371/journal.pone.0030409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/15/2011] [Indexed: 12/16/2022] Open
Abstract
A proliferative response of smooth muscle cells to activation of extracellular signal regulated kinases 1 and 2 (ERK1/2) has been linked to cardiovascular disease. In fully differentiated smooth muscle, however, ERK1/2 activation can also regulate contraction. Here, we use A7r5 smooth muscle cells, stimulated with 12-deoxyphorbol 13-isobutylate 20-acetate (DPBA) to induce cytoskeletal remodeling or fetal calf serum (FCS) to induce proliferation, to identify factors that determine the outcomes of ERK1/2 activation in smooth muscle. Knock down experiments, immunoprecipitation and proximity ligation assays show that the ERK1/2 scaffold caveolin-1 mediates ERK1/2 activation in response to DPBA, but not FCS, and that ERK1/2 is released from caveolin-1 upon DPBA, but not FCS, stimulation. Conversely, ERK1/2 associated with the actin cytoskeleton is significantly reduced after FCS, but not DPBA stimulation, as determined by Triton X fractionation. Furthermore, cytochalasin treatment inhibits DPBA, but not FCS-induced ERK1/2 phosphorylation, indicating that the actin cytoskeleton is not only a target but also is required for ERK1/2 activation. Our results show that (1) at least two ERK1/2 fractions are regulated separately by specific stimuli, and that (2) the association of ERK1/2 with the actin cytoskeleton regulates the outcome of ERK1/2 signaling.
Collapse
Affiliation(s)
- Susanne Vetterkind
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
31
|
Pons M, Cousins SW, Alcazar O, Striker GE, Marin-Castaño ME. Angiotensin II-induced MMP-2 activity and MMP-14 and basigin protein expression are mediated via the angiotensin II receptor type 1-mitogen-activated protein kinase 1 pathway in retinal pigment epithelium: implications for age-related macular degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2665-81. [PMID: 21641389 DOI: 10.1016/j.ajpath.2011.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/25/2011] [Accepted: 02/22/2011] [Indexed: 01/08/2023]
Abstract
Accumulation of various lipid-rich extracellular matrix (ECM) deposits under the retinal pigment epithelium (RPE) has been observed in eyes with age-related macular degeneration (AMD). RPE-derived matrix metalloproteinase (MMP)-2, MMP-14, and basigin (BSG) are major enzymes involved in the maintenance of ECM turnover. Hypertension (HTN) is a systemic risk factor for AMD. It has previously been reported that angiotensin II (Ang II), one of the most important hormones associated with HTN, increases MMP-2 activity and its key regulator, MMP-14, in RPE, inducing breakdown of the RPE basement membrane, which may lead to progression of sub-RPE deposits. Ang II exerts most of its actions by activating the mitogen-activated protein kinase (MAPK) signaling pathway. Herein is explored the MAPK signaling pathway as a potential key intracellular modulator of Ang II-induced increase in MMP-2 activity and MMP-14 and BSG protein expression. It was observed that Ang II stimulates phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK in RPE cells and ERK/p38 and Jun N-terminal kinase (JNK) in mice. These effects were mediated by Ang II type 1 receptors. Blockade of ERK or p38 MAPK abrogated the increase in MMP-2 activity and MMP-14 and BSG proteins in ARPE-19 cells. A better understanding of the molecular events by which Ang II induces ECM dysregulation is of critical importance to further define its contribution to the progression of sub-RPE deposits in AMD patients with HTN.
Collapse
Affiliation(s)
- Marianne Pons
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | | | | | | | | |
Collapse
|
32
|
Acupuncture on the basic fibroblast growth factor and type I collagen in colons of rats with Crohn’s disease. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2011. [DOI: 10.1007/s11726-011-0458-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Mechanical stretch potentiates angiotensin II-induced proliferation in spontaneously hypertensive rat vascular smooth muscle cells. Hypertens Res 2010; 33:1250-7. [DOI: 10.1038/hr.2010.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Zhou MS, Schulman IH, Chadipiralla K, Raij L. Role of c-Jun N-terminal kinase in the regulation of vascular tone. J Cardiovasc Pharmacol Ther 2010; 15:78-83. [PMID: 20075153 DOI: 10.1177/1074248409354603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) belong to the mitogen-activated protein kinases superfamily, which play an important role in the pathogenesis of cardiovascular and metabolic diseases. However, it is still unclear whether JNK participates in the regulation of vascular tone. We investigated the effect of JNK inhibitors on vascular reactivity in aortic rings in organ bath and on angiotensin (Ang) II-induced pressor responses in vivo in Sprague-Dawley (SD) rats. In aortic rings from SD rats, KCl, norepinephrine (NE), Ang II, or endothelin 1 (ET)-1 induced a dose-dependent vasoconstriction. Preincubation with the JNK inhibitor SP600125 (20 micromol/L) slightly inhibited KCl-induced vasoconstriction (Emax: -19%) and markedly inhibited vasoconstriction to NE (-42%), Ang II (-54%), and ET-1 (-42%). SP600125 induced a dose-dependent relaxation in the NE-preconstricted aortic rings (-54%) but exerted minimal relaxation in the KCI-preconstriction rings. To exclude the nonspecific effect of SP600125, we performed additional experiments using JNK peptide inhibitor 1, L-stereoisomer (L-JNKI1), a cell-permeable peptide inhibitor specific for JNK. Compared to SP600125, L-JNKI1 (20 micromol/L) had a smaller but still significant inhibitory effect on NE-induced vasoconstriction (-18%) and did not inhibit KCI-induced vasoconstriction. Next, we investigated the effect of L-JNKI1 (5 mg/kg intravenously [IV]) in vivo on Ang II-induced pressor responses in SD rats. Ang II induces a dose-dependent increase in systolic blood pressure and L-JNKI1 slightly attenuated the Ang II-induced pressor response. These results suggest that JNK signaling plays a role in the regulation of vascular tone.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Nephrology-Hypertension Section, Veterans Affairs Medical Center, Miami, FL 33125, USA.
| | | | | | | |
Collapse
|
35
|
Lemarié CA, Tharaux PL, Lehoux S. Extracellular matrix alterations in hypertensive vascular remodeling. J Mol Cell Cardiol 2009; 48:433-9. [PMID: 19837080 DOI: 10.1016/j.yjmcc.2009.09.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022]
Abstract
Vascular cells are very sensitive to their hemodynamic environment. Any change in blood pressure or blood flow can be sensed by endothelial and vascular smooth muscle cells and ultimately results in structural modifications within the vascular wall that accommodate the new conditions. In the case of hypertension, the increase in arterial stretch stimulates vessel thickening to normalize the tensile forces. This process requires modification of the extracellular matrix and of cell-matrix interactions, which mainly involves extracellular proteases. In hypertension, chronic exposure of the arterial wall to stretch leads to vascular remodeling, arterial stiffness and calcification, which finally affect target organ function. This review surveys how mechanical stretch regulates extracellular proteases, considering the signaling pathways involved and the consequences on the cardiovascular system.
Collapse
Affiliation(s)
- Catherine A Lemarié
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | | | | |
Collapse
|
36
|
c-Jun N-Terminal Kinase 2
Deficiency Protects Against Hypercholesterolemia-Induced Endothelial Dysfunction and Oxidative Stress. Circulation 2008; 118:2073-80. [DOI: 10.1161/circulationaha.108.765032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background—
Hypercholesterolemia-induced endothelial dysfunction due to excessive production of reactive oxygen species is a major trigger of atherogenesis. The c-Jun-N-terminal kinases (JNKs) are activated by oxidative stress and play a key role in atherogenesis and inflammation. We investigated whether
JNK2
deletion protects from hypercholesterolemia-induced endothelial dysfunction and oxidative stress.
Methods and Results—
Male
JNK2
knockout (
JNK2
−/−
) and wild-type (WT) mice (8 weeks old) were fed either a high-cholesterol diet (HCD; 1.25% total cholesterol) or a normal diet for 14 weeks. Aortic lysates of WT mice fed a HCD showed an increase in JNK phosphorylation compared with WT mice fed a normal diet (
P
<0.05). Endothelium-dependent relaxations to acetylcholine were impaired in WT HCD mice (
P
<0.05 versus WT normal diet). In contrast,
JNK2
−/−
HCD mice did not exhibit endothelial dysfunction (96±5% maximal relaxation in response to acetylcholine;
P
<0.05 versus WT HCD). Endothelium-independent relaxations were identical in all groups. A hypercholesterolemia-induced decrease in nitric oxide (NO) release of endothelial cells was found in WT but not in
JNK2
−/−
mice. In parallel, endothelial NO synthase expression was upregulated only in
JNK2
−/−
HCD animals, whereas the expression of antioxidant defense systems such as extracellular superoxide dismutase and manganese superoxide dismutase was decreased in WT but not in
JNK2
−/−
HCD mice. In contrast to
JNK2
−/−
mice, WT HCD displayed an increase in O
2
−
and ONOO
−
concentrations as well as nitrotyrosine staining and peroxidation.
Conclusions—
JNK2
plays a critical role as a mediator of hypercholesterolemia-induced endothelial dysfunction and oxidative stress. Thus,
JNK2
may provide a novel target for prevention of vascular disease and atherosclerosis.
Collapse
|
37
|
Demicheva E, Hecker M, Korff T. Stretch-Induced Activation of the Transcription Factor Activator Protein-1 Controls Monocyte Chemoattractant Protein-1 Expression During Arteriogenesis. Circ Res 2008; 103:477-84. [DOI: 10.1161/circresaha.108.177782] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral, coronary, and peripheral artery diseases combined represent the most frequent cause of death in developed nations. The underlying progressive occlusion of large conductance arteries can partially be compensated for by transformation of preexisting collateral arterioles to small artery bypasses, a process referred to as arteriogenesis. Because biomechanical forces have been implicated in the initiation of arteriogenesis, we have investigated the mechanosensitive expression of a pivotal proarteriogenic molecule, monocyte chemoattractant protein (MCP)-1, which governs the recruitment of circulating monocytes to the wall of the remodeling collateral arterioles. Using a new ear artery ligation model and the classic hindlimb ischemia model in mice, we noted that MCP-1 expression is significantly increased in collateral arterioles undergoing arteriogenesis already 24 hours after its onset. By mimicking proarteriogenic perfusion conditions in small mouse arteries, we observed that MCP-1 expression is predominantly upregulated in the smooth muscle cells, which solely sense changes in circumferential wall tension or stretch. Subsequent analyses of cultured endothelial and smooth muscle cells confirmed that cyclic stretch but not shear stress upregulates MCP-1 expression in these cells. Blockade of the mechanosensitive transcription factor activator protein-1 by using a specific decoy oligodeoxynucleotide abolished this stretch-induced MCP-1 expression. Likewise, topical administration of the decoy oligodeoxynucleotide to the mouse ear abrogated arteriogenesis through downregulation of MCP-1 expression and monocyte recruitment. Collectively, these findings point toward a stretch-induced activator protein-1–mediated rise in MCP-1 expression in vascular smooth muscle cells as a critical determinant for the initiation of arteriogenesis.
Collapse
Affiliation(s)
- Elena Demicheva
- From the Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany
| | - Markus Hecker
- From the Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany
| | - Thomas Korff
- From the Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Germany
| |
Collapse
|
38
|
Wójcicka G, Jamroz-Wiśniewska A, Widomska S, Ksiazek M, Bełtowski J. Role of extracellular signal-regulated kinases (ERK) in leptin-induced hypertension. Life Sci 2007; 82:402-12. [PMID: 18206959 DOI: 10.1016/j.lfs.2007.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/27/2007] [Accepted: 11/25/2007] [Indexed: 11/30/2022]
Abstract
We investigated if extracellular signal-regulated kinases (ERK) and oxidative stress are involved in the pathogenesis of arterial hypertension induced by chronic leptin administration in the rat. Leptin was administered at a dose of 0.25 mg/kg twice daily s.c. for 4 or 8 days. Blood pressure (BP) was higher in leptin-treated than in control animals from the third day of the experiment. The superoxide dismutase (SOD) mimetic, tempol, normalized BP in leptin-treated rats on days 6, 7 and 8, whereas the ERK inhibitor, PD98059, exerted a hypotensive effect on days 3 through 6. Leptin increased ERK phosphorylation level in renal and aortic tissues more markedly after 4 than after 8 days of treatment. In addition, leptin reduced urinary Na(+) excretion and increased renal Na(+),K(+)-ATPase activity, and these effects were abolished on days 4 and 8 by PD98059 and tempol, respectively. The levels of NO metabolites and cGMP were reduced in animals receiving leptin for 8 days. Markers of oxidative stress (H(2)O(2) and lipid peroxidation products) were elevated to a greater extent after 4 than after 8 days of leptin treatment. In contrast, nitrotyrosine, a marker of protein nitration by peroxynitrite, was higher in animals receiving leptin for 8 days. NADPH oxidase inhibitor, apocynin, prevented leptin's effect on BP, ERK, Na(+),K(+)-ATPase/Na(+) excretion and NO formation at all time points. SOD activity was reduced, whereas glutathione peroxidase (GPx) activity was increased in the group treated with leptin for 8 days. These data indicate that: (1) ERK, activated by oxidative stress, is involved only in the early phase of leptin-induced BP elevation, (2) the later phase of leptin-induced hypertension is characterized by excessive NO inactivation by superoxide, (3) the time-dependent shift from ERK to O(2)(-)-NO dependent mechanism may be associated with reduced SOD/GPx ratio, which favors formation of O(2)(-) instead of H(2)O(2).
Collapse
Affiliation(s)
- Grazyna Wójcicka
- Department of Pathophysiology, Medical University, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | | | | | | | | |
Collapse
|
39
|
Abstract
Aminopeptidase N (APN) or CD13 is a conserved type II integral membrane zinc-dependent metalloprotease in the M1 family of ectoenzymes. APN is abundant in the kidneys and central nervous system. Identified substrates include Angiotensin III (Ang III); neuropeptides, including enkephalins and endorphins; and homones, including kallidan and somatostatin. It is developmentally expressed, a myelomonocytic marker for leukemias, and a receptor for coronovirus. There is evolving support for APN in the regulation of arterial blood pressure and the pathogenesis of hypertension. In rodent strains, intracerebraventricular (i.c.v.) infusions of APN reduces, while inhibitors of APN activity have a pressor effect on blood pressure. Dysregulation of central APN has been linked to the pathogenesis of hypertension in the spontaneously hypertensive rat. There is evidence that renal tubule APN inhibits Na flux and plays a mechanistic role in salt-adaptation. A functional polymorphism of the ANP gene has been identified in the Dahl salt-sensitive rat. Signaling by APN impacting on blood pressure is likely mediated by regulation of the metabolism of Ang III to Ang IV. Whether APN regulates arterial blood pressure in humans or is a therapeutic target for hypertension are subjects for future exploration.
Collapse
Affiliation(s)
- Robert S Danziger
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Wijetunge S, Hughes AD. Src family tyrosine kinases mediate contraction of rat isolated tail arteries in response to a hyposmotic stimulus. J Hypertens 2007; 25:1871-8. [PMID: 17762651 PMCID: PMC2763211 DOI: 10.1097/hjh.0b013e328255e8f0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypotonic solutions cause vasoconstriction in rat tail arteries, due largely to activation of L-type calcium channels (CaV1.2). We studied possible roles of tyrosine kinases, particularly src family kinases (SFK) and extracellular signal-related kinases (ERK1/2), in this response. METHODS Rat tail arteries were mounted on a myograph for measurement of isometric force. Arteries were bathed in isosmotic physiological saline solution (300 mOsm/l) containing 50 mmol/l mannitol and were stimulated by a hyposmotic solution containing 0 mmol/l mannitol (PSS-M). Activation of tyrosine kinases and ERK1/2 by hyposmotic solution was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting on rat tail artery lysates with specific phospho-antibodies. RESULTS Western blotting showed SFK src and yes present in rat tail artery. PSS-M increased tyrosine phosphorylation of several proteins, including SFK and ERK1/2. Genistein blocked phosphorylation of SFK and ERK1/2 by PSS-M. In isolated arteries PSS-M caused a contraction inhibited by the tyrosine kinase inhibitor, genistein, and three structurally different selective SFK inhibitors, herbimycin-A, PP1 and SU6656. Mitogen-activated protein kinase kinase inhibitor PD98059 or selective inhibitors of platelet-derived growth factor receptor (AG1296) and epidermal growth factor receptor (AG1478) had no effect on contraction induced by a hypotonic solution. CONCLUSIONS Hyposmotic conditions activate SFK, src and yes, and contract rat tail artery by a SFK-dependent mechanism. ERK1/2 are activated by the hypotonic solution, but do not play a role in the contractile response. SFK modulation of CaV1.2 may be an important mechanism mediating vasoconstriction to mechanical stimuli in vascular smooth muscle.
Collapse
Affiliation(s)
- Sumangali Wijetunge
- Clinical Pharmacology, NHLI Division, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|
41
|
Sedding DG, Braun-Dullaeus RC. Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med 2007; 16:50-5. [PMID: 16473762 DOI: 10.1016/j.tcm.2005.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/08/2005] [Accepted: 11/28/2005] [Indexed: 12/14/2022]
Abstract
Although caveolae function in vesicular and cholesterol trafficking, the recent identification of various signaling molecules in caveolae and their functional interaction with caveolin suggest that they may participate in transmembrane signaling. Interestingly, many of the signaling molecules that interact with caveolin-1 (cav-1) mediate mitogenic signals to the nucleus, implying that cav-1 may play a modulating role in the pathophysiology of vascular proliferative diseases such as atherosclerosis and restenosis after angioplasty. Although much attention has been given to the predominantly antiproliferative role of cav-1 in growth-factor-induced signal transduction, we were recently able to demonstrate that cav-1 acts in mechanotransduction too. During cyclic strain, however, cav-1 is critically involved in proproliferative signaling. We propose that, at least in the vasculature which is constantly exposed to alternating mechanical force and different growth factors, cav-1 holds a dual role toward modulation of proliferation, depending on the stimulus the cells are exposed to. In vivo, the net effect of growth factors and mechanically triggered stimuli determines the amount of local cell proliferation and, therefore, the onset and progression of vascular proliferative disease.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Biochemistry, Giessen University, Giessen, Germany
| | | |
Collapse
|
42
|
Ai D, Fu Y, Guo D, Tanaka H, Wang N, Tang C, Hammock BD, Shyy JYJ, Zhu Y. Angiotensin II up-regulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. Proc Natl Acad Sci U S A 2007; 104:9018-23. [PMID: 17495027 PMCID: PMC1885620 DOI: 10.1073/pnas.0703229104] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), as metabolites of arachidonic acid, may function as antihypertensive and antiatherosclerotic mediators for vasculature. EETs are degraded by soluble epoxide hydrolase (sEH). Pharmacological inhibition and genetic ablation of sEH have been shown to increase the level of EETs, and treating angiotensin II (Ang II)-infused hypertension rats with sEH-selective inhibitors increased the levels of EETs, with attendant decrease in systolic blood pressure. To elucidate the mechanisms by which Ang II regulates sEH expression, we treated human umbilical vein endothelial cells (ECs) and bovine aortic ECs with Ang II and found increased sEH expression at both the mRNA and protein levels. Transient transfection assays showed that the activity of the human sEH promoter was increased in ECs in response to Ang II. Further analysis of the promoter region of the sEH gene demonstrated that treatment with Ang II, like overexpression of c-Jun/c-Fos, activates the sEH promoter through an AP-1-binding motif. The binding of c-Jun to the AP-1 site of the sEH promoter was confirmed by chromatin immunoprecipitation assays. In contrast, adenovirus overexpression of the dominant-negative mutant of c-Jun significantly attenuated the effects of Ang II on sEH induction. An elevated level of sEH was found in the aortic intima of both spontaneously hypertensive rats and Ang II-infused Wistar rats. Blocking Ang II binding to Ang II receptor 1 by losartan abolished the sEH induction. Thus, AP-1 activation is involved in the transcriptional up-regulation of sEH by Ang II in ECs, which may contribute to Ang II-induced hypertension.
Collapse
Affiliation(s)
- Ding Ai
- *Department of Physiology and Pathophysiology, Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, and
| | - Yi Fu
- *Department of Physiology and Pathophysiology, Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, and
| | - Deliang Guo
- Division of Biomedical Sciences, University of California, Riverside, CA 92521; and
| | - Hiromasa Tanaka
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616
| | - Nanping Wang
- Institute of Cardiovascular Research, Peking University, Beijing 100083, China
| | - Chaoshu Tang
- *Department of Physiology and Pathophysiology, Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, and
| | - Bruce D. Hammock
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616
- To whom correspondence may be addressed. E-mail: , , or
| | - John Y.-J. Shyy
- Division of Biomedical Sciences, University of California, Riverside, CA 92521; and
- To whom correspondence may be addressed. E-mail: , , or
| | - Yi Zhu
- *Department of Physiology and Pathophysiology, Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, and
- To whom correspondence may be addressed. E-mail: , , or
| |
Collapse
|
43
|
Callera GE, Montezano AC, Yogi A, Tostes RC, Touyz RM. Vascular signaling through cholesterol-rich domains: implications in hypertension. Curr Opin Nephrol Hypertens 2007; 16:90-104. [PMID: 17293683 DOI: 10.1097/mnh.0b013e328040bfbd] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Lipid rafts are emerging as key players in the integration of cellular responses. Alterations in these highly regulated signaling cascades are important in structural, mechanical and functional abnormalities that underlie vascular pathological processes. The present review focuses on recent advances in signal transduction through caveolae/lipid rafts, implicated in hypertensive processes. RECENT FINDINGS Caveolae/lipid rafts function as sites of dynamic regulatory events in receptor-induced signal transduction. Mediators of vascular function, including G-protein coupled receptors, Src family tyrosine kinases, receptor tyrosine kinases, protein phosphatases and nitric oxide synthase, are concentrated within these microdomains. The assembly of functionally active nicotinamide adenine dinucleotide phosphate oxidase and subsequent reactive oxygen species production are also dependent on interactions within the caveolae/lipid rafts. Recent findings have also demonstrated the importance of actin-cytoskeleton and focal adhesion sites for protein interactions with caveolae/lipid raft. SUMMARY Many vascular signaling processes are altered in hypertension. Whether these events involve lipid rafts/caveolae remains unclear. A better understanding of how signaling molecules compartmentalize in lipid rafts/caveolae will provide further insights into molecular mechanisms underlying vascular damage in cardiovascular disease.
Collapse
Affiliation(s)
- Glaucia E Callera
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ottawa, Canada.
| | | | | | | | | |
Collapse
|
44
|
Li C, Xu Q. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 2007; 19:881-91. [PMID: 17289345 DOI: 10.1016/j.cellsig.2007.01.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/08/2007] [Indexed: 12/29/2022]
Abstract
Increasing evidence has been demonstrated that hypertension-initiated abnormal biomechanical stress is strongly associated with cardio-/cerebrovascular diseases e.g. atherosclerosis, stroke, and heart failure, which is main cause of morbidity and mortality. How the cells in the cardiovascular system sense and transduce the extracellular physical stimuli into intracellular biochemical signals is a crucial issue for understanding the mechanisms of the disease development. Recently, collecting data derived from our and other laboratories showed that many kinds of molecules in the cells such as receptors, ion channels, caveolin, G proteins, cell cytoskeleton, kinases and transcriptional factors could serve as mechanoceptors directly or indirectly in response to mechanical stimulation implying that the activation of mechanoceptors represents a non-specific manner. The sensed signals can be further sorted and/or modulated by processing of the molecules both on the cell surface and by the network of intracellular signaling pathways resulting in a sophisticated and dynamic set of cues that enable cardiovascular cell responses. The present review will summarise the data on mechanotransduction in vascular smooth muscle cells and formulate a new hypothesis, i.e. a non-specific activation of mechanoceptors followed by a variety of signal cascade activation. The hypothesis could provide us some clues for exploring new therapeutic targets for the disturbed mechanical stress-initiated diseases such as hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Chaohong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | | |
Collapse
|
45
|
Alcaraz A, Iyú D, Atucha NM, García-Estañ J, Ortiz MC. Vitamin E supplementation reverses renal altered vascular reactivity in chronic bile duct-ligated rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1486-93. [PMID: 17158269 DOI: 10.1152/ajpregu.00309.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An altered vascular reactivity is an important manifestation of the hemodynamic and renal dysfunction during liver cirrhosis. Oxidative stress-derived substances and nitric oxide (NO) have been shown to be involved in those alterations. In fact, both can affect vascular contractile function, directly or by influencing intracellular signaling pathways. Nevertheless, it is unknown whether oxidative stress contributes to the impaired systemic and renal vascular reactivity observed in cirrhosis. To test this, we evaluated the effect of vitamin E supplementation (5,000 IU/kg diet) on the vasoconstrictor and vasodilator responses of isolated perfused kidneys and aortic rings of rats with cirrhosis induced by bile duct ligation (BDL), and on the expression of renal and aortic phospho-extracellular regulated kinase 1/2 (p-ERK1/2). BDL induced a blunted renal vascular response to phenylephrine and ACh, while BDL aortic rings responded less to phenylephrine but normally to ACh. Cirrhotic rats had higher levels of oxidative stress-derived substances [measured as thiobarbituric acid-reactive substances (TBARS)] and NO (measured as urinary nitrite excretion) than controls. Vitamin E supplementation normalized the renal hyporesponse to phenylephrine and ACh in BDL, although failed to modify it in aortic rings. Furthermore, vitamin E decreased levels of TBARS, increased levels of NO, and normalized the increased kidney expression of p-ERK1/2 of the BDL rats. In conclusion, BDL rats showed a blunted vascular reactivity to phenylephrine and ACh, more pronounced in the kidney and reversed by vitamin E pretreatment, suggesting a role for oxidative stress in those abnormalities.
Collapse
Affiliation(s)
- A Alcaraz
- Departamento de Fisiología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
46
|
Godeny MD, Sayeski PP. ERK1/2 regulates ANG II-dependent cell proliferation via cytoplasmic activation of RSK2 and nuclear activation of elk1. Am J Physiol Cell Physiol 2006; 291:C1308-17. [PMID: 16723511 DOI: 10.1152/ajpcell.00618.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a concurrently submitted article, we show that ANG II-induced ERK1/2 activation is mediated by both c-Src/Yes/Fyn and heterotrimeric G protein/PKCζ-dependent signaling. Furthermore, we show that heterotrimeric G protein/PKCζ-activated ERK1/2 is destined for the nucleus while ERK1/2 activated by c-Src/Yes/Fyn-dependent signaling remains in the cytoplasm. Interestingly, both mechanisms of activation are required for maximum ANG II-induced cell proliferation. In this study, we sought to determine the mechanisms by which ERK1/2 facilitate cell proliferation via these distinct nuclear and cytoplasmic events, using cells that were lacking either c-Src/Yes/Fyn or heterotrimeric G protein/PKCζ-dependent ERK1/2 activation. A loss of c-Src/Yes/Fyn blocked ANG II-dependent RSK2 activation, RSK2 nuclear translocation, serum-response factor (SRF) phosphorylation, a portion of c-fos transcriptional activity and c-Fos phosphorylation. Blocking ANG II-induced heterotrimeric G protein/PKCζ activity resulted in a loss of ERK1/2 nuclear translocation, elk1 phosphorylation, and the remaining portion of c-fos transcriptional activity not dependent on c-Src/Yes/Fyn. Inhibition of RSK with the potent and selective inhibitor, SL0101, attenuated ANG II-induced cell proliferation, and, in combination with a PKCζ pseudosubstrate, completely attenuated cell proliferation. Thus we conclude that ERK1/2 mediate ANG II-dependent cell proliferation via distinct cytoplasmic and nuclear signaling events, which are in turn governed by c-Src/Yes/Fyn and heterotrimeric G protein/PKCζ-dependent signaling, respectively.
Collapse
Affiliation(s)
- Michael D Godeny
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | |
Collapse
|
47
|
Godeny MD, Sayeski PP. ANG II-induced cell proliferation is dually mediated by c-Src/Yes/Fyn-regulated ERK1/2 activation in the cytoplasm and PKCζ-controlled ERK1/2 activity within the nucleus. Am J Physiol Cell Physiol 2006; 291:C1297-307. [PMID: 16723512 DOI: 10.1152/ajpcell.00617.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-affinity binding of angiotensin II (ANG II) to the ANG II type 1 receptor (AT1R) results in the activation of ERK1/2 mitogen-activated protein kinases (MAPK). However, the precise mechanism of ANG II-induced ERK1/2 activation has not been fully characterized. Here, we investigated the signaling events leading to ANG II-induced ERK1/2 activation using a c-Src/Yes/Fyn tyrosine kinase-deficient mouse embryonic fibroblast (MEF) cell line stably transfected with the AT1R (SYF/AT1). ERK1/2 activation was reduced by ∼50% within these cells compared with wild-type controls (WT/AT1). The remaining ∼50% of intracellular ERK1/2 activation was dependent upon heterotrimeric G protein and protein kinase C zeta (PKCζ) activation. Therefore, ANG II-induced ERK1/2 activation occurs via two independent mechanisms. We next investigated whether a loss of either c-Src/Yes/Fyn or PKCζ signaling affected ERK1/2 nuclear translocation and cell proliferation in response to ANG II. ANG II-induced cell proliferation was markedly reduced in SYF/AT1cells compared with WT/AT1cells ( P < 0.01), but interestingly, ERK2 nuclear translocation was normal. ANG II-induced nuclear translocation of ERK2 was blocked via pretreatment of WT/AT1cells with a PKCζ pseudosubstrate. ANG II-induced cell proliferation was significantly reduced in PKCζ pseudosubstrate-treated WT/AT1cells ( P < 0.01) and was completely blocked in SYF/AT1cells treated with this same compound. Thus ANG II-induced cell proliferation appears to be regulated by both ERK1/2-driven nuclear and cytoplasmic events. In response to ANG II, the ability of ERK1/2 to remain within the cytoplasm or translocate into the nucleus is controlled by c-Src/Yes/Fyn or heterotrimeric G protein/PKCζ signaling, respectively.
Collapse
Affiliation(s)
- Michael D Godeny
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | |
Collapse
|
48
|
Karalliedde J, Viberti G. Evidence for renoprotection by blockade of the renin-angiotensin-aldosterone system in hypertension and diabetes. J Hum Hypertens 2006; 20:239-53. [PMID: 16452996 DOI: 10.1038/sj.jhh.1001982] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The incidence of end-stage renal disease (ESRD) is rising worldwide, accompanied by corresponding increases in the risk of morbidity and mortality. Underlying this trend are increasing rates of hypertension and diabetes mellitus, the two most common causes of ESRD. In addition to the adverse haemodynamic effects of hypertension on the kidney, elevated blood pressure (BP) can activate components of the renin-angiotensin-aldosterone system (RAAS), which, in turn, activate mediators of inflammation, oxidative stress, cell growth, and matrix accumulation. Lowering BP reduces the risk of cardiovascular events and renal damage. Accumulating evidence from clinical and laboratory studies suggests that interrupting the RAAS with therapies such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and aldosterone receptor blockers can interfere with the mechanisms that promote diabetic and non-diabetic renal damage. Moreover, clinical trials of RAAS blockade have demonstrated reductions in microalbuminuria, a predictor of increased cardiorenal risk and overt nephropathy in patients with and without diabetes and/or hypertension. In this way, agents that block the RAAS should be considered the drugs of first choice as they provide enhanced renoprotection compared with other classes of antihypertensive agents such as calcium channel blockers and beta-blockers.
Collapse
Affiliation(s)
- J Karalliedde
- Unit for Metabolic Medicine, Department of Diabetes, Endocrinology and Internal Medicine, Cardiovascular Division, King's College London School of Medicine, King's College London, London, UK.
| | | |
Collapse
|
49
|
Ono H, Ichiki T, Ohtsubo H, Fukuyama K, Imayama I, Iino N, Masuda S, Hashiguchi Y, Takeshita A, Sunagawa K. CAMP-response element-binding protein mediates tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression in endothelial cells. Hypertens Res 2006; 29:39-47. [PMID: 16715652 DOI: 10.1291/hypres.29.39] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypertension causes endothelial dysfunction, which plays an important role in atherogenesis. The vascular cell adhesion molecule-1 (VCAM-1) contributes to atherosclerotic lesion formation by recruiting leukocytes from blood into tissues. Tumor necrosis factor-alpha (TNFalpha) induces endothelial dysfunction and VCAM-1 expression in endothelial cells (ECs). We examined whether the cAMP-response element binding protein (CREB), a transcription factor that mediates cytokine expression and vascular remodeling, is involved in TNFalpha-induced VCAM-1 expression. TNFalpha induced phosphorylation of CREB with a peak at 15 min of stimulation in a dose-dependent manner in bovine aortic ECs. Pharmacological inhibition of p38 mitogen-activated protein kinase (p38-MAPK) inhibited TNFalpha-induced CREB phosphorylation. Adenovirus-mediated overexpression of a dominant-negative form of CREB suppressed TNFalpha-induced VCAM-1 and c-fos expression. Although activating protein 1 DNA binding activity was attenuated by overexpression of dominant negative CREB, nuclear factor-kappaB activity was not affected. Our results suggest that the p38-MAPK/CREB pathway plays a critical role in TNFalpha-induced VCAM-1 expression in vascular endothelial cells. The p38MAPK/CREB pathway may be a novel therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hiroki Ono
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Blood vessels are permanently subjected to mechanical forces in the form of stretch, encompassing cyclic mechanical strain due to the pulsatile nature of blood flow and shear stress. Significant variations in mechanical forces, of physiological or physiopathological nature, occur in vivo. These are accompanied by phenotypical modulation of smooth muscle cells and endothelial cells, producing structural modifications of the arterial wall. In all the cases, vascular remodelling can be allotted to a modification of the tensional strain or shear, and underlie a trend to reestablish baseline mechanical conditions. Vascular cells are equipped with numerous receptors that allow them to detect and respond to the mechanical forces generated by pressure and shear stress. The cytoskeleton and other structural components have an established role in mechanotransduction, being able to transmit and modulate tension within the cell via focal adhesion sites, integrins, cellular junctions and the extracellular matrix. Mechanical forces also initiate complex signal transduction cascades, including nuclear factor-kappaB and mitogen-activated protein kinase pathways, leading to functional changes within the cell.
Collapse
Affiliation(s)
- S Lehoux
- From the INSERM U589, Hôpital Lariboisière, Paris, France
| | | | | |
Collapse
|