1
|
Tang Z, Xie J, Jin M, Wei G, Fu Z, Luo X, Li C, Jia X, Zheng H, Zhong L, Li X, Wang J, Chen G, Chen Y, Liao W, Liao Y, Bin J, Huang S. Sympathetic hyperinnervation drives abdominal aortic aneurysm development by promoting vascular smooth muscle cell phenotypic switching. J Adv Res 2025; 71:383-398. [PMID: 38821358 DOI: 10.1016/j.jare.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
INTRODUCTION Sympathetic hyperinnervation plays an important role in modulating the vascular smooth muscle cell (VSMC) phenotype and vascular diseases, but its role in abdominal aortic aneurysm (AAA) is still unknown. OBJECTIVES This study aimed to investigate the role of sympathetic hyperinnervation in promoting AAA development and the underlying mechanism involved. METHODS Western blotting and immunochemical staining were used to detect sympathetic hyperinnervation. We performed sympathetic denervation through coeliac ganglionectomy (CGX) and 6-OHDA administration to understand the role of sympathetic hyperinnervation in AAA and investigated the underlying mechanisms through transcriptome and functional studies. Sema4D knockout (Sema4D-/-) mice were utilized to determine the involvement of Sema4D in inducing sympathetic hyperinnervation and AAA development. RESULTS We observed sympathetic hyperinnervation, the most important form of sympathetic neural remodeling, in both mouse AAA models and AAA patients. Elimination of sympathetic hyperinnervation by CGX or 6-OHDA significantly inhibited AAA development and progression. We further revealed that sympathetic hyperinnervation promoted VSMC phenotypic switching in AAA by releasing extracellular ATP (eATP) and activating eATP-P2rx4-p38 signaling. Moreover, single-cell RNA sequencing revealed that Sema4D secreted by osteoclast-like cells induces sympathetic nerve diffusion and hyperinnervation through binding to Plxnb1. We consistently observed that AAA progression was significantly ameliorated in Sema4D-deficient mice. CONCLUSIONS Sympathetic hyperinnervation driven by osteoclast-like cell-derived Sema4D promotes VSMC phenotypic switching and accelerates pathological aneurysm progression by activating the eATP/P2rx4/p38 pathway. Inhibition of sympathetic hyperinnervation emerges as a potential novel therapeutic strategy for preventing and treating AAA.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/etiology
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Humans
- Semaphorins/metabolism
- Semaphorins/genetics
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Phenotype
- Mice, Inbred C57BL
- Sympathetic Nervous System
- Adenosine Triphosphate/metabolism
- Antigens, CD
Collapse
Affiliation(s)
- Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Jingfang Xie
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Ziwei Fu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xiajing Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xiaoqian Jia
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Junfen Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| |
Collapse
|
2
|
Qiao X, Wang C, Ma J. The role and function validation of P2RX4 as a novel cancer biomarker in pan-cancer analysis. Sci Rep 2025; 15:11507. [PMID: 40181033 PMCID: PMC11968906 DOI: 10.1038/s41598-025-95247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Purinergic Receptor P2X4 (P2RX4) is implicated in the carcinogenesis of several cancers, but no extensive study on its role in different forms of cancer. Expression level, gene mutation, immune infiltration, pathway enrichment, and prognostic value analysis of P2RX4 were performed based on multiple publicly available databases such as TCGA, GTEx, GEO, TIMER2, cBioportal, and Metascape databases. Western blot and RT-qPCR were used to identify P2RX4 expression in liver hepatocellular carcinoma (LIHC) and paracancer samples. P2RX4 was knocked in glioblastoma cell line (U251) and prostate cancer cell line (PC3), and its effects on cell viability, apoptosis, migration and invasion were investigated through cell counting kit-8 assay, flow cytometry, wound healing and trasnwell assays, respectively. P2RX4 expression was elevated in most cancers, which predicted poor overall survival and disease-free survival. Mutations in P2RX4 were predominantly found in Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (> 4%). P2RX4 expression showed a positive correlation with the infiltration levels of cancer-associated fibroblasts and CD8 + cells in multiple tumor types. Functional enrichment analysis indicated that P2RX4 is closely related to autophagy, protein modification or intracellular trafficking. P2RX4 was highly expressed in LIHC compared to paracancerous tissues. Knockdown of P2RX4 suppressed cell viability, migration, invasion, and promoted cell apoptosis of U251 and PC3 cells. Overexpression of P2RX4 occurred in multi cancers, and was connected to an unfavorable prognosis. This pan-cancer analysis highlighted the predictive value and tumorigenic role of P2RX4.
Collapse
Affiliation(s)
- Xiaoyuan Qiao
- Department of Comprehensive Medicine, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, China
| | - Chunyan Wang
- Department of Laboratory Medicine, Cancer Hospital, Shanxi Cancer Hospital, Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, China
| | - Jun Ma
- Department of General Surgery, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
3
|
Paz-López S. ATP release mediated by pannexin-3 is required for plasma cell survival via P2X4 receptors in bone marrow. Purinergic Signal 2025; 21:267-269. [PMID: 38772961 DOI: 10.1007/s11302-024-10024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Affiliation(s)
- Sonia Paz-López
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
4
|
de Azambuja G, Moreira Simabuco F, Gonçalves de Oliveira MC. Macrophage-P2X4 receptors pathway is essential to persistent inflammatory muscle hyperalgesia onset, and is prevented by physical exercise. PLoS One 2025; 20:e0318107. [PMID: 39932994 PMCID: PMC11813081 DOI: 10.1371/journal.pone.0318107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Peripheral inflammation may lead to severe inflammatory painful conditions. Macrophages are critical for inflammation; modulating related pathways could be an essential therapeutic strategy for chronic pain diseases. Here we hypothesized that 1) Macrophage-P2X4 receptors are involved in the transition from acute to persistent inflammatory muscle hyperalgesia and that 2) P2X4 activation triggers a pro-inflammatory phenotype leading to Interleukin-1β (IL-1β) increase. Once physical exercise prevents exacerbated inflammatory processes related to chronic diseases including chronic muscle pain, we also hypothesized that 3) physical exercise, through PPARγ receptors, prevents P2X4 receptors activation. With pharmacological behaviour, biomolecular analysis and swimming physical exercise in a mouse model of persistent inflammatory muscle hyperalgesia we demonstrated that P2X4 receptors are essential for transitioning from acute to persistent inflammatory muscle hyperalgesia; Phosphorylation of p38MAPK indicated P2X4 signalling activation associated with inflammatory macrophage and an increase of IL-1β expression in skeletal muscle; Exercise-PPARγ receptors prevented phosphorylation of p38MAPK in muscle tissue. Our findings suggest that exercise-PPARγ modulates the acute inflammatory phase of developing persistent muscle hyperalgesia by controlling p38MAPK-related P2X4 signalling. These highlight the great potential of modulating macrophage phenotypes and P2X4 receptors to prevent pain conditions and the ability of physical exercise to prevent inflammatory processes related to chronic muscle pain.
Collapse
Affiliation(s)
- Graciana de Azambuja
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Aplicadas, Laboratório de Estudos em Dor e Inflamação (LABEDI), Limeira, São Paulo, Brasil
| | - Fernando Moreira Simabuco
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Aplicadas, Multidisciplinary Laboratory in Food and Health, Limeira, São Paulo, Brasil
| | - Maria Cláudia Gonçalves de Oliveira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Aplicadas, Laboratório de Estudos em Dor e Inflamação (LABEDI), Limeira, São Paulo, Brasil
| |
Collapse
|
5
|
Yin H, Tang X, Peng Y, Wen H, Yang H, Li S, Zheng X, Xiong Y. Pannexin-1 regulation of ATP release promotes the invasion of pituitary adenoma. J Endocrinol Invest 2025; 48:317-332. [PMID: 39527372 DOI: 10.1007/s40618-024-02445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/18/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Pannexin-1 (PANX1) channel participates in the development and progression of many tumor types, however, its role of PANX1 in invasive pituitary adenoma (PA) remains unknown. The current study was designed to investigate the role of PANX1 in invasion of PA. METHODS We examined the expression of PANX1 in 116 surgical invasion and non-invasion PA samples (60 for bulk transcriptome and 56 for immunohistochemistry). The effects of PANX1 on PA growth were assessed in vitro and xenograft models. Meanwhile, the metabolism changes of PA cells are explored via transcriptomics and metabolomics using integration strategy. RESULTS PANX1 is significantly upregulated in invasive PA compared with noninvasive PA and pituitary gland, and have a potential diagnostic signature for invasive PA. Accordingly, overexpression of PANX1 could promote the proliferation and invasion of GH3 and MMQ cell lines in vitro and in vivo. Further metabolomics results confirme that overexpression of PANX1 could trigger changes in several metabolic pathways of GH3 cells. Among the dysregulated cellular metabolites, decreased intracellular ATP suggeste that PANX1 may promote the invasion of PA through impacting extracellular ATP concentration. Mechanistically, extracellular ATP might promote Ca2+ influx and upregulated the expression of MMP2/9 by activating P2X7R. Additionally, PANX1-ATP-P2 X7R signaling pathway might enhance GH3 cell invasion by remodeling the actin cytoskeleton. CONCLUSION Our findings point to a pivotal role of PANX1 in promoting PA invasion, which indicated a potential therapeutic target for invasive PA.
Collapse
Affiliation(s)
- HuaChun Yin
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing, 400038, China
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - XiaoShuang Tang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - YuYang Peng
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - HuiZhong Wen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing, 400038, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China.
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Zhang X, Chen X, Meng X, Wu Y, Gao J, Chen H, Li X. Extracellular adenosine triphosphate: A new gateway for food allergy mechanism research? Food Chem 2025; 464:141821. [PMID: 39486282 DOI: 10.1016/j.foodchem.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Although various studies have been conducted, the detailed mechanisms of food allergy remain a topic of ongoing debate. Recently, researchers have reported that extracellular adenosine triphosphate (eATP), a member of damage-associated molecular patterns secreted by stressed cells, plays a critical role in the progression of asthma and atopic dermatitis. These studies suggest that dysregulated eATP significantly influences various aspects of disease progression, from bodily sensitization to the emergence of clinical manifestations. Given the shared pathogenic mechanisms among asthma, atopic dermatitis, and food allergies, we hypothesize that eATP may also serve as a crucial regulator in the development of food allergies. To elucidate this hypothesis, we first summarize the evidence and limitations of food allergy theories, then discuss the roles of eATP in allergic diseases. We conclude with speculative insights into the potential influence of eATP on food allergy development, aiming to inspire further investigation into the molecular mechanisms of food allergies.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Yang SS, Brooks NAH, Da Silva DE, Gibon J, Islam H, Klegeris A. Extracellular ATP regulates phagocytic activity, mitochondrial respiration, and cytokine secretion of human astrocytic cells. Purinergic Signal 2025:10.1007/s11302-025-10066-x. [PMID: 39833586 DOI: 10.1007/s11302-025-10066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes. This study is the first to measure changes in phagocytic activity and mitochondrial respiration of human astrocytic cells in response to extracellular ATP. We demonstrate that ATP-induced phagocytic activity of U118 MG astrocytic cells is accompanied by upregulated mitochondrial oxidative phosphorylation, which likely supports this energy-dependent process. Application of a selective antagonist A438079 provides evidence identifying astrocytic purinergic P2X7 receptor (P2X7R) as the potential regulator of their phagocytic function. We also report a rapid ATP-induced increase in intracellular calcium ([Ca2+]i), which could serve as regulator of both the phagocytic activity and mitochondrial metabolism, but this hypothesis will need to be tested in future studies. Since ATP upregulates interleukin (IL)-8 secretion by astrocytes but has no effect on their cytotoxicity towards neuronal cells, we conclude that extracellular ATP affects only specific functions of astrocytes. The selectivity of P2X7R-dependent regulation of astrocyte functions by extracellular ATP could allow targeting this receptor-ligand interaction to upregulate their phagocytic function. This could have beneficial outcomes in neurodegenerative disorders, such as Alzheimer's disease, that are characterized by reactive astrocytes and defective phagocytic processes.
Collapse
Affiliation(s)
- Sijie Shirley Yang
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Noah A H Brooks
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Dylan E Da Silva
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
8
|
Casler JC, Neto MV, Burgoyne T, Lackner LL. Mitochondria-Plasma Membrane Contact Sites: Emerging Regulators of Mitochondrial Form and Function. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251332141. [PMID: 40291948 PMCID: PMC12033498 DOI: 10.1177/25152564251332141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025]
Abstract
Sites of close apposition between organelles, known as membrane contact sites (MCSs), are critical regulators of organelle function. Mitochondria form elaborate reticular networks that perform essential metabolic and signaling functions. Many mitochondrial functions are regulated by MCSs formed between mitochondria and other organelles. In this review, we aim to bring attention to an understudied, but physiologically important, MCS between mitochondria and the plasma membrane (PM). We first describe the molecular mechanism of mitochondria-PM tethering in budding yeast and discuss its role in regulating multiple biological processes, including mitochondrial dynamics and lipid metabolism. Next, we discuss the evidence for mitochondria-PM tethering in higher eukaryotes, with a specific emphasis on mitochondria-PM contacts in retinal cells, and speculate on their functions. Finally, we discuss unanswered questions to guide future research into the function of mitochondria-PM contact sites.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Matilde V Neto
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
Zhang B, Wen J, Li M, Wang J, Ji Z, Lv X, Usman M, Mauck J, Loor JJ, Yang W, Wang G, Ma J, Xu C. Fatty acids promote migration of CD4 + T cells through calcium release-activated calcium modulator ORAI1 sensitive glycolysis in dairy cows. J Dairy Sci 2025; 108:856-867. [PMID: 39477060 DOI: 10.3168/jds.2024-24845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/17/2024] [Indexed: 12/28/2024]
Abstract
Nutritional and metabolic state in dairy cows are important determinants of the immune response. During the periparturient period, a state of negative energy balance in the cow increases plasma concentrations of fatty acids (FA), which are associated with inflammation. Among immune cells, CD4+ T are able to function under high-FA conditions, but the underlying mechanisms regulating these events remain unclear. The objective of this study was to clarify the functional mechanisms of CD4+ T cells under high-FA conditions. The effects of glycolysis and calcium release-activated calcium modulator 1 (ORAI1) on migration of CD4+ T cells exposed to high FA were investigated in vivo and in vitro. The CD4+ T cells were isolated from peripheral blood of healthy (n = 9) and high-FA (n = 9) Holstein cows (average 2.5 ± 0.2 lactations [SE], 12.3 ± 0.8 DIM). In the first experiment, real-time quantitative PCR was used to assess chemokine receptors in isolated CD4+ T cells and migration capacity. The relative mRNA measurements results revealed downregulation of CCR1 and CXCR2, and upregulation of CCR2, CCR4, CCR5, CCR7, CCR8, CCR10, CXCR1, CXCR3, CXCR4, and CX3CR1. Among them, the expression of CXCR4 was relatively high. Therefore, CXCL12, a ligand chemokine of CXCR4, was an inducer of CD4+ T cell migration. The CD4+ T cells were inoculated in the upper chamber and CXCL12 (100 ng/mL, Peprotech) in RPMI1640 was added to the lower chamber and transmigrated for 3 h at 37°C and 5% CO2. The cell migration assay revealed that the migration capacity of CD4+ T cells from high-FA cows was greater. Real-time-qPCR indicated greater abundance of the glycolysis-related targets HIF1A, HK2, PKM2, Glut1, GAPDH, and LDHA and Western blotting indicated greater abundance of the glycolysis-related targets HIF1A, HK2, PKM2, Glut1, GAPDH, and LDHA in CD4+ T cells of high-FA cows. To characterize specific mechanisms of CD4+ T cell migration in vitro, cells from the spleens of 3 newborn (1 d old, 40-50 kg) healthy female Holstein calves were isolated after euthanasia. Inhibition of glycolysis attenuated the migration ability of cells, but had no effect on the protein and mRNA abundance of store-operated Ca2+ entry (SOCE)-associated calcium release-activated calcium modulator 1 (ORAI1) and stromal interaction molecule 1 (STIM1). In contrast, ORAI1 was upregulated in CD4+ T cells of cows exposed to high FA. To explore the potential mechanisms whereby an active glycolytic metabolism affects CD4+ T cells under high-FA conditions, we knocked down ORAI1 using small interfering RNA (siORAI1). Isolated CD4+ T cells from high-FA cows with the siORAI1 had an attenuated glycolytic metabolism and migration capacity. Taken together, these data suggested that calcium ions in CD4+ T cells from cows with high FA regulate glycolytic metabolism and influence cell migration at least in part by modulating ORAI1. Thus, these studies identified a novel mechanism of Ca2+ regulation of CD4+ T cell glycolytic metabolism affecting their migration through the SOCE pathway.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 032699, China
| | - Ming Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100000, China
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ziwei Ji
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Muhammad Usman
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - John Mauck
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Guihua Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
10
|
Santiago-Carvalho I, Ishikawa M, Borges da Silva H. Channel plan: control of adaptive immune responses by pannexins. Trends Immunol 2024; 45:892-902. [PMID: 39393945 PMCID: PMC11560585 DOI: 10.1016/j.it.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
The development of mammalian adaptive (i.e., B and T cell-mediated) immune responses is tightly controlled at transcriptional, epigenetic, and metabolic levels. Signals derived from the extracellular milieu are crucial regulators of adaptive immunity. Beyond the traditionally studied cytokines and chemokines, many other extracellular metabolites can bind to specialized receptors and regulate T and B cell immune responses. These molecules often accumulate extracellularly through active export by plasma membrane transporters. For example, mammalian immune and non-immune cells express pannexin (PANX)1-3 channels on the plasma membrane, which release many distinct small molecules, notably intracellular ATP. Here, we review novel findings defining PANXs as crucial regulators of T and B cell immune responses in disease contexts such as cancer or viral infections.
Collapse
Affiliation(s)
| | - Masaki Ishikawa
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
11
|
Yu S, Deng R, Wang W, Zou D, He L, Wei Z, Pan Y, Li X, Wu Y, Wang A, Chen W, Zhao Y, Lu Y. Pharmacological manipulation of TRPC5 by kaempferol attenuates metastasis of gastrointestinal cancer via inhibiting calcium involved in the formation of filopodia. Int J Biol Sci 2024; 20:4922-4940. [PMID: 39309444 PMCID: PMC11414399 DOI: 10.7150/ijbs.87829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/02/2024] [Indexed: 09/25/2024] Open
Abstract
The thermo-sensory receptor, transient receptor potential channel 5 (TRPC5), a non-selective calcium ion (Ca2+)-permeable ion channel, has been implicated in cancer initiation and progression. However, its specific role in gastrointestinal cancer remains unclear. This study demonstrates that TRPC5 is significantly overexpressed in gastrointestinal tumors and is inversely associated with patient prognosis. TRPC5 overexpression triggers a substantial elevation in intracellular Ca2+ levels ([Ca2+]i), driving actin cytoskeleton reorganization and facilitating filopodia formation. Furthermore, kaempferol, a compound sourced from traditional Chinese medicine, is identified as a TRPC5 inhibitor that effectively suppresses its activity, thereby impeding gastrointestinal cancer metastasis. These findings underscore the potential of TRPC5 as a therapeutic target for metastasis inhibition, with kaempferol emerging as a promising natural inhibitor that could be optimized for clinical use in preventing cancer metastasis.
Collapse
Affiliation(s)
- Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Defang Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liang He
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanhong Pan
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoman Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
12
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
13
|
Povo-Retana A, Sánchez-García S, Alvarez-Lucena C, Landauro-Vera R, Prieto P, Delgado C, Martín-Sanz P, Boscá L. Crosstalk between P2Y receptors and cyclooxygenase activity in inflammation and tissue repair. Purinergic Signal 2024; 20:145-155. [PMID: 37052777 PMCID: PMC10997571 DOI: 10.1007/s11302-023-09938-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
The role of extracellular nucleotides as modulators of inflammation and cell stress is well established. One of the main actions of these molecules is mediated by the activation of purinergic receptors (P2) of the plasma membrane. P2 receptors can be classified according to two different structural families: P2X ionotropic ion channel receptors, and P2Y metabotropic G protein-coupled receptors. During inflammation, damaged cells release nucleotides and purinergic signaling occurs along the temporal pattern of the synthesis of pro-inflammatory and pro-resolving mediators by myeloid and lymphoid cells. In macrophages under pro-inflammatory conditions, the expression and activity of cyclooxygenase 2 significantly increases and enhances the circulating levels of prostaglandin E2 (PGE2), which exerts its effects both through specific plasma membrane receptors (EP1-EP4) and by activation of intracellular targets. Here we review the mechanisms involved in the crosstalk between PGE2 and P2Y receptors on macrophages, which is dependent on several isoforms of protein kinase C and protein kinase D1. Due to this crosstalk, a P2Y-dependent increase in calcium is blunted by PGE2 whereas, under these conditions, macrophages exhibit reduced migratory capacity along with enhanced phagocytosis, which contributes to the modulation of the inflammatory response and tissue repair.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Patricia Prieto
- Departamento de Farmacología, Farmacognosia y Botánica. Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
14
|
Simula L, Fumagalli M, Vimeux L, Rajnpreht I, Icard P, Birsen G, An D, Pendino F, Rouault A, Bercovici N, Damotte D, Lupo-Mansuet A, Alifano M, Alves-Guerra MC, Donnadieu E. Mitochondrial metabolism sustains CD8 + T cell migration for an efficient infiltration into solid tumors. Nat Commun 2024; 15:2203. [PMID: 38467616 PMCID: PMC10928223 DOI: 10.1038/s41467-024-46377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
The ability of CD8+ T cells to infiltrate solid tumors and reach cancer cells is associated with improved patient survival and responses to immunotherapy. Thus, identifying the factors controlling T cell migration in tumors is critical, so that strategies to intervene on these targets can be developed. Although interstitial motility is a highly energy-demanding process, the metabolic requirements of CD8+ T cells migrating in a 3D environment remain unclear. Here, we demonstrate that the tricarboxylic acid (TCA) cycle is the main metabolic pathway sustaining human CD8+ T cell motility in 3D collagen gels and tumor slices while glycolysis plays a more minor role. Using pharmacological and genetic approaches, we report that CD8+ T cell migration depends on the mitochondrial oxidation of glucose and glutamine, but not fatty acids, and both ATP and ROS produced by mitochondria are required for T cells to migrate. Pharmacological interventions to increase mitochondrial activity improve CD8+ T cell intratumoral migration and CAR T cell recruitment into tumor islets leading to better control of tumor growth in human xenograft models. Our study highlights the rationale of targeting mitochondrial metabolism to enhance the migration and antitumor efficacy of CAR T cells in treating solid tumors.
Collapse
Affiliation(s)
- Luca Simula
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France.
| | - Mattia Fumagalli
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Lene Vimeux
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Irena Rajnpreht
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Philippe Icard
- Université de Normandie, UNICAEN, Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France
- Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Cité, Paris, France
| | - Gary Birsen
- Department of Pneumology, Thoracic Oncology Unit, Cochin Hospital, APHP-Centre, Université Paris-Cité, 75014, Paris, France
| | - Dongjie An
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Frédéric Pendino
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Adrien Rouault
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Nadège Bercovici
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France
| | - Diane Damotte
- Department of Pathology, Cochin Hospital, APHP-Centre, Université Paris-Cité, 75014, Paris, France
| | - Audrey Lupo-Mansuet
- Department of Pathology, Cochin Hospital, APHP-Centre, Université Paris-Cité, 75014, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Cité, Paris, France
- Inserm U1138, Integrative Cancer Immunology Unit, 75006, Paris, France
| | | | - Emmanuel Donnadieu
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Equipe labellisée "Ligue contre le Cancer", Paris, 75014, France.
| |
Collapse
|
15
|
Brock VJ, Lory NC, Möckl F, Birus M, Stähler T, Woelk LM, Jaeckstein M, Heeren J, Koch-Nolte F, Rissiek B, Mittrücker HW, Guse AH, Werner R, Diercks BP. Time-resolved role of P2X4 and P2X7 during CD8 + T cell activation. Front Immunol 2024; 15:1258119. [PMID: 38426095 PMCID: PMC10902106 DOI: 10.3389/fimmu.2024.1258119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
CD8+ T cells are a crucial part of the adaptive immune system, responsible for combating intracellular pathogens and tumor cells. The initial activation of T cells involves the formation of highly dynamic Ca2+ microdomains. Recently, purinergic signaling was shown to be involved in the formation of the initial Ca2+ microdomains in CD4+ T cells. In this study, the role of purinergic cation channels, particularly P2X4 and P2X7, in CD8+ T cell signaling from initial events to downstream responses was investigated, focusing on various aspects of T cell activation, including Ca2+ microdomains, global Ca2+ responses, NFAT-1 translocation, cytokine expression, and proliferation. While Ca2+ microdomain formation was significantly reduced in the first milliseconds to seconds in CD8+ T cells lacking P2X4 and P2X7 channels, global Ca2+ responses over minutes were comparable between wild-type (WT) and knockout cells. However, the onset velocity was reduced in P2X4-deficient cells, and P2X4, as well as P2X7-deficient cells, exhibited a delayed response to reach a certain level of free cytosolic Ca2+ concentration ([Ca2+]i). NFAT-1 translocation, a crucial transcription factor in T cell activation, was also impaired in CD8+ T cells lacking P2X4 and P2X7. In addition, the expression of IFN-γ, a major pro-inflammatory cytokine produced by activated CD8+ T cells, and Nur77, a negative regulator of T cell activation, was significantly reduced 18h post-stimulation in the knockout cells. In line, the proliferation of T cells after 3 days was also impaired in the absence of P2X4 and P2X7 channels. In summary, the study demonstrates that purinergic signaling through P2X4 and P2X7 enhances initial Ca2+ events during CD8+ T cell activation and plays a crucial role in regulating downstream responses, including NFAT-1 translocation, cytokine expression, and proliferation on multiple timescales. These findings suggest that targeting purinergic signaling pathways may offer potential therapeutic interventions.
Collapse
Affiliation(s)
- Valerie J. Brock
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Christian Lory
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Möckl
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Melina Birus
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lena-Marie Woelk
- Department of Applied Medical Informatics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - René Werner
- Department of Applied Medical Informatics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
17
|
Badaoui M, Chanson M. Intercellular Communication in Airway Epithelial Cell Regeneration: Potential Roles of Connexins and Pannexins. Int J Mol Sci 2023; 24:16160. [PMID: 38003349 PMCID: PMC10671439 DOI: 10.3390/ijms242216160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.
Collapse
Affiliation(s)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
18
|
Antony IR, Wong BHS, Kelleher D, Verma NK. Maladaptive T-Cell Metabolic Fitness in Autoimmune Diseases. Cells 2023; 12:2541. [PMID: 37947619 PMCID: PMC10650071 DOI: 10.3390/cells12212541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Immune surveillance and adaptive immune responses, involving continuously circulating and tissue-resident T-lymphocytes, provide host defense against infectious agents and possible malignant transformation while avoiding autoimmune tissue damage. Activation, migration, and deployment of T-cells to affected tissue sites are crucial for mounting an adaptive immune response. An effective adaptive immune defense depends on the ability of T-cells to dynamically reprogram their metabolic requirements in response to environmental cues. Inability of the T-cells to adapt to specific metabolic demands may skew cells to become either hyporesponsive (creating immunocompromised conditions) or hyperactive (causing autoimmune tissue destruction). Here, we review maladaptive T-cell metabolic fitness that can cause autoimmune diseases and discuss how T-cell metabolic programs can potentially be modulated to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Irene Rose Antony
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Vellore Institute of Technology, Vellore 632014, India; (I.R.A.); (B.H.S.W.); (D.K.)
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech-NTU), Nanyang Technological University, Singapore 637335, Singapore
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
19
|
Alonso S, Edelblum K. Metabolic regulation of γδ intraepithelial lymphocytes. DISCOVERY IMMUNOLOGY 2023; 2:kyad011. [PMID: 38179241 PMCID: PMC10766425 DOI: 10.1093/discim/kyad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
21
|
Rupert C, Aversana CD, Mosca L, Montanaro V, Arcaniolo D, De Sio M, Bilancio A, Altucci L, Palinski W, Pili R, de Nigris F. Therapeutic targeting of P2X4 receptor and mitochondrial metabolism in clear cell renal carcinoma models. J Exp Clin Cancer Res 2023; 42:134. [PMID: 37231503 DOI: 10.1186/s13046-023-02713-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Large-scale metabolomic data have associated metabolic alterations with the pathogenesis and progression of renal carcinoma and have correlated mitochondrial activity with poor survival in a subset of patients. The aim of this study was to determine whether targeting mitochondria-lysosome interaction could be a novel therapeutic approach using patient-derived organoids as avatar for drug response. METHODS RNAseq data analysis and immunohistochemistry were used to show overexpression of Purinergic receptor 4 (P2XR4) in clear cell carcinomas. Seahorse experiments, immunofluorescence and fluorescence cell sorting were used to demonstrate that P2XR4 regulates mitochondrial activity and the balance of radical oxygen species. Pharmacological inhibitors and genetic silencing promoted lysosomal damage, calcium overload in mitochondria and cell death via both necrosis and apoptosis. Finally, we established patient-derived organoids and murine xenograft models to investigate the antitumor effect of P2XR4 inhibition using imaging drug screening, viability assay and immunohistochemistry. RESULTS Our data suggest that oxo-phosphorylation is the main source of tumor-derived ATP in a subset of ccRCC cells expressing P2XR4, which exerts a critical impact on tumor energy metabolism and mitochondrial activity. Prolonged mitochondrial failure induced by pharmacological inhibition or P2XR4 silencing was associated with increased oxygen radical species, changes in mitochondrial permeability (i.e., opening of the transition pore complex, dissipation of membrane potential, and calcium overload). Interestingly, higher mitochondrial activity in patient derived organoids was associated with greater sensitivity to P2XR4 inhibition and tumor reduction in a xenograft model. CONCLUSION Overall, our results suggest that the perturbed balance between lysosomal integrity and mitochondrial activity induced by P2XR4 inhibition may represent a new therapeutic strategy for a subset of patients with renal carcinoma and that individualized organoids may be help to predict drug efficacy.
Collapse
Affiliation(s)
- Christofer Rupert
- Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Carmela Dell' Aversana
- Institute of Experimental Endocrinology and Oncology, Gaetano Salvatore (IEOS)-CNR, Naples, Italy
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Laura Mosca
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | | | - Davide Arcaniolo
- Department of Women, Child, and General and Specialistic Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Marco De Sio
- Department of Women, Child, and General and Specialistic Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Antonio Bilancio
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Institute of Experimental Endocrinology and Oncology, Gaetano Salvatore (IEOS)-CNR, Naples, Italy
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
- BIOGEM, Ariano Irpino, Avellino, Italy
| | - Wulf Palinski
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roberto Pili
- Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
22
|
Santiago-Carvalho I, Banuelos A, Borges da Silva H. Tissue- and temporal-specific roles of extracellular ATP on T cell metabolism and function. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00025. [PMID: 37143525 PMCID: PMC10150631 DOI: 10.1097/in9.0000000000000025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
The activation and function of T cells is fundamental for the control of infectious diseases and cancer, and conversely can mediate several autoimmune diseases. Among the signaling pathways leading to T cell activation and function, the sensing of extracellular adenosine triphosphate (eATP) has been recently appreciated as an important component. Through a plethora of purinergic receptors, most prominently P2RX7, eATP sensing can induce a wide variety of processes in T cells, such as proliferation, subset differentiation, survival, or cell death. The downstream roles of eATP sensing can vary according to (a) the T cell subset, (b) the tissue where T cells are, and (c) the time after antigen exposure. In this mini-review, we revisit the recent findings on how eATP signaling pathways regulate T-cell immune responses and posit important unanswered questions on this field.
Collapse
Affiliation(s)
| | - Alma Banuelos
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | |
Collapse
|
23
|
Gamiotea-Turro D, Cronin CC, Liang BT, Verma R. Transcriptomic analysis reveals novel age-independent immunomodulatory proteins as a mode of cerebroprotection in P2X4R KO mice after ischemic stroke. RESEARCH SQUARE 2023:rs.3.rs-2747807. [PMID: 37034723 PMCID: PMC10081441 DOI: 10.21203/rs.3.rs-2747807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Identification of new potential drug target proteins and their plausible mechanisms for stroke treatment is critically needed. We previously showed that genetic deletion and short-term pharmacological inhibition of P2X4R, a purinergic receptor for adenosine triphosphate ATP, provides acute cerebroprotection. However, potential mechanisms remain unknown. Therefore, we employed RNA-seq technology to identify the gene expression profiles, pathway analysis, and qPCR validation of differentially expressed genes (DEGs). This analysis identified roles of DEGs in certain biological processes responsible for P2X4R-dependent cerebroprotection after stroke. We subjected both young and aged male and female global P2X4 KO and littermate WT mice to ischemic stroke. After 3 days, mice were sacrificed, total RNA was isolated using Trizol, and subjected to RNA-seq and Nanostring-mediated qPCR. DESeq2, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) were used to identify mRNA transcript expression profiles and biological pathways. We found 2246 DEGs in P2X4R KO vs WT tissue after stroke. Out of these DEGs, 1920 gene were downregulated, and 325 genes were upregulated in KO. GO/IPA analysis of the top 300 DEGs suggests an enrichment of inflammation and extracellular matrix component genes. qPCR validation of the top 30 DEGs revealed downregulation of two common age-independent genes in P2X4R KO mice: Interleukin-6 ( IL-6) , an inflammatory cytokine, and Cytotoxic T Lymphocyte-Associated Protein 2 alpha ( Ctla2a ), an immunosuppressive factor. These data suggest that P2X4R-mediated cerebroprotection after stroke is initiated by attenuation of immune modulatory pathways in both young and aged mice of both sexes.
Collapse
|
24
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
25
|
Amitrano AM, Kim M. Metabolic Challenges in Anticancer CD8 T Cell Functions. Immune Netw 2023; 23:e9. [PMID: 36911801 PMCID: PMC9995993 DOI: 10.4110/in.2023.23.e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 03/07/2023] Open
Abstract
Cancer immunotherapies continue to face numerous obstacles in the successful treatment of solid malignancies. While immunotherapy has emerged as an extremely effective treatment option for hematologic malignancies, it is largely ineffective against solid tumors due in part to metabolic challenges present in the tumor microenvironment (TME). Tumor-infiltrating CD8+ T cells face fierce competition with cancer cells for limited nutrients. The strong metabolic suppression in the TME often leads to impaired T-cell recruitment to the tumor site and hyporesponsive effector functions via T-cell exhaustion. Growing evidence suggests that mitochondria play a key role in CD8+ T-cell activation, migration, effector functions, and persistence in tumors. Therefore, targeting the mitochondrial metabolism of adoptively transferred T cells has the potential to greatly improve the effectiveness of cancer immunotherapies in treating solid malignancies.
Collapse
Affiliation(s)
- Andrea M. Amitrano
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
26
|
Lisci M, Griffiths GM. Arming a killer: mitochondrial regulation of CD8 + T cell cytotoxicity. Trends Cell Biol 2023; 33:138-147. [PMID: 35753961 DOI: 10.1016/j.tcb.2022.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
While once regarded as ATP factories, mitochondria have taken the spotlight as important regulators of cellular homeostasis. The past two decades have witnessed an intensifying interest in the study of mitochondria in cells of the immune system, with many new and unexpected roles for mitochondria emerging. Immune cells offer intriguing insights as mitochondria appear to play different roles at different stages of T cell development, matching the changing functions of the cells. Here we briefly review the multifaceted roles of mitochondria during T cell differentiation, focusing on CD8+ cytotoxic T lymphocytes (CTLs) and we consider how mitochondrial dysfunction can contribute to CTL exhaustion. In addition, we highlight a newly appreciated role for mitochondria as homeostatic regulators of CTL-mediated killing and explore the emerging literature describing mechanisms linking cytosolic and mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Miriam Lisci
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
27
|
Sluyter R, Cuthbertson P, Elhage A, Sligar C, Watson D. Purinergic signalling in graft-versus-host disease. Curr Opin Pharmacol 2023; 68:102346. [PMID: 36634595 DOI: 10.1016/j.coph.2022.102346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is used to treat blood cancers, but often results in lethal graft-versus-host disease (GVHD). GVHD is an inflammatory disorder mediated by donor leukocytes that damage host tissues. Purinergic signalling plays important roles in GVHD development in mice but studies of these pathways in human GVHD remain limited. P2X7 receptor activation by ATP on host antigen presenting cells contributes to the induction of GVHD, while activation of this receptor on regulatory T cells, myeloid-derived suppressor cells and possibly type 3 innate lymphoid cells results in their loss to promote GVHD progression. In contrast, A2A receptor activation by adenosine on donor T cells serves to restrict GVHD development. These and other purinergic signalling molecules remain potential biomarkers and therapeutic targets in GVHD.
Collapse
Affiliation(s)
- Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Amal Elhage
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
28
|
Tiwari-Heckler S, Lee GR, Harbison J, Ledderose C, Csizmadia E, Melton D, Zhang Q, Junger W, Chen G, Hauser CJ, Otterbein LE, Longhi MS, Robson SC. Extracellular mitochondria drive CD8 T cell dysfunction in trauma by upregulating CD39. Thorax 2023; 78:151-159. [PMID: 35613855 PMCID: PMC9691787 DOI: 10.1136/thoraxjnl-2021-218047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/04/2022] [Indexed: 01/21/2023]
Abstract
RATIONALE The increased mortality and morbidity seen in critically injured patients appears associated with systemic inflammatory response syndrome (SIRS) and immune dysfunction, which ultimately predisposes to infection. Mitochondria released by injury could generate danger molecules, for example, ATP, which in turn would be rapidly scavenged by ectonucleotidases, expressed on regulatory immune cells. OBJECTIVE To determine the association between circulating mitochondria, purinergic signalling and immune dysfunction after trauma. METHODS We tested the impact of hepatocyte-derived free mitochondria on blood-derived and lung-derived CD8 T cells in vitro and in experimental mouse models in vivo. In parallel, immune phenotypic analyses were conducted on blood-derived CD8 T cells obtained from trauma patients. RESULTS Isolated intact mitochondria are functional and generate ATP ex vivo. Extracellular mitochondria perturb CD8+ T cells in co-culture, inducing select features of immune exhaustion in vitro. These effects are modulated by scavenging ATP, modelled by addition of apyrase in vitro. Injection of intact mitochondria into recipient mice markedly upregulates the ectonucleotidase CD39, and other immune checkpoint markers in circulating CD8+ T cells. We note that mice injected with mitochondria, prior to instilling bacteria into the lung, exhibit more severe lung injury, characterised by elevated neutrophil influx and by changes in CD8+ T cell cytotoxic capacity. Importantly, the development of SIRS in injured humans, is likewise associated with disordered purinergic signalling and CD8 T cell dysfunction. CONCLUSION These studies in experimental models and in a cohort of trauma patients reveal important associations between extracellular mitochondria, aberrant purinergic signalling and immune dysfunction. These pathogenic factors with immune exhaustion are linked to SIRS and could be targeted therapeutically.
Collapse
Affiliation(s)
- Shilpa Tiwari-Heckler
- Gastroenterology, University Hospital Heidelberg Medical Clinic, Heidelberg, Germany
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ghee Rye Lee
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - James Harbison
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Csizmadia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David Melton
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Wolfgang Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guanqing Chen
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Serena Longhi
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Christopher Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Kobayashi D, Umemoto E, Miyasaka M. The role of extracellular ATP in homeostatic immune cell migration. Curr Opin Pharmacol 2023; 68:102331. [PMID: 36535235 DOI: 10.1016/j.coph.2022.102331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Antigen stimulation induces adenosine triphosphate (ATP) release from naïve lymphocytes in lymphoid tissues. However, previous studies indicated that the non-lytic release of ATP also occurs in most tissues and cell types under physiological conditions. Here, we show that extracellular ATP (eATP) is indeed constitutively produced by naïve T cells in response to lymphoid chemokines in uninflamed lymph nodes and is involved in the regulation of immune cell migration. In this review, we briefly summarize the homeostatic role of extracellular ATP in immune cell migration in vivo.
Collapse
Affiliation(s)
- Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Eiji Umemoto
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masayuki Miyasaka
- Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
30
|
Hamoudi C, Muheidli A, Aoudjit F. β1 Integrin induces adhesion and migration of human Th17 cells via Pyk2-dependent activation of P2X4 receptor. Immunology 2023; 168:83-95. [PMID: 36054607 DOI: 10.1111/imm.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
Integrin-mediated T-cell adhesion and migration is a crucial step in immune response and autoimmune diseases. However, the underlying signalling mechanisms are not fully elucidated. In this study, we examined the implication of purinergic signalling, which has been associated with T-cell activation, in the adhesion and migration of human Th17 cells across fibronectin, a major matrix protein associated with inflammatory diseases. We showed that the adhesion of human Th17 cells to fibronectin induces, via β1 integrin, a sustained release of adenosine triphosphate (ATP) from the mitochondria through the pannexin-1 hemichannels. Inhibition of ATP release or its degradation with apyrase impaired the capacity of the cells to attach and migrate across fibronectin. Inhibition studies identified a major role for the purinergic receptor P2X4 in T-cell adhesion and migration but not for P2X7 or P2Y11 receptors. Blockade of P2X4 but not P2X7 or P2Y11 receptors reduced cell adhesion and migration by inhibiting activation of β1 integrins, which is essential for ligand binding. Furthermore, we found that β1 integrin-induced ATP release, P2X4 receptor transactivation, cell adhesion and migration were dependent on the focal adhesion kinase Pyk2 but not FAK. Finally, P2X4 receptor inhibition also blocked fibronectin-induced Pyk2 activation suggesting the existence of a positive feedback loop of activation between β1 integrin/Pyk2 and P2X4 purinergic signalling pathways. Our findings uncovered an unrecognized link between β1 integrin and P2X4 receptor signalling pathways for promoting T-cell adhesion and migration across the extracellular matrix.
Collapse
Affiliation(s)
- Chakib Hamoudi
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada
| | - Abbas Muheidli
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
31
|
The Flavonoid Naringenin Alleviates Collagen-Induced Arthritis through Curbing the Migration and Polarization of CD4 + T Lymphocyte Driven by Regulating Mitochondrial Fission. Int J Mol Sci 2022; 24:ijms24010279. [PMID: 36613721 PMCID: PMC9820519 DOI: 10.3390/ijms24010279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease. Due to local infiltration and damage to the joints, activated CD4+ T cells play a crucial role in the progression of RA. However, the exact regulatory mechanisms are perplexing, which makes the effective management of RA frustrating. This study aimed to investigate the effect of mitochondria fission on the polarization and migration of CD4+ T cells as well as the regulatory mechanism of NAR, so as to provide enlightenment on therapeutic targets and novel strategies for the treatment of RA. In this study, a collagen-induced arthritis (CIA) model was established, and rats were randomly given saline or naringenin (NAR, 10 mg/kg, 20 mg/kg, 50 mg/kg, i.p.) once a day, before being euthanized on the 42nd day of primary immunization. The pain-like behavior, articular index scores, account of synovial-infiltrated CD4+ T cells, and inflammatory factors were investigated in each group. In vitro, spleen CD4+ T lymphocytes were derived from each group. In addition, mitochondrial division inhibitor 1 (Mdivi-1) or NAR was added to the cell medium containing C-X-C motif chemokine ligand 12 (CXCL12) in order to induce CD4+ T lymphocytes, respectively. The polarization capacity of CD4+ T cells was evaluated through the immunofluorescence intensity of the F-actin and myosin light chain phosphorylated at Ser19 (pMLC S19), and the mitochondrial distribution was determined by co-localization analysis of the translocase of outer mitochondrial membrane 20 (TOM20, the mitochondrial marker) and intercellular adhesion molecule 1 (ICAM1, the uropod marker). The mitochondrial fission was investigated by detecting dynamin-related protein 1 (Drp1) and mitochondrial fission protein 1 (Fis1) using Western blot and immunofluorescence. This study revealed that high-dose NAR (50 mg/kg, i.p.) alleviated pain-like behavior and articular index scores, reduced the serum level of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), and accounted for CD4+ T lymphocytes that infiltrated into the synovial membrane of the CIA group. Meanwhile, NAR (50 mg/kg, i.p.) suppressed the polarization of spleen CD4+ T lymphocytes, reduced the redistribution of mitochondria in the uropod, and inhibited the expression of Drp1 and Fis1 in the CIA model. Furthermore, the in vitro experiments confirmed that NAR reduced mitochondrial fission, which in turn inhibited the CXCL12-induced polarization and migration of CD4+ T lymphocytes. Our results demonstrated that the flavonoid NAR was a promising drug for the treatment of RA, which could effectively interfere with mitochondrial fission, thus inhibiting the polarization and migration of CD4+ T cells in the synovial membrane.
Collapse
|
32
|
Doan Ngoc TM, Tilly G, Danger R, Bonizec O, Masset C, Guérif P, Bruneau S, Glemain A, Harb J, Cadoux M, Vivet A, Mai HL, Garcia A, Laplaud D, Liblau R, Giral M, Blandin S, Feyeux M, Dubreuil L, Pecqueur C, Cyr M, Ni W, Brouard S, Degauque N. Effector Memory-Expressing CD45RA (TEMRA) CD8 + T Cells from Kidney Transplant Recipients Exhibit Enhanced Purinergic P2X4 Receptor-Dependent Proinflammatory and Migratory Responses. J Am Soc Nephrol 2022; 33:2211-2231. [PMID: 36280286 PMCID: PMC9731633 DOI: 10.1681/asn.2022030286] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The mechanisms regulating CD8+ T cell migration to nonlymphoid tissue during inflammation have not been fully elucidated, and the migratory properties of effector memory CD8+ T cells that re-express CD45RA (TEMRA CD8+ T cells) remain unclear, despite their roles in autoimmune diseases and allotransplant rejection. METHODS We used single-cell proteomic profiling and functional testing of CD8+ T cell subsets to characterize their effector functions and migratory properties in healthy volunteers and kidney transplant recipients with stable or humoral rejection. RESULTS We showed that humoral rejection of a kidney allograft is associated with an accumulation of cytolytic TEMRA CD8+ T cells in blood and kidney graft biopsies. TEMRA CD8+ T cells from kidney transplant recipients exhibited enhanced migratory properties compared with effector memory (EM) CD8+ T cells, with enhanced adhesion to activated endothelium and transmigration in response to the chemokine CXCL12. CXCL12 directly triggers a purinergic P2×4 receptor-dependent proinflammatory response of TEMRA CD8+ T cells from transplant recipients. The stimulation with IL-15 promotes the CXCL12-induced migration of TEMRA and EM CD8+ T cells and promotes the generation of functional PSGL1, which interacts with the cell adhesion molecule P-selectin and adhesion of these cells to activated endothelium. Although disruption of the interaction between functional PSGL1 and P-selectin prevents the adhesion and transmigration of both TEMRA and EM CD8+ T cells, targeting VLA-4 or LFA-1 (integrins involved in T cell migration) specifically inhibited the migration of TEMRA CD8+ T cells from kidney transplant recipients. CONCLUSIONS Our findings highlight the active role of TEMRA CD8+ T cells in humoral transplant rejection and suggest that kidney transplant recipients may benefit from therapeutics targeting these cells.
Collapse
Affiliation(s)
- Tra-My Doan Ngoc
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Gaëlle Tilly
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Richard Danger
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Orianne Bonizec
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Christophe Masset
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Pierrick Guérif
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Sarah Bruneau
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Alexandre Glemain
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jean Harb
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Marion Cadoux
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Anaïs Vivet
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Hoa Le Mai
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Alexandra Garcia
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - David Laplaud
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Roland Liblau
- CNRS, Institut National de la Santé et de la Recherche Médicale, UPS, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| | - Magali Giral
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Stéphanie Blandin
- CHU Nantes, CNRS, Institut National de la Santé et de la Recherche Médicale, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
| | - Magalie Feyeux
- CHU Nantes, CNRS, Institut National de la Santé et de la Recherche Médicale, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
| | | | - Claire Pecqueur
- Université d’Angers, Institut National de la Santé et de la Recherche Médicale, CNRS, CRCI2NA, Nantes Université, Nantes, France
| | - Matthew Cyr
- IsoPlexis Corporation, Branford, Connecticut
| | - Weiming Ni
- IsoPlexis Corporation, Branford, Connecticut
| | - Sophie Brouard
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Nicolas Degauque
- Institut National de la Santé et de la Recherche Médicale, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
33
|
Matsuoka I, Yoshida K, Ito MA. Purinergic regulation of mast cell function: P2X4 receptor-mediated enhancement of allergic responses. J Pharmacol Sci 2022; 150:94-99. [PMID: 36055757 DOI: 10.1016/j.jphs.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022] Open
Abstract
Adenosine triphosphate (ATP) initially attracted attention as a neurotransmitter, with much research conducted on the regulation of neurotransmission in the autonomic and central nervous systems. ATP is also abundant as an energy currency in all living cells and is released into extracellular spaces by various regulated mechanisms. The role of ATP and related purine and pyrimidine nucleotides as extracellular signaling molecules in the regulation of immune cell functions has been reported as evidence for purinergic signaling and has become the focus of attention as therapeutic targets for various diseases. Mast cells (MCs) are distributed in tissues in contact with the outside environment and are the first immune cells to respond to non-microbial environmental antigens. Although extracellular ATP is known as an activator of MCs, the details remain to be investigated. Based on our series of studies, this review describes the unique features of ionotropic P2X4 receptor signals in MC functions. The role of purinergic signaling may exist in combination with various physiological, chemical and physical stimuli. The characteristics of P2X4 receptor-mediated action in MCs described in this article may provide clues to reveal the previously unknown effects induced by purinergic signaling.
Collapse
Affiliation(s)
- Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| |
Collapse
|
34
|
Ping Y, Shen C, Huang B, Zhang Y. Reprogramming T-Cell Metabolism for Better Anti-Tumor Immunity. Cells 2022; 11:3103. [PMID: 36231064 PMCID: PMC9562038 DOI: 10.3390/cells11193103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
T cells play central roles in the anti-tumor immunity, whose activation and differentiation are profoundly regulated by intrinsic metabolic reprogramming. Emerging evidence has revealed that metabolic processes of T cells are generally altered by tumor cells or tumor released factors, leading to crippled anti-tumor immunity. Therefore, better understanding of T cell metabolic mechanism is crucial in developing the next generation of T cell-based anti-tumor immunotherapeutics. In this review, we discuss how metabolic pathways affect T cells to exert their anti-tumor effects and how to remodel the metabolic programs to improve T cell-mediated anti-tumor immune responses. We emphasize that glycolysis, carboxylic acid cycle, fatty acid oxidation, cholesterol metabolism, amino acid metabolism, and nucleotide metabolism work together to tune tumor-reactive T-cell activation and proliferation.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunyi Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100005, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
35
|
P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules 2022; 12:biom12070983. [PMID: 35883539 PMCID: PMC9313346 DOI: 10.3390/biom12070983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular ATP (eATP) and P2 receptors are novel emerging regulators of T-lymphocyte responses. Cellular ATP is released via multiple pathways and accumulates at sites of tissue damage and inflammation. P2 receptor expression and function are affected by numerous single nucleotide polymorphisms (SNPs) associated with diverse disease conditions. Stimulation by released nucleotides (purinergic signalling) modulates several T-lymphocyte functions, among which energy metabolism. Energy metabolism, whether oxidative or glycolytic, in turn deeply affects T-cell activation, differentiation and effector responses. Specific P2R subtypes, among which the P2X7 receptor (P2X7R), are either up- or down-regulated during T-cell activation and differentiation; thus, they can be considered indexes of activation/quiescence, reporters of T-cell metabolic status and, in principle, markers of immune-mediated disease conditions.
Collapse
|
36
|
Fang F, Cao W, Mu Y, Okuyama H, Li L, Qiu J, Weyand CM, Goronzy JJ. IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight 2022; 7:e157509. [PMID: 35730568 PMCID: PMC9309057 DOI: 10.1172/jci.insight.157509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The ectonucleotidase CD39 functions as a checkpoint in purinergic signaling on effector T cells. By depleting eATP and initiating the generation of adenosine, it impairs memory cell development and contributes to T cell exhaustion, thereby causing defective tumor immunity and deficient T cell responses in older adults who have increased CD39 expression. Tuning enzymatic activity of CD39 and targeting the transcriptional regulation of ENTPD1 can be used to modulate purinergic signaling. Here, we describe that STAT6 phosphorylation downstream of IL-4 signaling represses CD39 expression on activated T cells by inducing a transcription factor network including GATA3, GFI1, and YY1. GATA3 suppresses ENTPD1 transcription through prevention of RUNX3 recruitment to the ENTPD1 promoter. Conversely, pharmacological STAT6 inhibition decreases T cell effector functions via increased CD39 expression, resulting in the defective signaling of P2X receptors by ATP and stimulation of A2A receptors by adenosine. Our studies suggest that inhibiting the STAT6 pathway to increase CD39 expression has the potential to treat autoimmune disease while stimulation of the pathway could improve T cell immunity.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Hirohisa Okuyama
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Jingtao Qiu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
37
|
Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration? Cells 2022; 11:cells11111854. [PMID: 35681548 PMCID: PMC9180731 DOI: 10.3390/cells11111854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CAR) has demonstrated striking efficacy for the treatment of several hematological malignancies, including B-cell lymphoma, leukemia, and multiple myeloma. However, many patients still do not respond to this therapy or eventually relapse after an initial remission. In most solid tumors for which CAR T-cell therapy has been tested, efficacy has been very limited. In this context, it is of paramount importance to understand the mechanisms of tumor resistance to CAR T cells. Possible factors contributing to such resistance have been identified, including inherent CAR T-cell dysfunction, the presence of an immunosuppressive tumor microenvironment, and tumor-intrinsic factors. To control tumor growth, CAR T cells have to migrate actively enabling a productive conjugate with their targets. To date, many cells and factors contained within the tumor microenvironment have been reported to negatively control the migration of T cells and their ability to reach cancer cells. Recent evidence suggests that additional determinants, such as immune checkpoint proteins, cellular metabolism, and adhesion molecules, may modulate the motility of CAR T cells in tumors. Here, we review the potential impact of these determinants on CAR T-cell motility, and we discuss possible strategies to restore intratumoral T-cell migration with a special emphasis on approaches targeting these determinants.
Collapse
|
38
|
Sophocleous RA, Ooi L, Sluyter R. The P2X4 Receptor: Cellular and Molecular Characteristics of a Promising Neuroinflammatory Target. Int J Mol Sci 2022; 23:ijms23105739. [PMID: 35628550 PMCID: PMC9147237 DOI: 10.3390/ijms23105739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine 5′-triphosphate-gated P2X4 receptor channel is a promising target in neuroinflammatory disorders, but the ability to effectively target these receptors in models of neuroinflammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their cell signalling mechanisms in human physiology and pathophysiology still requires further elucidation. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation, and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4 receptors in neuroinflammation and other disease settings. Here we provide an overview of the current understanding of the P2X4 receptor, including its expression and function in cells involved in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of neuroinflammatory cell signalling and disease.
Collapse
Affiliation(s)
- Reece Andrew Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +612-4221-5508
| |
Collapse
|
39
|
Lv G, Wang H, Zhou X, Lian S, Wang J, Wu R. Effects of Hormone, NEFA and SCFA on the Migration of Neutrophils and the Formation of Neutrophil Extracellular Traps in Dairy Cows. Animals (Basel) 2022; 12:ani12091190. [PMID: 35565616 PMCID: PMC9103860 DOI: 10.3390/ani12091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Perinatal dairy cows face the challenge of maintaining the resilience of defense against invading pathogens. During the perinatal period, hormonal or metabolic changes cause the decline of immune function of dairy cows and further lead to varying degrees of immunosuppression. The results of this study indicate that, hormones, nonesterified fatty acids (NEFAs) and short-chain fatty acids (SCFAs) can regulate neutrophil migration and the NETs formation of dairy cows in vitro. These results help to further explain the effects of changes in hormone secretion and metabolites on immunosuppression and the increased risk of disease in perinatal dairy cows. Abstract Polymorphonuclear neutrophils (PMN) are the first line of defense against the invasion of foreign pathogenic microorganisms and play an essential role in the immune system of dairy cows. The changes in hormone secretion and metabolites of dairy cows during the perinatal period are the key factors that cause immunosuppression and increased risk of diseases. However, the effects of the hormone, nonesterified fatty acid (NEFA), and short-chain fatty acid (SCFA) on the transmammary epithelial migration of dairy cows and the formation of neutrophil extracellular traps (NETs) have rarely been studied. This study explored the effects of hormones, NEFAs and SCFAs on the neutrophil migration and NETs formation of dairy cows in vitro. It was found that P4 and Ac can regulate the transepithelial migration of PMN; SA and Pr can regulate the formation of NETs; E2, OA and Bt can regulate PMN transepithelial migration and NET formation. These results help to further explain the effects of changes in hormone secretion and metabolites on immunosuppression and the increased risk of disease in perinatal dairy cows.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Xiechen Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- Correspondence: ; Tel.: +86-459-6819188
| |
Collapse
|
40
|
Hamoudi C, Zhao C, Abderrazak A, Salem M, Fortin PR, Sévigny J, Aoudjit F. The Purinergic Receptor P2X4 Promotes Th17 Activation and the Development of Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1115-1127. [PMID: 35165166 DOI: 10.4049/jimmunol.2100550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/28/2021] [Indexed: 01/24/2023]
Abstract
Purinergic signaling plays a major role in T cell activation leading to IL-2 production and proliferation. However, it is unclear whether purinergic signaling contributes to the differentiation and activation of effector T cells. In this study, we found that the purinergic receptor P2X4 was associated with human Th17 cells but not with Th1 cells. Inhibition of P2X4 receptor with the specific antagonist 5-BDBD and small interfering RNA inhibited the development of Th17 cells and the production of IL-17 by effector Th17 cells stimulated via the CD3/CD28 pathway. Our results showed that P2X4 was required for the expression of retinoic acid-related orphan receptor C, which is the master regulator of Th17 cells. In contrast, inhibition of P2X4 receptor had no effect on Th1 cells and on the production of IFN-γ and it did not affect the expression of the transcription factor T-bet (T-box transcription factor). Furthermore, inhibition of P2X4 receptor reduced the production of IL-17 but not of IFN-γ by effector/memory CD4+ T cells isolated from patients with rheumatoid arthritis. In contrast to P2X4, inhibition of P2X7 and P2Y11 receptors had no effects on Th17 and Th1 cell activation. Finally, treatment with the P2X4 receptor antagonist 5-BDBD reduced the severity of collagen-induced arthritis in mice by inhibiting Th17 cell expansion and activation. Our findings provide novel insights into the role of purinergic signaling in T cell activation and identify a critical role for the purinergic receptor P2X4 in Th17 activation and in autoimmune arthritis.
Collapse
Affiliation(s)
- Chakib Hamoudi
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Chenqi Zhao
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Amna Abderrazak
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Mabrouka Salem
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Paul R Fortin
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Jean Sévigny
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada; .,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
41
|
Harcha PA, López-López T, Palacios AG, Sáez PJ. Pannexin Channel Regulation of Cell Migration: Focus on Immune Cells. Front Immunol 2022; 12:750480. [PMID: 34975840 PMCID: PMC8716617 DOI: 10.3389/fimmu.2021.750480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of Pannexin (PANX) channels during collective and single cell migration is increasingly recognized. Amongst many functions that are relevant to cell migration, here we focus on the role of PANX-mediated adenine nucleotide release and associated autocrine and paracrine signaling. We also summarize the contribution of PANXs with the cytoskeleton, which is also key regulator of cell migration. PANXs, as mechanosensitive ATP releasing channels, provide a unique link between cell migration and purinergic communication. The functional association with several purinergic receptors, together with a plethora of signals that modulate their opening, allows PANX channels to integrate physical and chemical cues during inflammation. Ubiquitously expressed in almost all immune cells, PANX1 opening has been reported in different immunological contexts. Immune activation is the epitome coordination between cell communication and migration, as leukocytes (i.e., T cells, dendritic cells) exchange information while migrating towards the injury site. In the current review, we summarized the contribution of PANX channels during immune cell migration and recruitment; although we also compile the available evidence for non-immune cells (including fibroblasts, keratinocytes, astrocytes, and cancer cells). Finally, we discuss the current evidence of PANX1 and PANX3 channels as a both positive and/or negative regulator in different inflammatory conditions, proposing a general mechanism of these channels contribution during cell migration.
Collapse
Affiliation(s)
- Paloma A Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Schmiedel BJ, Gonzalez-Colin C, Fajardo V, Rocha J, Madrigal A, Ramírez-Suástegui C, Bhattacharyya S, Simon H, Greenbaum JA, Peters B, Seumois G, Ay F, Chandra V, Vijayanand P. Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type-dependent effects of disease-risk variants. Sci Immunol 2022; 7:eabm2508. [PMID: 35213211 PMCID: PMC9035271 DOI: 10.1126/sciimmunol.abm2508] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The impact of genetic variants on cells challenged in biologically relevant contexts has not been fully explored. Here, we activated CD4+ T cells from 89 healthy donors and performed a single-cell RNA sequencing assay with >1 million cells to examine cell type-specific and activation-dependent effects of genetic variants. Single-cell expression quantitative trait loci (sc-eQTL) analysis of 19 distinct CD4+ T cell subsets showed that the expression of over 4000 genes is significantly associated with common genetic polymorphisms and that most of these genes show their most prominent effects in specific cell types. These genes included many that encode for molecules important for activation, differentiation, and effector functions of T cells. We also found new gene associations for disease-risk variants identified from genome-wide association studies and highlighted the cell types in which their effects are most prominent. We found that biological sex has a major influence on activation-dependent gene expression in CD4+ T cell subsets. Sex-biased transcripts were significantly enriched in several pathways that are essential for the initiation and execution of effector functions by CD4+ T cells like TCR signaling, cytokines, cytokine receptors, costimulatory, apoptosis, and cell-cell adhesion pathways. Overall, this DICE (Database of Immune Cell Expression, eQTLs, and Epigenomics) subproject highlights the power of sc-eQTL studies for simultaneously exploring the activation and cell type-dependent effects of common genetic variants on gene expression (https://dice-database.org).
Collapse
Affiliation(s)
| | - Cristian Gonzalez-Colin
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | | | - Job Rocha
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | | | | | | | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Vivek Chandra
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
43
|
Kobayashi D, Sugiura Y, Umemoto E, Takeda A, Ueta H, Hayasaka H, Matsuzaki S, Katakai T, Suematsu M, Hamachi I, Yegutkin GG, Salmi M, Jalkanen S, Miyasaka M. Extracellular ATP Limits Homeostatic T Cell Migration Within Lymph Nodes. Front Immunol 2022; 12:786595. [PMID: 35003105 PMCID: PMC8728011 DOI: 10.3389/fimmu.2021.786595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Whereas adenosine 5'-triphosphate (ATP) is the major energy source in cells, extracellular ATP (eATP) released from activated/damaged cells is widely thought to represent a potent damage-associated molecular pattern that promotes inflammatory responses. Here, we provide suggestive evidence that eATP is constitutively produced in the uninflamed lymph node (LN) paracortex by naïve T cells responding to C-C chemokine receptor type 7 (CCR7) ligand chemokines. Consistently, eATP was markedly reduced in naïve T cell-depleted LNs, including those of nude mice, CCR7-deficient mice, and mice subjected to the interruption of the afferent lymphatics in local LNs. Stimulation with a CCR7 ligand chemokine, CCL19, induced ATP release from LN cells, which inhibited CCR7-dependent lymphocyte migration in vitro by a mechanism dependent on the purinoreceptor P2X7 (P2X7R), and P2X7R inhibition enhanced T cell retention in LNs in vivo. These results collectively indicate that paracortical eATP is produced by naïve T cells in response to constitutively expressed chemokines, and that eATP negatively regulates CCR7-mediated lymphocyte migration within LNs via a specific subtype of ATP receptor, demonstrating its fine-tuning role in homeostatic cell migration within LNs.
Collapse
Affiliation(s)
- Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Umemoto
- Laboratory of Microbiology and Immunology, University of Shizuoka, Shizuoka, Japan
| | - Akira Takeda
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Hisashi Ueta
- Department of Anatomy, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Haruko Hayasaka
- Laboratory of Immune Molecular Function, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan.,Department of Radiological Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Masayuki Miyasaka
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan.,World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
44
|
Optimized HPLC method to elucidate the complex purinergic signaling dynamics that regulate ATP, ADP, AMP, and adenosine levels in human blood. Purinergic Signal 2022; 18:223-239. [DOI: 10.1007/s11302-022-09842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022] Open
|
45
|
Brock VJ, Wolf IMA, Er-Lukowiak M, Lory N, Stähler T, Woelk LM, Mittrücker HW, Müller CE, Koch-Nolte F, Rissiek B, Werner R, Guse AH, Diercks BP. P2X4 and P2X7 are essential players in basal T cell activity and Ca 2+ signaling milliseconds after T cell activation. SCIENCE ADVANCES 2022; 8:eabl9770. [PMID: 35119925 PMCID: PMC8816335 DOI: 10.1126/sciadv.abl9770] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/14/2021] [Indexed: 05/20/2023]
Abstract
Initial T cell activation is triggered by the formation of highly dynamic, spatiotemporally restricted Ca2+ microdomains. Purinergic signaling is known to be involved in Ca2+ influx in T cells at later stages compared to the initial microdomain formation. Using a high-resolution Ca2+ live-cell imaging system, we show that the two purinergic cation channels P2X4 and P2X7 not only are involved in the global Ca2+ signals but also promote initial Ca2+ microdomains tens of milliseconds after T cell stimulation. These Ca2+ microdomains were significantly decreased in T cells from P2rx4-/- and P2rx7-/- mice or by pharmacological inhibition or blocking. Furthermore, we show a pannexin-1-dependent activation of P2X4 in the absence of T cell receptor/CD3 stimulation. Subsequently, upon T cell receptor/CD3 stimulation, ATP release is increased and autocrine activation of both P2X4 and P2X7 then amplifies initial Ca2+ microdomains already in the first second of T cell activation.
Collapse
Affiliation(s)
- Valerie J. Brock
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Insa M. A. Wolf
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Er-Lukowiak
- Department of Neurology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Niels Lory
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Tobias Stähler
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Lena-Marie Woelk
- Department of Computational Neuroscience, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Andreas H. Guse
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Björn-Philipp Diercks
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Corresponding author.
| |
Collapse
|
46
|
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 2022; 55:14-30. [PMID: 35021054 PMCID: PMC8842882 DOI: 10.1016/j.immuni.2021.12.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Adaptive immune responses mediated by T cells and B cells are crucial for protective immunity against pathogens and tumors. Differentiation and function of immune cells require dynamic reprogramming of cellular metabolism. Metabolic inputs, pathways, and enzymes display remarkable flexibility and heterogeneity, especially in vivo. How metabolic plasticity and adaptation dictate functional specialization of immune cells is fundamental to our understanding and therapeutic modulation of the immune system. Extensive progress has been made in characterizing the effects of metabolic networks on immune cell fate and function in discrete microenvironments or immunological contexts. In this review, we summarize how rewiring of cellular metabolism determines the outcome of adaptive immunity in vivo, with a focus on how metabolites, nutrients, and driver genes in immunometabolism instruct cellular programming and immune responses during infection, inflammation, and cancer in mice and humans. Understanding context-dependent metabolic remodeling will manifest legitimate opportunities for therapeutic intervention of human disease.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
47
|
Di Virgilio F, Falzoni S, Sarti AC, Chiozzi P, Vultaggio-Poma V, Giuliani AL. Modulation of Cell Energy Metabolism by the P2X7 Receptor. Methods Mol Biol 2022; 2510:53-63. [PMID: 35776319 DOI: 10.1007/978-1-0716-2384-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For many years the P2X7 receptor (P2X7R) was considered the prototypic cytolytic receptor due to its ability to cause dramatic changes in plasma membrane permeability, eventually leading to cell death. However, later studies revealed that controlled P2X7R activation has beneficial effects on cell metabolism and nowadays our perception of the physiological role of this receptor has radically changed. Some of the biochemical pathways underlying the trophic effect of the P2X7R are being unveiled, thus disclosing an unanticipated role of P2X7Rs in mitochondrial and glycolytic metabolism. We provide here an update of the effects of the P2X7R on cell energy metabolism.
Collapse
Affiliation(s)
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Chiozzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
48
|
Luu R, Valdebenito S, Scemes E, Cibelli A, Spray DC, Rovegno M, Tichauer J, Cottignies-Calamarte A, Rosenberg A, Capron C, Belouzard S, Dubuisson J, Annane D, de la Grandmaison GL, Cramer-Bordé E, Bomsel M, Eugenin E. Pannexin-1 channel opening is critical for COVID-19 pathogenesis. iScience 2021; 24:103478. [PMID: 34841222 PMCID: PMC8603863 DOI: 10.1016/j.isci.2021.103478] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID -19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE2, and IL-1β release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE2, and IL-1β levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.
Collapse
Affiliation(s)
- Ross Luu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| | - Eliana Scemes
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Antonio Cibelli
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Cottignies-Calamarte
- Hôpital Cochin, Service de Virologie, Hôpital Cochin (AP-HP), Paris, France.,Service d'Hématologie Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France
| | - Arielle Rosenberg
- Hôpital Cochin, Service de Virologie, Hôpital Cochin (AP-HP), Paris, France.,Service d'Hématologie Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France.,Virologie Moléculaire et Cellulaire des Coronavirus, Centre d'infection et d'immunité de Lille, Institut Pasteur de Lille, Université de Lille, CNRS, Inserm, CHRU, 59000 Lille, France
| | - Calude Capron
- Service des Maladies Infectieuses, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | | | - Jean Dubuisson
- Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), Paris, France
| | - Djillali Annane
- Simone Veil School of Medicine, Université of Versailles, Versailles, France.,University Paris Saclay, Garches, France
| | - Geoffroy Lorin de la Grandmaison
- Department of Forensic Medicine and Pathology, Versailles Saint-Quentin Université, AP-HP, Raymond Poincaré Hospital, Garches, France
| | | | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France.,INSERM U1016, Paris, France
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| |
Collapse
|
49
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
50
|
Tran DT, Sundararaj K, Atkinson C, Nadig SN. T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation 2021; 105:e191-e201. [PMID: 33795597 PMCID: PMC8464628 DOI: 10.1097/tp.0000000000003767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although solid-organ transplantation has evolved steadily with many breakthroughs in the past 110 y, many problems remain to be addressed, and advanced therapeutic strategies need to be considered. T-cell immunometabolism is a rapidly advancing field that has gathered much attention recently, providing ample mechanistic insight from which many novel therapeutic approaches have been developed. Applications from the field include antitumor and antimicrobial therapies, as well as for reversing graft-versus-host disease and autoimmune diseases. However, the immunometabolism of T cells remains underexplored in solid-organ transplantation. In this review, we will highlight key findings from hallmark studies centered around various metabolic modes preferred by different T-cell subtypes (categorized into naive, effector, regulatory, and memory T cells), including glycolysis, glutaminolysis, oxidative phosphorylation, fatty acid synthesis, and oxidation. This review will discuss the underlying cellular signaling components that affect these processes, including the transcription factors myelocytomatosis oncogene, hypoxia-inducible factor 1-alpha, estrogen-related receptor alpha, and sterol regulatory element-binding proteins, along with the mechanistic target of rapamycin and adenosine monophosphate-activated protein kinase signaling. We will also explore potential therapeutic strategies targeting these pathways, as applied to the potential for tolerance induction in solid-organ transplantation.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
| | - Kamala Sundararaj
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Satish N. Nadig
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|