1
|
Yang Y, Li J, Tang J, Wang B, Wang J, Xu X, Lei W, Cheng Y, Liu L. CCL2-CCR2 axis in cardiovascular disease: research advances and challenges. Sci Bull (Beijing) 2025; 70:820-824. [PMID: 39827029 DOI: 10.1016/j.scib.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Affiliation(s)
- Yang Yang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| | - Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Bo Wang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, Xi'an 710032, China
| | - Jing Wang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, Xi'an 710032, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Ying Cheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Liwen Liu
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Airforce Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Ye W, Liao Y, Liu X, Wang Y, Li T, Zhao Y, He Z, Chen J, Yin M, Sheng Y, Du Y, Ji Y, He H. Dectin-2 depletion alleviates osteoclast-induced bone loss in periodontitis via Syk/NOX2/ROS signaling. Free Radic Biol Med 2025; 229:13-29. [PMID: 39800085 DOI: 10.1016/j.freeradbiomed.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Periodontitis is the sixth most common disease worldwide and is closely associated with various systemic diseases, impacting overall health. It is characterized by the over-differentiation and activity of osteoclasts, leading to increased bone resorption and subsequent bone loss. Current treatments for bone loss are not ideal, highlighting the need for new targeted therapeutic strategies. Dectin-2, a member of the C-type lectin receptor (CLR) family, has recently been reported to play an important role in immune regulation, but its role in osteoclastogenesis has not been documented. This study identified a significant upregulation of Dectin-2 expression during osteoclast differentiation through single-cell sequencing and transcriptomic analysis. Knocking down Dectin-2 significantly inhibits the differentiation of RAW264.7 cells and bone marrow-derived macrophages (BMDMs) into osteoclasts, while overexpressing Dectin-2 enhances osteoclast differentiation and function. Mechanistically, transcriptomic analysis indicates that Dectin-2 deficiency disrupts redox homeostasis and affects the MAPK signaling pathway. Furthermore, the study demonstrates that Dectin-2 promotes osteoclastogenesis via the Syk/NOX2/ROS/MAPK signaling axis. In vivo, Dectin-2 knockout mice show reduced osteoclast numbers and decreased alveolar bone resorption in a periodontitis model. In conclusion, these findings suggest that Dectin-2 is a key regulatory factor in osteoclast-mediated bone resorption and may serve as a promising therapeutic target for bone diseases characterized by osteoclast overactivity, such as periodontitis.
Collapse
Affiliation(s)
- Wengwanyue Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yuting Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Zhenru He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Mengjie Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yue Sheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
3
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Yang YH, Xie KF, Yang S, Wang H, Ma HH, Zhou M, Wang ZW, Gu Y, Jia XM. BLNK negatively regulates innate antifungal immunity through inhibiting c-Cbl-mediated macrophage migration. Proc Natl Acad Sci U S A 2024; 121:e2400920121. [PMID: 39413134 PMCID: PMC11513953 DOI: 10.1073/pnas.2400920121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
B cell linker protein (BLNK) is crucial for orchestrating B cell receptor-associated spleen tyrosine kinase (Syk) signaling. However, the role of BLNK in Syk-coupled C-type lectin receptor (CLR) signaling in macrophages remains unclear. Here, we delineate that CLRs govern the Syk-mediated activation of BLNK, thereby impeding macrophage migration by disrupting podosome ring formation upon stimulation with fungal β-glucans or α-mannans. Mechanistically, BLNK instigates its association with casitas B-lineage lymphoma (c-Cbl), competitively impeding the interaction between c-Cbl and Src-family kinase Fyn. This interference disrupts Fyn-mediated phosphorylation of c-Cbl and subsequent c-Cbl-associated F-actin assembly. Consequently, BLNK deficiency intensifies CLR-mediated recruitment of the c-Cbl/phosphatidylinositol 3-kinase complex to the F-actin cytoskeleton, thereby enhancing macrophage migration. Notably, mice with monocyte-specific BLNK deficiency exhibit heightened resistance to infection with Candida albicans, a prominent human fungal pathogen. This resistance is attributed to the increased infiltration of Ly6C+ macrophages into renal tissue. These findings unveil a previously unrecognized role of BLNK for the negative regulation of macrophage migration through inhibiting CLR-mediated podosome ring formation during fungal infections.
Collapse
Affiliation(s)
- Yi-Heng Yang
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Ke-Fang Xie
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Shuai Yang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Hui-Hui Ma
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Min Zhou
- Department of Periodontology, Stemmatological Hospital, Tongji University, Shanghai200072, China
| | - Zhong-Wei Wang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Yebo Gu
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| |
Collapse
|
5
|
Motoji Y, Fukazawa R, Matsui R, Watanabe M, Hashimoto Y, Nagi‐Miura N, Kitamura T, Miyaji K. Statin suppresses the development of excessive intimal proliferation in a Kawasaki disease mouse model. Physiol Rep 2024; 12:e70096. [PMID: 39424429 PMCID: PMC11489001 DOI: 10.14814/phy2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Kawasaki disease (KD) causes vascular injury and lifelong remodeling. Excessive intimal proliferation has been observed, resulting in coronary artery lesions (CALs). However, the mechanisms underlying vascular remodeling in CAL and statin treatment have not been comprehensively elucidated. This study aimed to investigate the effects of statins on vascular remodeling using a KD mouse model. Candida albicans water-soluble substance (CAWS) was intraperitoneally injected in 5-week-old male apolipoprotein-E-deficient mice. They were categorized as follows (n = 4): control, CAWS, CAWS+statin, and late-statin groups. The mice were euthanized at 6 or 10 weeks after injection. Statins (atorvastatin) were initiated after CAWS injection, except for the late-statin group, for which statins were internally administered 6 weeks after injection. Elastica van Gieson staining and immunostaining were performed for evaluation. Statins substantially suppressed the marked neointimal hyperplasia induced by CAWS. Additionally, CAWS induced TGFβ receptor II and MAC-2 expression around the coronary arteries, which was suppressed by the statins. KD-like vasculitis might promote the formation of aneurysm by destroying elastic laminae and inducing vascular stenosis by neointimal proliferation. The anti-inflammatory effects of statins might inhibit neointimal proliferation. Therefore, statin therapy might be effective in adult patients with KD with CAL by inhibiting vascular remodeling.
Collapse
Affiliation(s)
- Yusuke Motoji
- Department of Cardiovascular SurgeryKitasato University School of MedicineTokyoJapan
| | | | | | | | | | - Noriko Nagi‐Miura
- Laboratory for Immunopharmacology of Microbial ProductsTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Tadashi Kitamura
- Department of Cardiovascular SurgeryKitasato University School of MedicineTokyoJapan
| | - Kagami Miyaji
- Department of Cardiovascular SurgeryKitasato University School of MedicineTokyoJapan
| |
Collapse
|
6
|
Asakawa N, Oharaseki T, Yokouchi Y, Miura N, Ohno N, Takahashi K. A pathological study on the efficacy of Syk inhibitors in a Candida albicans-induced aortic root vasculitis murine model. Cardiovasc Pathol 2024; 72:107669. [PMID: 38866089 DOI: 10.1016/j.carpath.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The activation of innate immunity may be involved in the development of Candida albicans-induced murine vasculitis, which resembles Kawasaki disease (KD) vasculitis. This study aimed to histologically clarify the time course of the development of vasculitis in this model in detail and to estimate the potential role of spleen tyrosine kinase (Syk) inhibitors in KD vasculitis. METHODS AND RESULTS DBA/2 male mice were intraperitoneally injected with a vasculitis-inducing substance and treated with a Syk inhibitor (R788 or GS-9973). Systemic vasculitis, especially in the aortic annulus area, was histologically evaluated. Regarding lesions in the aortic annulus area, some mice in the untreated control group already showed initiation of vasculitis 1 day after the final injection of a vasculitis-inducing substance. The vasculitis expanded over time. Inflammation occurred more frequently at the aortic root than at the coronary artery. The distribution of inflammatory cells was limited to the intima, intima plus adventitia, or all layers. In the Syk inhibitor-treated groups, only one mouse had vasculitis at all observation periods. The severity and area of the vasculitis were reduced by both Syk inhibitors. CONCLUSION Candida albicans-induced murine vasculitis may occur within 1 day after the injection of a vasculitis-inducing substance. Additionally, Syk inhibitors suppress murine vasculitis.
Collapse
Affiliation(s)
- Nanae Asakawa
- Department of Surgical Pathology (Ohashi), Toho University Graduate School of Medicine, 2-22-36, Ohashi, Meguro, Tokyo 153-8515, Japan.
| | - Toshiaki Oharaseki
- Department of Surgical Pathology (Ohashi), Toho University Graduate School of Medicine, 2-22-36, Ohashi, Meguro, Tokyo 153-8515, Japan
| | - Yuki Yokouchi
- Department of Surgical Pathology (Ohashi), Toho University Graduate School of Medicine, 2-22-36, Ohashi, Meguro, Tokyo 153-8515, Japan
| | - Noriko Miura
- Center for the Advance of Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Naohito Ohno
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Kei Takahashi
- Department of Surgical Pathology (Ohashi), Toho University Graduate School of Medicine, 2-22-36, Ohashi, Meguro, Tokyo 153-8515, Japan
| |
Collapse
|
7
|
Yang YL, Li XW, Chen HB, Tang QD, Li YH, Xu JY, Xie JJ. Single-cell transcriptomics reveals writers of RNA modification-mediated immune microenvironment and cardiac resident Macro-MYL2 macrophages in heart failure. BMC Cardiovasc Disord 2024; 24:432. [PMID: 39152369 PMCID: PMC11328403 DOI: 10.1186/s12872-024-04080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Heart failure (HF), which is caused by cardiac overload and injury, is linked to significant mortality. Writers of RNA modification (WRMs) play a crucial role in the regulation of epigenetic processes involved in immune response and cardiovascular disease. However, the potential roles of these writers in the immunological milieu of HF remain unknown. METHODS We comprehensively characterized the expressions of 28 WRMs using datasets GSE145154 and GSE141910 to map the cardiac immunological microenvironment in HF patients. Based on the expression of WRMs, the immunological cells in the datasets were scored. RESULTS Single-cell transcriptomics analysis (GSE145154) revealed immunological dysregulation in HF as well as differential expression of WRMs in immunological cells from HF and non-HF (NHF) samples. WRM-scored immunological cells were positively correlated with the immunological response, and the high WRM score group exhibited elevated immunological cell infiltration. WRMs are involved in the differentiation of T cells and myeloid cells. WRM scores of T cell and myeloid cell subtypes were significantly reduced in the HF group compared to the NHF group. We identified a myogenesis-related resident macrophage population in the heart, Macro-MYL2, that was characterized by an increased expression of cardiomyocyte structural genes (MYL2, TNNI3, TNNC1, TCAP, and TNNT2) and was regulated by TRMT10C. Based on the WRM expression pattern, the transcriptomics data (GSE141910) identified two distinct clusters of HF samples, each with distinct functional enrichments and immunological characteristics. CONCLUSION Our study demonstrated a significant relationship between the WRMs and immunological microenvironment in HF, as well as a novel resident macrophage population, Macro-MYL2, characterized by myogenesis. These results provide a novel perspective on the underlying mechanisms and therapeutic targets for HF. Further experiments are required to validate the regulation of WRMs and Macro-MYL2 macrophage subtype in the cardiac immunological milieu.
Collapse
Affiliation(s)
- Yao-Lin Yang
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Xiao-Wei Li
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Hai-Bin Chen
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Qi-Dong Tang
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Yu-Hui Li
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Ji-Ying Xu
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China
| | - Jia-Jia Xie
- First Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospi-tal of Jinan University, NO. 466, Xingang Middle Road, Haizhu District, Guangzhou City, China.
| |
Collapse
|
8
|
Brundage J, Barrios JP, Tison GH, Pirruccello JP. Genetics of Cardiac Aging Implicate Organ-Specific Variation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24310874. [PMID: 39148824 PMCID: PMC11326326 DOI: 10.1101/2024.08.02.24310874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Heart structure and function change with age, and the notion that the heart may age faster for some individuals than for others has driven interest in estimating cardiac age acceleration. However, current approaches have limited feature richness (heart measurements; radiomics) or capture extraneous data and therefore lack cardiac specificity (deep learning [DL] on unmasked chest MRI). These technical limitations have been a barrier to efforts to understand genetic contributions to age acceleration. We hypothesized that a video-based DL model provided with heart-masked MRI data would capture a rich yet cardiac-specific representation of cardiac aging. In 61,691 UK Biobank participants, we excluded noncardiac pixels from cardiac MRI and trained a video-based DL model to predict age from one cardiac cycle in the 4-chamber view. We then computed cardiac age acceleration as the bias-corrected prediction of heart age minus the calendar age. Predicted heart age explained 71.1% of variance in calendar age, with a mean absolute error of 3.3 years. Cardiac age acceleration was linked to unfavorable cardiac geometry and systolic and diastolic dysfunction. We also observed links between cardiac age acceleration and diet, decreased physical activity, increased alcohol and tobacco use, and altered levels of 239 serum proteins, as well as adverse brain MRI characteristics. We found cardiac age acceleration to be heritable (h2g 26.6%); a genome-wide association study identified 8 loci related to linked to cardiomyopathy (near TTN, TNS1, LSM3, PALLD, DSP, PLEC, ANKRD1 and MYO18B) and an additional 16 loci (near MECOM, NPR3, KLHL3, HDGFL1, CDKN1A, ELN, SLC25A37, PI15, AP3M1, HMGA2, ADPRHL1, PGAP3, WNT9B, UHRF1 and DOK5). Of the discovered loci, 21 were not previously associated with cardiac age acceleration. Mendelian randomization revealed that lower genetically mediated levels of 6 circulating proteins (MSRA most strongly), as well as greater levels of 5 proteins (LXN most strongly) were associated with cardiac age acceleration, as were greater blood pressure and Lp(a). A polygenic score for cardiac age acceleration predicted earlier onset of arrhythmia, heart failure, myocardial infarction, and mortality. These findings provide a thematic understanding of cardiac age acceleration and suggest that heart- and vascular-specific factors are key to cardiac age acceleration, predominating over a more global aging program.
Collapse
Affiliation(s)
- James Brundage
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Joshua P. Barrios
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Geoffrey H. Tison
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Center for Biosignal Research, University of California San Francisco, San Francisco, CA, USA
| | - James P. Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Genetics Center, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Center for Biosignal Research, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Goto H, Arima T, Takahashi A, Tobita Y, Nakano Y, Toda E, Shimizu A, Okamoto F. Trimebutine prevents corneal inflammation in a rat alkali burn model. Sci Rep 2024; 14:12111. [PMID: 38802470 PMCID: PMC11130283 DOI: 10.1038/s41598-024-61112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Alkaline burns to the cornea lead to loss of corneal transparency, which is essential for normal vision. We used a rat corneal alkaline burn model to investigate the effect of ophthalmic trimebutine solution on healing wounds caused by alkaline burns. Trimebutine, an inhibitor of the high-mobility group box 1-receptor for advanced glycation end products, when topically applied to the burned cornea, suppressed macrophage infiltration in the early phase and neutrophil infiltration in the late phase at the wound site. It also inhibited neovascularization and myofibroblast development in the late phase. Furthermore, trimebutine effectively inhibited interleukin-1β expression in the injured cornea. It reduced scar formation by decreasing the expression of type III collagen. These findings suggest that trimebutine may represent a novel therapeutic strategy for corneal wounds, not only through its anti-inflammatory effects but also by preventing neovascularization.
Collapse
Affiliation(s)
- Hitoshi Goto
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Takeshi Arima
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Akira Takahashi
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Yutaro Tobita
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Yuji Nakano
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
| | - Fumiki Okamoto
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
10
|
Dong Z, Hou L, Luo W, Pan LH, Li X, Tan HP, Wu RD, Lu H, Yao K, Mu MD, Gao CS, Weng XY, Ge JB. Myocardial infarction drives trained immunity of monocytes, accelerating atherosclerosis. Eur Heart J 2024; 45:669-684. [PMID: 38085922 DOI: 10.1093/eurheartj/ehad787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND AIMS Survivors of acute coronary syndromes face an elevated risk of recurrent atherosclerosis-related vascular events despite advanced medical treatments. The underlying causes remain unclear. This study aims to investigate whether myocardial infarction (MI)-induced trained immunity in monocytes could sustain proatherogenic traits and expedite atherosclerosis. METHODS Apolipoprotein-E deficient (ApoE-/-) mice and adoptive bone marrow transfer chimeric mice underwent MI or myocardial ischaemia-reperfusion (IR). A subsequent 12-week high-fat diet (HFD) regimen was implemented to elucidate the mechanism behind monocyte trained immunity. In addition, classical monocytes were analysed by flow cytometry in the blood of enrolled patients. RESULTS In MI and IR mice, blood monocytes and bone marrow-derived macrophages exhibited elevated spleen tyrosine kinase (SYK), lysine methyltransferase 5A (KMT5A), and CCHC-type zinc finger nucleic acid-binding protein (CNBP) expression upon exposure to a HFD or oxidized LDL (oxLDL) stimulation. MI-induced trained immunity was transmissible by transplantation of bone marrow to accelerate atherosclerosis in naive recipients. KMT5A specifically recruited monomethylation of Lys20 of histone H4 (H4K20me) to the gene body of SYK and synergistically transactivated SYK with CNBP. In vivo small interfering RNA (siRNA) inhibition of KMT5A or CNBP potentially slowed post-MI atherosclerosis. Sympathetic denervation with 6-hydroxydopamine reduced atherosclerosis and inflammation after MI. Classical monocytes from ST-elevation MI (STEMI) patients with advanced coronary lesions expressed higher SYK and KMT5A gene levels. CONCLUSIONS The findings underscore the crucial role of monocyte trained immunity in accelerated atherosclerosis after MI, implying that SYK in blood classical monocytes may serve as a predictive factor for the progression of atherosclerosis in STEMI patients.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lei Hou
- Institute of Cardiovascular Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, China
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li-Hong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hai-Peng Tan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Run-Da Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Man-Di Mu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen-Shan Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin-Yu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ohashi A, Murayama MA, Miyabe Y, Yudoh K, Miyabe C. Streptococcal infection and autoimmune diseases. Front Immunol 2024; 15:1361123. [PMID: 38464518 PMCID: PMC10920276 DOI: 10.3389/fimmu.2024.1361123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Excessive activation of immune cells by environmental factors, such as infection or individual genetic risk, causes various autoimmune diseases. Streptococcus species are gram-positive bacteria that colonize the nasopharynx, respiratory tract, gastrointestinal tract, genitourinary tract, and skin. Group A Streptococcus (GAS) species cause various symptoms, ranging from mild infections, such as tonsillitis and pharyngitis, to serious infections, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The contribution of GAS infections to several autoimmune diseases, including acute rheumatic fever, vasculitis, and neuropsychiatric disorders, has been studied. In this review, we focus on the association between streptococcal infections and autoimmune diseases, and discuss current research on the mechanisms underlying the initiation and progression of autoimmune diseases.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Department of Immunology and Parasitology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masanori A. Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Parasitology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuo Yudoh
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
12
|
Fujita M, Miyazawa T, Uchida K, Uchida N, Haji S, Yano S, Iwahashi N, Hatayama T, Katsuhara S, Nakamura S, Takeichi Y, Yokomoto-Umakoshi M, Miyachi Y, Sakamoto R, Iwakura Y, Ogawa Y. Dectin-2 Deficiency Promotes Proinflammatory Cytokine Release From Macrophages and Impairs Insulin Secretion. Endocrinology 2023; 165:bqad181. [PMID: 38038367 DOI: 10.1210/endocr/bqad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Pancreatic islet inflammation plays a crucial role in the etiology of type 2 diabetes (T2D). Macrophages residing in pancreatic islets have emerged as key players in islet inflammation. Macrophages express a plethora of innate immune receptors that bind to environmental and metabolic cues and integrate these signals to trigger an inflammatory response that contributes to the development of islet inflammation. One such receptor, Dectin-2, has been identified within pancreatic islets; however, its role in glucose metabolism remains largely unknown. Here we have demonstrated that mice lacking Dectin-2 exhibit local inflammation within islets, along with impaired insulin secretion and β-cell dysfunction. Our findings indicate that these effects are mediated by proinflammatory cytokines, such as interleukin (IL)-1α and IL-6, which are secreted by macrophages that have acquired an inflammatory phenotype because of the loss of Dectin-2. This study provides novel insights into the mechanisms underlying the role of Dectin-2 in the development of islet inflammation.
Collapse
Affiliation(s)
- Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Miyazawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiichiro Uchida
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shojiro Haji
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Seiichi Yano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomomi Hatayama
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shunsuke Katsuhara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shintaro Nakamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yukina Takeichi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasutaka Miyachi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
13
|
Miyata R, Miyabe C, Oki H, Motooka D, Nakamura S, Miyabe Y, Takenaka Y, Fukuya Y, Yudo K, Ishiguro N. Alteration of microbial composition in the skin and blood in vasculitis. Sci Rep 2023; 13:15317. [PMID: 37714908 PMCID: PMC10504252 DOI: 10.1038/s41598-023-42307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Vasculitis is a systemic autoimmune disease characterized by leukocyte infiltration into blood vessels. Various microorganisms have been associated with the pathogenesis of vasculitis; however, the causal microbial agents and underlying mechanisms are not fully understood, possibly because of the technical limitations of pathogen detection. In the present study, we characterized the microbiome profile of patients with cutaneous vasculitis using comprehensive metagenome shotgun sequencing. We found that the abundance of the SEN virus was increased in the affected skin and serum of patients with vasculitis compared to healthy donors. In particular, the abundance of SEN virus reads was increased in the sera of patients with cutaneous arteritis. Among the bacteria identified, Corynebacteriales was the most differentially associated with vasculitis. Linear discriminant analysis effect size also indicated differences in the microbial taxa between patients with vasculitis and healthy donors. These findings demonstrate that vasculitis is associated with considerable alteration of the microbiome in the blood and skin and suggest a role for the infectious trigger in vasculitis.
Collapse
Affiliation(s)
- Ryujin Miyata
- Division of Dermatology, Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Chie Miyabe
- Division of Dermatology, Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan.
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki City, Kanagawa, Japan.
| | - Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Osaka University Research Institute for Microbial Diseases, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Osaka University Research Institute for Microbial Diseases, Suita, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Osaka University Research Institute for Microbial Diseases, Suita, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Parasitology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuko Takenaka
- Division of Dermatology, Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuko Fukuya
- Division of Dermatology, Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki City, Kanagawa, Japan
| | - Naoko Ishiguro
- Division of Dermatology, Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Yang R, Deng F, Yang Y, Tian Q, Huangfu S, Yang L, Hou J, Yang G, Pang W, Lu J, Liu H, Chen Y, Gao J, Zhang L. Blue light promotes vitamin C-mediated ferroptosis of melanoma through specifically upregulating transporter SVCT2 and generating Fe 2. Biomaterials 2023; 299:122186. [PMID: 37276798 DOI: 10.1016/j.biomaterials.2023.122186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Vitamin C (VC)-based cancer therapy is a promising therapeutic approach for a variety of cancers due to its profound effects on redox reactions and metabolic pathways. However, high administration dosage of VC for necessary therapeutic efficacy for cancers increases the risk of overt side effects and limits its clinical use. Here, we show cutaneous blue light irradiation can specifically upregulate the sodium-dependent vitamin C transporter 2 (SVCT2) of the tumor and increase effectively the VC concentration at the tumor sites by an overall low dosage administration. In the mouse melanoma model, blue light stimulates the SVCT2 expression through the nuclear factor-kappa B (NF-κB) signaling pathway both in vitro and in vivo. The increased cellular VC together with Fe2+ generated by blue light simultaneously elevate cellular oxidative stress and trigger the ferroptosis of melanoma. With this revealed mechanism, the synergistic actions of blue light on the VC transporter and Fe2+ generation lead to a ca. 20-fold reduction in the administration dosage of VC with an effective melanoma elimination and prolonged survival. The work defines the killing mechanism of blue light on VC-based cancer therapy and provides a practical approach for promoting VC uptake. This light-assisted VC therapy is not only highly efficient for melanoma but also considerable for a broad clinical utility.
Collapse
Affiliation(s)
- Rong Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fangqing Deng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingchun Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuaiqi Huangfu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Luqiu Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jing Hou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanghao Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Pang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jueru Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Liu
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yao Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
15
|
Shahi A, Afzali S, Firoozi Z, Mohaghegh P, Moravej A, Hosseinipour A, Bahmanyar M, Mansoori Y. Potential roles of NLRP3 inflammasome in the pathogenesis of Kawasaki disease. J Cell Physiol 2023; 238:513-532. [PMID: 36649375 DOI: 10.1002/jcp.30948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
There is a heterogeneous group of rare illnesses that fall into the vasculitis category and are characterized mostly by blood vessel inflammation. Ischemia and disrupted blood flow will cause harm to the organs whose blood arteries become inflamed. Kawasaki disease (KD) is the most prevalent kind of vasculitis in children aged 5 years or younger. Because KD's cardiovascular problems might persist into adulthood, it is no longer thought of as a self-limiting disease. KD is a systemic vasculitis with unknown initiating factors. Numerous factors, such as genetic predisposition and infectious pathogens, are implicated in the etiology of KD. As endothelial cell damage and inflammation can lead to coronary endothelial dysfunction in KD, some studies hypothesized the crucial role of pyroptosis in the pathogenesis of KD. Additionally, pyroptosis-related proteins like caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), proinflammatory cytokines like IL-1 and IL-18, lactic dehydrogenase, and Gasdermin D (GSDMD) have been found to be overexpressed in KD patients when compared to healthy controls. These occurrences may point to an involvement of inflammasomes and pyroptotic cell death in the etiology of KD and suggest potential treatment targets. Based on these shreds of evidence, in this review, we aim to focus on one of the well-defined inflammasomes, NLRP3, and its role in the pathophysiology of KD.
Collapse
Affiliation(s)
- Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Firoozi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Moravej
- Department of Immunology, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Hosseinipour
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
16
|
Single-Cell RNA-Seq Analysis Reveals Macrophages Are Involved in the Pathogenesis of Human Sporadic Acute Type A Aortic Dissection. Biomolecules 2023; 13:biom13020399. [PMID: 36830768 PMCID: PMC9952989 DOI: 10.3390/biom13020399] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Macrophages play an important role in the progression of sporadic acute type A aortic dissection (ATAAD). The aim of this study was to characterize the cellular heterogeneity of macrophages in ATAAD tissues by scRNA-seq. Ascending aortic wall tissue from six ATAAD patients and three heart transplant donors was assessed by scRNA-seq and then analyzed and validated by various bioinformatic algorithms and histopathology experiments. The results revealed that the proportion of macrophages in ATAAD tissues (24.51%) was significantly higher than that in normal tissues (13.69%). Among the six macrophage subclusters, pro-inflammatory macrophages accounted for 14.96% of macrophages in the AD group and 0.18% in the normal group. Chemokine- and inflammation-related genes (CCL2, CCL20, S100A8, and S100A9) were expressed more intensively in macrophages in ATAAD tissue than in those in normal tissue. Additionally, intercellular communication analysis and transcription factor analysis indicated the activation of inflammation and degradation of the extracellular matrix in ATAAD tissue. Finally, immunohistochemistry, immunofluorescence, and Western blot experiments confirmed the overexpression of macrophage marker genes (CD68 and CD163) and matrix metalloproteinases (MMP9 and MMP2) in ATAAD tissue. Collectively, our study provides a preliminary evaluation of the role of macrophages in ATAAD, and the results could aid in the development of therapeutic options in the future.
Collapse
|
17
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
18
|
DelVechio M, Alves JV, Saiyid AZ, Singh S, Galley J, Awata WMC, Costa RM, Bruder-Nascimento A, Bruder-Nascimento T. PROGRESSION OF VASCULAR FUNCTION AND BLOOD PRESSURE IN A MOUSE MODEL OF KAWASAKI DISEASE. Shock 2023; 59:74-81. [PMID: 36703278 PMCID: PMC9886317 DOI: 10.1097/shk.0000000000002026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABSTRACT Kawasaki disease (KD) is a systemic vasculitis of childhood characterized by vascular damage in the acute stage, which can persist into the late stage. The vascular mechanisms in the cardiovascular risk of KD are not fully studied. We investigated the vascular function and blood pressure in a murine model of KD. We used the Candida albicans water-soluble (CAWS) fraction model. Mice were injected with 4 mg CAWS for 5 consecutive days and separated into three groups. Control, CAWS 7 days (C7), and CAWS 28 days (C28). Hearts and arteries were harvested for vascular characterization. Rat aortic smooth muscle cells were used to studies in vitro. C7 presented elevated inflammatory markers in the coronary area and abdominal aortas, whereas C28 showed severe vasculitis. No difference was found in blood pressure parameters. Vascular dysfunction characterized by higher contractility to norepinephrine in C7 and C28 in aortic rings was abolished by blocking nitric oxide (NO), reactive oxygen species, and cyclooxygenase (COX)-derived products. The CAWS complex increased COX2 expression in rat aortic smooth muscle cells, which was prevented by Toll-like receptor 4 antagonist. Our data indicate that the murine model of KD is associated with vascular dysfunction likely dependent on COX-derived products, oxidant properties, and NO bioavailability. Furthermore, vascular smooth muscle cell may present an important role in the genesis of vascular dysfunction and vasculitis via the Toll-like receptor 4 pathway. Finally, the CAWS model seems not to be appropriate to study KD-associated shock. More studies are necessary to understand whether vascular dysfunction and COXs are triggers for vasculitis.
Collapse
|
19
|
Kang B, Camps J, Fan B, Jiang H, Ibrahim MM, Hu X, Qin S, Kirchhoff D, Chiang DY, Wang S, Ye Y, Shen Z, Bu Z, Zhang Z, Roider HG. Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment. Genome Biol 2022; 23:265. [PMID: 36550535 PMCID: PMC9773611 DOI: 10.1186/s13059-022-02828-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) has been shown to strongly influence treatment outcome for cancer patients in various indications and to influence the overall survival. However, the cells forming the TME in gastric cancer have not been extensively characterized. RESULTS We combine bulk and single-cell RNA sequencing from tumors and matched normal tissue of 24 treatment-naïve GC patients to better understand which cell types and transcriptional programs are associated with malignant transformation of the stomach. Clustering 96,623 cells of non-epithelial origin reveals 81 well-defined TME cell types. We find that activated fibroblasts and endothelial cells are most prominently overrepresented in tumors. Intercellular network reconstruction and survival analysis of an independent cohort imply the importance of these cell types together with immunosuppressive myeloid cell subsets and regulatory T cells in establishing an immunosuppressive microenvironment that correlates with worsened prognosis and lack of response in anti-PD1-treated patients. In contrast, we find a subset of IFNγ activated T cells and HLA-II expressing macrophages that are linked to treatment response and increased overall survival. CONCLUSIONS Our gastric cancer single-cell TME compendium together with the matched bulk transcriptome data provides a unique resource for the identification of new potential biomarkers for patient stratification. This study helps further to elucidate the mechanism of gastric cancer and provides insights for therapy.
Collapse
Affiliation(s)
- Boxi Kang
- BIOPIC, Beijing Advanced Innovation Centre for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Jordi Camps
- Biomedical Data Science, Research & Early Development Oncology, Bayer AG, Berlin, Germany
| | - Biao Fan
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Hongpeng Jiang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Mahmoud M Ibrahim
- Biomedical Data Science, Research & Early Development preMed, Bayer AG, Wuppertal, Germany
| | - Xueda Hu
- BIOPIC, Beijing Advanced Innovation Centre for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Shishang Qin
- BIOPIC, Beijing Advanced Innovation Centre for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Dennis Kirchhoff
- Immuno Oncology, Research & Early Development Oncology, Bayer AG, Berlin, Germany
| | - Derek Y Chiang
- Biomedical Data Science, Research & Early Development Oncology, Bayer US, Cambridge, MA, USA
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China.
| | - Zhaode Bu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Centre for Genomics, and School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Helge G Roider
- Oncology Precision Medicine, Research & Early Development Oncology, Bayer AG, Berlin, Germany.
| |
Collapse
|
20
|
Progranulin aggravates lethal Candida albicans sepsis by regulating inflammatory response and antifungal immunity. PLoS Pathog 2022; 18:e1010873. [PMID: 36121866 PMCID: PMC9521894 DOI: 10.1371/journal.ppat.1010873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is the most frequent pathogen of fungal sepsis associated with substantial mortality in critically ill patients and those who are immunocompromised. Identification of novel immune-based therapeutic targets from a better understanding of its molecular pathogenesis is required. Here, we reported that the production of progranulin (PGRN) levels was significantly increased in mice after invasive C.albicans infection. Mice that lacked PGRN exhibited attenuated kidney injury and increased survival upon a lethal systemic infection with C. albicans. In mice, PGRN deficiency protected against systemic candidiasis by decreasing aberrant inflammatory reactions that led to renal immune cell apoptosis and kidney injury, and by enhancing antifungal capacity of macrophages and neutrophils that limited fungal burden in the kidneys. PGRN in hematopoietic cell compartment was important for this effect. Moreover, anti-PGRN antibody treatment limited renal inflammation and fungal burden and prolonged survival after invasive C. albicans infection. In vitro, PGRN loss increased phagocytosis, phagosome formation, reactive oxygen species production, neutrophil extracellular traps release, and killing activity in macrophages or neutrophils. Mechanistic studies demonstrated that PGRN loss up-regulated Dectin-2 expression, and enhanced spleen tyrosine kinase phosphorylation and extracellular signal-regulated kinase activation in macrophages and neutrophils. In summary, we identified PGRN as a critical factor that contributes to the immunopathology of invasive C.albicans infection, suggesting that targeting PGRN might serve as a novel treatment for fungal infection.
Collapse
|
21
|
Stock AT, Parsons S, Sharma VJ, James F, Starkey G, D'Costa R, Gordon CL, Wicks IP. Intimal macrophages develop from circulating monocytes during vasculitis. Clin Transl Immunology 2022; 11:e1412. [PMID: 35991774 PMCID: PMC9375838 DOI: 10.1002/cti2.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Vasculitis is characterised by inflammation of the blood vessels. While all layers of the vessel can be affected, inflammation within the intimal layer can trigger thrombosis and arterial occlusion and is therefore of particular clinical concern. Given this pathological role, we have examined how intimal inflammation develops by exploring which (and how) macrophages come to populate this normally immune‐privileged site during vasculitis. Methods We have addressed this question for Kawasaki disease (KD), which is a type of vasculitis in children that typically involves the coronary arteries. We used confocal microscopy and flow cytometry to characterise the macrophages that populate the coronary artery intima in KD patient samples and in a mouse model of KD, and furthermore, have applied an adoptive transfer system to trace how these intimal macrophages develop. Results In KD patients, intimal hyperplasia coincided with marked macrophage infiltration of the coronary artery intima. Phenotypic analysis revealed that these ‘intimal macrophages’ did not express markers of resident cardiac macrophages, such as Lyve‐1, and instead, were uniformly positive for the chemokine receptor Ccr2, suggesting a monocytic lineage. In support of this origin, we show that circulating monocytes directly invade the intima via transluminal migration during established disease, coinciding with the activation of endothelial cells lining the coronary arteries. Conclusions During KD, intimal macrophages develop from circulating monocytes that infiltrate the inflamed coronary artery intima by transluminal migration.
Collapse
Affiliation(s)
- Angus T Stock
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Sarah Parsons
- Department of Forensic Medicine Monash University Melbourne VIC Australia.,Victorian Institute of Forensic Medicine Melbourne VIC Australia
| | - Varun J Sharma
- Liver & Intestinal Transplant Unit Austin Health Melbourne VIC Australia.,Department of Surgery The University of Melbourne, Austin Health Melbourne VIC Australia.,Department of Cardiac Surgery Austin Health Melbourne VIC Australia
| | - Fiona James
- Department of Infectious Diseases Austin Health Melbourne VIC Australia
| | - Graham Starkey
- Liver & Intestinal Transplant Unit Austin Health Melbourne VIC Australia.,Department of Surgery The University of Melbourne, Austin Health Melbourne VIC Australia
| | - Rohit D'Costa
- DonateLife Victoria Carlton VIC Australia.,Department of Intensive Care Medicine Melbourne Health Melbourne VIC Australia
| | - Claire L Gordon
- Department of Infectious Diseases Austin Health Melbourne VIC Australia.,Department of Microbiology and Immunology The Peter Doherty Institute for Infection and Immunity, The University of Melbourne Melbourne VIC Australia.,North Eastern Public Health Unit Austin Health Melbourne VIC Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Melbourne VIC Australia.,Department of Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
22
|
Feng W, Wang Z, Shi L. Effects of the Dectin-2/TNF- α Pathway on Ventricular Arrhythmia after Acute Myocardial Infarction in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2521816. [PMID: 35990845 PMCID: PMC9388250 DOI: 10.1155/2022/2521816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Background Inflammatory responses are involved in ischemic injuries and cardiac repair after acute myocardial infarction (AMI). Dectin-2 is a C-type lectin receptor that induces cytokine production and promotes local inflammatory responses. Methods Sixty C57BL/6 mice were randomly assigned to a sham-surgery group, AMI group, or AMI + etanercept group, with 20 mice in each group. Programmed electrical stimulation (PES) was used to anesthetized mice to induce ventricular tachycardia. Real-time polymerase chain reaction (PCR) and western blot analysis were adopted to determine the expression and distribution of dectin-2 in heart tissues. The tumor necrosis factor-α (TNF-α), interferon-gamma (IFN)-γ, interleukin (IL) 4, and IL-5 levels in the serum were determined using ELISAs. Results The expression of dectin-2 and TNF-α was increased in the myocardium in AMI, and the susceptibility to ventricular arrhythmia (VA) was increased. The induction rate of VA was significantly decreased by etanercept. Compared with those in the sham-surgery group, the AMI group showed significantly higher serum TNF-α and IFN-γ levels and lower IL-4 and IL-5levels. Conclusion Dectin-2 intensifies the activation of the TNF-α immune reaction through the Th1 differentiation, which may increase vulnerability to VA in AMI.
Collapse
Affiliation(s)
- Wei Feng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhaojun Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Leilei Shi
- Department of Cardiology, Langfang Fourth People's Hospital, Langfang, China
| |
Collapse
|
23
|
Qiu Y, Zhang Y, Li Y, Hua Y, Zhang Y. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Front Cardiovasc Med 2022; 9:981010. [PMID: 36003919 PMCID: PMC9393387 DOI: 10.3389/fcvm.2022.981010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Kawasaki disease (KD) is an acute, inflammation mediated vasculitis, mainly affecting in children under five, which is consider as the most common coronary artery disease in children. The injuries of coronary arteries would result in dilation or thrombus formation, bringing great threaten to patients. Endothelium, located in the inner surface of coronary artery, serves as the interface between the circulating inflammatory cells and vascular media or adventitia, which is the first target of inflammatory attacks during early stage of KD. A series of studies have determined vascular endothelial cells damages and dysfunction in KD patients. However, current therapeutic strategy is still challenging. So that it is critical to underline the mechanisms of endothelium injuries. In this review, the role of endothelial cells in the pathogenesis of KD and the therapeutic methods for endothelial cells were systematically described.
Collapse
|
24
|
Kawasaki Disease-like Vasculitis Facilitates Atherosclerosis, and Statin Shows a Significant Antiatherosclerosis and Anti-Inflammatory Effect in a Kawasaki Disease Model Mouse. Biomedicines 2022; 10:biomedicines10081794. [PMID: 35892695 PMCID: PMC9330289 DOI: 10.3390/biomedicines10081794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Kawasaki disease (KD) is an acute form of systemic vasculitis that may promote atherosclerosis in adulthood. This study examined the relationships between KD, atherosclerosis, and the long-term effects of HMG-CoA inhibitors (statins). Candida albicans water-soluble fraction (CAWS) was injected intraperitoneally into 5-week-old male apolipoprotein-E-deficient (Apo E-/-) mice to create KD-like vasculitis. Mice were divided into 4 groups: the control, CAWS, CAWS+statin, and late-statin groups. They were sacrificed at 6 or 10 weeks after injection. Statin was started after CAWS injection in all groups except the late-statin group, which was administered statin internally 6 weeks after injection. Lipid plaque lesions on the aorta were evaluated with Oil Red O. The aortic root and abdominal aorta were evaluated with hematoxylin and eosin staining and immunostaining. CAWS vasculitis significantly enhanced aortic atherosclerosis and inflammatory cell invasion into the aortic root and abdominal aorta. Statins significantly inhibited atherosclerosis and inflammatory cell invasion, including macrophages. CAWS vasculitis, a KD-like vasculitis, promoted atherosclerosis in Apo E-/- mice. The long-term oral administration of statin significantly suppressed not only atherosclerosis but also inflammatory cell infiltration. Therefore, statin treatment may be used for the secondary prevention of cardiovascular events during the chronic phase of KD.
Collapse
|
25
|
Wu S, Wang S, Wang L, Peng H, Zhang S, Yang Q, Huang M, Li Y, Guan S, Jiang W, Zhang Z, Bi Q, Li L, Gao Y, Xiong P, Zhong Z, Xu B, Deng Y, Deng Y. Docosahexaenoic acid supplementation represses the early immune response against murine cytomegalovirus but enhances NK cell effector function. BMC Immunol 2022; 23:17. [PMID: 35439922 PMCID: PMC9017742 DOI: 10.1186/s12865-022-00492-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) supplementation is beneficial for several chronic diseases; however, its effect on immune regulation is still debated. Given the prevalence of cytomegalovirus (CMV) infection and because natural killer (NK) cells are a component of innate immunity critical for controlling CMV infection, the current study explored the effect of a DHA-enriched diet on susceptibility to murine (M) CMV infection and the NK cell effector response to MCMV infection. RESULTS Male C57BL/6 mice fed a control or DHA-enriched diet for 3 weeks were infected with MCMV and sacrificed at the indicated time points postinfection. Compared with control mice, DHA-fed mice had higher liver and spleen viral loads at day 7 postinfection, but final MCMV clearance was not affected. The total numbers of NK cells and their terminal mature cell subset (KLRG1+ and Ly49H+ NK cells) were reduced compared with those in control mice at day 7 postinfection but not day 21. DHA feeding resulted in higher IFN-γ and granzyme B expression in splenic NK cells at day 7 postinfection. A mechanistic analysis showed that the splenic NK cells of DHA-fed mice had enhanced glucose uptake, increased CD71 and CD98 expression, and higher mitochondrial mass than control mice. In addition, DHA-fed mice showed reductions in the total numbers and activation levels of CD4+ and CD8+ T cells. CONCLUSIONS These results suggest that DHA supplementation represses the early response to CMV infection but preserves NK cell effector functions by improving mitochondrial activity, which may play critical roles in subsequent MCMV clearance.
Collapse
Affiliation(s)
- Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shanshan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Lili Wang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Minghui Huang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuzhen Guan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Wenjuan Jiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaohui Zhang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Qinghua Bi
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yuan Gao
- Southwest Hospital/Southwest Eye Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Bo Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
26
|
A molecular complex of Ca v1.2/CaMKK2/CaMK1a in caveolae is responsible for vascular remodeling via excitation-transcription coupling. Proc Natl Acad Sci U S A 2022; 119:e2117435119. [PMID: 35412911 PMCID: PMC9169798 DOI: 10.1073/pnas.2117435119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Excitation–transcription (E-T) coupling can initiate and modulate essential physiological or pathological responses in cells, such as neurons and cardiac myocytes. Although vascular myocytes also exhibit E-T coupling in response to membrane depolarization, the underlying molecular mechanisms are unknown. Our study reveals that E-T coupling in vascular myocytes converts intracellular Ca2+ signals into selective gene transcription related to chemotaxis, leukocyte adhesion, and inflammation. Our discovery identifies a mechanism for vascular remodeling as an adaptation to increased circumferential stretch. Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation–transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.
Collapse
|
27
|
Liu X, Jiang B, Hao H, Liu Z. CARD9 Signaling, Inflammation, and Diseases. Front Immunol 2022; 13:880879. [PMID: 35432375 PMCID: PMC9005907 DOI: 10.3389/fimmu.2022.880879] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Caspase-recruitment domain 9 (CARD9) protein is expressed in many cells especially in immune cells, and is critically involved in the function of the innate and adaptive immune systems through extensive interactions between CARD9 and other signaling molecules including NF-κB and MAPK. CARD9-mediated signaling plays a central role in regulating inflammatory responses and oxidative stress through the productions of important cytokines and chemokines. Abnormalities of CARD9 and CARD9 signaling or CARD9 mutations or polymorphism are associated with a variety of pathological conditions including infections, inflammation, and autoimmune disorders. This review focuses on the function of CARD9 and CARD9-mediated signaling pathways, as well as interactions with other important signaling molecules in different cell types and the relations to specific disease conditions including inflammatory diseases, infections, tumorigenesis, and cardiovascular pathologies.
Collapse
Affiliation(s)
- Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bimei Jiang
- Department of Pathophysiology, Central South University, Changsha, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
28
|
Makusheva Y, Chung SH, Akitsu A, Maeda N, Maruhashi T, Ye XQ, Kaifu T, Saijo S, Sun H, Han W, Tang C, Iwakura Y. The C-type lectin receptor Clec1A plays an important role in the development of experimental autoimmune encephalomyelitis by enhancing antigen presenting ability of dendritic cells and inducing inflammatory cytokine IL-17. Exp Anim 2022; 71:288-304. [PMID: 35135958 PMCID: PMC9388343 DOI: 10.1538/expanim.21-0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clec1A, a member of C-type lectin receptor family, has a carbohydrate recognition domain in its extracellular region, but no known signaling motif in the cytoplasmic domain.
Clec1a is highly expressed in endothelial cells and weakly in dendritic cells. Although this molecule was reported to play an important role in the host defense against
Aspergillus fumigatus by recognizing 1,8-dihydroxynaphthalene-melanin on the fungal surface, the roles of this molecule in un-infected animals remain to be elucidated. In
this study, we found that Clec1a−/− mice develop milder symptoms upon induction of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple
sclerosis. The maximum disease score was significantly lower, and demyelination and inflammation of the spinal cord were much milder in Clec1a−/− mice compared to
wild-type mice. No abnormality was detected in the immune cell composition in the draining lymph nodes and spleen on day 10 and 16 after EAE induction. Recall memory T cell proliferation
after restimulation with myelin oligodendrocyte glycoprotein peptide (MOG35–55) in vitro was decreased in Clec1a−/− mice, and antigen
presenting ability of Clec1a−/− dendritic cells was impaired. Interestingly, RNA-Seq and RT-qPCR analyses clearly showed that the expression of inflammatory
cytokines including Il17a, Il6 and Il1b was greatly decreased in Clec1a−/− mice after induction of EAE,
suggesting that this reduced cytokine production is responsible for the amelioration of EAE in Clec1a−/− mice. These observations suggest a novel function of
Clec1A in the immune system.
Collapse
Affiliation(s)
- Yulia Makusheva
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Aoi Akitsu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science.,Present address: Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | - Natsumi Maeda
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science.,Present address: Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research
| | - Takumi Maruhashi
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science.,Present address: Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo
| | - Xiao-Qi Ye
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University
| | - Tomonori Kaifu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science.,Present address: Division of Immunology Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | | | - Haiyang Sun
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Wei Han
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Ce Tang
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science.,Present address: Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science
| |
Collapse
|
29
|
Zhang H, Wang Y, Men H, Zhou W, Zhou S, Liu Q, Cai L. CARD9 Regulation and its Role in Cardiovascular Diseases. Int J Biol Sci 2022; 18:970-982. [PMID: 35173530 PMCID: PMC8771857 DOI: 10.7150/ijbs.65979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 01/11/2023] Open
Abstract
Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor protein expressed on myeloid cells and located downstream of pattern recognition receptors (PRRs), which transduces signals involved in innate immunity. CARD9 deficiency is associated with increased susceptibility to various fungal diseases. Increasing evidence shows that CARD9 mediates the activation of p38 MAPK, NF-κB, and NLRP3 inflammasome in various CVDs and then promotes the production of proinflammatory cytokines and chemokines, which contribute to cardiac remodeling and cardiac dysfunction in certain cardiovascular diseases (CVDs). Moreover, CARD9-mediated anti-apoptosis and autophagy are implicated in the progression of CVDs. Here, we summarize the structure and function of CARD9 in innate immunity and its various roles in inflammation, apoptosis, and autophagy in the pathogenesis of CVDs. Furthermore, we discuss the potential therapies targeting CARD9 to prevent CVDs and raise some issues for further exploring the role of CARD9 in CVDs.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Yeling Wang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Hongbo Men
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Wenqian Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Shanshan Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quan Liu
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
- Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
30
|
Yoshida Y, Banno-Terada R, Takada M, Fujii T, Takagaki N, Maekawa A, Tanaka A, Endo M, Yamada A, Mamiya R, Nagi-Miura N, Ohno N, Tsuji T, Kohno T. Sivelestat's effect on Candida albicans water-soluble fraction-induced vasculitis. Pediatr Int 2022; 64:e15153. [PMID: 35522644 DOI: 10.1111/ped.15153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND We investigated the efficacy of sivelestat sodium hydrate (SSH) as a treatment for Kawasaki disease, and its pharmacological action sites, in mice with Candida albicans water-soluble fraction-induced vasculitis. METHODS Sivelestat sodium hydrate was administered intraperitoneally to Candida albicans water-soluble fraction-induced vasculitis model mice to assess its efficacy in preventing the development of coronary artery lesions based on the degree of inflammatory cell infiltration in the aortic root and coronary arteries (vasculitis score). The pharmacological sites of action were investigated based on changes in neutrophil elastase (NE) and intercellular adhesion molecule 1 (ICAM-1) positive areas, ICAM-1 and tumor necrosis factor-α mRNA expression levels in the upper heart, and the proportion of monocytes in the peripheral blood. RESULTS The vasculitis score decreased below the lower limit of the 95% confidence interval of untreated mice in 69% of the SSH-treated mice. The NE- and ICAM-1-positive regions, and the mRNA expression of ICAM-1 and tumor necrosis factor-α were lower in the SSH-treated mice than in the untreated mice. The proportion of monocytes in the peripheral blood was higher in the SSH-treated mice than in the untreated mice, whereas monocyte migration to inflammation areas was suppressed in the SSH-treated mice. CONCLUSIONS Our results showed that SSH might prevent the development of coronary artery lesions and ameliorate disease activity. In addition to its NE-inhibitory effect, SSH sites of action may also include monocytes.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Rie Banno-Terada
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.,Department of Pharmacy, Aizenbashi Hospital, Osaka City, Osaka, Japan
| | - Masashi Takada
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Toui Fujii
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Naofumi Takagaki
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Aoi Maekawa
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Arisa Tanaka
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Miki Endo
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Ayaka Yamada
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Ryota Mamiya
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Noriko Nagi-Miura
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takumi Tsuji
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Takeyuki Kohno
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.,Research Institute for Production Development, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
31
|
Rapid orderly migration of neutrophils after traumatic brain injury depends on MMP9/13. Biochem Biophys Res Commun 2021; 579:161-167. [PMID: 34601201 DOI: 10.1016/j.bbrc.2021.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022]
Abstract
Macrophages and granulocytes play an important role in various injuries and post-traumatic repair. Due to the limited number of neutrophils in the brain, their role in traumatic brain injury has rarely been mentioned. Here, neutrophils were found to take over the role of macrophages after brain injury in the absence of macrophages. Neutrophils have the characteristics of long residence time and number advantage to actively remove the apoptotic debris. The number of neutrophils recruited was effectively reduced by inhibiting IL-1β. Interestingly, neutrophils migrated regularly and rapidly to the wound during the early stages of brain injury through three paths. They first infiltrated the wound mainly through blood circulation around the eyes, then became unscrupulous and began to move directly across the brain. In addition, MMP9 and MMP13 were found to be related to the migration of neutrophils, and inhibition of MMP could significantly inhibit the number and speed of neutrophils' migration. Our study showed that neutrophils rely on MMP9 and MMP13 for a rapid and orderly response to brain injury to maintain central nervous system stability in the absence or decrease of macrophages.
Collapse
|
32
|
Guo L, Qin G, Cao Y, Yang Y, Dai S, Wang L, Wang E. Regulation of the Immune Microenvironment by an NLRP3 Inhibitor Contributes to Attenuation of Acute Right Ventricular Failure in Rats with Pulmonary Arterial Hypertension. J Inflamm Res 2021; 14:5699-5711. [PMID: 34754216 PMCID: PMC8572093 DOI: 10.2147/jir.s336964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022] Open
Abstract
Background Right heart failure is the terminal stage of PAH. When PAH patients suffer from pulmonary infection or puerperal infection heart failure often rapidly develops. Low dose of lipopolysaccharide induces rapid right ventricular failure in rats with pulmonary arterial hypertension. Purpose The objective of this study was to investigate whether the NLRP3 inflammasome mediates disturbance of the ventricular immune microenvironment of PAH rats and promotes right ventricular failure. Methods Intraperitoneal injection of monocrotaline was used to induce PAH in rats. Right ventricular function was measured via echocardiography before and after the rats were treated with lipopolysaccharide and MCC950. The degree of immune microenvironment disturbance in right ventricular tissue was measured with a rat chemokine and cytokine antibody array, Western blot, flow cytometry and quantitative real-time PCR analysis. Results After the rats were injected with LPS, they exhibited right ventricular dysfunction and a significant increase in right ventricular tissue inflammation with elevated M1 macrophage proportion. Administration of MCC950 suppressed inflammation and improved right ventricular function. The number of M1 macrophages was decreased after MCC950 treatment. NLRP3 inflammasome inhibition ameliorated LPS-induced changes in the immune microenvironment in the right heart and right ventricular dysfunction in rats with PAH. Conclusion Selective inhibition of NLRP3 pathway interfered the interaction between hypertrophic cardiomyocytes and macrophages in the initial stage of inflammation and maintained the immune microenvironment balance, eventually contributing to attenuation of LPS-induced acute heart failure in PAH rats.
Collapse
Affiliation(s)
- Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, People's Republic of China
| | - Gang Qin
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, People's Republic of China
| | - Yanan Cao
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, People's Republic of China
| | - Yue Yang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, People's Republic of China
| | - Sisi Dai
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, People's Republic of China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, People's Republic of China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, People's Republic of China
| |
Collapse
|
33
|
Hosoya T, Cordelia D, Michael BD, Miyabe C, Nagai J, Murooka TT, Miyabe Y. Editorial: Targeting the Chemoattractant System in Inflammation. Front Pharmacol 2021; 12:744290. [PMID: 34483948 PMCID: PMC8415622 DOI: 10.3389/fphar.2021.744290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tadashi Hosoya
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Liverpool, United Kingdom
| | - Dunai Cordelia
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom.,NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom
| | - Benedict D Michael
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom.,NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Chie Miyabe
- Division of Dermatology, Tokyo Women's Medical University, Chiba, Japan
| | - Jun Nagai
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, United States
| | - Thomas T Murooka
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Yoshishige Miyabe
- Department of Cell Biology, Nippon Medical School, Institute for Advanced Medical Sciences, Tokyo, Japan
| |
Collapse
|
34
|
Miyabe C, Miyabe Y, Miyata R, Ishiguro N. Pathogens in Vasculitis: Is It Really Idiopathic? JMA J 2021; 4:216-224. [PMID: 34414315 PMCID: PMC8355637 DOI: 10.31662/jmaj.2021-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022] Open
Abstract
Vasculitis is an autoimmune disease characterized by the infiltration of leukocytes in blood vessels. An increasing number of studies on human and animal models have implicated various microorganisms in the pathogenesis of vasculitis. Previous studies have shown the presence of infectious agents, including viruses, bacteria, and fungi, in diseased vessels. However, despite continued research, the link between infection and vasculitis is not fully understood, possibly owing to the lack of appropriate animal models that mirror human disease and the technical limitations of pathogen detection in blood vessels. Among the pathogen-induced animal models, Candida albicans water-soluble fraction (CAWS)-induced coronary arteritis is currently considered one of the representative models of Kawasaki (KD) disease. Advances in metagenomic next-generation sequencing have enabled the detection of all nucleic acids in tissue, which can help identify candidate pathogens, including previously unidentified viruses. In this review, we discuss the findings from reports on pathogen-associated vasculitis in animal models and humans, with a specific focus on the investigation of the pathogenesis of vasculitis. Further studies on animal models and microbes in diseased vessels may provide important insights into the pathogenesis of vasculitis, which is often considered an idiopathic disease.
Collapse
Affiliation(s)
- Chie Miyabe
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshishige Miyabe
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Ryujin Miyata
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Naoko Ishiguro
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
35
|
Liu X, Shang H, Li B, Zhao L, Hua Y, Wu K, Hu M, Fan T. Exploration and validation of hub genes and pathways in the progression of hypoplastic left heart syndrome via weighted gene co-expression network analysis. BMC Cardiovasc Disord 2021; 21:300. [PMID: 34130651 PMCID: PMC8204459 DOI: 10.1186/s12872-021-02108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Background Despite significant progress in surgical treatment of hypoplastic left heart syndrome (HLHS), its mortality and morbidity are still high. Little is known about the molecular abnormalities of the syndrome. In this study, we aimed to probe into hub genes and key pathways in the progression of the syndrome. Methods Differentially expressed genes (DEGs) were identified in left ventricle (LV) or right ventricle (RV) tissues between HLHS and controls using the GSE77798 dataset. Then, weighted gene co-expression network analysis (WGCNA) was performed and key modules were constructed for HLHS. Based on the genes in the key modules, protein–protein interaction networks were conducted, and hub genes and key pathways were screened. Finally, the GSE23959 dataset was used to validate hub genes between HLHS and controls. Results We identified 88 and 41 DEGs in LV and RV tissues between HLHS and controls, respectively. DEGs in LV tissues of HLHS were distinctly involved in heart development, apoptotic signaling pathway and ECM receptor interaction. DEGs in RV tissues of HLHS were mainly enriched in BMP signaling pathway, regulation of cell development and regulation of blood pressure. A total of 16 co-expression network were constructed. Among them, black module (r = 0.79 and p value = 2e−04) and pink module (r = 0.84 and p value = 4e−05) had the most significant correlation with HLHS, indicating that the two modules could be the most relevant for HLHS progression. We identified five hub genes in the black module (including Fbn1, Itga8, Itga11, Itgb5 and Thbs2), and five hub genes (including Cblb, Ccl2, Edn1, Itgb3 and Map2k1) in the pink module for HLHS. Their abnormal expression was verified in the GSE23959 dataset. Conclusions Our findings revealed hub genes and key pathways for HLHS through WGCNA, which could play key roles in the molecular mechanism of HLHS.
Collapse
Affiliation(s)
- Xuelan Liu
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Honglei Shang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bin Li
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Liyun Zhao
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Ying Hua
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Kaiyuan Wu
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Manman Hu
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Taibing Fan
- Department of Children's Heart Center, Henan Provincial People's Hospital, Department of Children's Heart Center of Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
36
|
Lun Y, Borjini N, Miura NN, Ohno N, Singer NG, Lin F. CDCP1 on Dendritic Cells Contributes to the Development of a Model of Kawasaki Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2819-2827. [PMID: 34099547 PMCID: PMC9011922 DOI: 10.4049/jimmunol.2001406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/09/2021] [Indexed: 11/19/2022]
Abstract
The etiology and pathology of Kawasaki disease (KD) remain elusive. Cub domain-containing protein 1 (CDCP1), a cell-surface protein that confers poor prognosis of patients with certain solid tumors, was recently identified as one of the most significantly upregulated genes in SARS-CoV-2-infected children who developed systemic vasculitis, a hallmark of KD. However, a potential role of CDCP1 in KD has not previously been explored. In this study, we found that CDCP1 knockout (KO) mice exhibited attenuated coronary and aortic vasculitis and decreased serum Candida albicans water-soluble fraction (CAWS)-specific IgM/IgG2a and IL-6 concentrations compared with wild-type mice in an established model of KD induced by CAWS administration. CDCP1 expression was not detectable in cardiomyocytes, cardio fibroblasts, or coronary endothelium, but constitutive expression of CDCP1 was observed on dendritic cells (DCs) and was upregulated by CAWS stimulation. CAWS-induced IL-6 production was significantly reduced in CDCP1 KO DCs, in association with impaired Syk-MAPK signaling pathway activation. These novel findings suggest that CDCP1 might regulate KD development by modulating IL-6 production from DCs via the Syk-MAPK signaling pathway.
Collapse
Affiliation(s)
- Yu Lun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Nozha Borjini
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Noriko N Miura
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan; and
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan; and
| | - Nora G Singer
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, OH
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA;
| |
Collapse
|
37
|
Fan X, Zhou Y, Guo X, Xu M. Utilizing single-cell RNA sequencing for analyzing the characteristics of PBMC in patients with Kawasaki disease. BMC Pediatr 2021; 21:277. [PMID: 34126969 PMCID: PMC8201934 DOI: 10.1186/s12887-021-02754-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Kawasaki disease (KD) is the main cause of acquired heart disease in children and can lead to coronary artery lesions. This present study was designed to analyze the characteristics of KD peripheral blood mononuclear cells (PBMC) through single-cell RNA sequencing (scRNA-seq) and to explore the potential molecular mechanism of KD. METHODS PBMC was collected from one healthy child and one KD patient, and was used to single-cell RNA sequencing for cell clusters identification and differently expressed gene (DEG) determination. GO function enrichment analysis of DEG in B cell and T cells were performed to explore the most active biological function in KD immune cells. RESULTS Twelve cell clusters can be identified in two samples. Compared with healthy child, naive CD8+ T cell, T helper cell and B cell in KD child were decreased, mainly immune-related T cells, and natural killer T (NKT) cell were increased. Cell activation, lymphocyte activation and regulation of immune system process were 3 GO function shared by all four types of T cells and B cell. CONCLUSIONS Immune cell disorder appears in the KD patient at single cell level by scRNA-seq.
Collapse
Affiliation(s)
- Xue Fan
- The Department of Pediatric Cardiology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Yuhan Zhou
- Department of Pediatric, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, 519100, Zhuhai, China
| | - Xin Guo
- The Department of Pediatric, Shenzhen Children's Hospital of China Medical University, Longgang District Maternal and Children Health Care Hospital, Shenzhen, 518038, China
| | - Mingguo Xu
- The Department of Pediatric Cardiology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China. .,The Department of Pediatric, Shenzhen Children's Hospital of China Medical University, Longgang District Maternal and Children Health Care Hospital, Shenzhen, 518038, China.
| |
Collapse
|
38
|
Hara T, Yamamura K, Sakai Y. The up-to-date pathophysiology of Kawasaki disease. Clin Transl Immunology 2021; 10:e1284. [PMID: 33981434 PMCID: PMC8109476 DOI: 10.1002/cti2.1284] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis of an unknown aetiology. A small proportion of children exposed to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) or infected by Yersinia reproducibly develop principal symptoms of KD in various ethnic areas, but not in all studies. These microbes provoke a rapid cell‐damaging process, called ‘pyroptosis’, which is characterised by a subsequent release of proinflammatory cellular components from damaged endothelial and innate immune cells. In agreement with these molecular events, patients with KD show elevated levels of damage‐associated molecular patterns derived from cell death. In addition, an overwhelming amount of oxidative stress‐associated molecules, including oxidised phospholipids or low‐density lipoproteins, are generated as by‐products of inflammation during the acute phase of the disease. These molecules induce abnormalities in the acquired immune system and activate innate immune and vascular cells to produce a range of proinflammatory molecules such as cytokines, chemokines, proteases and reactive oxygen species. These responses further recruit immune cells to the arterial wall, wherein inflammation and oxidative stress closely interact and mutually amplify each other. The inflammasome, a key component of the innate immune system, plays an essential role in the development of vasculitis in KD. Thus, innate immune memory, or ‘trained immunity’, may promote vasculitis in KD. Hence, this review will be helpful in understanding the pathophysiologic pathways leading to the development of principal KD symptoms and coronary artery lesions in patients with KD, as well as in subsets of patients with SARS‐CoV‐2 and Yersinia infections.
Collapse
Affiliation(s)
- Toshiro Hara
- Kawasaki Disease Center Fukuoka Children's Hospital Fukuoka Japan
| | - Kenichiro Yamamura
- Department of Perinatal and Pediatric Medicine, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Yasunari Sakai
- Department of Pediatrics Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
39
|
Abstract
Fungi are eukaryotic microorganisms that show complex life cycles, including both anamorph and teleomorph stages. Beta-1,3-1,6-glucans (BGs) are major cell wall components in fungi. BGs are also found in a soluble form and are secreted by fungal cells. Studies of fungal BGs extensively expanded from 1960 to 1990 due to their applications in cancer immunotherapy. However, progress in this field slowed down due to the low efficacy of such therapies. In the early 21st century, the discovery of C-type lectin receptors significantly enhanced the molecular understanding of innate immunity. Moreover, pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) were also discovered. Soon, dectin-1 was identified as the PRR of BGs, whereas BGs were established as PAMPs. Then, studies on fungal BGs focused on their participation in the development of deep-seated mycoses and on their role as a source of functional foods. Fungal BGs may have numerous and complex linkages, making it difficult to systematize them even at the primary structure level. Moreover, elucidating the structure of BGs is largely hindered by the multiplicity of genes involved in cell wall biosynthesis, including those for BGs, and by fungal diversity. The present review mainly focused on the characteristics of fungal BGs from the viewpoint of structure and immunological activities.
Collapse
|
40
|
Xu Q, Wang M, Guo H, Liu H, Zhang G, Xu C, Chen H. Emodin Alleviates Severe Acute Pancreatitis-Associated Acute Lung Injury by Inhibiting the Cold-Inducible RNA-Binding Protein (CIRP)-Mediated Activation of the NLRP3/IL-1 β/CXCL1 Signaling. Front Pharmacol 2021; 12:655372. [PMID: 33967799 PMCID: PMC8103163 DOI: 10.3389/fphar.2021.655372] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Severe acute pancreatitis (SAP) can lead to acute lung injury (ALI). This study investigated the therapeutic effect of emodin and its molecular mechanisms in a rat model of SAP-ALI. Methods: Forty male Sprague-Dawley rats were randomly divided into the groups: Control (CON), SAP (SAP), emodin (EMO), and C23 (C23). The latter three groups of rats were induced for SAP-ALI by retrograde injection of 5% sodium taurocholate into the biliary-pancreatic duct and were treated with vehicle, emodin or C23, respectively. One day post induction, their pancreatic and lung injury was assessed by histology and arterial blood gas analysis. In vitro, rat alveolar macrophages (NR8383 cells) were treated with recombinant rat CIRP in the presence or absence of TAK242 (a TLR4 inhibitor), C23 or emodin. The CIRP-mediated activation of the NLRP3/IL-1β/CXCL1 signaling in rat lungs and NR8383 cells was determined. Similarly, the role of IL-1β in the CIRP-induced CXCL1 expression was investigated. Results: Emodin treatment significantly reduced inflammation and tissue damages in the pancreatic and lung tissues in rats with SAP-ALI, accompanied by decreasing serum amylase, CIRP and IL-1β levels and improving lung function. Furthermore, emodin significantly mitigated the SAP-up-regulated CIRP expression in the pancreatic islets and lung tissues, and attenuated the SAP-activated NF-κB signaling, NLRP3 inflammasome formation and CXCL1 expression in lung resident macrophages as well as neutrophil infiltration in the lungs of rats. In addition, treatment with CIRP significantly activated the NF-κB signaling and NLRP3 inflammasome formation and induced IL-1β and CXCL1 expression and pyroptosis in NR8383 cells, which were abrogated by TAK242 and significantly mitigated by C23 or emodin. Moreover, CIRP only induced very lower levels of CXCL1 expression in IL-1β-silencing NR8383 cells and treatment with IL-1β induced CXCL1 expression in NR8383 cells in a dose and time-dependent manner. Conclusion: Emodin may inhibit the CIRP-activated NLRP3/IL-1β/CXCL1signaling to decrease neutrophil infiltration and ameliorate the SAP-ALI in rats.
Collapse
Affiliation(s)
- Qiushi Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Huanhuan Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Porritt RA, Chase Huizar C, Dick EJ, Kumar S, Escalona R, Gomez AC, Marek-Iannucci S, Noval Rivas M, Patterson J, Forsthuber TG, Arditi M, Gorelik M. Inhibition of IL-6 in the LCWE Mouse Model of Kawasaki Disease Inhibits Acute Phase Reactant Serum Amyloid A but Fails to Attenuate Vasculitis. Front Immunol 2021; 12:630196. [PMID: 33897686 PMCID: PMC8064710 DOI: 10.3389/fimmu.2021.630196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 02/01/2023] Open
Abstract
Objective Kawasaki disease (KD) is the most common cause of acquired pediatric heart disease in the developed world. 10% of KD patients are resistant to front-line therapy, and no interventions exist to address secondary complications such as myocardial fibrosis. We sought to identify proteins and pathways associated with disease and anti-IL-1 treatment in a mouse model of KD. Methods Vasculitis was induced via Lactobacillus casei cell wall extract (LCWE) injection in 5-week-old male mice. Groups of mice were injected with LCWE alone, LCWE and IL-1 receptor antagonist anakinra, or saline for controls. Upper heart tissue was assessed by quantitative mass spectrometry analysis. Expression and activation of STAT3 was assessed by immunohistochemistry, immunofluorescence and Western blot, and IL-6 expression by RNA-seq and ELISA. A STAT3 small molecular inhibitor and anti-IL-6R antibody were used to evaluate the role of STAT3 and IL-6 in disease development. Results STAT3 was highly expressed and phosphorylated in cardiac tissue of LCWE-injected mice, and reduced following anakinra treatment. Il6 and Stat3 gene expression was enhanced in abdominal aorta of LCWE-injected mice and reduced with Anakinra treatment. IL-6 serum levels were enhanced in LCWE-injected mice and normalized by anakinra. However, neither inhibition of STAT3 nor blockade of IL-6 altered disease development. Conclusion Proteomic analysis of cardiac tissues demonstrates differential protein expression between KD-like, control and anakinra treated cardiac tissue. STAT3 and IL-6 were highly upregulated with LCWE and normalized by anakinra treatment. However, both STAT3 and IL-6 were dispensable for disease development indicating they may be bystanders of inflammation.
Collapse
Affiliation(s)
- Rebecca A. Porritt
- Departments of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Carol Chase Huizar
- Department of Biology, University of Texas San Antonio, San Antonio, TX, United States
| | - Edward J. Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Shyamesh Kumar
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Renee Escalona
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Angela C. Gomez
- Departments of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stefani Marek-Iannucci
- Departments of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Departments of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jean Patterson
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Thomas G. Forsthuber
- Department of Biology, University of Texas San Antonio, San Antonio, TX, United States
| | - Moshe Arditi
- Departments of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mark Gorelik
- Department of Pediatric Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
42
|
Takahashi M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res 2021; 118:372-385. [PMID: 33483732 DOI: 10.1093/cvr/cvab010] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
NLRP3 (nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3) is an intracellular innate immune receptor that recognizes a diverse range of stimuli derived from pathogens, damaged or dead cells, and irritants. NLRP3 activation causes the assembly of a large multiprotein complex termed the NLRP3 inflammasome, and leads to the secretion of bioactive interleukin (IL)-1β and IL-18 as well as the induction of inflammatory cell death termed pyroptosis. Accumulating evidence indicates that NLRP3 inflammasome plays a key role in the pathogenesis of sterile inflammatory diseases, including atherosclerosis and other vascular diseases. Indeed, the results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial demonstrated that IL-1β-mediated inflammation plays an important role in atherothrombotic events and suggested that NLRP3 inflammasome is a key driver of atherosclerosis. In this review, we will summarize the current state of knowledge regarding the role of NLRP3 inflammasome in vascular diseases, in particular in atherosclerosis, vascular injury, aortic aneurysm, and Kawasaki disease vasculitis, and discuss NLRP3 inflammasome as a therapeutic target for these disorders.
Collapse
Affiliation(s)
- Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
43
|
Maruyama D, Kocatürk B, Lee Y, Abe M, Lane M, Moreira D, Chen S, Fishbein MC, Porritt RA, Noval Rivas M, Arditi M. MicroRNA-223 Regulates the Development of Cardiovascular Lesions in LCWE-Induced Murine Kawasaki Disease Vasculitis by Repressing the NLRP3 Inflammasome. Front Pediatr 2021; 9:662953. [PMID: 34026693 PMCID: PMC8138581 DOI: 10.3389/fped.2021.662953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Kawasaki disease (KD), an acute febrile childhood illness and systemic vasculitis of unknown etiology, is the leading cause of acquired heart disease among children. Experimental data from murine models of KD vasculitis and transcriptomics data generated from whole blood of KD patients indicate the involvement of the NLRP3 inflammasome and interleukin-1 (IL-1) signaling in KD pathogenesis. MicroRNA-223 (miR-223) is a negative regulator of NLRP3 activity and IL-1β production, and its expression has been reported to be upregulated during acute human KD; however, the specific role of miR-223 during KD vasculitis remains unknown. Here, using the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, we demonstrate increased miR-223 expression in LCWE-induced cardiovascular lesions. Compared with control WT mice, LCWE-injected miR-223-deficient mice (miR223 -/y ) developed more severe coronary arteritis and aortitis, as well as more pronounced abdominal aorta aneurysms and dilations. The enhanced cardiovascular lesions and KD vasculitis observed in LCWE-injected miR223 -/y mice correlated with increased NLRP3 inflammasome activity and elevated IL-1β production, indicating that miR-223 limits cardiovascular lesion development by downmodulating NLRP3 inflammasome activity. Collectively, our data reveal a previously unappreciated role of miR-223 in regulating innate immune responses and in limiting KD vasculitis and its cardiovascular lesions by constraining the NLRP3 inflammasome and the IL-1β pathway. These data also suggest that miR-223 expression may be used as a marker for KD vasculitis pathogenesis and provide a novel therapeutic target.
Collapse
Affiliation(s)
- Daisuke Maruyama
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Begüm Kocatürk
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Youngho Lee
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Masanori Abe
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Malcolm Lane
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debbie Moreira
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shuang Chen
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Infectious and Immunological Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michael C Fishbein
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rebecca A Porritt
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Infectious and Immunological Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Infectious and Immunological Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Moshe Arditi
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Infectious and Immunological Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
44
|
Jia T, Wang C, Han Z, Wang X, Ding M, Wang Q. Experimental Rodent Models of Cardiovascular Diseases. Front Cardiovasc Med 2020; 7:588075. [PMID: 33365329 PMCID: PMC7750387 DOI: 10.3389/fcvm.2020.588075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases, as the most common non-communicable disease in the world, cause a high mortality rate today and bring a serious medical burden to countries worldwide, especially in low- and middle-income countries. Experimental rodent models are widely used for cardiovascular diseases researches due to the effective simulation of human cardiovascular diseases, strong reproductive ability, and easy detection. Herein, we will summarize the pathological manifestations of common cardiovascular diseases and illustrate the establishment of corresponding experimental rodent models in detail.
Collapse
Affiliation(s)
- Tian Jia
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhengxi Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaozhi Wang
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Quanyi Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
45
|
Tanaka H, Yanai C, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by Cell Wall Mannoprotein Fractions of Clinically Isolated Candida Species. Med Mycol J 2020; 61:33-48. [PMID: 32863327 DOI: 10.3314/mmj.20-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances (CADS) such as the hot water extract of C. albicans and Candida water-soluble fractions (CAWS) induce coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the mannoprotein fractions (MN fractions) of clinically isolated Candida species induce vasculitis in mice. We prepared MN fractions from 26 strains of Candida species by conventional hot water extraction and compared vasculitis in DBA/2 mice. The results obtained revealed that the induction of vasculitis and resulting heart failure were significantly dependent on the species; namely, death rates on day 200 were as follows: Candida krusei (100%), Candida albicans (84%), Candida dubliniensis (47%), Candida parapsilosis (44%), Candida glabrata (32%), Candida guilliermondii (20%), and Candida tropicalis (20%). Even for C. albicans, some strains did not induce vasculitis. The present results suggest that MN-induced vasculitis is strongly dependent on the species and strains of Candida, and also that the MN fractions of some non-albicans Candida induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
46
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
47
|
Abstract
Kawasaki disease is an acute febrile illness and systemic vasculitis of unknown aetiology that predominantly afflicts young children, causes coronary artery aneurysms and can result in long-term cardiovascular sequelae. Kawasaki disease is the leading cause of acquired heart disease among children in the USA. Coronary artery aneurysms develop in some untreated children with Kawasaki disease, leading to ischaemic heart disease and myocardial infarction. Although intravenous immunoglobulin (IVIG) treatment reduces the risk of development of coronary artery aneurysms, some children have IVIG-resistant Kawasaki disease and are at increased risk of developing coronary artery damage. In addition, the lack of specific diagnostic tests and biomarkers for Kawasaki disease make early diagnosis and treatment challenging. The use of experimental mouse models of Kawasaki disease vasculitis has considerably improved our understanding of the pathology of the disease and helped characterize the cellular and molecular immune mechanisms contributing to cardiovascular complications, in turn leading to the development of innovative therapeutic approaches. Here, we outline the pathophysiology of Kawasaki disease and summarize and discuss the progress gained from experimental mouse models and their potential therapeutic translation to human disease. This Review outlines the pathophysiology of Kawasaki disease and discusses the progress gained from experimental mouse models and their potential therapeutic translation to human disease. Kawasaki disease is a childhood systemic vasculitis leading to the development of coronary artery aneurysms; it is the leading cause of acquired heart disease in children in developed countries. The cause of Kawasaki disease is unknown, although it is suspected to be triggered by an unidentified infectious pathogen in genetically predisposed children. Kawasaki disease might not be a normal immune response to an unusual environmental stimulus, but rather a genetically determined unusual and uncontrolled immune response to a common stimulus. Although the aetiological agent in humans is unknown, mouse models of Kawasaki disease vasculitis demonstrate similar pathological features and have substantially accelerated discoveries in the field. Genetic and transcriptomic analysis of blood samples from patients with Kawasaki disease and experimental evidence generated using mouse models have demonstrated the critical role of IL-1β in the pathogenesis of this disease and the therapeutic potential of targeting this pathway (currently under investigation in clinical trials).
Collapse
|
48
|
Lo MS. A framework for understanding Kawasaki disease pathogenesis. Clin Immunol 2020; 214:108385. [PMID: 32173601 DOI: 10.1016/j.clim.2020.108385] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Kawasaki disease (KD) is a common vasculitis of childhood, typically affecting children under the age of five. Despite many aspects of its presentation that bear resemblence to acute infection, no causative infectious agent has been identified despite years of intense scrutiny. Unlike most infections, however, there are significant differences in racial predilection that suggest a strong genetic influence. The inflammatory response in KD specifically targets the coronary arteries, also unusual for an infectious condition. In this review, we discuss recent hypotheses on KD pathogenesis as well as new insights into the innate immune response and mechanisms behind vascular damage. The pathogenesis is complex, however, and remains inadequately understood.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States of America; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
49
|
Yanai C, Tanaka H, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by the Cell Wall Mannoprotein of Candida krusei. Biol Pharm Bull 2020; 43:848-858. [PMID: 32161223 DOI: 10.1248/bpb.b19-01060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances, such as the hot water extract of C. albicans (CADS) and Candida water-soluble fraction (CAWS), induced coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the hot water extract of C. krusei, inherently resistant to fluconazole, induces vasculitis in mice. Three strains of C. krusei, NBRC1395, NBRC1162, and NBRC10737, were cultured in natural (Y) and chemically defined (C) media and cell wall mannoprotein (MN) fractions were prepared by autoclaving cells (CKY1395MN, CKC1395MN, CKY1162MN, CKC1162MN, CKY10737MN, and CKC10737MN). All MN fractions reacted strongly with Concanavalin A (Con A) and dectin-2 and induced anaphylactoid shock in ICR mice. MNs induced severe coronary vasculitis in DBA/2 mice, resulting in cardiac hypertrophy. MNs also induced coronary vasculitis in C57Bl/6 mice. These results suggest that the MNs of non-albicans Candida, such as C. krusei, induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
50
|
Porritt RA, Markman JL, Maruyama D, Kocaturk B, Chen S, Lehman TJA, Lee Y, Fishbein MC, Rivas MN, Arditi M. Interleukin-1 Beta-Mediated Sex Differences in Kawasaki Disease Vasculitis Development and Response to Treatment. Arterioscler Thromb Vasc Biol 2020; 40:802-818. [PMID: 31996019 PMCID: PMC7047651 DOI: 10.1161/atvbaha.119.313863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/14/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Kawasaki disease (KD) is the leading cause of acute vasculitis and acquired heart disease in children in developed countries. Notably, KD is more prevalent in males than females. We previously established a key role for IL (interleukin)-1 signaling in KD pathogenesis, but whether this pathway underlies the sex-based difference in susceptibility is unknown. Approach and Results: The role of IL-1 signaling was investigated in the Lactobacillus casei cell wall extract-induced experimental mouse model of KD vasculitis. Five-week-old male and female mice were injected intraperitoneally with PBS, Lactobacillus caseicell wall extract, or a combination of Lactobacillus caseicell wall extract and the IL-1 receptor antagonist Anakinra. Aortitis, coronary arteritis inflammation score and abdominal aorta dilatation, and aneurysm development were assessed. mRNA-seq (messenger RNA sequencing) analysis was performed on abdominal aorta tissue. Publicly available human transcriptomics data from patients with KD was analyzed to identify sex differences and disease-associated genes. Male mice displayed enhanced aortitis and coronary arteritis as well as increased incidence and severity of abdominal aorta dilatation and aneurysm, recapitulating the increased incidence in males that is observed in human KD. Gene expression data from patients with KD and abdominal aorta tissue of Lactobacillus caseicell wall extract-injected mice showed enhanced Il1b expression and IL-1 signaling genes in males. Although the more severe IL-1β-mediated disease phenotype observed in male mice was ameliorated by Anakinra treatment, the milder disease phenotype in female mice failed to respond. CONCLUSIONS IL-1β may play a central role in mediating sex-based differences in KD, with important implications for the use of anti-IL-1β therapies to treat male and female patients with KD.
Collapse
Affiliation(s)
- Rebecca A. Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Los Angeles, California 90048, USA
| | - Janet L. Markman
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Los Angeles, California 90048, USA
| | - Daisuke Maruyama
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Los Angeles, California 90048, USA
| | - Begum Kocaturk
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Los Angeles, California 90048, USA
| | - Shuang Chen
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Los Angeles, California 90048, USA
- Department of Biomedical Sciences, Infectious and Immunologic Disease Research Center, Los Angeles, California 90048, USA
- Department of Biomedical Science, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Thomas J. A. Lehman
- Department of Pediatrics, Division of Rheumatology, Weill Cornell Medical School, New York, NY, 10065, USA
| | - Youngho Lee
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Los Angeles, California 90048, USA
| | - Michael C Fishbein
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Los Angeles, California 90048, USA
- Department of Biomedical Sciences, Infectious and Immunologic Disease Research Center, Los Angeles, California 90048, USA
- Department of Biomedical Science, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Los Angeles, California 90048, USA
- Department of Biomedical Sciences, Infectious and Immunologic Disease Research Center, Los Angeles, California 90048, USA
- Department of Biomedical Science, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|