1
|
Shichijo T, Yasunaga JI. Stratagems of HTLV-1 for persistent infection and the resultant oncogenesis: Immune evasion and clonal expansion. Leuk Res 2025; 152:107680. [PMID: 40120237 DOI: 10.1016/j.leukres.2025.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is one of the most severe malignant T-cell leukemia/lymphomas induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 persists in the host through stratagems of proliferating infected cells and evading host immunity. HTLV-1 encodes two viral oncogenes, tax and HTLV-1 bZIP factor (HBZ), which are related with protection from cell death and promotion of cell proliferation. In addition, HBZ and the somatic mutations in host genes, such as C-C chemokine receptor 4 (CCR4) and CIC, convert HTLV-1-infected cells into regulatory T (Treg)-like cells, leading to evasion of host immunity. A recent study demonstrated the key mechanisms for clonal expansion of HTLV-1-infected cells; the activation of the transforming growth factor (TGF)-β signaling pathway by HBZ not only converts HTLV-1-infected cells into a Treg-like cells through Foxp3 expression, but also contributes to the proliferation of HTLV-1-infected cells themselves. Due to the longevity induced by HTLV-1 infection, somatic mutations and epigenetic aberrations are accumulated in infected clones, contributing to the oncogenesis of ATL. Collectively, the long-term survival of infected cells enabled by the HTLV-1's stratagems for persistent infection ultimately leads to ATL oncogenesis via the accumulation of genetic/epigenetic abnormalities.
Collapse
Affiliation(s)
- Takafumi Shichijo
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Bittencourt AL, Farre L. Infective dermatitis associated with human T-cell lymphotropic virus type-1, an underdiagnosed disease. Int J Infect Dis 2024; 145:107058. [PMID: 38697604 DOI: 10.1016/j.ijid.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Infective dermatitis associated with human T-cell lymphotropic virus type-1 (HTLV-1) (IDH) is a severe form of chronically infected eczema occurring in early childhood, although very rarely cases have been reported in adults. Most of the cases are from Jamaica and Brazil and occur in individuals with low socioeconomic status. IDH is always associated with refractory Staphylococcus aureus or beta-hemolytic Streptococcus infection of the skin and nasal vestibules. Patients with IDH may develop other even more severe HTLV-1-associated diseases, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) of early or late appearance and adult T-cell leukemia/lymphoma. In the context of the Brazilian experience, it has been observed that 54% of IDH patients exhibit the juvenile form of HAM/TSP while the estimated incidence of adult HAM/TSP is 3%. As there are no curative treatments for HTLV-1 infection (or vaccines) or most of its associated diseases, prevention of infection is fundamental, mainly by vertical transmission, as it is responsible for the development of IDH, infantojuvenile HAM/TSP, and ATL. Public measures to reduce this transmission must be implemented urgently. Furthermore, it is recommended, mainly in HTLV-1 endemic areas, to search for HTLV-1 infection in all patients with infected eczema, even in adults.
Collapse
Affiliation(s)
- A L Bittencourt
- Department of Pathology, Prof. Edgard Santos Teaching Hospital, Federal University of Bahia, Salvador, Brazil
| | - L Farre
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), ONCOBELL, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Spain.
| |
Collapse
|
3
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
4
|
Nagata K, Tezuka K, Kuramitsu M, Fuchi N, Hasegawa Y, Hamaguchi I, Miura K. Establishment of a novel human T-cell leukemia virus type 1 infection model using cell-free virus. J Virol 2024; 98:e0186223. [PMID: 38294250 PMCID: PMC10878273 DOI: 10.1128/jvi.01862-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The primary mode of infection by human T-cell leukemia virus type 1 (HTLV-1) is cell-to-cell transmission during contact between infected cells and target cells. Cell-free HTLV-1 infections are known to be less efficient than infections with other retroviruses, and transmission of free HTLV-1 is considered not to occur in vivo. However, it has been demonstrated that cell-free HTLV-1 virions can infect primary lymphocytes and dendritic cells in vitro, and that virions embedded in biofilms on cell membranes can contribute to transmission. The establishment of an efficient cell-free HTLV-1 infection model would be a useful tool for analyzing the replication process of HTLV-1 and the clonal expansion of infected cells. We first succeeded in obtaining supernatants with high-titer cell-free HTLV-1 using a highly efficient virus-producing cell line. The HTLV-1 virions retained the structural characteristics of retroviruses. Using this cell-free infection model, we confirmed that a variety of cell lines and primary cultured cells can be infected with HTLV-1 and demonstrated that the provirus was randomly integrated into all chromosomes in the target cells. The provirus-integrated cell lines were HTLV-1-productive. Furthermore, we demonstrated for the first time that cell-free HTLV-1 is infectious in vivo using a humanized mouse model. These results indicate that this cell-free infection model recapitulates the HTLV-1 life cycle, including entry, reverse transcription, integration into the host genome, viral replication, and secondary infection. The new cell-free HTLV-1 infection model is promising as a practical resource for studying HTLV-1 infection.IMPORTANCECo-culture of infected and target cells is frequently used for studying HTLV-1 infection. Although this method efficiently infects HTLV-1, the cell mixture is complex, and it is extremely difficult to distinguish donor infected cells from target cells. In contrast, cell-free HTLV-1 infection models allow for more strict experimental conditions. In this study, we established a novel and efficient cell-free HTLV-1 infection model. Using this model, we successfully evaluated the infectivity titers of cell-free HTLV-1 as proviral loads (copies per 100 cells) in various cell lines, primary cultured cells, and a humanized mouse model. Interestingly, the HTLV-1-associated viral biofilms played an important role in enhancing the infectivity of the cell-free infection model. This cell-free HTLV-1 infection model reproduces the replication cycle of HTLV-1 and provides a simple, powerful, and alternative tool for researching HTLV-1 infection.
Collapse
Affiliation(s)
- Koh Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Tezuka
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Prates G, Paiva A, Haziot ME, Fonseca LAM, Smid J, Marcusso RMDN, Assone T, de Oliveira ACP, Casseb J. Could Cesarean Delivery Help Prevent Mother-to-Child Transmission of Human T-Lymphotropic Virus Type 1? J Infect Dis 2023; 228:1766-1775. [PMID: 37386934 DOI: 10.1093/infdis/jiad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Mother-to-child transmission (MTCT) of human T-lymphotropic virus type 1 (HTLV-1) is an important route of transmission that can cause lifelong infection. There is high morbidity and mortality due to adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy (HAM), and other inflammatory disorders. These conditions develop in nearly 10% of people with HTLV-1 infection, with a higher risk if infection occurs early in life. Identification of risk factors can inform targeted measures to reduce HTLV-1 MTCT. This study aimed to investigate the potential of cesarean delivery to prevent HTLV-1 MTCT. METHODS We performed a review of the cases of women and their offspring under regular follow-up at the HTLV-1 outpatient clinic at the Institute of Infectious Diseases Emilio Ribas. RESULTS A total of 177 HTLV-1-infected women and 369 adult offspring were investigated. Overall, 15% of the children were positive for HTLV-1 and 85% were negative. Regarding vertical transmission, we found that a breastfeeding duration of >6 months was associated with MTCT. Moreover, maternal proviral load was not associated with transmission, but high educational level and cesarean delivery were identified as protective factors. CONCLUSIONS HTLV-1 MTCT was associated with mother's age at delivery of >25 years, low educational level, prolonged breastfeeding, and vaginal delivery.
Collapse
Affiliation(s)
- Gabriela Prates
- Departamento de Dermatologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Arthur Paiva
- Departamento de Dermatologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- Universitary Hospital of the Federal University of Alagoas, Maceió, Brazil
| | - Michel E Haziot
- Institute of Infectious Diseases "Emilio Ribas" (IIER) of Sao Paulo, Sao Paulo, Brazil
| | - Luiz Augusto M Fonseca
- Departamento de Dermatologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jerusa Smid
- Institute of Infectious Diseases "Emilio Ribas" (IIER) of Sao Paulo, Sao Paulo, Brazil
| | | | - Tatiane Assone
- Departamento de Dermatologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Jorge Casseb
- Departamento de Dermatologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
da Silva MCM, Pereira RSB, Araujo ACA, Filho EGDS, Dias ADL, Cavalcante KS, de Sousa MS. New Perspectives about Drug Candidates Targeting HTLV-1 and Related Diseases. Pharmaceuticals (Basel) 2023; 16:1546. [PMID: 38004412 PMCID: PMC10674638 DOI: 10.3390/ph16111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 11/26/2023] Open
Abstract
Among the human T-lymphotropic virus (HTLV) types, HTLV-1 is the most prevalent, and it has been linked to a spectrum of diseases, including HAM/TSP, ATLL, and hyperinfection syndrome or disseminated strongyloidiasis. There is currently no globally standard first-line treatment for HTLV-1 infection and its related diseases. To address this, a comprehensive review was conducted, analyzing 30 recent papers from databases PubMed, CAPES journals, and the Virtual Health Library (VHL). The studies encompassed a wide range of therapeutic approaches, including antiretrovirals, immunomodulators, antineoplastics, amino acids, antiparasitics, and even natural products and plant extracts. Notably, the category with the highest number of articles was related to drugs for the treatment of ATLL. Studies employing mogamulizumab as a new perspective for ATLL received greater attention in the last 5 years, demonstrating efficacy, safe use in the elderly, significant antitumor activity, and increased survival time for refractory patients. Concerning HAM/TSP, despite corticosteroid being recommended, a more randomized clinical trial is needed to support treatment other than corticoids. The study also included a comprehensive review of the drugs used to treat disseminated strongyloidiasis in co-infection with HTLV-1, including their administration form, in order to emphasize gaps and facilitate the development of other studies aiming at better-directed methodologies. Additionally, docking molecules and computer simulations show promise in identifying novel therapeutic targets and repurposing existing drugs. These advances are crucial in developing more effective and targeted treatments against HTLV-1 and its related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Anderson de Lima Dias
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Para, Belem 66079-420, Brazil
| | - Kassio Silva Cavalcante
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Para, Belem 66079-420, Brazil
| | | |
Collapse
|
7
|
Itabashi K, Miyazawa T, Uchimaru K. How Can We Prevent Mother-to-Child Transmission of HTLV-1? Int J Mol Sci 2023; 24:ijms24086961. [PMID: 37108125 PMCID: PMC10138424 DOI: 10.3390/ijms24086961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The perception of human T-cell leukemia virus type 1 (HTlV-1) infection as a "silent disease" has recently given way to concern that its presence may be having a variety of effects. HTLV-1 is known to cause adult T-cell leukemia (ATL), an aggressive cancer of peripheral CD4 T cells; however, it is also responsible for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Most patients develop ATL as a result of HTLV-1 mother-to-child transmission. The primary route of mother-to-child transmission is through the mother's milk. In the absence of effective drug therapy, total artificial nutrition such as exclusive formula feeding is a reliable means of preventing mother-to-child transmission after birth, except for a small percentage of prenatal infections. A recent study found that the rate of mother-to-child transmission with short-term breastfeeding (within 90 days) did not exceed that of total artificial nutrition. Because these preventive measures are in exchange for the benefits of breastfeeding, clinical applications of antiretroviral drugs and immunotherapy with vaccines and neutralizing antibodies are urgently needed.
Collapse
Affiliation(s)
- Kazuo Itabashi
- Aiseikai-Memorial Ibaraki Welfare and Medical Center, Ibaraki 3100836, Japan
| | - Tokuo Miyazawa
- Department of Pediatrics, Showa University School of Medicine, Tokyo 1428666, Japan
| | - Kaoru Uchimaru
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
8
|
Barr RS, Drysdale SB, Boullier M, Lyall H, Cook L, Collins GP, Kelly DF, Phelan L, Taylor GP. A Review of the Prevention of Mother-to-Child Transmission of Human T-Cell Lymphotrophic Virus Type 1 (HTLV-1) With a Proposed Management Algorithm. Front Med (Lausanne) 2022; 9:941647. [PMID: 35872787 PMCID: PMC9304803 DOI: 10.3389/fmed.2022.941647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 01/06/2023] Open
Abstract
Human T cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus that is endemic in a number of regions across the world. There are an estimated 5–10 million people infected worldwide. Japan is currently the only country with a national antenatal screening programme in place. HTLV-1 is primarily transmitted sexually in adulthood, however it can be transmitted from mother-to-child perinatally. This can occur transplacentally, during the birth process or via breastmilk. If HTLV-1 is transmitted perinatally then the lifetime risk of adult T cell leukemia/lymphoma rises from 5 to 20%, therefore prevention of mother-to-child transmission of HTLV-1 is a public health priority. There are reliable immunological and molecular tests available for HTLV-1 diagnosis during pregnancy and screening should be considered on a country by country basis. Further research on best management is needed particularly for pregnancies in women with high HTLV-1 viral load. A first step would be to establish an international registry of cases and to monitor outcomes for neonates and mothers. We have summarized key risk factors for mother-to-child transmission of HTLV-1 and subsequently propose a pragmatic guideline for management of mothers and infants in pregnancy and the perinatal period to reduce the risk of transmission. This is clinically relevant in order to reduce mother-to-child transmission of HTLV-1 and it's complications.
Collapse
Affiliation(s)
- Rachael S. Barr
- Department of Paediatrics, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
- *Correspondence: Rachael S. Barr
| | - Simon B. Drysdale
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
- Oxford Vaccine Group and NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mary Boullier
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Hermione Lyall
- Department of Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Lucy Cook
- National Centre for Human Retrovirology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Graham P. Collins
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Dominic F. Kelly
- Oxford Vaccine Group and NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Level 2, Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lorna Phelan
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Graham P. Taylor
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Schneiderman BS, Barski MS, Maertens GN. Cabotegravir, the Long-Acting Integrase Strand Transfer Inhibitor, Potently Inhibits Human T-Cell Lymphotropic Virus Type 1 Transmission in vitro. Front Med (Lausanne) 2022; 9:889621. [PMID: 35547224 PMCID: PMC9082600 DOI: 10.3389/fmed.2022.889621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is a deltaretrovirus most prevalent in southwestern Japan, sub-Saharan Africa, Australia, South America, and the Caribbean. Latest figures approximate 10 million people worldwide to be infected with HTLV-1. This is likely a significant underestimation due to lack of screening in endemic areas and absence of seroconversion symptoms. The two primary diseases associated with HTLV-1 infection are adult T cell leukaemia-lymphoma, a malignant and, sometimes, aggressive cancer; and HTLV-1 associated myelopathy/tropical spastic paraparesis, a debilitating neurological degenerative disease. Unfortunately, despite the poor prognosis, there is currently no effective treatment for HTLV-1 infection. We previously showed that integrase strand transfer inhibitors (INSTIs) clinically used for human immunodeficiency virus type 1 (HIV-1) prophylaxis and treatment are also effective against HTLV-1 transmission in vitro. In 2021 a new INSTI, cabotegravir, was approved by the FDA for HIV-1 treatment. We thus set out to evaluate its efficacy against HTLV-1 infection in vitro. Strand transfer assays performed using recombinant HTLV-1 integrase treated with increasing concentrations of cabotegravir, effectively inhibited strand transfer activity, displaying an IC50 of 77.8 ± 22.4 nM. Furthermore, cabotegravir blocked HTLV-1 transmission in tissue culture; we determined an EC50 of 0.56 ± 0.26 nM, similar to bictegravir. Alu-PCR confirmed the block in integration. Thus, there are four INSTIs and one reverse transcriptase inhibitor approved by the FDA for HIV-1 treatment, that potently block HTLV-1 infection in vitro. This should strongly encourage the establishment of a new standard of HTLV-1 treatment - particularly for pre-exposure prophylaxis and prevention of mother-to-child transmission.
Collapse
Affiliation(s)
| | | | - Goedele N. Maertens
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Seki Y, Kitamura T, Tezuka K, Murata M, Akari H, Hamaguchi I, Okuma K. Cytolytic Recombinant Vesicular Stomatitis Viruses Expressing STLV-1 Receptor Specifically Eliminate STLV-1 Env-Expressing Cells in an HTLV-1 Surrogate Model In Vitro. Viruses 2022; 14:v14040740. [PMID: 35458470 PMCID: PMC9030509 DOI: 10.3390/v14040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes serious and intractable diseases in some carriers after infection. The elimination of infected cells is considered important to prevent this onset, but there are currently no means by which to accomplish this. We previously developed “virotherapy”, a therapeutic method that targets and kills HTLV-1-infected cells using a cytolytic recombinant vesicular stomatitis virus (rVSV). Infection with rVSV expressing an HTLV-1 primary receptor elicits therapeutic effects on HTLV-1-infected envelope protein (Env)-expressing cells in vitro and in vivo. Simian T-cell leukemia virus type 1 (STLV-1) is closely related genetically to HTLV-1, and STLV-1-infected Japanese macaques (JMs) are considered a useful HTLV-1 surrogate, non-human primate model in vivo. Here, we performed an in vitro drug evaluation of rVSVs against STLV-1 as a preclinical study. We generated novel rVSVs encoding the STLV-1 primary receptor, simian glucose transporter 1 (JM GLUT1), with or without an AcGFP reporter gene. Our data demonstrate that these rVSVs specifically and efficiently infected/eliminated the STLV-1 Env-expressing cells in vitro. These results indicate that rVSVs carrying the STLV-1 receptor could be an excellent candidate for unique anti-STLV-1 virotherapy; therefore, such antivirals can now be applied to STLV-1-infected JMs to determine their therapeutic usefulness in vivo.
Collapse
Affiliation(s)
- Yohei Seki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Tomoya Kitamura
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
- Exotic Disease Group, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| | - Kenta Tezuka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Megumi Murata
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan; (M.M.); (H.A.)
| | - Hirofumi Akari
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan; (M.M.); (H.A.)
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
- Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2381
| |
Collapse
|
11
|
Millen S, Thoma-Kress AK. Milk Transmission of HTLV-1 and the Need for Innovative Prevention Strategies. Front Med (Lausanne) 2022; 9:867147. [PMID: 35360738 PMCID: PMC8962517 DOI: 10.3389/fmed.2022.867147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Breastfeeding is recommended by the World Health Organization for at least 6 months up to 2 years of age, and breast milk protects against several diseases and infections. Intriguingly, few viruses are transmitted via breastfeeding including Human T-cell leukemia virus Type 1 (HTLV-1). HTLV-1 is a highly oncogenic yet neglected retrovirus, which primarily infects CD4+ T-cells in vivo and causes incurable diseases like HTLV-1-associated inflammatory conditions or Adult T-cell leukemia/lymphoma (ATLL) after lifelong viral persistence. Worldwide, at least 5–10 million people are HTLV-1-infected and most of them are unaware of their infection posing the risk of silent transmissions. HTLV-1 is transmitted via cell-containing body fluids such as blood products, semen, and breast milk, which constitutes the major route of mother-to-child transmission (MTCT). Risk of transmission increases with the duration of breastfeeding, however, abstinence from breastfeeding as it is recommended in some endemic countries is not an option in resource-limited settings or underrepresented areas and populations. Despite significant progress in understanding details of HTLV-1 cell-to-cell transmission, it is still not fully understood, which cells in which organs get infected via the oral route, how these cells get infected, how breast milk affects this route of infection and how to inhibit oral transmission despite breastfeeding, which is an urgent need especially in underrepresented areas of the world. Here, we review these questions and provide an outlook how future research could help to uncover prevention strategies that might ultimately allow infants to benefit from breastfeeding while reducing the risk of HTLV-1 transmission.
Collapse
|
12
|
Ikebe E, Shimosaki S, Hasegawa H, Iha H, Tsukamoto Y, Wang Y, Sasaki D, Imaizumi Y, Miyazaki Y, Yanagihara K, Hamaguchi I, Morishita K. TAS-116 (pimitespib), a heat shock protein 90 inhibitor, shows efficacy in preclinical models of adult T-cell leukemia. Cancer Sci 2021; 113:684-696. [PMID: 34794206 PMCID: PMC8819293 DOI: 10.1111/cas.15204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Adult T‐cell leukemia/lymphoma (ATL) is a highly chemoresistant malignancy of peripheral T lymphocytes caused by human T‐cell leukemia virus type 1 infection, for which there is an urgent need for more effective therapeutic options. The molecular chaperone heat shock protein 90 (HSP90) plays a crucial role in nuclear factor‐κB (NF‐κB)‐mediated antiapoptosis in ATL cells, and HSP90 inhibitors are new candidate therapeutics for ATL. Accordingly, we investigated the anti‐ATL effects of a novel oral HSP90 inhibitor, TAS‐116 (pimitespib), and the mechanisms involved in ex vivo and in vivo preclinical models. TAS‐116 achieved IC50 values of less than 0.5 μmol/L in 10 ATL‐related cell lines and less than 1 μmol/L in primary peripheral blood cells of nine ATL patients; no toxicity was observed toward CD4+ lymphocytes from healthy donors, indicating the safety of this agent. Given orally, TAS‐116 also showed significant inhibitory effects against tumor cell growth in ATL cell‐xenografted mice. Furthermore, gene expression profiling of TAS‐116‐treated Tax‐positive or ‐negative cell lines and primary ATL cells using DNA microarray and multiple pathway analysis revealed the significant downregulation of the NF‐κB pathway in Tax‐positive cells and cell‐cycle arrest in Tax‐negative cells and primary ATL cells. TAS‐116 suppressed the activator protein‐1 and tumor necrosis factor pathways in all examined cells. These findings strongly indicate the efficacy of TAS‐116, regardless of the stage of ATL progression, and its potential application as a novel clinical anti‐ATL therapeutic agent.
Collapse
Affiliation(s)
- Emi Ikebe
- Department of Microbiology, Oita University Faculty of Medicine, Yufu, Japan.,Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shunsuke Shimosaki
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
| | - Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan.,Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
13
|
Itabashi K, Miyazawa T. Mother-to-Child Transmission of Human T-Cell Leukemia Virus Type 1: Mechanisms and Nutritional Strategies for Prevention. Cancers (Basel) 2021; 13:cancers13164100. [PMID: 34439253 PMCID: PMC8394315 DOI: 10.3390/cancers13164100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/29/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Approximately 95% of mother-to-child transmission (MTCT) of human T-cell leukemia virus type-1 (HTLV-1) is derived from prolonged breastfeeding, which is a major cause of adult T-cell leukemia (ATL). Exclusive formula feeding (ExFF) is therefore generally used to prevent MTCT. A recent cohort study revealed that 55% of pregnant carriers chose short-term breastfeeding for ≤3 months in Japan. Our meta-analysis showed that there was no significant increase in the risk of MTCT when breastfeeding was carried out for ≤3 months compared with ExFF (pooled relative risk (RR), 0.72; 95% confidence interval (CI), 0.30-1.77), but there was an almost threefold increase in risk when breastfeeding was carried out for up to 6 months (pooled RR, 2.91; 95% CI, 1.69-5.03). Thus, short-term breastfeeding for ≤3 months may be useful in preventing MTCT. Breastmilk is the best nutritional source for infants, and any approach to minimizing MTCT by avoiding or limiting breastfeeding must be balanced against the impact on the child's health and mother-child bonding. To minimize the need for nutritional interventions, it is necessary to identify factors that predispose children born to carrier mothers to MTCT and thereby predict MTCT development with a high degree of accuracy.
Collapse
Affiliation(s)
- Kazuo Itabashi
- Aiseikai Memorial Ibaraki Welfare Medical Center, 1872-1 Motoyoshida-cho, Mito-City 310-0836, Japan
- Department of Pediatrics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan;
- Correspondence: ; Tel.: +81-29-353-7171; Fax: +81-29-353-6112
| | - Tokuo Miyazawa
- Department of Pediatrics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan;
| |
Collapse
|
14
|
Anti-HTLV-1/2 IgG Antibodies in the Breastmilk of Seropositive Mothers. Microorganisms 2021; 9:microorganisms9071413. [PMID: 34209130 PMCID: PMC8304728 DOI: 10.3390/microorganisms9071413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background: HTLV-1/2 mother-to-child transmission (MTCT) is an important route for the maintenance of HTLV-1/2 within populations and disproportionally contributes to the burden of HTLV-1-associated diseases. Avoidance of breastfeeding is the safest recommendation to prevent MTCT. Due to the benefits of breastfeeding, alternative methods that would allow seropositive mothers to breastfeed their babies are needed. There is limited knowledge about HTLV-1/2 infection and breastmilk. Methods: Paired blood and milk samples collected from HTLV-1/2 seropositive mothers were tested for HTLV-1 proviral load (PVL) quantification and for the detection of anti-HTLV-1/2 IgG. Results: All breastmilk samples had detectable anti-HTLV-1/2 IgG. HTLV-1/2 proviral DNA was detected in all samples except for one. HTLV-1 PVL and IgG binding ratio (BR) was similar in milk and plasma. However, antibody titer was significantly higher in blood (Median (95%CI): Milk:128 (32–512); Plasma:131,584 (16,000–131,584), p < 0.05). There was a strong correlation between HTLV-1 PVL, anti-HTLV-1/2 IgG BR, and titer when comparing milk and blood. PVL did not correlate with antibody BR nor titer in blood or milk. Conclusions: Anti-HTLV-1/2 IgG are present in milk in the same proportion as blood but in lower quantity. PVL in milk correlates with blood.
Collapse
|
15
|
Suzuki S, Hoshi SI, Sekizawa A, Sagara Y, Kinoshita K, Kitamura T. Recent Prevalence of Human T-cell Leukemia Virus Type 1 Carrier Associated with Horizontal Transmission in Pregnant Japanese Women. Jpn J Infect Dis 2021; 74:576-578. [PMID: 33952772 DOI: 10.7883/yoken.jjid.2021.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The current study was conducted to examine the number of human T-cell leukemia virus type 1 (HTLV-1) carrier and how horizontal transmission affects the prevalence of HTLV-1 carrier in pregnant Japanese women in 2019. We requested 2,214 obstetrical facilities to provide information of HTLV-1 tests in pregnant women who delivered in 2019. The estimated number of HTLV-1 carrier in pregnant Japanese women was 952. At least 10% or more of the HTLV-1 carriers were those due to horizontal transmission.
Collapse
Affiliation(s)
- Shunji Suzuki
- Department of Obstetrics and Gynecology, Japanese Red Cross Katsushika Maternity Hospital, Japan.,Japan Association of Obstetricians and Gynecologists, Japan
| | | | | | - Yoko Sagara
- Japan Association of Obstetricians and Gynecologists, Japan
| | | | | |
Collapse
|
16
|
Vique-Sánchez JL. Potential inhibitors interacting in Neuropilin-1 to develop an adjuvant drug against COVID-19, by molecular docking. Bioorg Med Chem 2021; 33:116040. [PMID: 33515918 PMCID: PMC7826060 DOI: 10.1016/j.bmc.2021.116040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic continues without specific treatment. In this study it is proposed compounds that can be developed as adjuvant / complementary drugs against COVID-19. Through a search for molecular docking, for the development of a new drug using pharmacological compounds targeting the b1 region in neuropilin-1 (NRP1), which is important for the interaction with the S1 region of the S-Protein of SARS-CoV-2, to slow down the infection process of this virus. A molecular docking was performed using almost 500,000 compounds targeted to interact in the region between amino acids (Thr316, Asp320, Ser346, Thr349, and Tyr353) in NRP1 to determine compounds able to hinder the interaction with the S1 region in the S-Protein. In this study, ten compounds are proposed as potential inhibitors between S1 region in the S-Protein of SARS-CoV-2 with the b1 region in NRP1, to develop a new adjuvant / complementary drug against COVID-19, and to hinder the interaction between SARS-CoV-2 and human cells, with a high probability to be safe in humans, validated by web servers for prediction of ADME and toxicity (PreADMET).
Collapse
Affiliation(s)
- José Luis Vique-Sánchez
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, BC, México.
| |
Collapse
|