1
|
Mills EG, Silva MSB, Delli V, Decoster L, Ternier G, Tsoutsouki J, Thurston L, Phylactou M, Patel B, Yang L, Clarke SA, Young M, Alexander EC, Nyunt S, Yeung AC, Choudhury M, Newman A, Bech P, Abbara A, Swedrowska M, Forbes B, Prévot V, Chachlaki K, Giacobini P, Comninos AN, Dhillo WS. Intranasal kisspeptin administration rapidly stimulates gonadotropin release in humans. EBioMedicine 2025; 115:105689. [PMID: 40215751 PMCID: PMC12018048 DOI: 10.1016/j.ebiom.2025.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Kisspeptin administration by intravenous or subcutaneous routes activates hypothalamic gonadotropin-releasing hormone (GnRH) neurons and is being developed to treat reproductive disorders. However, these invasive routes markedly limit patient acceptability and clinical use. Recent rodent data has identified a large GnRH population within the olfactory system communicating directly with hypothalamic GnRH neurons. Intranasal kisspeptin administration may be able to capitalise on this novel pathway and thus offer a potential non-invasive approach to stimulate reproductive hormones. Herein, we examine intranasal kisspeptin using human, pharmaceutical, and rodent studies. METHODS Reproductive hormone profiles were measured after intranasal kisspeptin administration in healthy volunteers and patients with reproductive disorders as part of a randomised, double-blinded, crossover, placebo-controlled clinical study. Pharmaceutical testing evaluated the chemical stability and nasal kisspeptin delivery, and rodent studies provided mechanistic insight. FINDINGS Intranasal kisspeptin-54 rapidly stimulates gonadotropin release in healthy men and women, and in patients with a common reproductive disorder (hypothalamic amenorrhoea), without any side effects or adverse events encountered. Specifically, intranasal kisspeptin (at 12.8 nmol/kg) induced clinically-significant mean maximal increases above baseline in serum luteinising hormone in all study groups: 4.4 ± 0.6 IU/L (mean difference = 3.1 IU/L [95% CI, 1.2-4.9], P = 0.002 vs. placebo) in healthy men; 1.4 ± 0.3 IU/L (mean difference = 1.0 IU/L [95% CI, 0.4-1.7], P = 0.004 vs. placebo) in healthy women; 4.4 ± 0.2 IU/L (mean difference = 4.3 IU/L [95% CI, 2.7-6.0], P < 0.001 vs. placebo) in patients with hypothalamic amenorrhoea. Kisspeptin-54 was delivered effectively via nasal spray and was stable for up to 60 days at 4 °C. Mirroring the human effects, intranasal kisspeptin-54 in adult C57BL/6J male mice stimulates luteinising hormone release. Further mechanistic insights reveal the accumulation of fluorescently-tagged kisspeptin in the olfactory epithelium, as well as the presence of kisspeptin receptors in olfactory bulb GnRH neurons, implicating the involvement of these extra-hypothalamic GnRH neurons in the pathway mediating intranasal kisspeptin's effects on reproductive hormones. INTERPRETATION We demonstrate the clinical potential for intranasal kisspeptin delivery as the first non-invasive method to robustly and safely stimulate gonadotropins with kisspeptin and potentially transform the management of reproductive disorders. FUNDING National Institute for Health and Care Research (NIHR)/NIHR Imperial Biomedical Research Centre/Medical Research Council (MRC).
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Mauro S B Silva
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Virginia Delli
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Laurine Decoster
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Jovanna Tsoutsouki
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Layla Thurston
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Bijal Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Sophie A Clarke
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Megan Young
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Emma C Alexander
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Sandhi Nyunt
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Arthur C Yeung
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Muhammad Choudhury
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Anastasia Newman
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Paul Bech
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Magda Swedrowska
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Vincent Prévot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Konstantina Chachlaki
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
2
|
Sazhenova EA, Vasilyeva OY, Fonova EA, Kankanam Pathiranage MB, Sambyalova AY, Khramova EE, Rychkova LV, Vasilyev SA, Lebedev IN. Genetic variants of the DLK1, KISS1R, MKRN3 genes in girls with precocious puberty. Vavilovskii Zhurnal Genet Selektsii 2025; 29:301-309. [PMID: 40264804 PMCID: PMC12011626 DOI: 10.18699/vjgb-25-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 04/24/2025] Open
Abstract
Precocious puberty (PP, E30.1, Е22.8, Е30.9 according to ICD 10, MIM 176400, 615346) in children is a disorder in which secondary sexual characteristics appear earlier than the age norm. The timing of puberty is regulated by a complex interaction of genetic and epigenetic factors, as well as environmental and nutritional factors. This study aimed to search for pathogenic, likely pathogenic variants or variants of uncertain significance (VUS) in the KISS1, GPR54, DLK1, and MKRN3 genes in patients with the clinical picture of PP and normal karyotype by massive parallel sequencing. All identified genetic variants were confirmed by Sanger sequencing. The pathogenicity of identified genetic variants and the functional significance of the protein synthesized by them were analyzed according to recommendations for interpretation of NGS analysis results using online algorithms for pathogenicity prediction (Variant Effect Predictor, Franklin, Varsome, and PolyPhen2). Clinically significant genetic variants were detected in the heterozygous state in the KISS1R, DLK1, and MKRN3 genes in 5 of 52 probands (9.6 %) with PP, including 3 of 33 (9.1 %) in the group with central PP and 2 of 19 (10.5 %) in the group with gonadotropin-independent PP. Two children with gonadotropin-independent PP had VUS in the KISS1R gene (c.191T>C, p.Ile64Thr and c.233A>G, p.Asn78Ser), one of which was inherited from the father and the second, from the mother. The remaining patients with central PP had likely pathogenic genetic variants: DLK1:c.373delC(p.Gln125fs) de novo and DLK1:c.480delT(p.Gly161Alafs*49) of paternal origin. The third proband had a VUS variant in the MKRN3 gene (c.1487A>G, p.His496Arg), inherited from the father. All identified genetic variants were described for the first time in PP. Thus, in the present study, genetic variants in the KISS1R, DLK1, and MKRN3 genes in girls with PP were characterized.
Collapse
Affiliation(s)
- E A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - O Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E A Fonova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | | | - A Yu Sambyalova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - E E Khramova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L V Rychkova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
3
|
Koysombat K, Tsoutsouki J, Patel AH, Comninos AN, Dhillo WS, Abbara A. Kisspeptin and neurokinin B: roles in reproductive health. Physiol Rev 2025; 105:707-764. [PMID: 39813600 DOI: 10.1152/physrev.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which coexpress NKB, regulate the activity of gonadotropin-releasing hormone (GnRH) neurons and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health. Over the last two decades, research findings have considerably enhanced our understanding of the physiological regulation of the hypothalamic-pituitary-gonadal (HPG) axis and identified potential therapeutic applications. For example, recognition of the role of kisspeptin as the natural inductor of ovulation has led to research investigating its use as a safer, more physiological trigger of oocyte maturation in in vitro fertilization (IVF) treatment. Moreover, the key role of NKB in the pathophysiology of menopausal hot flashes has led to the development of pharmacological antagonism of this pathway. Indeed, fezolinetant, a neurokinin 3 receptor antagonist, has recently received Food and Drug Administration (FDA) approval for clinical use to treat menopausal vasomotor symptoms. Here, we discuss the roles of kisspeptin and NKB in human physiology, including in the regulation of puberty, menstrual cyclicity, reproductive behavior, pregnancy, menopause, and bone homeostasis. We describe how perturbations of these key physiological processes can result in disease states and consider how kisspeptin and NKB could be exploited diagnostically as well as therapeutically to treat reproductive disorders.
Collapse
Affiliation(s)
- Kanyada Koysombat
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jovanna Tsoutsouki
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aaran H Patel
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
4
|
Tinano FR, Machado IFR, Latronico AC, Gomes LG. Shared Pathophysiological Mechanisms and Genetic Factors in Early Menarche and Polycystic Ovary Syndrome. J Neurosci 2025; 45:e1681242024. [PMID: 40074331 PMCID: PMC11905354 DOI: 10.1523/jneurosci.1681-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025] Open
Abstract
Early age at menarche (early AAM) and polycystic ovary syndrome (PCOS) are reproductive and metabolic disorders with overlapping pathophysiological and genetic features. Epidemiological studies suggest a link between these two conditions, both of which are characterized by dysregulation of the neuroendocrine pathways that control pulsatile gonadotropin-releasing hormone secretion, thus affecting gonadotropin release, particularly luteinizing hormone secretion. A common pathophysiology involving positive energy balance and abnormal metabolic status is evident in both disorders. Genetic and epigenetic factors influence the onset of puberty and reproductive outcomes. Genome-wide association studies have identified common genetic variants associated with AAM and PCOS, particularly in genes related to the neuroendocrine axis (e.g., FSHB) and obesity (e.g., FTO). In addition, high-throughput sequencing has revealed rare loss-of-function variants in the DLK1 gene in women with central precocious puberty (CPP), early menarche, and PCOS, who experienced adverse metabolic outcomes in adulthood. This review explores the shared pathophysiological mechanisms between CPP/early AAM and PCOS, examines potential genetic and epigenetic factors that may link these neuroendocrine reproductive conditions, and offers insights into future research and treatment strategies. Understanding these connections may provide new targets for therapeutic interventions and improve outcomes for individuals with these reproductive disorders.
Collapse
Affiliation(s)
- Flavia Rezende Tinano
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Iza Franklin Roza Machado
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Larissa Garcia Gomes
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
5
|
Chen B, Ye X, Chen L, Liu T, Li G, Sa C, Li J, Liu K, Gu W, Wang G. A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit. Animal Model Exp Med 2025; 8:511-522. [PMID: 39854156 PMCID: PMC11904109 DOI: 10.1002/ame2.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited. METHODS Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology. The genotype identification and phenotype evaluation of MKRN3-modified rabbits were carried out. RESULTS The first estrus of MKRN3-modified female rabbits was observed ~27 days earlier than that of wild-type female rabbits, with a typical CPP phenotype. This study found increased gonadotropin releasing hormone (GnRH) and decreased gonadotropin inhibiting hormone (GnIH) in the hypothalamus of the CPP rabbit model with MKRN3 gene mutation. Although this study failed to fully clarify the pathogenesis of CPP caused by MKRN3 mutation, it found some differentially expressed genes and potential pathways through transcriptome sequencing. CONCLUSIONS This study established a novel CPP model: paternal MKRN3 gene-modified rabbit. It is hoped that the establishment of this model will help researchers better understand, treat, and prevent CPP in the future.
Collapse
Affiliation(s)
- Bangzhu Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Medical Laboratory Animal CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Xing Ye
- School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Institute of Comparative Medicine and Laboratory Animal CenterSouthern Medical UniversityGuangzhouChina
| | - Lihao Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Tianping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food EngineeringWuyi UniversityJiangmenChina
| | - Guiling Li
- Guangdong Medical Laboratory Animal CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Chula Sa
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food EngineeringWuyi UniversityJiangmenChina
| | - Juan Li
- Guangdong Medical Laboratory Animal CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Ke Liu
- Guangdong Medical Laboratory Animal CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Weiwang Gu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food EngineeringWuyi UniversityJiangmenChina
| | - Gang Wang
- Guangdong Medical Laboratory Animal CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Long BY, Liao X, Liang X. The Hypothalamus and Pituitary Gland Regulate Reproduction and Are Involved in the Development of Polycystic Ovary Syndrome. Neuroendocrinology 2025; 115:315-334. [PMID: 39894018 DOI: 10.1159/000543877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex condition with unclear mechanisms, posing a challenge for prevention and treatment of PCOS. The role of the hypothalamus and pituitary gland in regulating female reproduction is critical. Abnormalities in the hypothalamus and pituitary can impair reproductive function. It is important to study hypothalamic and pituitary changes in patients with PCOS. SUMMARY This article reviews articles on the hypothalamus and PCOS with the goal of summarizing what abnormalities of the hypothalamic-pituitary-ovarian axis are present in patients with PCOS and to clarify the pathogenesis of PCOS. We find that the mechanisms by which the hypothalamus and pituitary regulate reproduction in girls are complex and are associated with altered sex hormone levels, obesity, and insulin resistance. Different animal models of PCOS are characterized by different alterations in the hypothalamus and pituitary and respond differently to different treatments, which correspond to the complex pathogenesis of patients with PCOS. KEY MESSAGES Arcuate nucleus (ARC) is associated with luteinizing hormone (LH) surges. Suprachiasmatic nucleus, ARC, and RP3V are associated with LH surges. Animal models of PCOS have different characteristics.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xipeng Liao
- Tianjin University of Technology, Tianjin, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Guseva EA, Emelianova MA, Sidorova VN, Tyulpakov AN, Dontsova OA, Sergiev PV. Diversity of Molecular Functions of RNA-Binding Ubiquitin Ligases from the MKRN Protein Family. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1558-1572. [PMID: 39418515 DOI: 10.1134/s0006297924090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
Makorin RING finger protein family includes four members (MKRN1, MKRN2, MKRN3, and MKRN4) that belong to E3 ubiquitin ligases and play a key role in various biological processes, such as cell survival, cell differentiation, and innate and adaptive immunity. MKRN1 contributes to the tumor growth suppression, energy metabolism, anti-pathogen defense, and apoptosis and has a broad variety of targets, including hTERT, APC, FADD, p21, and various viral proteins. MKRN2 regulates cell proliferation, inflammatory response; its targets are p65, PKM2, STAT1, and other proteins. MKRN3 is a master regulator of puberty timing; it controls the levels of gonadotropin-releasing hormone in the arcuate nucleus neurons. MKRN4 is the least studied member of the MKRN protein family, however, it is known to contribute to the T cell activation by ubiquitination of serine/threonine kinase MAP4K3. Proteins of the MKRN family are associated with the development of numerous diseases, for example, systemic lupus erythematosus, central precocious puberty, Prader-Willi syndrome, degenerative lumbar spinal stenosis, inflammation, and cancer. In this review, we discuss the functional roles of all members of the MKRN protein family and their involvement in the development of diseases.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Emelianova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera N Sidorova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Nguyen NN, Lin CY, Tsai WL, Huang HY, Chen CM, Tung YT, Chen YC. Natural sweetener glycyrrhizin protects against precocious puberty by modulating the gut microbiome. Life Sci 2024; 350:122789. [PMID: 38848942 DOI: 10.1016/j.lfs.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
AIMS Precocious puberty (PP) may lead to many adverse outcomes. Recent evidence suggests that PP is a gut-brain disease. On the other hand, the use of glycyrrhizin, a natural sweetener, has become popular in the past decade. Glycyrrhizin possesses various health benefits, but its impact on PP has yet to be investigated. We aimed to explore the protective effects of glycyrrhizin against PP in both humans (observational) and animals (interventional). MATERIALS AND METHODS In the human cohort, we investigated the association between glycyrrhizin consumption and risk of PP. In the animal experiment, we observed puberty onset after feeding danazol-induced PP rats with glycyrrizin. Blood, fecal, and hypothalamic samples were harvested to evaluate potential mechanistic pathways. We also performed a fecal microbiota transplantation to confirm to causal relationship between glycyrrhizin and PP risk. KEY FINDINGS Glycyrrhizin exhibited a protective effect against PP in children (OR 0.60, 95%CI: 0.39-0.89, p = 0.013), primarily driven by its significance in girls, while no significant effect was observed in boys. This effect was consistent with findings in rodents. These benefits were achieved through the modulation of the gut microbiome, which functionally suppressed the hypothalamic-pituitary-gonadal axis and prevented PP progression. A fecal microbiota transplantation indicated that the causal correlation between glycyrrhizin intake and PP is mediated by the gut microbiome alterations. SIGNIFICANCE Our findings suggest that glycyrrhizin can protect against PP by altering the gut microbiome. Long term use of glycyrrhizin is safe and tolerable. Therefore, glycyrrhizin can serve as a safe and affordable complementary therapy for PP.
Collapse
Affiliation(s)
- Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Yuan Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Ling Tsai
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Health Promotion and Gerontological Care, College of LOHAS, Taipei University of Marine Technology, New Taipei City 251, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
9
|
Aiello F, Palumbo S, Cirillo G, Tornese G, Fava D, Wasniewska M, Faienza MF, Bozzola M, Luongo C, Festa A, Miraglia Del Giudice E, Grandone A. MKRN3 circulating levels in girls with central precocious puberty caused by MKRN3 gene mutations. J Endocrinol Invest 2024; 47:1477-1485. [PMID: 38112911 DOI: 10.1007/s40618-023-02255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE MKNR3 is a paternally expressed gene whose mutations are the main cause of central precocious puberty (CPP). Protein circulating levels can be easily measured, as demonstrated in idiopathic CPP and healthy controls. No data are available for patients harboring an MKRN3 mutation. Our aim was to perform MKRN3 mutation screening and to investigate if circulating protein levels could be a screening tool to identify MKRN3 mutation in CPP patients. METHODS We enrolled 140 CPP girls and performed MKRN3 mutation analysis. Patients were stratified into two groups: idiopathic CPP (iCPP) and MKRN3 mutation-related CPP (MKRN3-CPP). Clinical characteristics were collected. Serum MKRN3 values were measured by a commercially available ELISA assay kit in MKRN3-CPP and a subgroup of 15 iCPP patients. RESULTS We identified 5 patients with MKRN3 mutations: one was a novel mutation (p.Gln352Arg) while the others were previously reported (p.Arg328Cys, p.Arg345Cys, p.Pro160Cysfs*14, p.Cys410Ter). There was a significant difference in circulating MKRN3 values in MKRN3-CPP compared to iCPP (p < 0.001). In MKRN3-CPP, the subject harboring Pro160Cysfs*14 presented undetectable levels. Subjects carrying the missense mutations p.Arg328Cys and p.Gln352Arg showed divergent circulating protein levels, respectively 40.56 pg/mL and undetectable. The patient with the non-sense mutation reported low but measurable MKRN3 levels (12.72 pg/mL). CONCLUSIONS MKRN3 defect in patients with CPP cannot be predicted by MKRN3 circulating levels, although those patients presented lower protein levels than iCPP. Due to the great inter-individual variability of the assay and the lack of reference values, no precise cut-off can be identified to suspect MKRN3 defect.
Collapse
Affiliation(s)
- F Aiello
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - S Palumbo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy.
| | - G Cirillo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - G Tornese
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - D Fava
- Pediatric Endocrinology Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147, Genoa, Italy
| | - M Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - M F Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
- Unit of Endocrinology and Rare Endocrine Diseases, Giovanni XXIII Pediatric Hospital, Bari, Italy
| | - M Bozzola
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Onlus, Il Bambino e Il Suo Pediatra, Novara, Galliate, Italy
| | - C Luongo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - A Festa
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - E Miraglia Del Giudice
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - A Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| |
Collapse
|
10
|
张 余, 罗 飞. [Recent advances in the genetic etiology of central precocious puberty]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:302-307. [PMID: 38557384 PMCID: PMC10986386 DOI: 10.7499/j.issn.1008-8830.2309098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Central precocious puberty (CPP) is a developmental disorder caused by early activation of the hypothalamic-pituitary-gonadal axis. The incidence of CPP is rapidly increasing, but the underlying mechanisms are not fully understood. Previous studies have shown that gain-of-function mutations in the KISS1R and KISS1 genes and loss-of-function mutations in the MKRN3, LIN28, and DLK1 genes may lead to early initiation of pubertal development. Recent research has also revealed the significant role of epigenetic factors such as DNA methylation and microRNAs in the regulation of gonadotropin-releasing hormone neurons, as well as the modulating effect of gene networks involving multiple variant genes on pubertal initiation. This review summarizes the genetic etiology and pathogenic mechanisms underlying CPP.
Collapse
|
11
|
Hoskyns RB, Howard SR. Effects of the COVID-19 pandemic on the incidence of central precocious puberty; a narrative review. J Pediatr Endocrinol Metab 2024; 37:102-109. [PMID: 38097507 DOI: 10.1515/jpem-2023-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 02/09/2024]
Abstract
Central precocious puberty (CPP) is the premature activation of the hypothalamus-pituitary-gonadal axis, resulting in the early development of secondary sexual characteristics. CPP classically occurs before the age of 8 years in girls and 9 years in boys. The aetiology of this precocious onset of puberty is governed by complex mechanistic interactions between genetic and environmental factors. The rates of CPP have been documented to have been rising before the COVID-19 pandemic; despite this, the incidence of CPP has increased exponentially since the start of the pandemic. There are multiple theories potentially explaining this change in incidence of CPP over COVID-19. These include the direct effect of SARS-coV-2 infection, increasing body mass index of adolescents over sequential lockdowns, changes in sleep patterns, increased use of electronic devices and levels of stress, and additionally potential earlier detection of signs of CPP by parents and carers. Whilst there is evidence from observational cohorts, case studies and animal models for each of these factors, it is difficult to definitively prove which has had the greatest impact due to the mainly retrospective nature of the human research that has been conducted. Moreover, studies set in diverse settings with varying population make comparison complex. Additionally, each country responded differently to the COVID-19 pandemic and the lockdowns varied between locations, hence the effect of lockdown was not equal or universal. Despite this, similar trends have been identified, with various lifestyle changes that occurred over the pandemic being potentially influential factors on the development of CPP.
Collapse
Affiliation(s)
- Rebecca B Hoskyns
- Barts and the London School of Medicine and Dentistry, QMUL, London, UK
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
12
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Abstract
Precocious puberty (PP) means the appearance of secondary sexual characters before the age of eight years in girls and nine years in boys. Puberty is indicated in girls by the enlargement of the breasts (thelarche) in girls and in boys by the enlargement of the testes in either volume or length (testicular volume = 4 mL, testicular length = 25 mm, or both). Two types of PP are recognized - namely central PP (CPP) and peripheral PP (PPP). This paper aims to describe the clinical findings and laboratory workup of PP and to illustrate the new trends in the management of precocious sexual maturation. Gonadotropin-releasing hormone (GnRH)-independent type (PPP) refers to the development of early pubertal maturation not related to the central activation of the hypothalamic-pituitary-gonadal (HPG) axis. It is classified into genetic or acquired disorders. The most common forms of congenital or genetic causes involve McCune-Albright syndrome (MAS), familial male-limited PP, and congenital adrenal hyperplasia. The acquired causes include exogenous exposure to androgens, functioning tumors or cysts, and the pseudo-PP of profound primary hypothyroidism. On the other hand, CPP is the most common and it is a gonadotropin-dependent form. It is due to premature maturation of the HPG axis. CPP may occur as genetic alterations, such as MKRN3, DLK1, or KISS1;as a part of mutations in the epigenetic factors that regulate the HPG axis, such as Lin28b and let-7; or as a part of syndromes, central lesions such as hypothalamic hamartoma, and others. A full, detailed history and physical examination should be taken. Furthermore, several investigations should be conducted for both types of PP, including the estimation of serum gonadotropins such as luteinizing and follicle-stimulating hormones and sex steroids, in addition to a radiographic workup and thyroid function tests. Treatment depends on the type of PP: Long-acting GnRHa, either intramuscularly or implanted, is the norm of care for CPP management, while in PPP, especially in congenital adrenal hyperplasia, the goal of management is to suppress adrenal androgen secretion by glucocorticoids. In addition, anastrozole and letrozole - third-generation aromatase inhibitors - are more potent for MAS.
Collapse
Affiliation(s)
- Ahmed Alghamdi
- Pediatric Endocrinology, Faculty of Medicine, Al Baha University, Al Baha, SAU
| |
Collapse
|
14
|
Pereira SA, Oliveira FCB, Naulé L, Royer C, Neves FAR, Abreu AP, Carroll RS, Kaiser UB, Coelho MS, Lofrano-Porto A. Mouse Testicular Mkrn3 Expression Is Primarily Interstitial, Increases Peripubertally, and Is Responsive to LH/hCG. Endocrinology 2023; 164:bqad123. [PMID: 37585624 PMCID: PMC10449413 DOI: 10.1210/endocr/bqad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Studies in humans and mice support a role for Makorin RING finger protein 3 (MKRN3) as an inhibitor of gonadotropin-releasing hormone (GnRH) secretion prepubertally, and its loss of function is the most common genetic cause of central precocious puberty in humans. Studies have shown that the gonads can synthesize neuropeptides and express MKRN3/Mkrn3 mRNA. Therefore, we aimed to investigate the spatiotemporal expression pattern of Mkrn3 in gonads during sexual development, and its potential regulation in the functional testicular compartments by gonadotropins. Mkrn3 mRNA was detected in testes and ovaries of wild-type mice at all ages evaluated, with a sexually dimorphic expression pattern between male and female gonads. Mkrn3 expression was highest peripubertally in the testes, whereas it was lower peripubertally than prepubertally in the ovaries. Mkrn3 is expressed primarily in the interstitial compartment of the testes but was also detected at low levels in the seminiferous tubules. In vitro studies demonstrated that Mkrn3 mRNA levels increased in human chorionic gonadotropin (hCG)-treated Leydig cell primary cultures. Acute administration of a GnRH agonist in adult mice increased Mkrn3 expression in testes, whereas inhibition of the hypothalamic-pituitary-gonadal axis by chronic administration of GnRH agonist had the opposite effect. Finally, we found that hCG increased Mkrn3 mRNA levels in a dose-dependent manner. Taken together, our developmental expression analyses, in vitro and in vivo studies show that Mkrn3 is expressed in the testes, predominantly in the interstitial compartment, and that Mkrn3 expression increases after puberty and is responsive to luteinizing hormone/hCG stimulation.
Collapse
Affiliation(s)
- Sidney A Pereira
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fernanda C B Oliveira
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carine Royer
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Francisco A R Neves
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michella S Coelho
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Magnotto JC, Mancini A, Bird K, Montenegro L, Tütüncüler F, Pereira SA, Simas V, Garcia L, Roberts SA, Macedo D, Magnuson M, Gagliardi P, Mauras N, Witchel SF, Carroll RS, Latronico AC, Kaiser UB, Abreu AP. Novel MKRN3 Missense Mutations Associated With Central Precocious Puberty Reveal Distinct Effects on Ubiquitination. J Clin Endocrinol Metab 2023; 108:1646-1656. [PMID: 36916482 PMCID: PMC10653150 DOI: 10.1210/clinem/dgad151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
CONTEXT Loss-of-function mutations in the maternally imprinted genes, MKRN3 and DLK1, are associated with central precocious puberty (CPP). Mutations in MKRN3 are the most common known genetic etiology of CPP. OBJECTIVE This work aimed to screen patients with CPP for MKRN3 and DLK1 mutations and analyze the effects of identified mutations on protein function in vitro. METHODS Participants included 84 unrelated children with CPP (79 girls, 5 boys) and, when available, their first-degree relatives. Five academic medical institutions participated. Sanger sequencing of MKRN3 and DLK1 5' upstream flanking and coding regions was performed on DNA extracted from peripheral blood leukocytes. Western blot analysis was performed to assess protein ubiquitination profiles. RESULTS Eight heterozygous MKRN3 mutations were identified in 9 unrelated girls with CPP. Five are novel missense mutations, 2 were previously identified in patients with CPP, and 1 is a frameshift variant not previously associated with CPP. No pathogenic variants were identified in DLK1. Girls with MKRN3 mutations had an earlier age of initial pubertal signs and higher basal serum luteinizing hormone and follicle-stimulating hormone compared to girls with CPP without MRKN3 mutations. Western blot analysis revealed that compared to wild-type MKRN3, mutations within the RING finger domain reduced ubiquitination whereas the mutations outside this domain increased ubiquitination. CONCLUSION MKRN3 mutations were present in 10.7% of our CPP cohort, consistent with previous studies. The novel identified mutations in different domains of MKRN3 revealed different patterns of ubiquitination, suggesting distinct molecular mechanisms by which the loss of MRKN3 results in early pubertal onset.
Collapse
Affiliation(s)
- John C Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keisha Bird
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Filiz Tütüncüler
- Department of Pediatrics and Pediatric Endocrinology Unit, Trakya University Faculty of Medicine, Edirne 22030, Turkey
| | - Sidney A Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vitoria Simas
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonardo Garcia
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie A Roberts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Delanie Macedo
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Magnuson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Priscila Gagliardi
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Selma F Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Khabibullina DA, Kolodkina AA, Vizerov TV, Zubkova NA, Bezlepkina OB. [Gonadotropin-dependent precocious puberty: genetic and clinical characteristics]. PROBLEMY ENDOKRINOLOGII 2023; 69:58-66. [PMID: 37448272 DOI: 10.14341/probl13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND In 90% cases of girls and 25-60% cases of boys the cause of gonadotropin-dependent precocious puberty (PP) is unclear. Up to 25-27.5% of gonadotropin-dependent PP cases are monogenic and suggest autosomal-dominant inheritance with incomplete sex-dependent penetrance. To date, mutations in genes KISS1, KISS1R, MKRN3, DLK1 have been described as causal variants leading to precocious hypothalamic-pituitary axis activation in childhood. Genetic testing in patients with hereditary forms of PP can expand our knowledge of underlying molecular mechanisms of the disease and it is also necessary for genetic counselling. AIM To study clinical features and genetic characteristics of patients with idiopathic gonadotropin-dependent precocious puberty. MATERIALS AND METHODS A group of patients with idiopathic gonadotropin-dependent precocious puberty and positive family history (early or precocious puberty) was examined. Laboratory and instrumental diagnostic tests, full-exome sequencing (NGS, next-generation sequencing) were provided for all patients. RESULTS The study included 30 patients (29 girls, 1 boy) with idiopathic gonadotropin-dependent precocious puberty. The median of patients age at the time of the examination was 7,2 years [6,5; 7,7]. Positive family history presented in all cases: in 40% of patients on father's side, in 37% - on mother's side, in 23% of patients PP was diagnosed in siblings. The fullexome sequencing was conducted to 21 patients: in 61,9% of cases (95% CI [40;79]) nucleotide variants were identified in genes, associated with gonadotropin-dependent precocious puberty. MKRN3 gene defect was detected in most cases (77% cases (95% CI [49; 92]), which consistent with international data on its highest prevalence in the monogenic forms of PP. In 23% of cases (95% CI [7; 50]) nucleotide variants were identified in other candidate genes associated with neuroontogenesis and neuroendocrine regulation mechanisms of hypothalamic-pituitary axis. CONCLUSION Our study confirms that detailed family history data in children with PP provides a rational approach to molecular-genetic testing. Data of inheritance pattern and clinical manifestations will simplify the diagnosis of hereditary forms of disease and enhance genetic counselling of families, followed by timely examination and administration of pathogenetic therapy.
Collapse
|
17
|
Naulé L, Mancini A, Pereira SA, Gassaway BM, Lydeard JR, Magnotto JC, Kim HK, Liang J, Matos C, Gygi SP, Merkle FT, Carroll RS, Abreu AP, Kaiser UB. MKRN3 inhibits puberty onset via interaction with IGF2BP1 and regulation of hypothalamic plasticity. JCI Insight 2023; 8:e164178. [PMID: 37092553 PMCID: PMC10243807 DOI: 10.1172/jci.insight.164178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sidney A. Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon M. Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John R. Lydeard
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Han Kyeol Kim
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joy Liang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cynara Matos
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian T. Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust – Medical Research Council Institute of Metabolic Science and
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
19
|
Acosta-Martínez M. Hypothalamic-Pituitary-Gonadal Axis Disorders Impacting Fertility in Both Sexes and the Potential of Kisspeptin-Based Therapies to Treat Them. Handb Exp Pharmacol 2023; 282:259-288. [PMID: 37439848 DOI: 10.1007/164_2023_666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Impaired function of the hypothalamic-pituitary-gonadal (HPG) axis can lead to a vast array of reproductive disorders some of which are inherited or acquired, but many are of unknown etiology. Among the clinical consequences of HPG impairment, infertility is quite common. According to the latest report from the World Health Organization, the global prevalence of infertility during a person's lifetime is a staggering 17.5% which translate into 1 out of every 6 people experiencing it. In both sexes, infertility is associated with adverse health events, and if unresolved, infertility can cause substantial psychological stress, social stigmatization, and economic strain. Even though significant advances have been made in the management and treatment of infertility, low or variable efficacy of treatments and medication adverse effects still pose a significant problem. However, the discovery that in humans inactivating mutations in the gene encoding the kisspeptin receptor (Kiss1R) results in pubertal failure and infertility has expanded our understanding of the mechanisms underlying the neuroendocrine control of reproduction, opening up potential new therapies for the treatment of infertility disorders. In this chapter we provide an overview of common infertility disorders affecting men and women, their recommended treatments, and the potential of kisspeptin-based pharmacotherapies to treat them.
Collapse
Affiliation(s)
- Maricedes Acosta-Martínez
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA.
| |
Collapse
|
20
|
Franssen D, Johansson HKL, Lopez-Rodriguez D, Lavergne A, Terwagne Q, Boberg J, Christiansen S, Svingen T, Parent AS. Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats. Front Endocrinol (Lausanne) 2023; 14:1140886. [PMID: 37077353 PMCID: PMC10108553 DOI: 10.3389/fendo.2023.1140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. DESIGN Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12μg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48μg/kg.d; KTZ 3-12-48mg/kg.d). RESULTS Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. CONCLUSION nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- *Correspondence: Delphine Franssen,
| | | | | | - Arnaud Lavergne
- GIGA-Bioinformatics, GIGA Institute, Université de Liège, Liège, Belgium
| | - Quentin Terwagne
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liege, Liege, Belgium
| |
Collapse
|
21
|
Shi X, Zhuang Y, Chen Z, Xu M, Kuang J, Sun XL, Gao L, Kuang X, Zhang H, Li W, Wong SZH, Liu C, Liu L, Jiang D, Pei D, Lin Y, Wu QF. Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset. SCIENCE ADVANCES 2022; 8:eabq2987. [PMID: 36383654 PMCID: PMC9668310 DOI: 10.1126/sciadv.abq2987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 05/17/2023]
Abstract
The neuroendocrine system consists of a heterogeneous collection of neuropeptidergic neurons in the brain, among which hypothalamic KNDy neurons represent an indispensable cell subtype controlling puberty onset. Although neural progenitors and neuronal precursors along the cell lineage hierarchy adopt a cascade diversification strategy to generate hypothalamic neuronal heterogeneity, the cellular logic operating within the lineage to specify a subtype of neuroendocrine neurons remains unclear. As human genetic studies have recently established a link between TBX3 mutations and delayed puberty onset, we systematically studied Tbx3-derived neuronal lineage and Tbx3-dependent neuronal specification and found that Tbx3 hierarchically established and maintained the identity of KNDy neurons for triggering puberty. Apart from the well-established lineage-dependent fate determination, we uncovered rules of interlineage interaction and intralineage retention operating through neuronal differentiation in the absence of Tbx3. Moreover, we revealed that human TBX3 mutations disturbed the phase separation of encoded proteins and impaired transcriptional regulation of key neuropeptides, providing a pathological mechanism underlying TBX3-associated puberty disorders.
Collapse
Affiliation(s)
- Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua–Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Junqi Kuang
- University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lisen Gao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Kuang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huairen Zhang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Samuel Zheng Hao Wong
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chuanyu Liu
- BGI-ShenZhen, Shenzhen 518103, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Longqi Liu
- BGI-ShenZhen, Shenzhen 518103, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Danhua Jiang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua–Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Corresponding author. (Q.-F.W.); (Y.L.)
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- Corresponding author. (Q.-F.W.); (Y.L.)
| |
Collapse
|
22
|
Roa J, Ruiz-Cruz M, Ruiz-Pino F, Onieva R, Vazquez MJ, Sanchez-Tapia MJ, Ruiz-Rodriguez JM, Sobrino V, Barroso A, Heras V, Velasco I, Perdices-Lopez C, Ohlsson C, Avendaño MS, Prevot V, Poutanen M, Pinilla L, Gaytan F, Tena-Sempere M. Dicer ablation in Kiss1 neurons impairs puberty and fertility preferentially in female mice. Nat Commun 2022; 13:4663. [PMID: 35945211 PMCID: PMC9363423 DOI: 10.1038/s41467-022-32347-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.
Collapse
Affiliation(s)
- Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain. .,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain.
| | - Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Rocio Onieva
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Maria J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Maria J Sanchez-Tapia
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Jose M Ruiz-Rodriguez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Veronica Sobrino
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Violeta Heras
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Cecilia Perdices-Lopez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Maria Soledad Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, 59000, Lille, France
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Francisco Gaytan
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain. .,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain. .,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
23
|
The Role of Genetics in Central Precocious Puberty: Confirmed and Potential Neuroendocrine Genetic and Epigenetic Contributors and Their Interactions with Endocrine Disrupting Chemicals (EDCs). ENDOCRINES 2022. [DOI: 10.3390/endocrines3030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite the growing prevalence of central precocious puberty (CPP), most cases are still diagnosed as “idiopathic” due to the lack of identifiable findings of other diagnostic etiology. We are gaining greater insight into some key genes affecting neurotransmitters and receptors and how they stimulate or inhibit gonadotropin-releasing hormone (GnRH) secretion, as well as transcriptional and epigenetic influences. Although the genetic contributions to pubertal regulation are more established in the hypogonadotropic hypogonadism (HH) literature, cases of CPP have provided the opportunity to learn more about its own genetic influences. There have been clinically confirmed cases of CPP associated with gene mutations in kisspeptin and its receptor (KISS1, KISS1R), Delta-like noncanonical Notch ligand 1 (DLK1), and the now most commonly identified genetic cause of CPP, makorin ring finger protein (MKRN3). In addition to these proven genetic causes, a number of other candidates continue to be evaluated. After reviewing the basic clinical aspects of puberty, we summarize what is known about the various genetic and epigenetic causes of CPP as well as discuss some of the potential effects of endocrine disrupting chemicals (EDCs) on some of these processes.
Collapse
|
24
|
A Review of Prader–Willi Syndrome. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prader–Willi Syndrome (PWS, OMIM #176270) is a rare complex genetic disorder due to the loss of expression of paternally derived genes in the PWS critical region on chromosome 15q11-q13. It affects multiple neuroendocrine systems and may present failure to thrive in infancy, but then, hyperphagia and morbid obesity starting in early childhood became the hallmark of this condition. Short stature, hypogonadism, sleep abnormalities, intellectual disability, and behavioral disturbances highlight the main features of this syndrome. There have been a significant number of advances in our understanding of the genetic mechanisms underlying the disease, especially discoveries of MAGEL2, NDN, MKRN3, and SNORD116 genes in the pathophysiology of PWS. However, early diagnosis and difficulty in treating some of the disease’s most disabling features remain challenging. As our understanding of PWS continues to grow, so does the availability of new therapies and management strategies available to clinicians and families.
Collapse
|
25
|
Comninos AN, Hansen MS, Courtney A, Choudhury S, Yang L, Mills EG, Phylactou M, Busbridge M, Khir M, Thaventhiran T, Bech P, Tan T, Abbara A, Frost M, Dhillo WS. Acute Effects of Kisspeptin Administration on Bone Metabolism in Healthy Men. J Clin Endocrinol Metab 2022; 107:1529-1540. [PMID: 35244717 PMCID: PMC9113799 DOI: 10.1210/clinem/dgac117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT Osteoporosis results from disturbances in bone formation and resorption. Recent nonhuman data suggest that the reproductive hormone kisspeptin directly stimulates osteoblast differentiation in vitro and thus could have clinical therapeutic potential. However, the effects of kisspeptin on human bone metabolism are currently unknown. OBJECTIVE To assess the effects of kisspeptin on human bone metabolism in vitro and in vivo. METHODS In vitro study: of Mono- and cocultures of human osteoblasts and osteoclasts treated with kisspeptin. Clinical study: Randomized, placebo-controlled, double-blind, 2-way crossover clinical study in 26 men investigating the effects of acute kisspeptin administration (90 minutes) on human bone metabolism, with blood sampling every 30 minutes to +90 minutes. Cells for the in vitro study were from 12 male blood donors and 8 patients undergoing hip replacement surgery. Twenty-six healthy eugonadal men (age 26.8 ± 5.8 years) were included in the clinical study. The intervention was Kisspeptin (vs placebo) administration. The main outcome measures were changes in bone parameters and turnover markers. RESULTS Incubation with kisspeptin in vitro increased alkaline phosphatase levels in human bone marrow mesenchymal stem cells by 41.1% (P = .0022), and robustly inhibited osteoclastic resorptive activity by up to 53.4% (P < .0001), in a dose-dependent manner. Kisspeptin administration to healthy men increased osteoblast activity, as evidenced by a 20.3% maximal increase in total osteocalcin (P = .021) and 24.3% maximal increase in carboxylated osteocalcin levels (P = .014). CONCLUSION Collectively, these data provide the first human evidence that kisspeptin promotes osteogenic differentiation of osteoblast progenitors and inhibits bone resorption in vitro. Furthermore, kisspeptin acutely increases the bone formation marker osteocalcin but not resorption markers in healthy men, independent of downstream sex steroid levels. Kisspeptin could therefore have clinical therapeutic application in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Morten S Hansen
- KMEB Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Denmark
- Department of Clinical Research, University of Southern Denmark, Denmark
| | - Alan Courtney
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Sirazum Choudhury
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Maria Phylactou
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Mark Busbridge
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Muaza Khir
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Thilipan Thaventhiran
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Paul Bech
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Morten Frost
- KMEB Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Denmark
- Department of Clinical Research, University of Southern Denmark, Denmark
- Steno Diabetes Centre, Odense University Hospital, Denmark
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
26
|
Abstract
Pubertal onset is known to result from reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, which is controlled by complex interactions of genetic and nongenetic factors. Most cases of precocious puberty (PP) are diagnosed as central PP (CPP), defined as premature activation of the HPG axis. The cause of CPP in most girls is not identifiable and, thus, referred to as idiopathic CPP (ICPP), whereas boys are more likely to have an organic lesion in the brain. ICPP has a genetic background, as supported by studies showing that maternal age at menarche is associated with pubertal timing in their offspring. A gain of expression in the kisspeptin gene (KISS1), gain-of-function mutation in the kisspeptin receptor gene (KISS1R), loss-of-function mutation in makorin ring finger protein 3 (MKRN3), and loss-of-function mutations in the delta-like homolog 1 gene (DLK1) have been associated with ICPP. Other genes, such as gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), lin-28 homolog B (LIN28B), neuropeptide Y (NPYR), tachykinin 3 (TAC3), and tachykinin receptor 3 (TACR3), have been implicated in the progression of ICPP, although their relationships require elucidation. Environmental and socioeconomic factors may also be correlated with ICPP. In the progression of CPP, epigenetic factors such as DNA methylation, histone posttranslational modifications, and noncoding ribonucleic acids may mediate the relationship between genetic and environmental factors. CPP is correlated with short- and long-term adverse health outcomes, which forms the rationale for research focusing on understanding its genetic and nongenetic factors.
Collapse
Affiliation(s)
- Young Suk Shim
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
27
|
Palumbo S, Cirillo G, Aiello F, Papparella A, Miraglia del Giudice E, Grandone A. MKRN3 role in regulating pubertal onset: the state of art of functional studies. Front Endocrinol (Lausanne) 2022; 13:991322. [PMID: 36187104 PMCID: PMC9523110 DOI: 10.3389/fendo.2022.991322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Puberty is a critical process characterized by several physical and psychological changes that culminate in the achievement of sexual maturation and fertility. The onset of puberty depends on several incompletely understood mechanisms that certainly involve gonadotropin-releasing hormone (GnRH) and its effects on the pituitary gland. The role of makorin ring finger protein 3 (MKRN3) in the regulation of pubertal timing was revealed when loss-of-function mutations were identified in patients with central precocious puberty (CPP), which to date, represent the most commonly known genetic cause of this condition. The MKRN3 gene showed ubiquitous expression in tissues from a broad spectrum of species, suggesting an important cellular role. Its involvement in the initiation of puberty and endocrine functions has just begun to be studied. This review discusses some of the recent approaches developed to predict MKRN3 functions and its involvement in pubertal development.
Collapse
|
28
|
Abstract
Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The onset of puberty is first detected as an increase in pulsatile secretion of gonadotropin-releasing hormone (GnRH). Pubertal onset is regulated by genetic, nutritional, environmental, and socio-economic factors. Disturbances affecting pubertal timing result in adverse health conditions later in life. Human genetic studies show that around 50-80% of the variation in pubertal onset is genetically determined. The genetic control of pubertal timing has been a field of active investigation in attempt to better understand the neuroendocrine control of this relevant period of life. Large populational studies and patient cohort-based studies have provided insights into the genetic regulation of pubertal onset. In this review, we discuss these discoveries and discuss potential mechanisms for how implicated genes may affect pubertal timing.
Collapse
Affiliation(s)
- Alessandra Mancini
- Department of Medicine, Harvard Medical School, Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Boston, USA.
| | - John C Magnotto
- Department of Medicine, Harvard Medical School, Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Boston, USA.
| | - Ana Paula Abreu
- Department of Medicine, Harvard Medical School, Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Boston, USA.
| |
Collapse
|
29
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
30
|
Tajima T. Genetic causes of central precocious puberty. Clin Pediatr Endocrinol 2022; 31:101-109. [PMID: 35928377 PMCID: PMC9297165 DOI: 10.1297/cpe.2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Central precocious puberty (CPP) is a condition in which the
hypothalamus–pituitary–gonadal system is activated earlier than the normal developmental
stage. The etiology includes organic lesions in the brain; however, in the case of
idiopathic diseases, environmental and/or genetic factors are involved in the development
of CPP. A genetic abnormality in KISS1R, that encodes the kisspeptin
receptor, was first reported in 2008 as a cause of idiopathic CPP. Furthermore, genetic
alterations in KISS1, MKRN3, DLK1, and
PROKR2 have been reported in idiopathic and/or familial CPP. Of these,
MKRN3 has the highest frequency of pathological variants associated
with CPP worldwide; but, abnormalities in MKRN3 are rare in patients in
East Asia, including Japan. MKRN3 and DLK1 are maternal
imprinting genes; thus, CPP develops when a pathological variant is inherited from the
father. The mechanism of CPP due to defects in MKRN3 and
DLK1 has not been completely clarified, but it is suggested that both
may negatively control the progression of puberty. CPP due to such a single gene
abnormality is extremely rare, but it is important to understand the mechanisms of puberty
and reproduction. A further development in the genetics of CPP is expected in the
future.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University Tochigi Children’ Medical Center, Tochigi, Japan
| |
Collapse
|
31
|
Jiang LQ, Zhou YQ, Yuan K, Zhu JF, Fang YL, Wang CL. Rare mutation in MKRN3 in two twin sisters with central precocious puberty: Two case reports. World J Clin Cases 2021; 9:10018-10023. [PMID: 34877345 PMCID: PMC8610925 DOI: 10.12998/wjcc.v9.i32.10018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Caused by premature activation of the hypothalamic-pituitary-gonadal axis, there is increasing incidence of central precocious puberty (CPP), especially in girls. Makorin ring finger protein 3 (MKRN3), a maternal imprinted gene with a highly conserved sequence, is the most common genetic etiology associated with CPP. Approximately 50 different mutations in MKRN3 have been found in CPP.
CASE SUMMARY This case report involves identical twin sisters presenting with premature thelarche at the age of 6 years. The left hand bone age of both patients revealed advanced age (9 years). Pelvic B ultrasound indicated enlargement of the ovaries. Luteinizing hormone (LH) releasing hormone testing confirmed CPP. Whole-exome sequencing detected the c.841C>T mutation in MKRN3, leading to a single base substitution, in the twins. This mutation was inherited from the father and paternal grandmother. After 3 mo of treatment with a gonadotropin-releasing hormone analog, levels of LH, follicle-stimulating hormone, and estradiol in the proband’s sister returned to normal levels.
CONCLUSION Here, we report a rare mutation (c.841C>T) in MKRN3 in identical twin sisters with CPP.
Collapse
Affiliation(s)
- Li-Qiong Jiang
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yan-Qiong Zhou
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ke Yuan
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Fang Zhu
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yan-Lan Fang
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Chun-Lin Wang
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
32
|
Vazquez MJ, Daza-Dueñas S, Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc 2021; 5:bvab152. [PMID: 34703958 PMCID: PMC8533971 DOI: 10.1210/jendso/bvab152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms that allow a perfect match between environmental conditions and internal cues to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons because major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be discussed.
Collapse
Affiliation(s)
- Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.,Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
33
|
Zhang S, Liu C, Li G, Liu Y, Wang X, Qiu Y. Elevated expression of MKRN3 in squamous cell carcinoma of the head and neck and its clinical significance. Cancer Cell Int 2021; 21:557. [PMID: 34689784 PMCID: PMC8543891 DOI: 10.1186/s12935-021-02271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck (SCCHN) is one of the most common types of cancer that cause a substantial number of cancer-related deaths. Our previous study has revealed that makorin ring finger protein 3 (MKRN3) may act as a key regulator of the SCCHN tumorigenesis; however, its specific role in SCCHN progression has not been reported. METHODS The Cancer Genome Atlas (TCGA) data analysis and quantitative polymerase chain reaction (qPCR) were used to quantify the MKRN3 mRNA expression levels in SCCHN; immunohistochemical staining or immunoblotting analyses were performed to detect MKRN3 protein expression. Kaplan-Meier plotter was used to assess the prognostic values of MKRN3 in terms of overall survival and disease-free survival. The expression differences based on various clinicopathological features were evaluated using subgroup analysis and forest map analysis. The regulatory mechanism of MKRN3 was further investigated using gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Subsequently, STRING was used to perform a co-expression and enrichment analysis for MKRN3. Homologous modeling, molecular docking, and western blot analyses were performed to investigate the relationship between MKRN3 and its potential target gene P53. RESULTS MKRN3 was ectopically expressed between cancerous and noncancerous SCCHN tissues, and its expression level was tightly associated with high T classifications as well as advanced clinical stages. qPCR analysis revealed that MKRN3 was upregulated in the SCCHN cell line. Moreover, Kaplan-Meier and Cox regression analyses indicated that SCCHN patients with high MKRN3 expression had poorer prognosis and that MKRN3 was a potential prognostic marker for SCCHN. Using gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses, we determined that MKRN3 may be involved in the regulation of synthesis and metabolism and cell growth, death and motility, as well as cancer pathways associated with SCCHN progression. Mechanism investigation further revealed that P53, a potential target of MKRN3, may be involved in the SCCHN tumorigenesis mediated by MKRN3. CONCLUSIONS We performed a comprehensive evaluation of the clinical significance of MKRN3 and explored its underlying mechanisms. We concluded that MKRN3 represents a valuable predictive biomarker and potential therapeutic target in SCCHN.
Collapse
Affiliation(s)
- Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Xingwei Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China. .,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China.
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China. .,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
34
|
Neocleous V, Fanis P, Toumba M, Gorka B, Kousiappa I, Tanteles GA, Iasonides M, Nicolaides NC, Christou YP, Michailidou K, Nicolaou S, Papacostas SS, Christoforidis A, Kyriakou A, Vlachakis D, Skordis N, Phylactou LA. Pathogenic and Low-Frequency Variants in Children With Central Precocious Puberty. Front Endocrinol (Lausanne) 2021; 12:745048. [PMID: 34630334 PMCID: PMC8498594 DOI: 10.3389/fendo.2021.745048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Central precocious puberty (CPP) due to premature activation of GnRH secretion results in early epiphyseal fusion and to a significant compromise in the achieved final adult height. Currently, few genetic determinants of children with CPP have been described. In this translational study, rare sequence variants in MKRN3, DLK1, KISS1, and KISS1R genes were investigated in patients with CPP. Methods Fifty-four index girls and two index boys with CPP were first tested by Sanger sequencing for the MKRN3 gene. All children found negative (n = 44) for the MKRN3 gene were further investigated by whole exome sequencing (WES). In the latter analysis, the status of variants in genes known to be related with pubertal timing was compared with an in-house Cypriot control cohort (n = 43). The identified rare variants were initially examined by in silico computational algorithms and confirmed by Sanger sequencing. Additionally, a genetic network for the MKRN3 gene, mimicking a holistic regulatory depiction of the crosstalk between MKRN3 and other genes was designed. Results Three previously described pathogenic MKRN3 variants located in the coding region of the gene were identified in 12 index girls with CPP. The most prevalent pathogenic MKRN3 variant p.Gly312Asp was exclusively found among the Cypriot CPP cohort, indicating a founder effect phenomenon. Seven other CPP girls harbored rare likely pathogenic upstream variants in the MKRN3. Among the 44 CPP patients submitted to WES, nine rare DLK1 variants were identified in 11 girls, two rare KISS1 variants in six girls, and two rare MAGEL2 variants in five girls. Interestingly, the frequent variant rs10407968 (p.Gly8Ter) of the KISS1R gene appeared to be less frequent in the cohort of patients with CPP. Conclusion The results of the present study confirm the importance of the MKRN3-imprinted gene in genetics of CPP and its key role in pubertal timing. Overall, the results of the present study have emphasized the importance of an approach that aligns genetics and clinical aspects, which is necessary for the management and treatment of CPP.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Meropi Toumba
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Barbara Gorka
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George A Tanteles
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Michalis Iasonides
- Department of Pediatrics, Iliaktida Paediatric & Adolescent Medical Centre, Limassol, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Nicolas C Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yiolanda P Christou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stella Nicolaou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Savvas S Papacostas
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
- Centre for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia, Nicosia, Cyprus
| | - Athanasios Christoforidis
- First Pediatric Department, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Kyriakou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- St George's, University of London Medical School, University of Nicosia, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for specialized Pediatrics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
35
|
Yin X, Wang J, Han T, Tingting Z, Li Y, Dong Z, Wang W, Li C, Lu W. A Novel Loss-of-Function MKRN3 Variant in a Chinese Patient With Familial Precocious Puberty: A Case Report and Functional Study. Front Genet 2021; 12:663746. [PMID: 34421985 PMCID: PMC8378174 DOI: 10.3389/fgene.2021.663746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Central precocious puberty (CPP) is one of the most common and complex problems in clinical pediatric endocrinology practice. Mutation of the MKRN3 gene can cause familial CPP. Methods and Results: Here we reported a Chinese patient bearing a novel MKRN3 mutation (c.G277A/p.Gly93Ser) and showing the CPP phenotype. Functional studies found that this mutation of MKRN3 attenuated its autoubiquitination, degradation, and inhibition on the transcriptional activity of GNRH1, KISS1, and TAC3 promoters. Conclusion: MKRN3 (Gly93Ser) is a loss-of-function mutation, which attenuates the inhibition on GnRH1-related signaling, suggesting that this mutant can lead to central precocious puberty.
Collapse
Affiliation(s)
- Xueling Yin
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Tianting Han
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zhang Tingting
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Li
- Shanghai QingCongquan Training Center for Children With Special Needs, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyin Li
- Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Li K, Zheng X, Tang H, Zang YS, Zeng C, Liu X, Shen Y, Pang Y, Wang S, Xie F, Lu X, Luo Y, Li Z, Bi W, Jia X, Huang T, Wei R, Huang K, Chen Z, Zhu Q, He Y, Zhang M, Gu Z, Xiao Y, Zhang X, Fletcher JA, Wang Y. E3 ligase MKRN3 is a tumor suppressor regulating PABPC1 ubiquitination in non-small cell lung cancer. J Exp Med 2021; 218:e20210151. [PMID: 34143182 PMCID: PMC8217967 DOI: 10.1084/jem.20210151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Central precocious puberty (CPP), largely caused by germline mutations in the MKRN3 gene, has been epidemiologically linked to cancers. MKRN3 is frequently mutated in non-small cell lung cancers (NSCLCs) with five cohorts. Genomic MKRN3 aberrations are significantly enriched in NSCLC samples harboring oncogenic KRAS mutations. Low MKRN3 expression levels correlate with poor patient survival. Reconstitution of MKRN3 in MKRN3-inactivated NSCLC cells directly abrogates in vitro and in vivo tumor growth and proliferation. MKRN3 knockout mice are susceptible to urethane-induced lung cancer, and lung cell-specific knockout of endogenous MKRN3 accelerates NSCLC tumorigenesis in vivo. A mass spectrometry-based proteomics screen identified PABPC1 as a major substrate for MKRN3. The tumor suppressor function of MKRN3 is dependent on its E3 ligase activity, and MKRN3 missense mutations identified in patients substantially compromise MKRN3-mediated PABPC1 ubiquitination. Furthermore, MKRN3 modulates cell proliferation through PABPC1 nonproteolytic ubiquitination and subsequently, PABPC1-mediated global protein synthesis. Our integrated approaches demonstrate that the CPP-associated gene MKRN3 is a tumor suppressor.
Collapse
Affiliation(s)
- Ke Li
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xufen Zheng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Tang
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China
| | - Chunling Zeng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiao Liu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanying Shen
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhi Pang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Simin Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Xie
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Lu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxiang Luo
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhang Li
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenbo Bi
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaona Jia
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- Bioinformatics Core, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rongqiang Wei
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Kenan Huang
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Zihao Chen
- Department of Thoracic Surgery, Changzheng Hospital, Shanghai, China
| | - Qingchen Zhu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi He
- Department of Urology, No. 1 Hospital of Jiaxing, Jiaxing, China
| | - Miaoying Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhizhan Gu
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Yuexiang Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health–Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Varimo T, Iivonen AP, Känsäkoski J, Wehkalampi K, Hero M, Vaaralahti K, Miettinen PJ, Niedziela M, Raivio T. Familial central precocious puberty: two novel MKRN3 mutations. Pediatr Res 2021; 90:431-435. [PMID: 33214675 DOI: 10.1038/s41390-020-01270-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Paternally inherited loss-of-function mutations in MKRN3 underlie central precocious puberty (CPP). We describe clinical and genetic features of CPP patients with paternally inherited MKRN3 mutations in two independent families. METHODS The single coding exon of MKRN3 was analyzed in three patients with CPP and their family members, followed by segregation analyses. Additionally, we report the patients' responses to GnRH analog treatment. RESULTS A paternally inherited novel heterozygous c.939C>G, p.(Ile313Met) missense mutation affecting the RING finger domain of MKRN3 was found in a Finnish girl with CPP (age at presentation 6 years). Two Polish siblings (a girl presenting with B2 at the age of 4 years and a boy with adult size testes at the age of 9 years) had inherited a novel heterozygous MKRN3 mutation c.1237_1252delGGAGACACATGCTTTT p.(Gly413Thrfs*63) from their father. The girls were treated with GnRH analogs, which exhibited suppression of the hypothalamic-pituitary-gonadal axis. In contrast, the male patient was not treated, yet he reached his target height. CONCLUSIONS We describe two novel MKRN3 mutations in three CPP patients. The first long-term data on a boy with CPP due to an MKRN3 mutation questions the role of GnRH analog treatment in augmenting adult height in males with this condition. IMPACT We describe the genetic cause for central precocious puberty (CPP) in two families. This report adds two novel MKRN3 mutations to the existing literature. One of the mutations, p.(Ile313Met) affects the RING finger domain of MKRN3, which has been shown to be important for repressing the promoter activity of KISS1 and TAC3. We describe the first long-term observation of a male patient with CPP due to a paternally inherited MKRN3 loss-of-function mutation. Without GnRH analog treatment, he achieved an adult height that was in accordance with his mid-parental target height.
Collapse
Affiliation(s)
- Tero Varimo
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Karoliina Wehkalampi
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Matti Hero
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Taneli Raivio
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
38
|
Correa‐da‐Silva F, Fliers E, Swaab DF, Yi C. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J Neuroendocrinol 2021; 33:e12994. [PMID: 34156126 PMCID: PMC8365683 DOI: 10.1111/jne.12994] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.
Collapse
Affiliation(s)
- Felipe Correa‐da‐Silva
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Chun‐Xia Yi
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
39
|
Seraphim CE, Canton APM, Montenegro L, Piovesan MR, Macedo DB, Cunha M, Guimaraes A, Ramos CO, Benedetti AFF, de Castro Leal A, Gagliardi PC, Antonini SR, Gryngarten M, Arcari AJ, Abreu AP, Kaiser UB, Soriano-Guillén L, Escribano-Muñoz A, Corripio R, Labarta JI, Travieso-Suárez L, Ortiz-Cabrera NV, Argente J, Mendonca BB, Brito VN, Latronico AC. Genotype-Phenotype Correlations in Central Precocious Puberty Caused by MKRN3 Mutations. J Clin Endocrinol Metab 2021; 106:1041-1050. [PMID: 33383582 PMCID: PMC7993586 DOI: 10.1210/clinem/dgaa955] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Loss-of-function mutations of makorin RING finger protein 3 (MKRN3) are the most common monogenic cause of familial central precocious puberty (CPP). OBJECTIVE To describe the clinical and hormonal features of a large cohort of patients with CPP due to MKRN3 mutations and compare the characteristics of different types of genetic defects. METHODS Multiethnic cohort of 716 patients with familial or idiopathic CPP screened for MKRN3 mutations using Sanger sequencing. A group of 156 Brazilian girls with idiopathic CPP (ICPP) was used as control group. RESULTS Seventy-one patients (45 girls and 26 boys from 36 families) had 18 different loss-of-function MKRN3 mutations. Eight mutations were classified as severe (70% of patients). Among the 71 patients, first pubertal signs occurred at 6.2 ± 1.2 years in girls and 7.1 ± 1.5 years in boys. Girls with MKRN3 mutations had a shorter delay between puberty onset and first evaluation and higher follicle-stimulating hormone levels than ICPP. Patients with severe MKRN3 mutations had a greater bone age advancement than patients with missense mutations (2.3 ± 1.6 vs 1.6 ± 1.4 years, P = .048), and had higher basal luteinizing hormone levels (2.2 ± 1.8 vs 1.1 ± 1.1 UI/L, P = .018) at the time of presentation. Computational protein modeling revealed that 60% of the missense mutations were predicted to cause protein destabilization. CONCLUSION Inherited premature activation of the reproductive axis caused by loss-of-function mutations of MKRN3 is clinically indistinct from ICPP. However, the type of genetic defect may affect bone age maturation and gonadotropin levels.
Collapse
Affiliation(s)
- Carlos Eduardo Seraphim
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Correspondence: Ana Claudia Latronico, MD, PhD, Hospital das Clínicas da FMUSP, Divisão de Endocrinologia e Metabologia, Av. Dr. Enéas de Carvalho Aguiar, 255, 7o andar, sala 7037—CEP: 05403-900—Cerqueira César—São Paulo, SP, Brazil. and
| | - Ana Pinheiro Machado Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maiara Ribeiro Piovesan
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Delanie B Macedo
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marina Cunha
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aline Guimaraes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Oliveira Ramos
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anna Flavia Figueiredo Benedetti
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andrea de Castro Leal
- Departamento de Saúde Integrada da Universidade do Estado do Pará (UEPA), Santarém, Pará, Brazil
| | - Priscila C Gagliardi
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children’s Clinic, Jacksonville, FL, USA
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Mirta Gryngarten
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (Consejo Nacional de Investigaciones Científicas y Técnicas – FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez), Buenos Aires, Argentina
| | - Andrea J Arcari
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (Consejo Nacional de Investigaciones Científicas y Técnicas – FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez), Buenos Aires, Argentina
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Leandro Soriano-Guillén
- Department of Pediatrics, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish PUBERE Registry, Madrid, Spain
| | - Arancha Escribano-Muñoz
- Endocrinology Unit, Department of Pediatrics, University Hospital Virgen of Arrixaca, Spanish PUBERE Registry, Murcia, Spain
| | - Raquel Corripio
- Pediatric Endocrinology Department, Corporació Parc Taulí Hospital Universitari. Institut d’Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona. Spanish PUBERE Registry, Sabadell, Spain
| | - José I Labarta
- Pediatric Endocrinology Unit, Department of Pediatrics, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón, Spanish PUBERE Registry, Zaragoza, Spain
| | - Lourdes Travieso-Suárez
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA Institute, Madrid, Spain
| | - Nelmar Valentina Ortiz-Cabrera
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA Institute, Madrid, Spain
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA Institute, Madrid, Spain
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vinicius N Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Naulé L, Maione L, Kaiser UB. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021; 162:bqaa209. [PMID: 33175140 PMCID: PMC7733306 DOI: 10.1210/endocr/bqaa209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Department Endocrinology and Reproductive Diseases, Bicêtre Hospital, Paris, France
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Shalev D, Melamed P. The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Mol Cell Endocrinol 2020; 518:111031. [PMID: 32956708 DOI: 10.1016/j.mce.2020.111031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Puberty is programmed through a multifactorial gene network which works to activate the pulsatile secretion of the gonadotropin releasing hormone (GnRH), and subsequently elevate circulating levels of the pituitary gonadotropins that stimulate gonadal activity. Although this developmental transition normally occurs at a limited age-range in individuals of the same genetic background and environment, pubertal onset can occur prematurely or be delayed following changes in ambient conditions, or due to genetic variations or mutations, many of which have remained elusive due to their location in distal regulatory elements. Growing evidence is pointing to a pivotal role for the epigenome in regulating key genes in the reproductive hypothalamus and pituitary at this time, which might mediate some of the plasticity of pubertal timing. This review will address epigenetic mechanisms which have been demonstrated in the KNDy neurons that increase the output of pulsatile GnRH, and those involved in activation of the GnRH gene and its receptor, and describes how GnRH utilizes epigenetic mechanisms to stimulate transcription of the pituitary gonadotropin genes in the context of the chromatin landscape.
Collapse
Affiliation(s)
- Dor Shalev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
42
|
Maione L, Naulé L, Kaiser UB. Makorin RING finger protein 3 and central precocious puberty. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:152-159. [PMID: 32984644 PMCID: PMC7518508 DOI: 10.1016/j.coemr.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Makorin RING finger protein 3 (MKRN3) is a key inhibitor of the hypothalamic-pituitary-gonadal axis. Loss-of-function mutations in MKRN3 cause familial and sporadic central precocious puberty (CPP), while polymorphisms are associated with age at menarche. To date, 115 patients with CPP carrying MKRN3 mutations have been described, harboring 48 different genetic variants. The prevalence of MKRN3 mutations in genetically screened populations with CPP is estimated at 9.0%. Girls are more commonly and more seriously affected than boys. MKRN3 is expressed in humans and rodents in the central nervous system. Circulating levels in humans and hypothalamic expression in rodents decrease during pubertal progression. Although some MKRN3 regulators have been identified, the precise mechanism by which MKRN3 inhibits the hypothalamic-pituitary-gonadal axis remains elusive. The role of makorins in developmental physiology and organ differentiation and the role of maternal imprinting are discussed herein.
Collapse
Affiliation(s)
- Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
43
|
Vanacker C, Trova S, Shruti S, Casoni F, Messina A, Croizier S, Malone S, Ternier G, Hanchate NK, Rasika S, Bouret SG, Ciofi P, Giacobini P, Prevot V. Neuropilin-1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO J 2020; 39:e104633. [PMID: 32761635 PMCID: PMC7527814 DOI: 10.15252/embj.2020104633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sara Trova
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sonal Shruti
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Filippo Casoni
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Andrea Messina
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sophie Croizier
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Samuel Malone
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Naresh Kumar Hanchate
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - S Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sebastien G Bouret
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Philippe Ciofi
- Inserm U1215Neurocentre MagendieBordeauxFrance
- Université de BordeauxBordeauxFrance
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| |
Collapse
|
44
|
Abbara A, Dhillo WS. Makorin rings the kisspeptin bell to signal pubertal initiation. J Clin Invest 2020; 130:3957-3960. [PMID: 32687068 PMCID: PMC7410055 DOI: 10.1172/jci139586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The signals maintaining quiescence of the reproductive endocrine axis during childhood before its reawakening at puberty had been enigmatic. Studies in patients with abnormal puberty have illuminated the identity of the signals; kisspeptin has emerged as a major stimulator of puberty, and makorin RING finger protein 3 (MKRN3) as an inhibitory signal that prevents premature initiation of puberty. In this issue of the JCI, Abreu et al. investigated the mechanism by which MKRN3 regulates pubertal onset. The authors found that a reduction in MKRN3 alleviated the constraint on kisspeptin-expressing neurons to allow pubertal initiation, a phenomenon observed across species, including nonhuman primates. Further, the ubiquitinase activity of MKRN3 required its RING finger domain, in order to repress the promoter activity of genes encoding kisspeptin and neurokinin B. These data advance our understanding of the regulation of kisspeptin-expressing neurons by MKRN3 to initiate puberty.
Collapse
|
45
|
Nguyen T, Wen S, Gong M, Yuan X, Xu D, Wang C, Jin J, Zhou L. Dapagliflozin Activates Neurons in the Central Nervous System and Regulates Cardiovascular Activity by Inhibiting SGLT-2 in Mice. Diabetes Metab Syndr Obes 2020; 13:2781-2799. [PMID: 32848437 PMCID: PMC7425107 DOI: 10.2147/dmso.s258593] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE This study investigates the possible effect and central mechanism of novel antidiabetic medication sodium glucose transporter-2 (SGLT-2i) on the cardiovascular activity. MATERIAL AND METHODS Thirty-four normal male C57BL/6 mice were randomly assigned to 2 groups to receive single Dapagliflozin (1.52mg/kg) dose via intragastric gavage or a comparable dose of saline. Glycemic level (BG), blood pressure (BP) and heart rate (HR) were measured 2 hours after administration of the respective treatments. Immunohistochemical tests were performed to determine the effect of SGLT-2i on neural localization of SGLT-2 and c-Fos, a neural activator. The distributional relationships of SGLT-2 and c-Fos were examined by immunofluorescence. RESULTS Administration of SGLT-2i significantly decreased BP but did not affect the HR. There was no difference in BG between the two groups. Results showed that SGLT-2 was localized to specific regions involved in autonomic control. Expression of c-Fos was significantly higher in major critical nuclei in the aforementioned regions in groups treated with Dapagliflozin. CONCLUSION This study demonstrates that SGLT-2 is expressed in CNS tissues involved in autonomic control and possibly influence cardiovascular function. Dapagliflozin influences central autonomic activity via unidentified pathways by inhibiting central or peripheral SGLT-2. These results provide a new concept that sympathetic inhibition by SGLT-2i can be mediated by central autonomic system, a mechanism that explains how SGLT-2i improves the cardiovascular function.
Collapse
Affiliation(s)
- Thiquynhnga Nguyen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Jianlan Jin
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
- Correspondence: Ligang Zhou Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of ChinaTel +86 13611927616 Email
| |
Collapse
|