1
|
Tan Y, Xia H, Song Q. Research mapping of cannabinoids and endocannabinoid system in cancer over the past three decades: insights from bibliometric analysis. Front Pharmacol 2025; 16:1540619. [PMID: 40242437 PMCID: PMC12000044 DOI: 10.3389/fphar.2025.1540619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Background The cannabinoids and endocannabinoid system are thought to play critical roles in multiple signaling pathways in organisms, and extensive evidence from preclinical studies indicated that cannabinoids and endocannabinoids displayed anticancer potential. This study aimed to summarize the research of cannabinoids and endocannabinoid system in cancer through bibliometric analysis. Methods Relevant literature in the field of cannabinoids and endocannabinoid system in cancer published during 1995-2024 were collected from the Web of Science Core Collection database. VOSviewer and SCImago Graphica were applied to perform bibliometric analysis of countries, institutions, authors, journals, documents, and keywords. Results A total of 3,052 publications were identified, and the global output exhibited a generally upward trend over the past 3 decades. The USA had the greatest number of publications and citations in this research field. Italian National Research Council led in terms of publication, while Complutense University of Madrid had the highest total citations. Vincenzo Di Marzo was the leading author in this field with the greatest number of publications and citations. The co-occurrence of keywords revealed that the research frontiers mainly included "cannabinoids", "endocannabinoid system", "cancer", "anandamide", "cannabidiol", "cannabinoid receptor", "apoptosis", and "proliferation". Conclusion Our results revealed that the research of cannabinoids and endocannabinoid system in cancer would receive continuous attention. The USA and Italy have made remarkable contributions to this field, supported by their influential institutions and prolific scholars. The research emphasis has evolved from basic functional characterization to mechanistic exploration of disease pathways and translational applications within multidisciplinary framework.
Collapse
Affiliation(s)
- Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Hui Xia
- Department of Pharmacy, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Qi Song
- Department of Pharmacy, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Kaur A, Singh I, Kohli I, Singh Bhupal S, Patel J, Nikzad N, Sohal A, Yang J. Association of Cannabis Use with Complications Among Patients with Gastroesophageal Reflux Disease: Insights from National Inpatient Sample. Cannabis Cannabinoid Res 2025; 10:e333-e340. [PMID: 38700593 DOI: 10.1089/can.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Background/Objective: Cannabis, one of the most widely used recreational drug in the United States, has had a significant surge in usage following its legalization in 1996. In recent years, there has been research into the physiological effects of cannabis on the gastrointestinal (GI) system. Our study aims to systematically examine the association between cannabis use and complications of gastroesophageal reflux disease (GERD). Materials and Methods: We queried the 2016-2020 National Inpatient Sample database to identify patient encounters with GERD. Patients with eosinophilic esophagitis or missing demographics were excluded. We compared patient demographics, comorbidities, and complications among cannabis users and nonusers. Multivariate logistic regression analysis was used to investigate the relationship between cannabis use and complications of GERD. Results: A total of 27.2 million patient encounters were included in the analysis, out of which 507,190 were cannabis users. Majority of the cannabis users were aged between 45-64 years (46.6%), males (57.4%), White (63.84%), and belonged to the lowest income quartile (40.6%). Cannabis users demonstrated a higher prevalence of esophagitis compared to nonusers (6.11% vs. 3.23%, p<0.001). However, they exhibited a lower rates of esophageal stricture (0.6% vs. 0.8%, p<0.001) and esophageal cancer (0.2% vs. 0.24%, p<0.001). After adjusting for confounding factors, cannabis users were noted to have higher odds of esophagitis (adjusted odds ratio [aOR]: 1.34, 95% confidence interval [CI]: 1.30-1.39, p<0.001). A lower odds of esophageal stricture (aOR: 0.88, 95% CI: 0.81-0.96, p=0.02) and esophageal cancer (aOR: 0.48,95% CI: 0.42-0.57, p<0.001) were noted. Conclusion: Our cross-sectional study using the nationally available database indicates an association between cannabis use and higher odds of esophagitis, along with lower odds of esophageal stricture and cancer. While these findings suggest a potential relationship between cannabis use and esophageal complications, it is limited in establishing causality. Therefore, further long-term studies are warranted to understand the mechanism behind this association and to determine if cannabis use has an impact on esophagus.
Collapse
Affiliation(s)
- Avneet Kaur
- Department of Internal Medicine, Punjab Institute of Medicine Sciences, Jalandhar, India
| | - Ishandeep Singh
- Department of Internal Medicine, Dayanand Medical College and Hospital, India
| | - Isha Kohli
- Graduate Program in Public Health, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Sahiljot Singh Bhupal
- Department of Health Information Systems and Technology, Claremont Graduate University, Claremont, California, USA
| | - Jay Patel
- Department of Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nikki Nikzad
- Department of Hepatology, Liver Institute Northwest, Seattle, Washington, USA
| | - Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, Washington, USA
| | - Juliana Yang
- Department of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Al-Eitan L, Kharmah HA. Effect of EMB-FUBINACA on brain endothelial cell angiogenesis: Expression analysis of angiogenic markers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1613-1624. [PMID: 39136736 DOI: 10.1007/s00210-024-03322-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/21/2024] [Indexed: 02/14/2025]
Abstract
Angiogenesis is the process by which blood vessels are generated from preexisting ones. Synthetic cannabinoids represent new psychoactive substances that bind to the cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R) and simulate similar effects of tetrahydrocannabinol, the primary component found in cannabis. In the present study, we used the synthetic cannabinoid EMB-FUBINACA to study its impact on brain angiogenesis. Human brain microvascular endothelial cells (HBMECs) were cultivated in DMEM media before being subjected to different concentrations of EMB-FUBINACA and the control. Cell viability and the migration rates of HBMECs were evaluated using the viability and wound healing assays, respectively. An in vitro Matrigel Tube Formation Assay was carried out to measure the angiogenic capacity of endothelial cells. Angiopoietin-1 (ANG-1), Angiopoietin-2 (ANG-2), and vascular endothelial growth factor (VEGF) mRNA expression were detected using Real-Time PCR. The released VEGF, ANG-1, and ANG-2 concentrations were detected using ELISA. Western blotting was performed to measure the levels of phosphorylated GSK-3β, VEGF, ANG-1, and ANG-2. EMB-FUBINACA stimulated endothelial cell proliferation, migration, and capillary tube-like formation and promoted the expression of proangiogenic factors on RNA and protein levels. This study points out that the synthetic cannabinoid EMB-FUBINACA is a potential candidate for further investigations to confirm its potential as an inducer of brain angiogenesis. This could encourage researchers to create a new therapeutic approach for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Hana Abu Kharmah
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Tjahjono E, Daneman MR, Meika B, Revtovich AV, Kirienko NV. Mitochondrial abnormalities as a target of intervention in acute myeloid leukemia. Front Oncol 2025; 14:1532857. [PMID: 39902131 PMCID: PMC11788353 DOI: 10.3389/fonc.2024.1532857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy; it is the most common acute leukemia in adults. AML prognosis is often poor, and relapse often occurs after initial remission. Recurrent genetic abnormalities underlying this disease and the presence of leukemic stem cells complicate disease treatment. However, the complex metabolic reprogramming that enables the unrestrained cell growth seen in these cells may also be their Achilles' heel. In these cells, mitophagy operates as a double-edged sword. On one hand, it provides a source of building blocks for further cell division and serves as a method for removing damaged organelles, promoting cell survival. However, the profound metabolic changes to mitochondria also render these organelles more sensitive to damage and place them precariously close to excess mitophagic activation. This review discusses the dual role mitophagy plays in AML survival, the importance of targeting mitophagy to treat AML, and current progress in the area. The discovery and mechanism of action of multiple compounds that were used to inhibit or stimulate mitophagy and their effects on AML survival are also described. Further, we explore the combination strategy of mitophagy-targeting compounds with existing and/or novel chemotherapeutics to eradicate AML and discuss strategies to uncover new drug targets and novel mitochondria-targeting drugs.
Collapse
|
5
|
Stanescu AMA, Bejan GC, Balta MD, Andronic O, Toma C, Busnatu S. The Perspective of Cannabidiol in Psoriasis Therapy. PSORIASIS (AUCKLAND, N.Z.) 2024; 14:51-61. [PMID: 38911997 PMCID: PMC11193997 DOI: 10.2147/ptt.s469698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
Psoriasis is a chronic skin condition that can significantly impact the quality of life of those affected. As an autoimmune disease, it can lead to itchy, painful, and scaly patches on the skin. Although various treatments, including topical creams, phototherapy, and systemic medications, are currently available, they may not always offer effective relief and can have side effects. Researchers have thus been exploring the potential benefits of non-psychoactive compounds such as CBD, found in Cannabis sativa plants, for treating psoriasis. CBD treatment may reduce inflammation, oxidative stress, itching, abnormal proliferation of keratinocytes, and may increase hydration. This review aims to provide an overview of the existing literature on the potential uses of CBD for psoriasis treatment.
Collapse
Affiliation(s)
- Ana Maria Alexandra Stanescu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Academy of Romanian Scientists (AOSR), Bucharest, Romania
- Emil Palade” Center of Excellence for Young Researchers EP-CEYR The Academy of Romanian Scientists AOSR, Bucharest, Romania
| | | | - Mihaela Daniela Balta
- Department 5, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Octavian Andronic
- Department 10, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristian Toma
- Department 3, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Prof.Dr. Theodor Burghele” Clinical Hospital, Bucharest, Romania
| | - Stefan Busnatu
- Department 4, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Bagdasar Arseni Clin Emergency Hospital, Bucharest, Romania
| |
Collapse
|
6
|
Boateng ST, Roy T, Agbo ME, Mahmud MA, Banang-Mbeumi S, Chamcheu RCN, Yadav RK, Bramwell M, Pham LK, Dang DD, Jackson KE, Nagalo BM, Hill RA, Efimova T, Fotie J, Chamcheu JC. Multifaceted approach toward mapping out the anticancer properties of small molecules via in vitro evaluation on melanoma and nonmelanoma skin cancer cells, and in silico target fishing. Chem Biol Drug Des 2024; 103:e14418. [PMID: 38230791 DOI: 10.1111/cbdd.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 01/18/2024]
Abstract
Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in-silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK-MEL-28, A431, and SCC-12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC-12 squamous carcinoma cell lines. The most active compounds 11 (A431: IC50 = 5.0 μM, SCC-12: IC50 = 2.9 μM, SKMEL-28: IC50 = 4.9 μM, A375: IC50 = 6.7 μM) and 13 (A431: IC50 = 5.0 μM, SCC-12: IC50 = 3.3 μM, SKMEL-28: IC50 = 13.8 μM, A375: IC50 = 17.1 μM), significantly and dose-dependently induced apoptosis of SCC-12 and SK-MEL-28 cells, as evidenced by the suppression of Bcl-2 and upregulation of Bax, cleaved caspase-3, caspase-9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web-based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein-kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure-activity relationship through the preparation and biological evaluation of analogs.
Collapse
Affiliation(s)
- Samuel T Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Mercy E Agbo
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Md Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Roxane-Cherille N Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Rajesh K Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Marion Bramwell
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Long K Pham
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Danny D Dang
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Keith E Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Science (UAMS), Little Rock, Arkansas, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
7
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
9
|
A Review on Medicinal Plants Having Anticancer Properties of Northeast India and Associated Endophytic Microbes and their Future in Medicinal Science. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human beings are affected by different diseases and suffer to different extents. Cancer is one of the major human disease and millions of people suffered from cancer and end their lives every year. Peoples are dependent on herbal medicines since prehistoric time especially from developing countries. It is very common to have different side effects of modern synthetic medicines; hence now-a-days importance of herbal medicines due to no or least side effects increases all parts of the world. But the major problems of using herbal medicines are that plants can produce very limited amount of medicinally important bioactive metabolites and they have very long growth periods. Therefore endophytes are the excellent alternative of plant derived metabolites. Endophytic microbes can synthesize exactly same type of metabolites as the plant produces. North East India is a treasure of plant resources; various types of medicinal plants are present in this region. Different types of indigenous tribes are inhabited in this region who used different plants in traditional system for treating various disease. But with increasing demand it is sometimes not sufficient to manage the demand of medicines, therefore for massive production endophytic study is crucial. In spite of having huge plant resources very limited endophytic studies are observed in this region. In this review, we studied different plants with their endophytes of NE India showing anticancer properties.
Collapse
|
10
|
Garmpis N, Damaskos C, Dimitroulis D, Garmpi A, Diamantis E, Sarantis P, Georgakopoulou VE, Patsouras A, Prevezanos D, Syllaios A, Kyriakos G, Koustas E, Despotidis M, Vallilas C, Papalexis P, Antoniou EA, Kontzoglou K, Kouraklis G. Targeting the Endocannabinoid System: From the Need for New Therapies to the Development of a Promising Strategy. What About Pancreatic Cancer? In Vivo 2022; 36:543-555. [PMID: 35241505 PMCID: PMC8931882 DOI: 10.21873/invivo.12736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is one of the most fatal malignancies, and therefore, new strategies, which aim at the improvement of the prognosis of this lethal disease, are needed. Many clinical trials have failed to improve overall survival. Nowadays, research is focused on advances provided by novel potential targets to efficiently enhance life expectancy. Cannabinoids, the active components of Cannabis sativa L., and their derivatives, have been reported as palliative adjuvants to conventional chemotherapeutic regimens. Cannabinoid effects are known to be mediated through the activation of cannabinoid receptors. To date, two cannabinoid receptors, cannabinoid receptor 1 and 2, have been cloned and identified from mammalian tissues. Cannabinoids exert a remarkable antitumoral effect on pancreatic cancer cells, due to their ability to selectively induce apoptosis of these cells. This review strengthens the perception that cannabinoid receptors might be useful in clinical testing to prognose and treat pancreatic cancer. Many studies have tried to describe the mechanism of cell death induced by cannabinoids. The aim of this review is to discuss the effects of cannabinoid receptors in pancreatic cancer in order to provide a brief insight into cannabinoids and their receptors as pancreatic cancer biomarkers and in therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
- Renal Transplantation Unit, Laiko General Hospital, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Diamantis
- Academic Department of Internal Medicine - Endocrinology Unit, Agioi Anargyroi General Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Kyriakos
- Seccion de Endocrinologia y Nutrition, Hospital General Universitario Santa Lucia, Cartagena, Spain
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Papalexis
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Efstathios A Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
11
|
In Vitro and Clinical Evaluation of Cannabigerol (CBG) Produced via Yeast Biosynthesis: A Cannabinoid with a Broad Range of Anti-Inflammatory and Skin Health-Boosting Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020491. [PMID: 35056807 PMCID: PMC8778347 DOI: 10.3390/molecules27020491] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
Cannabigerol (CBG) is a minor non-psychoactive cannabinoid present in Cannabis sativa L. (C. sativa) at low levels (<1% per dry weight) that serves as the direct precursor to both cannabidiol (CBD) and tetrahydrocannabinol (THC). Consequently, efforts to extract and purify CBG from C. sativa is both challenging and expensive. However, utilizing a novel yeast fermentation technology platform, minor cannabinoids such as CBG can be produced in a more sustainable, cost-effective, and timely process as compared to plant-based production. While CBD has been studied extensively, demonstrating several beneficial skin properties, there are a paucity of studies characterizing the activity of CBG in human skin. Therefore, our aim was to characterize and compare the in vitro activity profile of non-psychoactive CBG and CBD in skin and be the first group to test CBG clinically on human skin. Gene microarray analysis conducted using 3D human skin equivalents demonstrates that CBG regulates more genes than CBD, including several key skin targets. Human dermal fibroblasts (HDFs) and normal human epidermal keratinocytes (NHEKs) were exposed in culture to pro-inflammatory inducers to trigger cytokine production and oxidative stress. Results demonstrate that CBG and CBD reduce reactive oxygen species levels in HDFs better than vitamin C. Moreover, CBG inhibits pro-inflammatory cytokine (Interleukin-1β, -6, -8, tumor necrosis factor α) release from several inflammatory inducers, such as ultraviolet A (UVA), ultraviolet B (UVB), chemical, C. acnes, and in several instances does so more potently than CBD. A 20-subject vehicle-controlled clinical study was performed with 0.1% CBG serum and placebo applied topically for 2 weeks after sodium lauryl sulfate (SLS)-induced irritation. CBG serum showed statistically significant improvement above placebo for transepidermal water loss (TEWL) and reduction in the appearance of redness. Altogether, CBG’s broad range of in vitro and clinical skin health-promoting activities demonstrates its strong potential as a safe, effective ingredient for topical use and suggests there are areas where it may be more effective than CBD.
Collapse
|
12
|
Ramer R, Wittig F, Hinz B. The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies. Cancers (Basel) 2021; 13:cancers13225701. [PMID: 34830856 PMCID: PMC8616499 DOI: 10.3390/cancers13225701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cannabinoids have been shown to suppress tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition and to induce tumour cell apoptosis, autophagy and immune response. This review focuses on the current status of investigations on the impact of inhibitors of endocannabinoid-degrading enzymes on tumour growth and spread in preclinical oncology research. Abstract Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons. Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects. In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread. This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.
Collapse
|
13
|
Bukke VN, Archana M, Villani R, Serviddio G, Cassano T. Pharmacological and Toxicological Effects of Phytocannabinoids and Recreational Synthetic Cannabinoids: Increasing Risk of Public Health. Pharmaceuticals (Basel) 2021; 14:ph14100965. [PMID: 34681189 PMCID: PMC8541640 DOI: 10.3390/ph14100965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Synthetic Cannabinoids (CBs) are a novel class of psychoactive substances that have rapidly evolved around the world with the addition of diverse structural modifications to existing molecules which produce new structural analogues that can be associated with serious adverse health effects. Synthetic CBs represent the largest class of drugs detected by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) with a total of 207 substances identified from 2008 to October 2020, and 9 compounds being reported for the first time. Synthetic CBs are sprayed on natural harmless herbs with an aim to mimic the euphoric effect of Cannabis. They are sold under different brand names including Black mamba, spice, K2, Bombay Blue, etc. As these synthetic CBs act as full agonists at the CB receptors, they are much more potent than natural Cannabis and have been increasingly associated with acute to chronic intoxications and death. Due to their potential toxicity and abuse, the US government has listed some synthetic CBs under schedule 1 classification. The present review aims to provide a focused overview of the literature concerning the development of synthetic CBs, their abuse, and potential toxicological effects including renal toxicity, respiratory depression, hyperemesis syndrome, cardiovascular effects, and a range of effects on brain function.
Collapse
|
14
|
N-Palmitoyl Serinol Stimulates Ceramide Production through a CB1-Dependent Mechanism in In Vitro Model of Skin Inflammation. Int J Mol Sci 2021; 22:ijms22158302. [PMID: 34361066 PMCID: PMC8348051 DOI: 10.3390/ijms22158302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Ceramides, a class of sphingolipids containing a backbone of sphingoid base, are the most important and effective structural component for the formation of the epidermal permeability barrier. While ceramides comprise approximately 50% of the epidermal lipid content by mass, the content is substantially decreased in certain inflammatory skin diseases, such as atopic dermatitis (AD), causing improper barrier function. It is widely accepted that the endocannabinoid system (ECS) can modulate a number of biological responses in the central nerve system, prior studies revealed that activation of endocannabinoid receptor CB1, a key component of ECS, triggers the generation of ceramides that mediate neuronal cell fate. However, as the impact of ECS on the production of epidermal ceramide has not been studied, we here investigated whether the ECS stimulates the generation of epidermal ceramides in an IL-4-treated in vitro model of skin inflammation using N-palmitoyl serinol (PS), an analog of the endocannabinoid N-palmitoyl ethanolamine. Accordingly, an IL-4-mediated decrease in cellular ceramide levels was significantly stimulated in human epidermal keratinocytes (KC) following PS treatment through both de novo ceramide synthesis- and sphingomyelin hydrolysis-pathways. Importantly, PS selectively increases ceramides with long-chain fatty acids (FAs) (C22–C24), which mainly account for the formation of the epidermal barrier, through activation of ceramide synthase (CerS) 2 and Cer3 in IL-4-mediated inflamed KC. Furthermore, blockade of cannabinoid receptor CB1 activation by AM-251 failed to stimulate the production of total ceramide as well as long-chain ceramides in response to PS. These studies demonstrate that an analog of endocannabinoid, PS, stimulates the generation of specific ceramide species as well as the total amount of ceramides via the endocannabinoid receptor CB1-dependent mechanism, thereby resulting in the enhancement of epidermal permeability barrier function.
Collapse
|
15
|
Hashiesh HM, Sharma C, Goyal SN, Jha NK, Ojha S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Front Pharmacol 2021; 12:702675. [PMID: 34393784 PMCID: PMC8363263 DOI: 10.3389/fphar.2021.702675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has attracted attention as a pharmacological target for several pathological conditions. Cannabinoid (CB2)-selective agonists have been the focus of pharmacological studies because modulation of the CB2 receptor (CB2R) can be useful in the treatment of pain, inflammation, arthritis, addiction, and cancer among other possible therapeutic applications while circumventing CNS-related adverse effects. Increasing number of evidences from different independent preclinical studies have suggested new perspectives on the involvement of CB2R signaling in inflammation, infection and immunity, thus play important role in cancer, cardiovascular, renal, hepatic and metabolic diseases. JWH133 is a synthetic agonist with high CB2R selectivity and showed to exert CB2R mediated antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory activities. Cumulative evidences suggest that JWH133 protects against hepatic injury, renal injury, cardiotoxicity, fibrosis, rheumatoid arthritis, and cancer as well as against oxidative damage and inflammation, inhibits fibrosis and apoptosis, and acts as an immunosuppressant. This review provides a comprehensive overview of the polypharmacological properties and therapeutic potential of JWH133. This review also presents molecular mechanism and signaling pathways of JWH133 under various pathological conditions except neurological diseases. Based on the available data, this review proposes the possibilities of developing JWH133 as a promising therapeutic agent; however, further safety and toxicity studies in preclinical studies and clinical trials in humans are warranted.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
17
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
18
|
Cannabinoids pharmacological effects are beyond the palliative effects: CB2 cannabinoid receptor agonist induced cytotoxicity and apoptosis in human colorectal cancer cells (HT-29). Mol Cell Biochem 2021; 476:3285-3301. [PMID: 33886060 DOI: 10.1007/s11010-021-04158-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is between the top three occurring cancers worldwide. The anticancer effects of Cannabinoid receptor 2 (CB2) agonist (GW833972A) in the presence and absence of its inverse agonist (SR144528) on Human colorectal adenocarcinoma cells (HT-29) was investigated. Following cell viability assays on HT-29 and HFF cells, the molecular mechanism(s) of cytotoxicity and apoptotic pathways of cell death were analyzed. The anticancer effects of CB2 agonist were measured with tumor cell migration and colony-forming assays. Real-time PCR and Western blotting techniques were used to examine any alterations in the expression of apoptotic genes. A concentration and time-dependent cytotoxicity of CB2 agonist with IC50 value of 24.92 ± 6.99 μM was obtained. The rate of lipid peroxidation was elevated, while the TNF-α concentration was declined, significantly (p < 0.05). CB2 agonist (50 μM) reduced the colony-forming capability by 83% and tumor cell migration by 50%. Apoptotic effects of CB2 agonist were revealed with the increase of apoptotic cells in Acridine orange/Ethidium bromide staining, clear DNA fragmentation, pro-apoptotic genes and proteins upregulation (Caspase-3 and p53), and significant downregulation of anti-apoptotic Bcl-2. All assessments demonstrated that CB2 agonist-induced effects were reversed by CB2 inverse agonist. These data suggest that CB2 agonists at micro-molar concentrations might be considered in the CRC treatment, and their effectiveness attributes to the apoptosis induction via upregulation of caspase-3 and p53 and downregulation of Bcl-2.
Collapse
|
19
|
Gruber T, Robatel S, Kremenovic M, Bäriswyl L, Gertsch J, Schenk M. Cannabinoid Receptor Type-2 in B Cells Is Associated with Tumor Immunity in Melanoma. Cancers (Basel) 2021; 13:cancers13081934. [PMID: 33923757 PMCID: PMC8073134 DOI: 10.3390/cancers13081934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In this study we investigated the role of cannabinoid receptor 2 (CB2R) on immune cells in melanoma and found significantly improved overall survival in patients with high intra-tumoral CB2R gene expression. In human melanoma, CB2R is predominantly expressed in B cells, as shown using a previously published single-cell RNA sequencing (scRNA-seq) dataset and by performing RNAscope. In a murine melanoma model, tumor growth was enhanced in CB2R-deficient mice. In-depth analysis of tumor-infiltrating lymphocytes using scRNA-seq showed less differentiated B cells in CB2R-deficient tumors, favoring the induction of regulatory T cells (Treg) and an immunosuppressive tumor microenvironment. Taken together, these data indicate a central role of CB2R on B cells in regulating tumor immunity. These results contribute to the understanding of the role of CB2R in tumor immunity and facilitate the development of new CB2R-targeted anti-cancer drugs. Abstract Agents targeting the endocannabinoid system (ECS) have gained attention as potential cancer treatments. Given recent evidence that cannabinoid receptor 2 (CB2R) regulates lymphocyte development and inflammation, we performed studies on CB2R in the immune response against melanoma. Analysis of The Cancer Genome Atlas (TCGA) data revealed a strong positive correlation between CB2R expression and survival, as well as B cell infiltration in human melanoma. In a murine melanoma model, CB2R expression reduced the growth of melanoma as well as the B cell frequencies in the tumor microenvironment (TME), compared to CB2R-deficient mice. In depth analysis of tumor-infiltrating B cells using single-cell RNA sequencing suggested a less differentiated phenotype in tumors from Cb2r−/− mice. Thus, in this study, we demonstrate for the first time a protective, B cell-mediated role of CB2R in melanoma. This gained insight might assist in the development of novel, CB2R-targeted cancer therapies.
Collapse
Affiliation(s)
- Thomas Gruber
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Steve Robatel
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Mirela Kremenovic
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Lukas Bäriswyl
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland;
| | - Mirjam Schenk
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Correspondence: ; Tel.: +41-31-632-88-02
| |
Collapse
|
20
|
Wang F, Multhoff G. Repurposing Cannabidiol as a Potential Drug Candidate for Anti-Tumor Therapies. Biomolecules 2021; 11:biom11040582. [PMID: 33921049 PMCID: PMC8071421 DOI: 10.3390/biom11040582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, evidence has accumulated that cannabinoids-especially the non-psychoactive compound, cannabidiol (CBD)-possess promising medical and pharmacological activities that might qualify them as potential anti-tumor drugs. This review is based on multiple studies summarizing different mechanisms for how CBD can target tumor cells including cannabinoid receptors or other constituents of the endocannabinoid system, and their complex activation of biological systems that results in the inhibition of tumor growth. CBD also participates in anti-inflammatory activities which are related to tumor progression, as demonstrated in preclinical models. Although the numbers of clinical trials and tested tumor entities are limited, there is clear evidence that CBD has anti-tumor efficacy and is well tolerated in human cancer patients. In summary, it appears that CBD has potential as a neoadjuvant and/or adjuvant drug in therapy for cancer.
Collapse
Affiliation(s)
- Fei Wang
- Radiation-Immuno Oncology Group, TranslaTUM—Central Institute for Translational Cancer Research, Klinikum rechts der Isar, TU München, Einsteinstr. 25, 81675 Munich, Germany;
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Correspondence: ; Tel.: +49-89-4140-4514; Fax: +49-89-4140-4299
| | - Gabriele Multhoff
- Radiation-Immuno Oncology Group, TranslaTUM—Central Institute for Translational Cancer Research, Klinikum rechts der Isar, TU München, Einsteinstr. 25, 81675 Munich, Germany;
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München, 81675 Munich, Germany
| |
Collapse
|
21
|
Śledziński P, Nowak-Terpiłowska A, Zeyland J. Cannabinoids in Medicine: Cancer, Immunity, and Microbial Diseases. Int J Mol Sci 2020; 22:E263. [PMID: 33383838 PMCID: PMC7795897 DOI: 10.3390/ijms22010263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, there has been a growing interest in the medical applications of Cannabis plants. They owe their unique properties to a group of secondary metabolites known as phytocannabinoids, which are specific for this genus. Phytocannabinoids, and cannabinoids generally, can interact with cannabinoid receptors being part of the endocannabinoid system present in animals. Over the years a growing body of scientific evidence has been gathered, suggesting that these compounds have therapeutic potential. In this article, we review the classification of cannabinoids, the molecular mechanisms of their interaction with animal cells as well as their potential application in the treatment of human diseases. Specifically, we focus on the research concerning the anticancer potential of cannabinoids in preclinical studies, their possible use in cancer treatment and palliative medicine, as well as their influence on the immune system. We also discuss their potential as therapeutic agents in infectious, autoimmune, and gastrointestinal inflammatory diseases. We postulate that the currently ongoing and future clinical trials should be accompanied by research focused on the cellular and molecular response to cannabinoids and Cannabis extracts, which will ultimately allow us to fully understand the mechanism, potency, and safety profile of cannabinoids as single agents and as complementary drugs.
Collapse
Affiliation(s)
- Paweł Śledziński
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 60-032 Poznan, Poland;
| | | | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, 60-632 Poznan, Poland;
| |
Collapse
|
22
|
Schoeman R, Beukes N, Frost C. Cannabinoid Combination Induces Cytoplasmic Vacuolation in MCF-7 Breast Cancer Cells. Molecules 2020; 25:molecules25204682. [PMID: 33066359 PMCID: PMC7587381 DOI: 10.3390/molecules25204682] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the synergistic anti-cancer potential of cannabinoid combinations across the MDA-MB-231 and MCF-7 human breast cancer cell lines. Cannabinoids were combined and their synergistic interactions were evaluated using median effect analysis. The most promising cannabinoid combination (C6) consisted of tetrahydrocannabinol, cannabigerol (CBG), cannabinol (CBN), and cannabidiol (CBD), and displayed favorable dose reduction indices and limited cytotoxicity against the non-cancerous breast cell line, MCF-10A. C6 exerted its effects in the MCF-7 cell line by inducing cell cycle arrest in the G2 phase, followed by the induction of apoptosis. Morphological observations indicated the induction of cytoplasmic vacuolation, with further investigation suggesting that the vacuole membrane was derived from the endoplasmic reticulum. In addition, lipid accumulation, increased lysosome size, and significant increases in the endoplasmic reticulum chaperone protein glucose-regulated protein 78 (GRP78) expression were also observed. The selectivity and ability of cannabinoids to halt cancer cell proliferation via pathways resembling apoptosis, autophagy, and paraptosis shows promise for cannabinoid use in standardized breast cancer treatment.
Collapse
|
23
|
Singh K, Jamshidi N, Zomer R, Piva TJ, Mantri N. Cannabinoids and Prostate Cancer: A Systematic Review of Animal Studies. Int J Mol Sci 2020; 21:E6265. [PMID: 32872551 PMCID: PMC7503992 DOI: 10.3390/ijms21176265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer is a major cause of death among men worldwide. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation, as well as potential anti-cancer agents. The aim of this review was to evaluate the effect of cannabinoids on in vivo prostate cancer models. The databases searched included PubMed, Embase, Scopus, and Web of Science from inception to August 2020. Articles reporting on the effect of cannabinoids on prostate cancer were deemed eligible. We identified six studies that were all found to be based on in vivo/xenograft animal models. Results: In PC3 and DU145 xenografts, WIN55,212-2 reduced cell proliferation in a dose-dependent manner. Furthermore, in LNCaP xenografts, WIN55,212-2 reduced cell proliferation by 66-69%. PM49, which is a synthetic cannabinoid quinone, was also found to result in a significant inhibition of tumor growth of up to 90% in xenograft models of LNCaP and 40% in xenograft models of PC3 cells, respectively. All studies have reported that the treatment of prostate cancers in in vivo/xenograft models with various cannabinoids decreased the size of the tumor, the outcomes of which depended on the dose and length of treatment. Within the limitation of these identified studies, cannabinoids were shown to reduce the size of prostate cancer tumors in animal models. However, further well-designed and controlled animal studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Kanika Singh
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| | - Negar Jamshidi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia; (N.J.); (T.J.P.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, Western Australia 6005, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia; (N.J.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
24
|
Cintosun A, Lara-Corrales I, Pope E. Mechanisms of Cannabinoids and Potential Applicability to Skin Diseases. Clin Drug Investig 2020; 40:293-304. [PMID: 32060787 DOI: 10.1007/s40261-020-00894-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The legalisation of cannabis in a growing number of jurisdictions has led to increasing interest in its potential therapeutic effects in a range of disorders, including cutaneous conditions. Cannabinoids have been used as natural medicines for centuries; however, their biological activity in the skin is a new area of study. Recent data suggest that cannabinoids are involved in neuro-immuno-endocrine modulation of skin functioning, yet their effect on the features of dermatologic conditions is unclear. This article sought to review the mechanisms by which cannabinoids regulate skin functioning through the lens of relevance to treatment of dermatologic diseases looking at the effects of cannabinoids on a range of cellular activities and dermatologic conditions both in vitro and in vivo. We identified studies demonstrating an inhibitory effect of cannabinoids on skin inflammation, proliferation, fibrosis, pain, and itch-biological mechanisms involved in the pathogenesis of many dermatologic conditions. Cannabinoids have the potential to expand the therapeutic repertoire of a wide spectrum of skin disorders. Given their widespread unregulated use by the general public, basic and clinical studies are required to elucidate the effectiveness and long-term effects of topical and systemic cannabinoids in cutaneous disorders.
Collapse
Affiliation(s)
| | - Irene Lara-Corrales
- The Hospital for Sick Children and University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Elena Pope
- The Hospital for Sick Children and University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
25
|
Correia-Sá IB, Carvalho CM, Serrão PV, Loureiro AI, Fernandes-Lopes C, Marques M, Vieira-Coelho MA. A new role for anandamide: defective link between the systemic and skin endocannabinoid systems in hypertrophic human wound healing. Sci Rep 2020; 10:11134. [PMID: 32636441 PMCID: PMC7341842 DOI: 10.1038/s41598-020-68058-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
The use of cannabinoids to treat fibrotic skin diseases is an emergent issue. Therefore, we aimed to evaluate systemic and skin endocannabinoid responses in the wound-healing process in humans. A prospective study was performed in 50 patients who underwent body-contouring surgery. Anandamide (N-arachidonoylethanolamine, AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were quantified using LC-MS/MS. Ten (20%) patients developed hypertrophic (HT) scars. No significant changes were observed between the normal (N) scar and HT scar groups in terms of plasma and skin endocannabinoids. Nevertheless, a positive correlation between plasma and skin AEA concentrations was found in the N group (r = 0.38, p = 0.015), which was absent in the HT group. Moreover, the AEA concentration was significantly lower in HT scar tissue than in normal scar tissue (0.77 ± 0.12 ng/g vs 1.15 ± 0.15 ng/g, p < 0.001). Interestingly, in all patients, the surgical intervention produced a time-dependent effect with a U shape for AEA, PEA and OEA plasma concentrations. In contrast, 2-AG plasma concentrations increased 5 days after surgery and were reduced and stabilized 3 months later. These results suggest crosstalk between systemic and local skin endocannabinoid systems during human wound healing. AEA appears to be the most likely candidate for this link, which is deficient in patients with HT scars.
Collapse
Affiliation(s)
- Inês B Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal. .,Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Cláudia M Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula V Serrão
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Centro de Investigação Farmacológica E Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Ana I Loureiro
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., Trofa, Portugal
| | - Carlos Fernandes-Lopes
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., Trofa, Portugal
| | - Marisa Marques
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Centro de Investigação Farmacológica E Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Yamanaka-Takaichi M, Sugawara K, Sumitomo R, Tsuruta D. The Mast Cell-SCF-CB1 Interaction Is a Key Player in Seborrheic Keratosis. J Histochem Cytochem 2020; 68:461-471. [PMID: 32578480 DOI: 10.1369/0022155420938031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mast cell (MC) is an important player in the development of skin diseases, including atopic dermatitis, psoriasis, and urticaria. It is reported that MC infiltration and activation are observed around various types of tumors and speculated that MCs play key roles in their pathogenesis. As MCs in human seborrheic keratosis (SK) have not been well investigated, here we focused on the MCs in SK. The number of c-Kit and tryptase-positive MCs was significantly increased around the SK compared with the marginal lesion. Degranulated MCs were also increased around the tumors. Furthermore, MC growth factor, stem cell factor (SCF), expression within the SK was significantly upregulated compared with the marginal lesion. Interestingly, one of the cognitive regulators of SCF expression, cannabinoid receptor type 1 (CB1) immunoreactivity was downregulated within the SK. Our results suggest that MCs play important roles in the pathogenesis of SK and that SCF can be also deeply involved in the development of SKs. Our current results highlight the CB1-SCF-MC interaction as a novel mechanism of SK development and this also will be utilized for developing a novel treatment.
Collapse
Affiliation(s)
- Mika Yamanaka-Takaichi
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Koji Sugawara
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Rieko Sumitomo
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| |
Collapse
|
27
|
Afrin F, Chi M, Eamens AL, Duchatel RJ, Douglas AM, Schneider J, Gedye C, Woldu AS, Dun MD. Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer. Cancers (Basel) 2020; 12:cancers12041033. [PMID: 32340151 PMCID: PMC7226605 DOI: 10.3390/cancers12041033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cannabis has been used to relieve the symptoms of disease for thousands of years. However, social and political biases have limited effective interrogation of the potential benefits of cannabis and polarised public opinion. Further, the medicinal and clinical utility of cannabis is limited by the psychotropic side effects of ∆9-tetrahydrocannabinol (∆9-THC). Evidence is emerging for the therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases, with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain and treatment-related nausea and vomiting, respectively. An increasing number of preclinical studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains lacking. In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD), are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling and redox homeostasis. Additional evidence has also demonstrated the anti-inflammatory properties of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer actions of non-THC cannabinoids.
Collapse
Affiliation(s)
- Farjana Afrin
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Mengna Chi
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Ryan J. Duchatel
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Alicia M. Douglas
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Jennifer Schneider
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Craig Gedye
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Calvary Mater Newcastle, Waratah, NSW 2298, Australia
| | - Ameha S. Woldu
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Correspondence: (A.S.W.); (M.D.D.); Tel.: +61-02-4921-7807 (A.S.W.); +61-02-4921-5693 (M.D.D.)
| | - Matthew D. Dun
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Correspondence: (A.S.W.); (M.D.D.); Tel.: +61-02-4921-7807 (A.S.W.); +61-02-4921-5693 (M.D.D.)
| |
Collapse
|
28
|
Cannabinoids in the Pathophysiology of Skin Inflammation. Molecules 2020; 25:molecules25030652. [PMID: 32033005 PMCID: PMC7037408 DOI: 10.3390/molecules25030652] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component. However, various studies cite conflicting results concerning the cellular mechanisms involved, while others suggest that cannabinoids may even exert pro-inflammatory behaviors. This paper aims to detail and clarify the complex workings of cannabinoids in the molecular setting of the main dermatological inflammatory diseases, and their interactions with other substances with emerging applications in the treatment of these conditions. Also, the potential role of cannabinoids as antitumoral drugs is explored in relation to the inflammatory component of skin cancer. In vivo and in vitro studies that employed either phyto-, endo-, or synthetic cannabinoids were considered in this paper. Cannabinoids are regarded with growing interest as eligible drugs in the treatment of skin inflammatory conditions, with potential anticancer effects, and the readiness in monitoring of effects and the facility of topical application may contribute to the growing support of the use of these substances. Despite the promising early results, further controlled human studies are required to establish the definitive role of these products in the pathophysiology of skin inflammation and their usefulness in the clinical setting.
Collapse
|
29
|
Pietrovito L, Iozzo M, Bacci M, Giannoni E, Chiarugi P. Treatment with Cannabinoids as a Promising Approach for Impairing Fibroblast Activation and Prostate Cancer Progression. Int J Mol Sci 2020; 21:ijms21030787. [PMID: 31991773 PMCID: PMC7037293 DOI: 10.3390/ijms21030787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 11/16/2022] Open
Abstract
Endo-, phyto- and synthetic cannabinoids have been proposed as promising anti-cancer agents able to impair cancer cells’ behavior without affecting their non-transformed counterparts. However, cancer outcome depends not only on cancer cells’ activity, but also on the stromal cells, which coevolve with cancer cells to sustain tumor progression. Here, we show for the first time that cannabinoid treatment impairs the activation and the reactivity of cancer-associated fibroblasts (CAFs), the most represented stromal component of prostate tumor microenvironment. Using prostate cancer-derived CAFs, we demonstrated that WIN 55-212.2 mesylate, a synthetic full agonist of cannabinoid receptors (CBs) 1 and 2, downregulates α-smooth muscle actin and matrix metalloprotease-2 expression, and it inhibits CAF migration, essential features to ensure the activated and reactive CAF phenotype. Furthermore, by impairing stromal reactivity, WIN 55-212.2 mesylate also negatively affects CAF-mediated cancer cells’ invasiveness. Using selective antagonists of CBs, we proved that CAFs response to WIN 55-212.2 mesylate is mainly mediated by CB2. Finally, we suggest that endocannabinoids self-sustain both prostate tumor cells migration and CAFs phenotype by an autocrine loop. Overall, our data strongly support the use of cannabinoids as anti-tumor agents in prostate cancer, since they are able to simultaneously strike both cancer and stromal cells.
Collapse
Affiliation(s)
- Laura Pietrovito
- Correspondence: (L.P.); (E.G.); Tel.: +39-055-2751241 (L.P.); +39-055-2751236 (E.G.)
| | | | | | - Elisa Giannoni
- Correspondence: (L.P.); (E.G.); Tel.: +39-055-2751241 (L.P.); +39-055-2751236 (E.G.)
| | | |
Collapse
|
30
|
Kim HY, Ahn SH, Yang IJ, Park SY, Kim K. Effect of Hataedock Treatment on Epidermal Structure Maintenance through Intervention in the Endocannabinoid System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3605153. [PMID: 32063982 PMCID: PMC6998750 DOI: 10.1155/2020/3605153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the efficacy of Hataedock (HTD) on skin barrier maintenance through the endocannabinoid system (ECS) intervention in Dermatophagoides farinae-induced atopic dermatitis (AD) NC/Nga mice. Douchi (fermented Glycine max Merr.) extracts prepared for HTD were orally administered to NC/Nga mice at a 20 mg/kg dose. Then, Dermatophagoides farinae extract (DfE) was applied to induce AD-like skin lesions during the 4th-6th and 8th-10th weeks. Changes in the epidermal structure of the mice were observed by histochemistry, immunohistochemistry, and TUNEL assay. The results showed that HTD significantly reduced the clinical scores (p < 0.01) and effectively alleviated the histological features. In the experimental groups, increased expression of cannabinoid receptor type (CB) 1, CB2, and G protein-coupled receptor 55 (GPR55) and distribution of filaggrin, involucrin, loricrin, and longevity assurance homolog 2 (Lass2) indicated that HTD maintained the epidermal barrier through intervening in the ECS. The expression of E-cadherin and glutathione peroxidase 4 (GPx4) was increased, and the levels of cluster of differentiation 1a (CD1A) were low. Moreover, the apoptosis of inflammatory cells was elevated. The production of phosphorylated extracellular signal-related kinase (p-ERK), phosphorylated c-Jun amino-terminal kinase (p-JNK), and phosphorylated mammalian target of rapamycin (p-mTOR) was low, and epidermal thickness was decreased. Besides, the expression levels of involucrin were measured by treating genistein, an active ingredient of Douchi extract, and palmitoylethanolamide (PEA), one of the ECS agonists. The results showed that genistein had a better lipid barrier formation effect than PEA. In conclusion, HTD alleviates the symptoms of AD by maintaining skin homeostasis, improving skin barrier formation, and downregulating inflammation, through ECS intervention.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Korean Pediatrics, Pusan National University Korean Medicine Hospital, Geumo-ro 20, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
- Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Pusandaehak-ro 49, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Sang-hyun Ahn
- Department of Anatomy, College of Korean Medicine, Semyung University, Semyung-ro 65, Jecheon-si, Chungcheongbuk-do 27136, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Dongdae-ro 123, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea
| | - Sun-Young Park
- Department of Physiology, College of Korean Medicine, Semyung University, Semyung-ro 65, Jecheon-si, Chungcheongbuk-do 27136, Republic of Korea
| | - Kibong Kim
- Department of Korean Pediatrics, Pusan National University Korean Medicine Hospital, Geumo-ro 20, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
- Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Pusandaehak-ro 49, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
31
|
Ayakannu T, Taylor AH, Marczylo TH, Maccarrone M, Konje JC. Identification of Novel Predictive Biomarkers for Endometrial Malignancies: N-Acylethanolamines. Front Oncol 2019; 9:430. [PMID: 31245282 PMCID: PMC6579876 DOI: 10.3389/fonc.2019.00430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To identify new biochemical markers for endometrial cancer (EC). Recent evidence suggests that members of the endocannabinoid system (N-acylethanolamines) that bind to and activate receptors that are dysregulated in EC are involved in this tumour's biology. These observations suggest increased N-acylethanolamine levels in the tissue that might appear in plasma and could be used as disease biomarkers. Methods: N-arachidonoylethanolamine (anandamide, AEA) and the N-acylethanolamine substances, N-oleoylethanolamine (OEA), and N-palmitoylethanolamine (PEA) were quantified in plasma and endometrial tissue collected from 31 EC and seven atrophic controls using UHPLC-MS/MS. Receiver-operating characteristics (ROC) and logistic regression were used to determine diagnostic accuracy. Cannabinoid receptor 1 (CB1) and 2 (CB2) protein levels were determined by specific immunohistochemistry and histomorphometric analyses. Correlations between plasma and tissue levels of the three N-acylethanolamines and tissue levels of the three N-acylethanolamines and CB1 and CB2 receptor expression levels were determined using correlation analysis. Results: Plasma and tissue AEA and PEA levels were significantly (p < 0.05) higher in EC than controls whilst OEA levels were significantly elevated in type 1 EC tissues but not in plasma. There were significant positive correlations between plasma and tissue levels of AEA (R 2 = 0.302, p = 0.008) and PEA (R 2 = 0.182, p = 0.047), but not for OEA (R 2 = 0.022, p = 0.506). The diagnostic accuracies for EC were: sensitivity of 53.3%, specificity of 100% for plasma AEA (>1.36 nM); sensitivity of 73.3%, specificity of 100% for plasma PEA (>27.5 nM); and sensitivity of 93.3%, specificity of 28.6% for plasma OEA (>4.97 nM). Logistic regression increased the area under the ROC curve (AUC) from 0.781 for AEA, 0.857 for PEA, and 0.543 for OEA to a combined AUC of 0.933 for EC diagnosis. Significant inverse correlations between tissue AEA (R 2 = 0.343, p = 0.003) and PEA (R 2 = 0.384, p < 0.0001) levels and CB1 expression were observed. No correlation between tissue levels of OEA and CB1 and tissue levels of any of the three N-acylethanolamines and CB2 protein expression were observed, except in the type 1 EC patients. Conclusion: Since plasma AEA and PEA are significantly elevated in patients with EC and a reflection of production by the endometrial tumour, then these lipids have the potential to be useful biomarkers for the early diagnosis of EC.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Gynaecology Oncology Cancer Centre, Liverpool Women's NHS Foundation Trust, Liverpool Women's Hospital, Liverpool, United Kingdom
| | - Anthony H Taylor
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Timothy H Marczylo
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Toxicology Department at the Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, United Kingdom
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Justin C Konje
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Department of Obstetrics and Gynaecology, Sidra Medicine, Women's Wellness and Research Center, HMC, Doha, Qatar
| |
Collapse
|
32
|
Hinz B, Ramer R. Anti-tumour actions of cannabinoids. Br J Pharmacol 2019; 176:1384-1394. [PMID: 30019449 PMCID: PMC6487602 DOI: 10.1111/bph.14426] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has emerged as an important target for the treatment of many diverse diseases. In addition to the well-established palliative effects of cannabinoids in cancer therapy, phytocannabinoids, synthetic cannabinoid compounds and inhibitors of endocannabinoid degradation have attracted attention as possible systemic anticancer drugs. Results emerging from preclinical studies suggest cannabinoids elicit effects at different levels of cancer progression, including inhibition of proliferation, neovascularization, invasion and chemoresistance, induction of apoptosis and autophagy as well as enhancement of tumour immune surveillance. Although the clinical use of cannabinoid receptor ligands is limited by their psychoactivity, non-psychoactive compounds, such as cannabidiol, have gained attention due to preclinically established anticancer properties and a favourable risk-to-benefit profile. Thus, cannabinoids may complement the currently used collection of chemotherapeutic agents, as a broadly diversified option for cancer treatment, while counteracting some of their severe side effects. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Burkhard Hinz
- Institute of Pharmacology and ToxicologyRostock University Medical CenterRostockGermany
| | - Robert Ramer
- Institute of Pharmacology and ToxicologyRostock University Medical CenterRostockGermany
| |
Collapse
|
33
|
Moreno E, Cavic M, Krivokuca A, Casadó V, Canela E. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet? Front Pharmacol 2019; 10:339. [PMID: 31024307 PMCID: PMC6459931 DOI: 10.3389/fphar.2019.00339] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes. Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare. CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2). These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Enric Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
34
|
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules 2019; 24:E918. [PMID: 30845666 PMCID: PMC6429381 DOI: 10.3390/molecules24050918] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- HCEMM Nonprofit Ltd., 6720 Szeged, Hungary.
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
35
|
Dang N, Meng X, Ma S, Zhang Q, Sun X, Wei J, Huang S. MDA-19 Suppresses Progression of Melanoma Via Inhibiting the PI3K/Akt Pathway. Open Med (Wars) 2018; 13:416-424. [PMID: 30613786 PMCID: PMC6310917 DOI: 10.1515/med-2018-0061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/20/2018] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the effect of MDA-19 on progression of melanoma, and explore the relevant mechanism. Methods The melanoma cell lines, M14 and UACC257, were treated with different concentrations of MDA-19, then CCK8, clone formation assay, Transwell and flow cytometry assays were performed to examine cell proliferation, migration, invasion and apoptosis, respectively. The expression of apoptosis-related proteins (Bcl-2, Bax and caspase 3 P17), EMT and signaling pathway-related proteins were also detected by Western blot. Results MDA-19 inhibited melanoma cells in a dose-dependent manner. Compared to the NC group, MDA-19 significantly inhibited cell growth capacity, migration and invasion of M14 and UACC257 cells, and accelerated cell apoptosis in a mitochondrial pathway through regulating Bcl-2/Bax and Caspase 3 in M14 and UACC257 cells. Moreover, MDA-19 was observed to up-regulate the expression of E-cad and down-regulate the expression of N-cad, Vimentin and Slug in melanoma cells in vitro. Furthermore, MDA-19 could inhibit the PI3K/Akt pathway by blocking Akt phosphorylation (p-Akt) and downstream proteins, P70 and Cyclin D1 in M14 and UACC257 cells. Conclusion Our data demonstrate that MDA-19 could inhibit progression of melanoma by suppressing the PI3K/Akt pathway, suggesting that MDA-19 is a potential anti-cancer agent for therapy of melanoma.
Collapse
Affiliation(s)
- Ningning Dang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Xianguang Meng
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Shanshan Ma
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - Qian Zhang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, P.R. China
| | - XiYa Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu Province, P.R. China
| | - Jingjing Wei
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, School of Medicine, Shandong University, Jinan 250012, Shandong Province, P.R. China
| | - Shuhong Huang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, School of Medicine, Shandong University, Jinan 250012, Shandong Province, P.R. China
| |
Collapse
|
36
|
Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1691428. [PMID: 30627539 PMCID: PMC6304621 DOI: 10.1155/2018/1691428] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain. The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety. Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2. CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds. In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials. CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models. These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity. In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.
Collapse
|
37
|
Bryant LM, Daniels KE, Cognetti DM, Tassone P, Luginbuhl AJ, Curry JM. Therapeutic Cannabis and Endocannabinoid Signaling System Modulator Use in Otolaryngology Patients. Laryngoscope Investig Otolaryngol 2018; 3:169-177. [PMID: 30062131 PMCID: PMC6057224 DOI: 10.1002/lio2.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/29/2018] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives 1) review benefits and risks of cannabis use, with emphasis on otolaryngic disease processes; 2) define and review the endocannabinoid signaling system (ESS); and 3) review state and federal regulations for the use and research of cannabis and ESS modulators. Methods This manuscript is a review of the current literature relevant to the stated objectives. Results Cannabis (marijuana) use is increasing. It is the most widely used illicit substance in the world. There is increasing interest in its therapeutic potential due to changing perceptions, new research, and legislation changes controlling its use. The legal classification of cannabis is complicated due to varied and conflicting state and federal laws. There are currently two synthetic cannabinoid drugs that are FDA approved. Current indications for use include chemotherapy‐related nausea and vomiting, cachexia, and appetite loss. Research has demonstrated potential benefit for use in many other pathologies including pain, inflammatory states, and malignancy. Data exists demonstrating potential antineoplastic benefit in oral, thyroid, and skin cancers. Conclusions ESS modulators may play both a causal and therapeutic role in several disorders seen in otolaryngology patients. The use of cannabis and cannabinoids is not without risk. There is a need for further research to better understand both the adverse and therapeutic effects of cannabis use. With increasing rates of consumption, elevated public awareness, and rapidly changing legislation, it is helpful for the otolaryngologist to be aware of both the adverse manifestations of use and the potential therapeutic benefits when talking with patients.
Collapse
Affiliation(s)
- Lucas M Bryant
- Thomas Jefferson Hospital-Otolaryngology Head & Neck Surgery Philadelphia Pennsylvania U.S.A
| | - Kelly E Daniels
- Thomas Jefferson Hospital-Otolaryngology Head & Neck Surgery Philadelphia Pennsylvania U.S.A
| | - David M Cognetti
- Thomas Jefferson Hospital-Otolaryngology Head & Neck Surgery Philadelphia Pennsylvania U.S.A
| | - Patrick Tassone
- Thomas Jefferson Hospital-Otolaryngology Head & Neck Surgery Philadelphia Pennsylvania U.S.A
| | - Adam J Luginbuhl
- Thomas Jefferson Hospital-Otolaryngology Head & Neck Surgery Philadelphia Pennsylvania U.S.A
| | - Joseph M Curry
- Thomas Jefferson Hospital-Otolaryngology Head & Neck Surgery Philadelphia Pennsylvania U.S.A
| |
Collapse
|
38
|
Guo X, Ling X, Du F, Wang Q, Huang W, Wang Z, Ding X, Bai M, Wu Z. Molecular Imaging of Pancreatic Duct Adenocarcinoma Using a Type 2 Cannabinoid Receptor-Targeted Near-Infrared Fluorescent Probe. Transl Oncol 2018; 11:1065-1073. [PMID: 30005208 PMCID: PMC6043890 DOI: 10.1016/j.tranon.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Imaging probes targeting type 2 cannabinoid receptor (CB2R) overexpressed in pancreatic duct adenocarcinoma (PDAC) tissue have the potential to improve early detection and surgical outcome of PDAC. The aim of our study was to evaluate the molecular imaging potential of a CB2R-targeted near-infrared (NIR) fluorescent probe (NIR760-XLP6) for PDAC. CB2R overexpression was observed in both PDAC patient tissues and various pancreatic cancer cell lines. In vitro fluorescence imaging indicated specific binding of NIR760-XLP6 to CB2R in human PDAC PANC-1 cells. In a xenograft mouse tumor model, NIR760-XLP6 showed remarkable 50- (ex vivo) and 3.2-fold (in vivo) tumor to normal contrast enhancement with minimal liver and kidney uptake. In a PDAC lymph node metastasis model, significant signal contrast was observed in bilateral axillary lymph nodes with PDAC metastasis after injection of the probe. In conclusion, NIR760-XLP6 exhibits promising characteristics for imaging PDAC, and CB2R appears to be an attractive target for PDAC imaging.
Collapse
Affiliation(s)
- Xiaoxia Guo
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxi Ling
- Department of Medicine, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Fang Du
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Huang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyi Ding
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingfeng Bai
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
39
|
Anti-Proliferative Properties and Proapoptotic Function of New CB2 Selective Cannabinoid Receptor Agonist in Jurkat Leukemia Cells. Int J Mol Sci 2018; 19:ijms19071958. [PMID: 29973514 PMCID: PMC6073364 DOI: 10.3390/ijms19071958] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Several studies demonstrated that cannabinoids reduce tumor growth, inhibit angiogenesis, and decrease cancer cell migration. As these molecules are well tolerated, it would be interesting to investigate the potential benefit of newly synthesized compounds, binding cannabinoid receptors (CBRs). In this study, we describe the synthesis and biological effect of 2-oxo-1,8-naphthyridine-3-carboxamide derivative LV50, a new compound with high CB2 receptor (CB2R) affinity. We demonstrated that it decreases viability of Jurkat leukemia cells, evaluated by Trypan Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), but mainly induces a proapoptotic effect. We observed an increase of a hypodiploid peak by propidium iodide staining and changes in nuclear morphology by Hoechst 33258. These data were confirmed by a significant increase of Annexin V staining, cleavage of the nuclear enzyme poly(ADP-ribose)-polymerase (PARP), and caspases activation. In addition, in order to exclude that LV50 non-specifically triggers death of all normal leukocytes, we tested the new compound on normal peripheral blood lymphocytes, excluding the idea of general cytotoxicity. To characterize the involvement of CB2R in the anti-proliferative and proapoptotic effect of LV50, cells were pretreated with a specific CB2R antagonist and the obtained data showed reverse results. Thus, we suggest a link between inhibition of cell survival and proapoptotic activity of the new compound that elicits this effect as selective CB2R agonist.
Collapse
|
40
|
Zhang Y, Zheng W, Shen K, Shen W. ∆9-tetrahydrocannabinol inhibits epithelial-mesenchymal transition and metastasis by targeting matrix metalloproteinase-9 in endometrial cancer. Oncol Lett 2018; 15:8527-8535. [PMID: 29805589 PMCID: PMC5950514 DOI: 10.3892/ol.2018.8407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/28/2018] [Indexed: 01/23/2023] Open
Abstract
Limited therapeutic interventions are clinically available for treating aggressive endometrial cancer (EC). Therefore, effective therapies are urgently required. Therefore, the present study investigated the role of ∆9-tetrahydrocannabinol (THC), which is reported to impact proliferative and migratory activities during impairment of cancer progression. In the present study, cell migration in response to THC was measured using transwell assays. Using western blot analysis, the levels of cannabinoid receptors in EC tissues were detected and pathways leading to the inhibition of cell migration by THC on human EC cells were determined. Results suggested that cannabinoid receptors were highly expressed in EC tissues. Furthermore, THC inhibited EC cell viability and motility by inhibiting epithelial-mesenchymal transition (EMT) and downregulating matrix metalloproteinase-9 (MMP-9) gene expression in aggressive human EC cells. The results have the potential to promote the development of novel compounds for the treatment of EC metastasis. The presnet findings suggest that THC may inhibit human EC cell migration through regulating EMT and MMP-9 pathways.
Collapse
Affiliation(s)
- Yingzhi Zhang
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China.,Department of Gynecology, The Affiliated Hospital of School of Medicine of Ningbo University, Hangzhou, Zhejiang 310058, P.R. China
| | - Wei Zheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Kewei Shen
- Department of Gynecology, The Affiliated Hospital of School of Medicine of Ningbo University, Hangzhou, Zhejiang 310058, P.R. China
| | - Weiwei Shen
- Department of Gynecology, The Affiliated Hospital of School of Medicine of Ningbo University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
41
|
Śledziński P, Zeyland J, Słomski R, Nowak A. The current state and future perspectives of cannabinoids in cancer biology. Cancer Med 2018; 7:765-775. [PMID: 29473338 PMCID: PMC5852356 DOI: 10.1002/cam4.1312] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/16/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022] Open
Abstract
To date, cannabinoids have been allowed in the palliative medicine due to their analgesic and antiemetic effects, but increasing number of preclinical studies indicates their anticancer properties. Cannabinoids exhibit their action by a modulation of the signaling pathways crucial in the control of cell proliferation and survival. Many in vitro and in vivo experiments have shown that cannabinoids inhibit proliferation of cancer cells, stimulate autophagy and apoptosis, and have also a potential to inhibit angiogenesis and metastasis. In this review, we present an actual state of knowledge regarding molecular mechanisms of cannabinoids' anticancer action, but we discuss also aspects that are still not fully understood such as the role of the endocannabinoid system in a carcinogenesis, the impact of cannabinoids on the immune system in the context of cancer development, or the cases of a stimulation of cancer cells' proliferation by cannabinoids. The review includes also a summary of currently ongoing clinical trials evaluating the safety and efficacy of cannabinoids as anticancer agents.
Collapse
Affiliation(s)
- Paweł Śledziński
- Department of Biochemistry and BiotechnologyPoznań University of Life SciencesDojazd Street 1160‐632PoznańPoland
| | - Joanna Zeyland
- Department of Biochemistry and BiotechnologyPoznań University of Life SciencesDojazd Street 1160‐632PoznańPoland
| | - Ryszard Słomski
- Department of Biochemistry and BiotechnologyPoznań University of Life SciencesDojazd Street 1160‐632PoznańPoland
- Institute of Human Genetics of the Polish Academy of SciencesStrzeszyńska Street 3260‐479PoznańPoland
| | - Agnieszka Nowak
- Department of Biochemistry and BiotechnologyPoznań University of Life SciencesDojazd Street 1160‐632PoznańPoland
| |
Collapse
|
42
|
Scholl A, Ivanov I, Hinz B. Inhibition of interleukin-1β-induced endothelial tissue factor expression by the synthetic cannabinoid WIN 55,212-2. Oncotarget 2018; 7:61438-61457. [PMID: 27556861 PMCID: PMC5308663 DOI: 10.18632/oncotarget.11367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
The role of cannabinoids in thrombosis remains controversial. In view of the primary importance of tissue factor (TF) in blood coagulation and its involvement in the pathology of several cardiovascular, inflammatory and neoplastic diseases, a regulation of this initial procoagulant signal seems to be of particular interest. Using human umbilical vein endothelial cells (HUVEC) the present study investigated the impact of the synthetic cannabinoid WIN 55,212-2 on interleukin (IL)-1β-induced TF expression and activity. WIN 55,212-2 caused a time- and concentration-dependent suppression of IL-1β-induced TF protein accompanied by decreases in TF mRNA and activity. Inhibition of TF protein expression by WIN 55,212-2 was mimicked by its cannabinoid receptor-inactive enantiomer WIN 55,212-3 but not by structurally unrelated phyto-, endo- and synthetic cannabinoids. In addition, the inhibitory effect of WIN 55,212-2 was not reversed by antagonists to cannabinoid receptors (CB1, CB2) or transient receptor potential vanilloid 1. Mechanistic approaches revealed WIN 55,212-2 to suppress IL-1β-induced TF expression via inhibition of ceramide formation and via decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinases. Further inhibitor experiments demonstrated neutral sphingomyelinase (nSMase) to confer ceramide generation upon IL-1β treatment with the parallel IL-1β-mediated activation of MAPKs occurring via an nSMase-independent pathway. Finally, a receptor-independent inhibition of IL-1β-induced TF protein by WIN 55,212-2 was confirmed in human blood monocytes. Collectively, this data provide a hitherto unknown receptor-independent anticoagulatory action of the cannabinoid WIN 55,212-2.
Collapse
Affiliation(s)
- Antje Scholl
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Igor Ivanov
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Burkhard Hinz
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| |
Collapse
|
43
|
Mohammadpour F, Ostad SN, Aliebrahimi S, Daman Z. Anti-invasion Effects of Cannabinoids Agonist and Antagonist on Human Breast Cancer Stem Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:1479-1486. [PMID: 29552056 PMCID: PMC5843309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studies show that cancer cell invasion or metastasis is the primary cause of death in malignancies including breast cancer. The existence of cancer stem cells (CSCs) in breast cancer may account for tumor initiation, progression, and metastasis. Recent studies have reported different effects of cannabinoids on cancer cells via CB1 and CB2 cannabinoid receptors. In the present study, the effects of ACEA (a selective CB1 receptor agonist) and AM251 (a selective CB1 antagonist) on CSCs and their parental cells were investigated. Breast CSCs derived from MDA-MB-231 cell line were sorted and characterized with CD44+/CD24-/low/ESA+ phenotype. It was observed that ACEA decreased CD44+/CD24-/low/ESA+ cancer stem cell invasiveness. Conversely, AM251 increased the invasion by more than 20% (at the highest concentrations) in both MDA-MB-231 and CSCs. Our results did not show any correlation between reduced invasion and cytotoxic effects of the drug. Since one of the main cancer recurrence factors is anti-cancer drugs fail to inhibit CSC population, this observation would be useful for cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Mohammadpour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran. ,Corresponding author: E-mail:
| | - Shima Aliebrahimi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Daman
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Fonseca BM, Teixeira NA, Correia-da-Silva G. Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions. Rev Physiol Biochem Pharmacol 2017; 173:63-88. [PMID: 28425013 DOI: 10.1007/112_2017_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids. In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment. For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system. Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment. This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.
Collapse
Affiliation(s)
- B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal.
| | - N A Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
45
|
Khan MI, Sobocińska AA, Czarnecka AM, Król M, Botta B, Szczylik C. The Therapeutic Aspects of the Endocannabinoid System (ECS) for Cancer and their Development: From Nature to Laboratory. Curr Pharm Des 2016; 22:1756-66. [PMID: 26654588 PMCID: PMC5412000 DOI: 10.2174/1381612822666151211094901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
The endocannabinoid system (ECS) is a group of neuromodulatory lipids and their receptors, which are widely distributed in mammalian tissues. ECS regulates various cardiovascular, nervous, and immune system functions inside cells. In recent years, there has been a growing body of evidence for the use of synthetic and natural cannabinoids as potential anticancer agents. For instance, the CB1 and CB2 receptors are assumed to play an important role inside the endocannabinoid system. These receptors are abundantly expressed in the brain and fatty tissue of the human body. Despite recent developments in molecular biology, there is still a lack of knowledge about the distribution of CB1 and CB2 receptors in the human kidney and their role in kidney cancer. To address this gap, we explore and demonstrate the role of the endocannabinoid system in renal cell carcinoma (RCC). In this brief overview, we elucidate the therapeutic aspects of the endocannabinoid system for various cancers and explain how this system can be used for treating kidney cancer. Overall, this review provides new insights into cannabinoids' mechanisms of action in both in vivo and in vitro models, and focuses on recent discoveries in the field.
Collapse
Affiliation(s)
- Mohammed I Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
46
|
Ladin DA, Soliman E, Griffin L, Van Dross R. Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents. Front Pharmacol 2016; 7:361. [PMID: 27774065 PMCID: PMC5054289 DOI: 10.3389/fphar.2016.00361] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. However, many studies investigated these effects using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical animal models and to examine the current standing of cannabinoids that are being tested in human cancer patients.
Collapse
Affiliation(s)
- Daniel A Ladin
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina UniversityGreenville, NC, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - LaToya Griffin
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina UniversityGreenville, NC, USA; Center for Health Disparities, East Carolina UniversityGreenville, NC, USA
| |
Collapse
|
47
|
Suk KT, Mederacke I, Gwak GY, Cho SW, Adeyemi A, Friedman R, Schwabe RF. Opposite roles of cannabinoid receptors 1 and 2 in hepatocarcinogenesis. Gut 2016; 65:1721-32. [PMID: 27196571 PMCID: PMC6594387 DOI: 10.1136/gutjnl-2015-310212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The endocannabinoid system (ECS) exerts key roles in the development of liver fibrosis and fatty liver, two diseases that promote the development of hepatocellular carcinoma (HCC). Although cannabinoids exert potent antitumour effects in vitro, the contribution of the ECS to carcinogenesis in vivo remains elusive. DESIGN Expression of key components of the ECS, including endocannanabinoids, endocannabinoid-degrading enzymes and endocannabinoid receptors, was determined in healthy liver and tumours. Diethylnitrosamine-induced hepatocarcinogenesis was determined in mice deficient in fatty acid amide hydrolase (FAAH), the main anandamide (AEA)-degrading enzyme, in cannabinoid receptor (CB)1, CB2, or transient receptor potential cation channel subfamily V member 1 (TRPV1)-deficient mice. RESULTS Murine and human HCCs displayed activation of the ECS with strongly elevated expression of CB1 and CB2 but only moderately altered endocannabinoid levels. Contrary to the antitumour effects of cannabinoids in vitro, we observed increased hepatocarcinogenesis in FAAH-deficient mice, a mouse model with increased AEA levels. Accordingly, inactivation of CB1, the main receptor for AEA, in wild-type or FAAH-deficient mice suppressed hepatocarcinogenesis. In contrast, inactivation of CB2 increased hepatocarcinogenesis. CB1 was strongly expressed within HCC lesions and its inactivation suppressed proliferation and liver fibrosis. CB2 was predominantly expressed in macrophages. CB2 inactivation decreased the expression of T-cell-recruiting chemokines and inhibited hepatic T-cell recruitment including particular CD4+ T cells, a population with known antitumour effects in HCC. TRPV1 deletion did not alter HCC development. CONCLUSIONS Similar to their role in fibrogenesis, CB1 and CB2 exert opposite effects on hepatocarcinogenesis and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Ki-Tae Suk
- Department of Medicine, Columbia University, New York, NY 10032, USA,Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 200704, South Korea
| | - Ingmar Mederacke
- Department of Medicine, Columbia University, New York, NY 10032, USA,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Geum-Youn Gwak
- Department of Medicine, Columbia University, New York, NY 10032, USA,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135710, South Korea
| | - Sung Won Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 443380, South Korea
| | - Adebowale Adeyemi
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Richard Friedman
- Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Robert F. Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA,Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
48
|
Fidyt K, Fiedorowicz A, Strządała L, Szumny A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med 2016; 5:3007-3017. [PMID: 27696789 PMCID: PMC5083753 DOI: 10.1002/cam4.816] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/21/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
Natural bicyclic sesquiterpenes, β‐caryophyllene (BCP) and β‐caryophyllene oxide (BCPO), are present in a large number of plants worldwide. Both BCP and BCPO (BCP(O)) possess significant anticancer activities, affecting growth and proliferation of numerous cancer cells. Nevertheless, their antineoplastic effects have hardly been investigated in vivo. In addition, both compounds potentiate the classical drug efficacy by augmenting their concentrations inside the cells. The mechanisms underlying the anticancer activities of these sesquiterpenes are poorly described. BCP is a phytocannabinoid with strong affinity to cannabinoid receptor type 2 (CB2), but not cannabinoid receptor type 1 (CB1). In opposite, BCP oxidation derivative, BCPO, does not exhibit CB1/2 binding, thus the mechanism of its action is not related to endocannabinoid system (ECS) machinery. It is known that BCPO alters several key pathways for cancer development, such as mitogen‐activated protein kinase (MAPK), PI3K/AKT/mTOR/S6K1 and STAT3 pathways. In addition, treatment with this compound reduces the expression of procancer genes/proteins, while increases the levels of those with proapoptotic properties. The selective activation of CB2 may be considered a novel strategy in pain treatment, devoid of psychoactive side effects associated with CB1 stimulation. Thus, BCP as selective CB2 activator may be taken into account as potential natural analgesic drug. Moreover, due to the fact that chronic pain is often an element of cancer disease, the double activity of BCP, anticancer and analgesic, as well as its beneficial influence on the efficacy of classical chemotherapeutics, is particularly valuable in oncology. This review is focused on anticancer and analgesic activities of BCP and BCPO, the mechanisms of their actions, and potential therapeutic utility.
Collapse
Affiliation(s)
- Klaudyna Fidyt
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl, Wroclaw, 53-114, Poland.,The Faculty of Food Science, Department of Chemistry, Wrocław University of Environmental and Life Sciences, 25/27 C.K. Norwida, Wroclaw, 50-375, Poland
| | - Anna Fiedorowicz
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl, Wroclaw, 53-114, Poland.
| | - Leon Strządała
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl, Wroclaw, 53-114, Poland
| | - Antoni Szumny
- The Faculty of Food Science, Department of Chemistry, Wrocław University of Environmental and Life Sciences, 25/27 C.K. Norwida, Wroclaw, 50-375, Poland
| |
Collapse
|
49
|
Friedrich J, Khatib D, Parsa K, Santopietro A, Gallicano GI. The grass isn't always greener: The effects of cannabis on embryological development. BMC Pharmacol Toxicol 2016; 17:45. [PMID: 27680736 PMCID: PMC5041313 DOI: 10.1186/s40360-016-0085-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
With the increasing publicity of marijuana due to recent legislation, it is pertinent that the effects of fetal exposure to the drug are assessed. While in utero cannabis exposure has been associated with early pregnancy failure, birth defects and developmental delay, the mechanisms of such outcomes are largely unexplained. Furthermore, the use of cannabinoids in cancer treatment via growth inhibition and apoptosis may indicate how cannabis exposure likely harms a growing fetus. Cannabinoid signaling is required for proper pre-implantation development, embryo transport to the uterus, and uterine receptivity during implantation. In post-implantation development, cannabinoid signaling functions in a multitude of pathways, including, but not limited to, folic acid, VEGF, PCNA, MAPK/ERK, and BDNF. Disrupting the normal activity of these pathways can significantly alter many vital in utero processes, including angiogenesis, cellular replication, tissue differentiation, and neural cognitive development. This paper aims to demonstrate the effects of cannabis exposure on a developing embryo in order to provide a molecular explanation for the adverse outcomes associated with cannabis use during pregnancy.
Collapse
Affiliation(s)
- Joseph Friedrich
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Dara Khatib
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Keon Parsa
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Ariana Santopietro
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - G Ian Gallicano
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA.
| |
Collapse
|
50
|
Pyszniak M, Tabarkiewicz J, Łuszczki JJ. Endocannabinoid system as a regulator of tumor cell malignancy - biological pathways and clinical significance. Onco Targets Ther 2016; 9:4323-36. [PMID: 27486335 PMCID: PMC4958360 DOI: 10.2147/ott.s106944] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids. To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB. Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome. Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules. It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared. This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology. We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival. A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy.
Collapse
Affiliation(s)
- Maria Pyszniak
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin; Isobolographic Analysis Laboratory, Institute of Agricultural Medicine, Lublin, Poland
| |
Collapse
|