1
|
Sabino‐Santos G, Leggio CE, Litwin SM, Waheed N, Bai S, Ulusan S, Karunathilake A, Elliott DH, Smira AR, Chandra S, Li L, Ning B, Hu T, Schieffelin JS, Gunn BM, Robinson JE, Fuloria J, Norton EB. Post-COVID immunity in patients with solid tumor or hematological malignancies treated with SARS-CoV-2 monoclonal antibodies. Immun Inflamm Dis 2024; 12:e70039. [PMID: 39659018 PMCID: PMC11632117 DOI: 10.1002/iid3.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
PURPOSE SARS-CoV-2 monoclonal antibody (mAB) therapy has effectively treated severe COVID-19, although how this contributes to protective antiviral immunity in settings of malignancy is poorly defined. PATIENTS AND METHODS We evaluated the development of post-infection immunity in five patients with malignancies who received mAB therapy targeting spike protein for their PCR-confirmed SARS-CoV-2 infection in 2021, compared with non-mAB controls. Patients were identified from a larger study on oncology with a history or documented current infection with SARS-CoV-2. Subjects include two patients with lymphoma and CD20-depletion therapy, one with myeloma and two with solid tumor (stage IIA rectal adenocarcinoma and metastatic breast cancer). Cancer therapies and COVID vaccination history varied by patient. Blood samples (1-4 per patient) were collected 71-635 days post-mAB therapy. We employed clinical histories with comprehensive immunoprofiling analysis, including systems serology antibody isotyping and effector function, T-cell immunophenotyping for subset and memory cells, and sensitive blood viral RNA detection up to 2 years post-mAB therapy. RESULTS B-cell deficiency was confirmed in 3/5 patients. All patients had detectable anti-spike and nucleoprotein antibody isotypes, effector functions, and neutralizing antibodies (which increased over time by subject) at similar levels to the control group. Virus-specific T-cell activation and phenotypes varied by time and patient. Spike-specific effector and memory CD8 + T-cells were significantly elevated in mAB subjects compared to the control group. SARS-CoV-2 viral RNA detection was also higher in mAB-treated patients. One patient on bortezomib therapy had unique alterations in these populations. CONCLUSION All mAB-treated patients with malignancies developed polyfunctional immunity humoral and T-cell immunity to SARS-CoV-2 even in the setting of B-cell deficiency. The evolution of this immunity, including new variant-specific antibodies, without secondary illnesses suggests that patients were protected from symptomatic re-infection, and mAB therapy did not blunt the development of host immunity. Future studies are warranted to better characterize immunologic memory over time with exposures to new viral variants, evaluate prolonged viral shedding and the continued use of appropriate mAB for infection in high-risk patients.
Collapse
Affiliation(s)
- Gilberto Sabino‐Santos
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| | | | - Sean M. Litwin
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Najia Waheed
- University Medical Center New OrleansNew OrleansLouisianaUSA
| | - Shuangyi Bai
- Paul G. Allen School of Global HealthWashington State UniversityPullmanWashingtonUSA
| | - Sinem Ulusan
- Paul G. Allen School of Global HealthWashington State UniversityPullmanWashingtonUSA
| | - Anoli Karunathilake
- Paul G. Allen School of Global HealthWashington State UniversityPullmanWashingtonUSA
| | - Debra H. Elliott
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Ashley R. Smira
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Sruti Chandra
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Lin Li
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Bo Ning
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Tony Hu
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - John S. Schieffelin
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Bronwyn M. Gunn
- Paul G. Allen School of Global HealthWashington State UniversityPullmanWashingtonUSA
| | - James E. Robinson
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Jyotsna Fuloria
- University Medical Center New OrleansNew OrleansLouisianaUSA
| | - Elizabeth B. Norton
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
2
|
Khongsiri W, Poolchanuan P, Dulsuk A, Thippornchai N, Phunpang R, Runcharoen C, Boonprakob T, Hemtong O, Chowplijit S, Chuapaknam V, Siripoon T, Piyaphanee W, Luvira V, Rotejanaprasert C, Leaungwutiwong P, Chantratita W, Chantratita N, Kosoltanapiwat N. Associations between clinical data, vaccination status, antibody responses, and post-COVID-19 symptoms in Thais infected with SARS-CoV-2 Delta and Omicron variants: a 1-year follow-up study. BMC Infect Dis 2024; 24:1116. [PMID: 39375604 PMCID: PMC11460119 DOI: 10.1186/s12879-024-09999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), led to a global pandemic from 2020. In Thailand, five waves of outbreaks were recorded, with the fourth and fifth waves driven by the Delta and Omicron variants, resulting in over 20,000 new confirmed cases daily at their peaks. METHODS This cross-sectional study investigated the associations between clinical symptoms, vaccination status, antibody responses, and post-COVID-19 sequelae in COVID-19 patients. Plasma samples and clinical data were collected from participants admitted to hospitals in Thailand between July 2021 and August 2022, with follow-ups conducted for one year. The study included 110 participants infected with either the Delta (n = 46) or Omicron (n = 64) variants. Virus genotypes were confirmed by RT-PCR of nasal swab RNA and partial nucleotide sequencing of the S gene. IgG and IgA antibody levels against the receptor-binding domain (RBD) of SARS-CoV-2 Delta and Omicron variants were measured in plasma samples using ELISA. RESULTS Pneumonia was found to be associated with Delta variant infections, while sore throat, congestion or runny nose, and headache were linked to Omicron infections. Vaccination with fewer than two doses and diabetes mellitus were significantly associated with higher disease severity. Specific IgG and IgA antibodies against the RBD of the Delta variant generally rose by day 14 and were maintained for up to two months, whereas the pattern of antibody response to the Omicron variant was less clear. Antibody risings were found to be positively associated with pneumonia, certain underlying conditions (obesity, hypertension, dyslipidemia, and diabetes mellitus), and age ≥ 60 years. Delta variant infections were associated with forgetfulness, hair loss, and headache during the 1-year post-infection period. Females were more likely to experience hair loss, forgetfulness, and joint pain, while older age was associated with joint pain. CONCLUSIONS This study enhances our understanding of SARS-CoV-2 infections in Thais, particularly concerning the Delta and Omicron variants. The findings can inform public health planning and response strategies for future outbreaks of SARS-CoV-2 or other emerging viral diseases.
Collapse
Affiliation(s)
- Wathusiri Khongsiri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Prapassorn Poolchanuan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Narin Thippornchai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Chakkaphan Runcharoen
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | - Tanaya Siripoon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharapong Piyaphanee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Viravarn Luvira
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Deenin W, Khongchareonporn N, Ruxrungtham K, Ketloy C, Hirankarn N, Wangkanont K, Rengpipat S, Yakoh A, Chaiyo S. Overlaid Lateral Flow Immunoassay for the Simultaneous Detection of Two Variant-Specific SARS-CoV-2 Neutralizing Antibodies. Anal Chem 2024; 96:5407-5415. [PMID: 38478766 PMCID: PMC11270523 DOI: 10.1021/acs.analchem.3c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
COVID-19 vaccines have been provided to the general public to build immunity since the 2019 coronavirus pandemic. Once vaccinated, SARS-CoV-2 neutralizing antibodies (NAbs-COVID-19) are needed for excellent protection against COVID-19. However, monitoring NAbs-COVID-19 is complicated and requires hospital visits. Moreover, the resulting NAbs-COVID-19 are effective against different strains of COVID-19 depending on the type of vaccine received. Here, an overlaid lateral flow immunoassay (O-LFIA) was developed for the simultaneous detection of two NAbs-COVID-19 against different virus strains, Delta and Omicron. The O-LFIA was visualized with two T-lines with a single device using competition between the free antigen and the antigen-binding antibody. Angiotensin-converting enzyme 2 (ACE2) immobilized on the T-line binds to the antigen remaining after antibody binding. Under the optimum conditions, the proposed device exhibited 50% inhibition concentrations (IC50 values) of 45.1 and 53.6 ng/mL for the Delta and Omicron variants, respectively. Additionally, the proposed platform was applied to real-world samples of animal and human serum, and the developed immunoassay provided results that were in good agreement with those obtained with the standard method. In conclusion, this developed O-LFIA can be used as an alternative method to detect NAbs-COVID-19 and can be enabled for future advancements toward commercialization.
Collapse
Affiliation(s)
- Wanwisa Deenin
- Program
in Biotechnology, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Institute
of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nanthika Khongchareonporn
- Institute
of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiat Ruxrungtham
- Center
of Excellence in Vaccine Research and Development (Chula VRC), Faculty
of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Integrated
Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Medicine, and School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chutitorn Ketloy
- Center
of Excellence in Vaccine Research and Development (Chula VRC), Faculty
of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Integrated
Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Department
of Microbiology, Faculty of Medicine, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center
of Excellence for Molecular Biology and Genomics of Shrimp, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Center
of Excellence for Molecular Crop, Department of Biochemistry, Faculty
of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Rengpipat
- Qualified
Diagnostic Development Center (QDD), Chulalongkorn
University, Bangkok 10330, Thailand
| | - Abdulhadee Yakoh
- Institute
of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sudkate Chaiyo
- Institute
of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Jain S, Kumar S, Lai L, Linderman S, Malik AA, Ellis ML, Godbole S, Solis D, Sahoo MK, Bechnak K, Paredes I, Tanios R, Kazzi B, Dib SM, Litvack MB, Wimalasena ST, Ciric C, Rostad C, West R, Teng IT, Wang D, Edupuganti S, Kwong PD, Rouphael N, Pinsky BA, Douek DC, Wrammert J, Moreno A, Suthar MS. XBB.1.5 monovalent booster improves antibody binding and neutralization against emerging SARS-CoV-2 Omicron variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578771. [PMID: 38370837 PMCID: PMC10871242 DOI: 10.1101/2024.02.03.578771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The rapid emergence of divergent SARS-CoV-2 variants has led to an update of the COVID-19 booster vaccine to a monovalent version containing the XBB.1.5 spike. To determine the neutralization breadth following booster immunization, we collected blood samples from 24 individuals pre- and post-XBB.1.5 mRNA booster vaccination (∼1 month). The XBB.1.5 booster improved both neutralizing activity against the ancestral SARS-CoV-2 strain (WA1) and the circulating Omicron variants, including EG.5.1, HK.3, HV.1, XBB.1.5 and JN.1. Relative to the pre-boost titers, the XBB.1.5 monovalent booster induced greater total IgG and IgG subclass binding, particular IgG4, to the XBB.1.5 spike as compared to the WA1 spike. We evaluated antigen-specific memory B cells (MBCs) using either spike or receptor binding domain (RBD) probes and found that the monovalent booster largely increases non-RBD cross-reactive MBCs. These data suggest that the XBB.1.5 monovalent booster induces cross-reactive antibodies that neutralize XBB.1.5 and related Omicron variants.
Collapse
|
5
|
Buck AM, Deitchman AN, Takahashi S, Lu S, Goldberg SA, Bodansky A, Kung A, Hoh R, Williams MC, Kerbleski M, Maison DP, Deveau TM, Munter SE, Lombardo J, Wrin T, Petropoulos CJ, Durstenfeld MS, Hsue PY, Daniel Kelly J, Greenhouse B, Martin JN, Deeks SG, Peluso MJ, Henrich TJ. The breadth of the neutralizing antibody response to original SARS-CoV-2 infection is linked to the presence of Long COVID symptoms. J Med Virol 2023; 95:e29216. [PMID: 37988251 PMCID: PMC10754238 DOI: 10.1002/jmv.29216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/23/2023]
Abstract
The associations between longitudinal dynamics and the breadth of SARS-CoV-2 neutralizing antibody (nAb) response with various Long COVID phenotypes before vaccination are not known. The capacity of antibodies to cross-neutralize a variety of viral variants may be associated with ongoing pathology and persistent symptoms. We measured longitudinal neutralizing and cross-neutralizing antibody responses to pre- and post-SARS-CoV-2 Omicron variants in participants infected early in the COVID-19 pandemic, before widespread rollout of SARS-CoV-2 vaccines. Cross-sectional regression models adjusted for clinical covariates and longitudinal mixed-effects models were used to determine the impact of the breadth and rate of decay of neutralizing responses on the development of Long COVID symptoms, as well as Long COVID phenotypes. We identified several novel relationships between SARS-CoV-2 antibody neutralization and the presence of Long COVID symptoms. Specifically, we show that, although nAb responses to the original, infecting strain of SARS-CoV-2 were not associated with Long COVID in cross-sectional analyses, cross-neutralization ID50 levels to the Omicron BA.5 variant approximately 4 months following acute infection was independently and significantly associated with greater odds of Long COVID and with persistent gastrointestinal and neurological symptoms. Longitudinal modeling demonstrated significant associations in the overall levels and rates of decay of neutralization capacity with Long COVID phenotypes. A higher proportion of participants had antibodies capable of neutralizing Omicron BA.5 compared with BA.1 or XBB.1.5 variants. Our findings suggest that relationships between various immune responses and Long COVID are likely complex but may involve the breadth of antibody neutralization responses.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States
| | - Saki Takahashi
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Aaron Bodansky
- Division of Pediatric Critical Care Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Andrew Kung
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Meghann C. Williams
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Marian Kerbleski
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - David P. Maison
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - James Lombardo
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA, United States
| | | | - Matthew S. Durstenfeld
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Bryan Greenhouse
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Steven G. Deeks
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Michael J. Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Misra P, Garg PK, Awasthi A, Kant S, Rai SK, Ahmad M, Guleria R, Deori TJ, Mandal S, Jaiswal A, Gongal G, Vishwakarma S, Bairwa M, Kumar R, Haldar P, Binayke A. Cell-Mediated Immunity (CMI) for SARS-CoV-2 Infection Among the General Population of North India: A Cross-Sectional Analysis From a Sub-sample of a Large Sero-Epidemiological Study. Cureus 2023; 15:e48824. [PMID: 38106811 PMCID: PMC10722242 DOI: 10.7759/cureus.48824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Background Cell-mediated immunity (CMI), or specifically T-cell-mediated immunity, is proven to remain largely preserved against the variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including Omicron. The persistence of cell-mediated immune response in individuals longitudinally followed up for an extended period remains largely unelucidated. To address this, the current study was planned to study whether the effect of cell-mediated immunity persists after an extended period of convalescence or vaccination. Methods Whole blood specimens of 150 selected participants were collected and tested for Anti-SARS-CoV-2 Interferon-gamma (IFN-γ) response. Ex vivo SARS-CoV-2-specific interferon-gamma Enzyme-linked Immunospot (IFN-γ ELISpot) assay was carried out to determine the levels of virus-specific IFN-γ producing cells in individual samples. Findings Out of all the samples tested for anti-SARS-CoV-2 T-cell-mediated IFN-γ response, 78.4% of samples were positive. The median (interquartile range) spots forming units (SFU) per million levels of SARS-CoV-2-specific IFN-γ producing cells of the vaccinated and diagnosed participants was 336 (138-474) while those who were vaccinated but did not have the disease diagnosis was 18 (0-102); the difference between the groups was statistically significant. Since almost all the participants were vaccinated, a similar pattern of significance was observed when the diagnosed and the never-diagnosed participants were compared, irrespective of their vaccination status. Interpretations Cell-mediated immunity against SARS-CoV-2 persisted, irrespective of age and sex of the participant, for more than six months of previous exposure. Participants who had a history of diagnosed COVID-19 infection had better T-cell response compared to those who had never been diagnosed, in spite of being vaccinated.
Collapse
Affiliation(s)
- Puneet Misra
- Epidemiology and Public Health, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Pramod K Garg
- Gastroenterology, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Amit Awasthi
- Allergy and Immunology, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, IND
| | - Shashi Kant
- Epidemiology and Public Health, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Sanjay K Rai
- Epidemiology and Public Health, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Mohammad Ahmad
- Epidemiology and Public Health, World Health Organization, New Delhi, IND
| | - Randeep Guleria
- Pulmonary, Critical Care, and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Trideep J Deori
- Epidemiology and Public Health, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Suprakash Mandal
- Epidemiology and Public Health, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Abhishek Jaiswal
- Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Gaurav Gongal
- Epidemiology and Public Health, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Siddhesh Vishwakarma
- Allergy and Immunology, Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, IND
| | - Mohan Bairwa
- Epidemiology and Public Health, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Rakesh Kumar
- Epidemiology and Public Health, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Partha Haldar
- Preventive Medicine, Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Akshay Binayke
- Allergy and Immunology, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, IND
| |
Collapse
|
7
|
Buck AM, Deitchman AN, Takahashi S, Lu S, Goldberg SA, Hoh R, Williams MC, Kerbleski M, Deveau TM, Munter SE, Lombardo J, Wrin T, Petropoulos CJ, Durstenfeld MS, Hsue PY, Kelly JD, Greenhouse B, Martin JN, Deeks SG, Peluso MJ, Henrich TJ. The Breadth of the Neutralizing Antibody Response to Original SARS-CoV-2 Infection is Linked to the Presence of Long COVID Symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287923. [PMID: 37034660 PMCID: PMC10081395 DOI: 10.1101/2023.03.30.23287923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Background The associations between longitudinal dynamics and the breadth of SARS-CoV-2 neutralizing antibody response with various Long COVID (LC) phenotypes prior to vaccination are not known. The capacity of antibodies to cross neutralize a variety of viral variants may be associated with ongoing pathology and persistent symptoms. Methods We measured longitudinal neutralizing and cross-neutralizing antibody responses to pre- and post-SARS-CoV-2 Omicron variants in participants infected during the early waves of the COVID-19 pandemic, prior to wide-spread rollout of SARS-CoV-2 vaccines. Cross sectional regression models adjusted for various clinical covariates and longitudinal mixed effects models were used to determine the impact of the breadth and rate of decay of neutralizing responses on the development of Long COVID symptoms in general, as well as LC phenotypes. Results We identified several novel relationships between SARS-CoV-2 antibody neutralization and the presence of LC symptoms. Specifically, we show that, although neutralizing antibody responses to the original, infecting strain of SARS-CoV-2 were not associated with LC in cross-sectional analyses, cross-neutralization ID50 levels to the Omicron BA.5 variant approximately 4 months following acute infection was independently and significantly associated with greater odds of LC and with persistent gastrointestinal and neurological symptoms. Longitudinal modeling demonstrated significant associations in the overall levels and rates of decay of neutralization capacity with LC phenotypes. A higher proportion of participants had antibodies capable of neutralizing Omicron BA.5 compared with BA.1 or XBB.1.5 variants. Conclusions Our findings suggest that relationships between various immune responses and LC are likely complex but may involve the breadth of antibody neutralization responses.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States
| | - Saki Takahashi
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Meghann C. Williams
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Marian Kerbleski
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - James Lombardo
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA, United States
| | | | - Matthew S. Durstenfeld
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Bryan Greenhouse
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Steven G. Deeks
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Michael J. Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Davis-Gardner ME, Lai L, Wali B, Samaha H, Solis D, Lee M, Porter-Morrison A, Hentenaar IT, Yamamoto F, Godbole S, Liu Y, Douek DC, Lee FEH, Rouphael N, Moreno A, Pinsky BA, Suthar MS. Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA Bivalent Booster. N Engl J Med 2023; 388:183-185. [PMID: 36546661 PMCID: PMC9812288 DOI: 10.1056/nejmc2214293] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Lilin Lai
- Emory University School of Medicine, Atlanta, GA
| | - Bushra Wali
- Emory University School of Medicine, Atlanta, GA
| | - Hady Samaha
- Emory University School of Medicine, Atlanta, GA
| | - Daniel Solis
- Stanford University School of Medicine, Stanford, CA
| | - Matthew Lee
- Emory University School of Medicine, Atlanta, GA
| | | | | | | | - Sucheta Godbole
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Yuan Liu
- Emory University School of Medicine, Atlanta, GA
| | - Daniel C Douek
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | | | | | | | | | | |
Collapse
|
9
|
McNally EM. Omicron infection elicits a broad neutralizing response in hospitalized patients with COVID-19. J Clin Invest 2022; 132:165034. [PMID: 36453549 PMCID: PMC9711865 DOI: 10.1172/jci165034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
10
|
Davis-Gardner ME, Lai L, Wali B, Samaha H, Solis D, Lee M, Porter-Morrison A, Hentenaar IT, Yamamoto F, Godbole S, Douek DC, Lee FEH, Rouphael N, Moreno A, Pinsky BA, Suthar MS. mRNA bivalent booster enhances neutralization against BA.2.75.2 and BQ.1.1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.31.514636. [PMID: 36380757 PMCID: PMC9645425 DOI: 10.1101/2022.10.31.514636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The emergence of the highly divergent SARS-CoV-2 Omicron variant has jeopardized the efficacy of vaccines based on the ancestral spike. The bivalent COVID-19 mRNA booster vaccine within the United States is comprised of the ancestral and the Omicron BA.5 spike. Since its approval and distribution, additional Omicron subvariants have been identified with key mutations within the spike protein receptor binding domain that are predicted to escape vaccine sera. Of particular concern is the R346T mutation which has arisen in multiple subvariants, including BA.2.75.2 and BQ.1.1. Using a live virus neutralization assay, we evaluated serum samples from individuals who had received either one or two monovalent boosters or the bivalent booster to determine neutralizing activity against wild-type (WA1/2020) virus and Omicron subvariants BA.1, BA.5, BA.2.75.2, and BQ.1.1. In the one monovalent booster cohort, relative to WA1/2020, we observed a reduction in neutralization titers of 9-15-fold against BA.1 and BA.5 and 28-39-fold against BA.2.75.2 and BQ.1.1. In the BA.5-containing bivalent booster cohort, the neutralizing activity improved against all the Omicron subvariants. Relative to WA1/2020, we observed a reduction in neutralization titers of 3.7- and 4-fold against BA.1 and BA.5, respectively, and 11.5- and 21-fold against BA.2.75.2 and BQ.1.1, respectively. These data suggest that the bivalent mRNA booster vaccine broadens humoral immunity against the Omicron subvariants.
Collapse
|