1
|
Hwang J, Rao TC, Tao J, Sha B, Narimatsu Y, Clausen H, Mattheyses AL, Bellis SL. Apoptotic signaling by TNFR1 is inhibited by the α2-6 sialylation, but not α2-3 sialylation, of the TNFR1 N-glycans. J Biol Chem 2025; 301:108043. [PMID: 39615678 PMCID: PMC11732462 DOI: 10.1016/j.jbc.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024] Open
Abstract
The TNF-TNFR1 signaling pathway plays a pivotal role in regulating the balance between cell survival and cell death. Upon binding to TNF, plasma membrane-localized TNFR1 initiates survival signaling, whereas TNFR1 internalization promotes caspase-mediated apoptosis. We previously reported that the α2-6 sialylation of TNFR1 by the tumor-associated sialyltransferase ST6GAL1 diverts signaling toward survival by inhibiting TNFR1 internalization. In the current investigation, we interrogated the mechanisms underlying sialylation-dependent regulation of TNFR1 and uncovered a novel role for α2-6 sialylation, but not α2-3 sialylation, in mediating apoptosis-resistance. Our studies utilized HEK293 cells with deletion of sialyltransferases that modify N-glycans with either α2-3-linked sialic acids (ST3GAL3/4/6) or α2-6-linked sialic acids (ST6GAL1/2). Additionally, ST6GAL1 was re-expressed in cells with ST6GAL1/2 deletion to restore α2-6 sialylation. Using total internal reflection fluorescence (TIRF) microscopy and BS3 cross-linking, we determined that, under basal conditions, cells expressing TNFR1 devoid of α2-6 sialylation displayed enhanced TNFR1 oligomerization, an event that poises cells for activation by TNF. Moreover, upon stimulation with TNF, greater internalization of TNFR1 was observed via time-lapse TIRF and flow cytometry, and this correlated with increased caspase-dependent apoptosis. These effects were reversed by ST6GAL1 re-expression. Conversely, eliminating α2-3 sialylation did not significantly alter TNFR1 clustering, internalization or apoptosis. We also evaluated the Fas receptor, given its structural similarity to TNFR1. As with TNFR1, α2-6 sialylation had a selective effect in protecting cells against Fas-mediated apoptosis. These results collectively suggest that ST6GAL1 may serve a unique function in shielding cancer cells from apoptotic stimuli within the tumor microenvironment.
Collapse
Affiliation(s)
- Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alexa L Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
2
|
Wu J, Xu X, Duan J, Chai Y, Song J, Gong D, Wang B, Hu Y, Han T, Ding Y, Liu Y, Li J, Cao X. EFHD2 suppresses intestinal inflammation by blocking intestinal epithelial cell TNFR1 internalization and cell death. Nat Commun 2024; 15:1282. [PMID: 38346956 PMCID: PMC10861516 DOI: 10.1038/s41467-024-45539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
TNF acts as one pathogenic driver for inducing intestinal epithelial cell (IEC) death and substantial intestinal inflammation. How the IEC death is regulated to physiologically prevent intestinal inflammation needs further investigation. Here, we report that EF-hand domain-containing protein D2 (EFHD2), highly expressed in normal intestine tissues but decreased in intestinal biopsy samples of ulcerative colitis patients, protects intestinal epithelium from TNF-induced IEC apoptosis. EFHD2 inhibits TNF-induced apoptosis in primary IECs and intestinal organoids (enteroids). Mice deficient of Efhd2 in IECs exhibit excessive IEC death and exacerbated experimental colitis. Mechanistically, EFHD2 interacts with Cofilin and suppresses Cofilin phosphorylation, thus blocking TNF receptor I (TNFR1) internalization to inhibit IEC apoptosis and consequently protecting intestine from inflammation. Our findings deepen the understanding of EFHD2 as the key regulator of membrane receptor trafficking, providing insight into death receptor signals and autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoqing Xu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiaqi Duan
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yangyang Chai
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiaying Song
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Dongsheng Gong
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bingjing Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Ye Hu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Taotao Han
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuanyuan Ding
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, 215123, China
| | - Yin Liu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jingnan Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Yao Y, Yang R, Zhu J, Schlessinger D, Sima J. EDA ligand triggers plasma membrane trafficking of its receptor EDAR via PKA activation and SNAP23-containing complexes. Cell Biosci 2023; 13:128. [PMID: 37430358 DOI: 10.1186/s13578-023-01082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Ectodysplasin-A (EDA), a skin-specific TNF ligand, interacts with its membrane receptor EDAR to trigger EDA signaling in skin appendage formation. Gene mutations in EDA signaling cause Anhidrotic/Hypohidrotic Ectodermal Dysplasia (A/HED), which affects the formation of skin appendages including hair, teeth, and several exocrine glands. RESULTS We report that EDA triggers the translocation of its receptor EDAR from a cytosolic compartment into the plasma membrane. We use protein affinity purification to show that upon EDA stimulation EDAR associates with SNAP23-STX6-VAMP1/2/3 vesicle trafficking complexes. We find that EDA-dependent PKA activation is critical for the association. Notably, either of two HED-linked EDAR mutations, T346M and R420W, prevents EDA-induced EDAR translocation; and both EDA-induced PKA activation and SNAP23 are required for Meibomian gland (MG) growth in a skin appendage model. CONCLUSIONS Overall, in a novel regulatory mechanism, EDA increases plasma membrane translocation of its own receptor EDAR, augmenting EDA-EDAR signaling in skin appendage formation. Our findings also provide PKA and SNAP23 as potential targets for the intervention of HED.
Collapse
Affiliation(s)
- Yuyuan Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruihan Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Zhu
- Department of Psychology, Eastern Illinois University, Charleston, IL, 61920, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, Room 10B014, Baltimore, MD, 21224, USA
| | - Jian Sima
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
EGFR-TNFR1 pathway in endothelial cell facilitates acute lung injury by NF-κB/MAPK-mediated inflammation and RIP3-dependent necroptosis. Int Immunopharmacol 2023; 117:109902. [PMID: 36827922 DOI: 10.1016/j.intimp.2023.109902] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Tumor necrosis factor-α (TNFα) has emerged as a pivotal effector critically correlated with disease severity in acute lung injury (ALI). Because both the excessive activation of epidermal growth factor receptor (EGFR) and tumor necrosis factor receptor 1 (TNFR1) in sepsis-induced vasculitis are markedly diminished through EGFR tyrosine kinase inhibitor, a specific mechanism must exist to modulate TNFR1 cellular fates regulated by EGFR. Here, we demonstrated that EGFR, a specific binding partner of TNFR1, exhibited an increased NF-κB/MAPK-mediated inflammation that was governed by enhanced recruitment of TNFR-associated factor 2 (TRAF2) to TNFR1 complex I in endothelial cell (EC). Moreover, EGFR activation triggered a remarkable increase in the phosphorylation of receptor-interacting protein 1 (RIP1) and its binding with receptor-interacting protein 3 (RIP3) which led to enhanced frequency of necroptosis in complex IIb. Inhibiting the kinase of EGFR disrupted the formation of complex I and complex IIb and prevents EC from NF-κB/MAPK-mediated inflammation and RIP3-dependent necroptosis. Consistently, pharmacological inhibition of EGFR can limit the destructive effects of neutrophils activation and the hyperpermeability of lung vascular in hyperinflammation period. Collectively, we have identified EC-EGFR as a modulator of TNFR1-mediated inflammation and RIP3-dependent necroptosis, providing a possible explanation for the immunological basis of anti-EGFR therapy in sepsis-induced ALI.
Collapse
|
5
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
6
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Zhang X, Xiao K, Qiu W, Wang J, Li P, Peng K. The Immune Regulatory Effect of Boron on Ostrich Chick Splenic Lymphocytes. Biol Trace Elem Res 2021; 199:2695-2706. [PMID: 32984939 DOI: 10.1007/s12011-020-02392-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
Boron is a trace element which plays important roles in immune response. The relationship between boron and splenic lymphocyte proliferation, apoptosis, secretion of cytokines, and genes potentially related to immune response in ostrich chicks were investigated in the present study. Different concentrations of boron (0, 0.01, 0.1, 0.5, 1, 5, 10, 25, 50, and 100 mmol/L) were applied to splenic lymphocytes of African ostrich, respectively. The effect of boron on lymphocyte proliferation was checked by the CCK-8 method. Flow cytometry was used to detect the effect of boron on apoptosis. The secretion levels of IL-6 and IFN-α were determined by ELISA. Splenic lymphocyte gene expression profiles of ostrich chicks treated with boron (0, 0.1, 100 mmol/L) were studied using RNA-seq technology. The results showed that cell proliferation increased with 0.01-10 mmol/L boron, when it was 25-100 mmol/L, the cell proliferation gradually decreased as the boron concentration increased. Apoptosis ratio in ostrich splenic lymphocytes was closely related to boron concentrations. 0.01- and 0.1-mmol/L boron inhibited apoptosis in splenic lymphocytes, whereas 1, 10, 50, and 100-mmol/L boron promoted apoptosis. As the concentration of boron increased, the secretion of IL-6 gradually decreased; IFN-α was initially increased and then decreased with boron concentrations increased, reaching the maximum level with 1 mmol/L boron. In terms of the RNA-Seq data, there was no differentially expressed gene between the 0- and 0.1-mmol/L boron-treated samples; 21 differentially expressed genes were found between the 0- and 100-mmol/L boron-treated samples; 43 differentially expressed genes were found between the 0.1- and 100-mmol/L boron-treated samples. Functional analysis of the differentially expressed genes by Gene Ontology verified multiple functions associated with immune response. Pathway analysis showed that systemic lupus erythematosus, alcoholism, viral carcinogenesis, and necroptosis pathway were the major enriched pathways, and BIRC2-3, FTH1, and IL-1β genes showed differential expression in necroptosis pathway. These results demonstrated that low concentrations (0.01-0.1 mmol/L) of boron may promote the proliferation and the secretion of cytokines, inhibit cell apoptosis of ostrich splenic lymphocytes by enhancing the function of the cell membrane and the activity of intracellular catalytic enzymes, whereas high-concentration (25-100 mmol/L) boron had opposite effects on cells. The necroptosis pathway might play a pivotal role in regulating the immune response of boron-treated splenic lymphocytes in ostrich chicks.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- College of Animal Science, Yangtze University, Jingzhou, 434103, China
| | - Ke Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaxiang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434103, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, 434103, China
| | - Kemei Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
9
|
Kim CW, Oh E, Park HJ. A strategy to prevent atherosclerosis via TNF receptor regulation. FASEB J 2021; 35:e21391. [DOI: 10.1096/fj.202000764r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Chan Woo Kim
- Department of Microbiology College of Medicine Inha University Incheon Republic of Korea
- Department of Preclinical Trial Laboratory Animal Center Osong Medical Innovation Foundation Cheongju Republic of Korea
| | - Eun‐Taex Oh
- Hypoxia‐related Disease Research Center College of Medicine Inha University Incheon Republic of Korea
- Department of Biomedical Sciences College of Medicine Inha University Incheon Republic of Korea
| | - Heon Joo Park
- Department of Microbiology College of Medicine Inha University Incheon Republic of Korea
- Hypoxia‐related Disease Research Center College of Medicine Inha University Incheon Republic of Korea
| |
Collapse
|
10
|
Heck AL, Mishra S, Prenzel T, Feulner L, Achhammer E, Särchen V, Blagg BSJ, Schneider-Brachert W, Schütze S, Fritsch J. Selective HSP90β inhibition results in TNF and TRAIL mediated HIF1α degradation. Immunobiology 2021; 226:152070. [PMID: 33639524 DOI: 10.1016/j.imbio.2021.152070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/23/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Signaling via TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Previous reports demonstrated that pro-survival signaling emanates from membrane resident TNF-R1 complexes (complex I) while only internalized TNF-R1 complexes are capable for DISC formation (complex II) and thus, apoptosis induction. Internalized TNF-R1 containing endosomes undergo intracellular maturation towards lysosomes, resulting in activation and release of Cathepsin D (CtsD) into the cytoplasm. We recently revealed HSP90 as target for proteolytic cleavage by CtsD, resulting in cell death amplification. In this study, we show that extrinsic cell death activation via TNF or TRAIL results in HSP90β degradation. Co-incubation of cells with either TNF or TRAIL in combination with the HSP90β inhibitor KUNB105 but not HSP90α selective inhibition promotes apoptosis induction. In an attempt to reveal further downstream targets of combined TNF-R1 or TRAIL-R1/-R2 activation with HSP90β inhibition, we identify HIF1α and validate its ligand:inhibitor triggered degradation. Together, these findings suggest that selective inhibition of HSP90 isoforms together with death ligand stimulation may provide novel strategies for therapy of inflammatory diseases or cancer, in future.
Collapse
Affiliation(s)
- A L Heck
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - S Mishra
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - T Prenzel
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - L Feulner
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - E Achhammer
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - V Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - B S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - W Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - S Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - J Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
11
|
Ahluwalia P, Ahluwalia M, Vaibhav K, Mondal A, Sahajpal N, Islam S, Fulzele S, Kota V, Dhandapani K, Baban B, Rojiani AM, Kolhe R. Infections of the lung: a predictive, preventive and personalized perspective through the lens of evolution, the emergence of SARS-CoV-2 and its pathogenesis. EPMA J 2020; 11:581-601. [PMID: 33204369 PMCID: PMC7661834 DOI: 10.1007/s13167-020-00230-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The long evolutionary battle between humans and pathogens has played an important role in shaping the current network of host-pathogen interactions. Each organ brings new challenges from the perspective of a pathogen to establish a suitable niche for survival while subverting the protective mechanisms of the host. Lungs, the organ for oxygen exchange, have been an easy target for pathogens due to its accessibility. The organ has evolved diverse capabilities to provide the flexibility required for an organism's health and at the same time maintain protective functionality to prevent and resolve assault by pathogens. The pathogenic invasions are strongly challenged by healthy lung architecture which includes the presence and activity of the epithelium, mucous, antimicrobial proteins, surfactants, and immune cells. Competitively, the pathogens in the form of viruses, bacteria, and fungi have evolved an arsenal of strategies that can over-ride the host's protective mechanisms. While bacteria such as Mycobacterium tuberculosis (M. tuberculosis) can survive in dormant form for years before getting active in humans, novel pathogens can wreak havoc as they pose a high risk of morbidity and mortality in a very short duration of time. Recently, a coronavirus strain SARS-CoV-2 has caused a pandemic which provides us an opportunity to look at the host manipulative strategies used by respiratory pathogens. Their ability to hide, modify, evade, and exploit cell's processes are key to their survival. While pathogens like M. tuberculosis have been infecting humans for thousands of years, SARS-CoV-2 has been the cause of the recent pandemic. Molecular understanding of the strategies used by these pathogens could greatly serve in design of predictive, preventive, personalized medicine (PPPM). In this article, we have emphasized on the clinically relevant evasive strategies of the pathogens in the lungs with emphasis on M. tuberculosis and SARS-CoV-2. The molecular basis of these evasive strategies illuminated through advances in genomics, cell, and structural biology can assist in the mapping of vulnerable molecular networks which can be exploited translationally. These evolutionary approaches can further assist in generating screening and therapeutic options for susceptible populations and could be a promising approach for the prediction, prevention of disease, and the development of personalized medicines. Further, tailoring the clinical data of COVID-19 patients with their physiological responses in light of known host-respiratory pathogen interactions can provide opportunities to improve patient profiling and stratification according to identified therapeutic targets.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Ashis Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Nikhil Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Shaheen Islam
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Amyn M. Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
12
|
Holdbrooks AT, Ankenbauer KE, Hwang J, Bellis SL. Regulation of inflammatory signaling by the ST6Gal-I sialyltransferase. PLoS One 2020; 15:e0241850. [PMID: 33166339 PMCID: PMC7652342 DOI: 10.1371/journal.pone.0241850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
The ST6Gal-I sialyltransferase, an enzyme that adds α2-6-linked sialic acids to N-glycosylated proteins, regulates multiple immunological processes. However, the contribution of receptor sialylation to inflammatory signaling has been under-investigated. In the current study, we uncovered a role for ST6Gal-I in promoting sustained signaling through two prominent inflammatory pathways, NFκB and JAK/STAT. Using the U937 monocytic cell model, we determined that knockdown (KD) of ST6Gal-I expression had no effect on the rapid activation of NFκB by TNF (≤ 30 min), whereas long-term TNF-induced NFκB activation (2–6 hr) was diminished in ST6Gal-I-KD cells. These data align with prior work in epithelial cells showing that α2–6 sialylation of TNFR1 prolongs TNF-dependent NFκB activation. Similar to TNF, long-term, but not short-term, LPS-induced activation of NFκB was suppressed by ST6Gal-I KD. ST6Gal-I KD cells also exhibited reduced long-term IRF3 and STAT3 activation by LPS. Given that ST6Gal-I activity modulated LPS-dependent signaling, we conducted pull-down assays using SNA (a lectin specific for α2–6 sialic acids) to show that the LPS receptor, TLR4, is a substrate for sialylation by ST6Gal-I. We next assessed signaling by IFNγ, IL-6 and GM-CSF, and found that ST6Gal-I-KD had a limited effect on STAT activation induced by these cytokines. To corroborate these findings, signaling was monitored in bone marrow derived macrophages (BMDMs) from mice with myeloid-specific deletion of ST6Gal-I (LysMCre/ST6Gal-Ifl/fl). In agreement with data from U937 cells, BMDMs with ST6Gal-I knockout displayed reduced long-term activation of NFκB by both TNF and LPS, and diminished long-term LPS-dependent STAT3 activation. However, STAT activation induced by IFNγ, IL-6 and GM-CSF was comparable in wild-type and ST6Gal-I knockout BMDMs. These results implicate ST6Gal-I-mediated receptor sialylation in prolonging the activity of select signaling cascades including TNF/NFκB, LPS/NFκB, and LPS/STAT3, providing new insights into ST6Gal-I’s role in modulating the inflammatory phenotype of monocytic cells.
Collapse
Affiliation(s)
- Andrew T Holdbrooks
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
13
|
Fritsch J, Tchikov V, Hennig L, Lucius R, Schütze S. A toolbox for the immunomagnetic purification of signaling organelles. Traffic 2019; 20:246-258. [PMID: 30569578 DOI: 10.1111/tra.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Homeostasis and the complex functions of organisms and cells rely on the sophisticated spatial and temporal regulation of signaling in different intra- and extracellular compartments and via different mediators. We here present a set of fast and easy to use protocols for the target-specific immunomagnetic enrichment of receptor containing endosomes (receptosomes), plasma membranes, lysosomes and exosomes. Isolation of subcellular organelles and exosomes is prerequisite for and will advance their detailed subsequent biochemical and functional analysis. Sequential application of the different subprotocols allows isolation of morphological and functional intact organelles from one pool of cells. The enrichment is based on a selective labelling using receptor ligands or antibodies together with superparamagnetic microbeads followed by separation in a patented matrix-free high-gradient magnetic purification device. This unique magnetic chamber is based on a focusing system outside of the empty separation column, generating an up to 3 T high-gradient magnetic field focused at the wall of the column.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany.,Institute for Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Vladimir Tchikov
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lena Hennig
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
14
|
Ali M, Roback L, Mocarski ES. Herpes simplex virus 1 ICP6 impedes TNF receptor 1-induced necrosome assembly during compartmentalization to detergent-resistant membrane vesicles. J Biol Chem 2018; 294:991-1004. [PMID: 30504227 DOI: 10.1074/jbc.ra118.004651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein (RIP) kinase 3 (RIPK3)-dependent necroptosis directs inflammation and tissue injury, as well as anti-viral host defense. In human cells, herpes simplex virus 1 (HSV1) UL39-encoded ICP6 blocks RIP homotypic interacting motif (RHIM) signal transduction, preventing this leakage form of cell death and sustaining viral infection. TNF receptor 1 (TNFR1)-induced necroptosis is known to require the formation of a RIPK1-RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL) signaling complex (necrosome) that we find compartmentalizes exclusively to caveolin-1-associated detergent-resistant membrane (DRM) vesicles in HT-29 cells. Translocation proceeds in the presence of RIPK3 kinase inhibitor GSK'840 or MLKL inhibitor necrosulfonomide but requires the kinase activity, as well as RHIM signaling of RIPK1. ICP6 impedes the translocation of RIPK1, RIPK3, and MLKL to caveolin-1-containing DRM vesicles without fully blocking the activation of RIPK3 or phosphorylation of MLKL. Consistent with the important contribution of RIPK1 RHIM-dependent recruitment of RIPK3, overexpression of RHIM-deficient RIPK3 results in phosphorylation of MLKL, but this does not lead to either translocation or necroptosis. Combined, these data reveal a critical role of RHIM signaling in the recruitment of the MLKL-containing necrosome to membrane vesicle-associated sites of aggregation. A similar mechanism is predicted for other RHIM-containing signaling adaptors, Z-nucleic acid-binding protein 1 (ZBP1) (also called DAI and DLM1), and TIR domain-containing adapter-inducing interferon-β (TRIF).
Collapse
Affiliation(s)
- Mohammad Ali
- From the Department of Microbiology & Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Linda Roback
- From the Department of Microbiology & Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Edward S Mocarski
- From the Department of Microbiology & Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
15
|
Fritsch J, Fickers R, Klawitter J, Särchen V, Zingler P, Adam D, Janssen O, Krause E, Schütze S. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget 2018; 7:75774-75789. [PMID: 27716614 PMCID: PMC5342777 DOI: 10.18632/oncotarget.12411] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022] Open
Abstract
During apoptosis induction by TNF, the extrinsic and intrinsic apoptosis pathways converge at the lysosomal-mitochondrial interface. Earlier studies showed that the lysosomal aspartic protease Cathepsin D (CtsD) cleaves Bid to tBid, resulting in the amplification of the initial apoptotic cascade via mitochondrial outer membrane permeabilization (MOMP). The goal of this study was to identify further targets for CtsD that might be involved in activation upon death receptor ligation. Using a proteomics screen, we identified the heat shock protein 90 (HSP90) to be cleaved by CtsD after stimulation of U937 or other cell lines with TNF, FasL and TRAIL. HSP90 cleavage corresponded to apoptosis sensitivity of the cell lines to the different stimuli. After mutation of the cleavage site, HSP90 partially prevented apoptosis induction in U937 and Jurkat cells. Overexpression of the cleavage fragments in U937 and Jurkat cells showed no effect on apoptosis, excluding a direct pro-apoptotic function of these fragments. Pharmacological inhibition of HSP90 with 17AAG boosted ligand mediated apoptosis by enhancing Bid cleavage and caspase-9 activation. Together, we demonstrated that HSP90 plays an anti-apoptotic role in death receptor signalling and that CtsD-mediated cleavage of HSP90 sensitizes cells for apoptosis. These findings identify HSP90 as a potential target for cancer therapy in combination with death ligands (e.g. TNF or TRAIL).
Collapse
Affiliation(s)
- Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ricarda Fickers
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jan Klawitter
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vinzenz Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philipp Zingler
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Holdbrooks AT, Britain CM, Bellis SL. ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J Biol Chem 2017; 293:1610-1622. [PMID: 29233887 DOI: 10.1074/jbc.m117.801480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/05/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of the tumor necrosis factor receptor 1 (TNFR1) death receptor by TNF induces either cell survival or cell death. However, the mechanisms mediating these distinct outcomes remain poorly understood. In this study, we report that the ST6Gal-I sialyltransferase, an enzyme up-regulated in numerous cancers, sialylates TNFR1 and thereby protects tumor cells from TNF-induced apoptosis. Using pancreatic and ovarian cancer cells with ST6Gal-I knockdown or overexpression, we determined that α2-6 sialylation of TNFR1 had no effect on early TNF-induced signaling events, including the rapid activation of NF-κB, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and Akt (occurring within 15 min). However, upon extended TNF treatment (6-24 h), cells with high ST6Gal-I levels exhibited resistance to TNF-induced apoptosis, as indicated by morphological evidence of cell death and decreased activation of caspases 8 and 3. Correspondingly, at these later time points, high ST6Gal-I expressers displayed sustained activation of the survival molecules Akt and NF-κB. Additionally, extended TNF treatment resulted in the selective enrichment of clonal variants with high ST6Gal-I expression, further substantiating a role for ST6Gal-I in cell survival. Given that TNFR1 internalization is known to be essential for apoptosis induction, whereas survival signaling is initiated by TNFR1 at the plasma membrane, we examined TNFR1 localization. The α2-6 sialylation of TNFR1 was found to inhibit TNF-induced TNFR1 internalization. Thus, by restraining TNFR1 at the cell surface via sialylation, ST6Gal-I acts as a functional switch to divert signaling toward survival. These collective findings point to a novel glycosylation-dependent mechanism that regulates the cellular response to TNF and may promote cancer cell survival within TNF-rich tumor microenvironments.
Collapse
Affiliation(s)
- Andrew T Holdbrooks
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Colleen M Britain
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Susan L Bellis
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
17
|
Virus Infection and Death Receptor-Mediated Apoptosis. Viruses 2017; 9:v9110316. [PMID: 29077026 PMCID: PMC5707523 DOI: 10.3390/v9110316] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.
Collapse
|
18
|
Regulated intramembrane proteolysis: emergent role in cell signalling pathways. Biochem Soc Trans 2017; 45:1185-1202. [PMID: 29079648 DOI: 10.1042/bst20170002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Receptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments. The combined and sequential enzymatic activity has been defined as regulated intramembrane proteolysis and is now a fundamental signal transduction process involved in the termination or propagation of receptor signalling events. In this review, we discuss emerging evidence for a role of the γ-secretase protease complexes and regulated intramembrane proteolysis in cell- and immune-signalling pathways.
Collapse
|
19
|
Shaping the niche in macrophages: Genetic diversity of the M. tuberculosis complex and its consequences for the infected host. Int J Med Microbiol 2017; 308:118-128. [PMID: 28969988 DOI: 10.1016/j.ijmm.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mycobacteria of the Mycobacterium tuberculosis complex (MTBC) have co-evolved with their individual hosts and are able to transform the hostile environment of the macrophage into a permissive cellular habitat. The impact of MTBC genetic variability has long been considered largely unimportant in TB pathogenesis. Members of the MTBC can now be distinguished into three major phylogenetic groups consisting of 7 phylogenetic lineages and more than 30 so called sub-lineages/subgroups. MTBC genetic diversity indeed influences the transmissibility and virulence of clinical MTBC isolates as well as the immune response and the clinical outcome. Here we review the genetic diversity and epidemiology of MTBC strains and describe the current knowledge about the host immune response to infection with MTBC clinical isolates using human and murine experimental model systems in vivo and in vitro. We discuss the role of innate cytokines in detail and portray two in our group recently developed approaches to characterize the intracellular niches of MTBC strains. Characterizing the niches and deciphering the strategies of MTBC strains to transform an antibacterial effector cell into a permissive cellular habitat offers the opportunity to identify strain- and lineage-specific key factors which may represent targets for novel antimicrobial or host directed therapies for tuberculosis.
Collapse
|
20
|
Fritsch J, Zingler P, Särchen V, Heck AL, Schütze S. Role of ubiquitination and proteolysis in the regulation of pro- and anti-apoptotic TNF-R1 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2138-2146. [PMID: 28765050 DOI: 10.1016/j.bbamcr.2017.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Tumor Necrosis Factor Receptor 1 (TNF-R1) transmits various intracellular signaling cascades leading to diverse biological outcomes, ranging from proliferation, differentiation, survival to the induction of various forms of cell death (i.e. apoptosis, necrosis, necroptosis). These signaling pathways have to be tightly regulated. Proteolysis is an important regulatory mechanism in TNF-R1 pro-apoptotic as well as anti-apoptotic/pro-inflammatory signaling. Some key players in these signaling cascades are known (mainly the caspase-family of proteases and a previously unrecognized "lysosomal death pathway" involving cathepsins), however the interaction of proteases in the regulation of TNF signaling is still enigmatic. Ubiquitination of proteins, both non-degradative degradative, which either results in proteolytic degradation of target substrates or regulates their biological function, represents another layer of regulation in this signaling cascade. We and others found out that the differences in signal quality depend on the localization of the receptors. Plasma membrane resident receptors activate survival signals, while endocytosed receptors can induce cell death. In this article we will review the role of ubiquitination and proteolysis in these diverse events focusing on our own contributions to the lysosomal apoptotic pathway linked to the subcellular compartmentalization of TNF-R1. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philipp Zingler
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vinzenz Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Laura Heck
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| |
Collapse
|
21
|
Hermanns HM, Wohlfahrt J, Mais C, Hergovits S, Jahn D, Geier A. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction. Biol Chem 2017; 397:695-708. [PMID: 27071147 DOI: 10.1515/hsz-2015-0277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction.
Collapse
|
22
|
STAT1 mediates transmembrane TNF-alpha-induced formation of death-inducing signaling complex and apoptotic signaling via TNFR1. Cell Death Differ 2017; 24:660-671. [PMID: 28186502 DOI: 10.1038/cdd.2016.162] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) exists in two forms: secretory TNF-α (sTNF-α) and transmembrane TNF-α (tmTNF-α). Although both forms of TNF-α induce tumor cell apoptosis, tmTNF-α is able to kill tumor cells that are resistant to sTNF-α-mediated cytotoxicity, indicating their differences in signal transduction. Here, we demonstrate that internalization of TNFR1 is crucial for sTNF-α- but not for tmTNF-α-induced apoptosis. sTNF-α induces binding of tumor necrosis factor receptor type 1-associated death domain protein (TRADD) to the death domain (DD) of TNFR1 and subsequent activation of nuclear factor kappa B (NF-κB), and the formation of death-inducing signaling complexes (DISCs) in the cytoplasm after internalization. In contrast, tmTNF-α induces DISC formation on the membrane in a DD-independent manner. It leads to the binding of signal transducer and activator of transcription 1 (STAT1) to a region spanning amino acids 319-337 of TNFR1 and induces phosphorylation of serine at 727 of STAT1. The phosphorylation of STAT1 promotes its binding to TRADD, and thus recruits Fas-associated protein with DD (FADD) and caspase 8 to form DISC complexes. This STAT1-dependent signaling results in apoptosis but not NF-κB activation. STAT1-deficiency in U3A cells counteracts tmTNF-α-induced DISC formation and apoptosis. Conversely, reconstitution of STAT1 expression restores tmTNF-α-induced apoptotic signaling in the cell line. Consistently, tmTNF-α suppresses the growth of STAT1-containing HT1080 tumors, but not of STAT1-deficient U3A tumors in vivo. Our data reveal an unappreciated molecular mechanism of tmTNF-α-induced apoptosis and may provide a new clue for cancer therapy.
Collapse
|
23
|
Chhibber-Goel J, Coleman-Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell JC, McCarthy JV. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem 2016; 291:5971-5985. [PMID: 26755728 DOI: 10.1074/jbc.m115.679076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 12/27/2022] Open
Abstract
The γ-secretase protease and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signaling events, which have a central role in Alzheimer disease, cancer progression, and immune surveillance. An increasing number of γ-secretase substrates have a role in cytokine signaling, including the IL-6 receptor, IL-1 receptor type I, and IL-1 receptor type II. In this study, we show that following TNF-converting enzyme-mediated ectodomain shedding of TNF type I receptor (TNFR1), the membrane-bound TNFR1 C-terminal fragment is subsequently cleaved by γ-secretase to generate a cytosolic TNFR1 intracellular domain. We also show that clathrin-mediated internalization of TNFR1 C-terminal fragment is a prerequisite for efficient γ-secretase cleavage of TNFR1. Furthermore, using in vitro and in vivo model systems, we show that in the absence of presenilin expression and γ-secretase activity, TNF-mediated JNK activation was prevented, assembly of the TNFR1 pro-apoptotic complex II was reduced, and TNF-induced apoptosis was inhibited. These observations demonstrate that TNFR1 is a γ-secretase substrate and suggest that γ-secretase cleavage of TNFR1 represents a new layer of regulation that links the presenilins and the γ-secretase protease to pro-inflammatory cytokine signaling.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- From the Signal Transduction Laboratory, School of Biochemistry and Cell Biology, ABCRF, 3.41 Western Gateway Building, Western Road, University College Cork, Cork T12 YN60, Ireland
| | - Caroline Coleman-Vaughan
- From the Signal Transduction Laboratory, School of Biochemistry and Cell Biology, ABCRF, 3.41 Western Gateway Building, Western Road, University College Cork, Cork T12 YN60, Ireland
| | - Vishal Agrawal
- From the Signal Transduction Laboratory, School of Biochemistry and Cell Biology, ABCRF, 3.41 Western Gateway Building, Western Road, University College Cork, Cork T12 YN60, Ireland
| | - Neha Sawhney
- From the Signal Transduction Laboratory, School of Biochemistry and Cell Biology, ABCRF, 3.41 Western Gateway Building, Western Road, University College Cork, Cork T12 YN60, Ireland
| | - Emer Hickey
- From the Signal Transduction Laboratory, School of Biochemistry and Cell Biology, ABCRF, 3.41 Western Gateway Building, Western Road, University College Cork, Cork T12 YN60, Ireland
| | - James C Powell
- From the Signal Transduction Laboratory, School of Biochemistry and Cell Biology, ABCRF, 3.41 Western Gateway Building, Western Road, University College Cork, Cork T12 YN60, Ireland
| | - Justin V McCarthy
- From the Signal Transduction Laboratory, School of Biochemistry and Cell Biology, ABCRF, 3.41 Western Gateway Building, Western Road, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
24
|
Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells. J Virol 2015; 89:12401-17. [PMID: 26423951 DOI: 10.1128/jvi.01534-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Our understanding of adenovirus (Ad) biology is largely extrapolated from human species C Ad5. Most humans are immune to Ad5, so lower-seroprevalence viruses like human Ad6 and Ad26 are being tested as therapeutic vectors. Ad6 and Ad26 differ at the DNA level by 34%. To better understand how this might impact their biology, we examined the life cycle of the two viruses in human lung cells in vitro. Both viruses infected A549 cells with similar efficiencies, executed DNA replication with identical kinetics within 12 h, and began killing cells within 72 h. While Ad6-infected cells remained adherent until death, Ad26-infected cells detached within 12 h of infection but remained viable. Next-generation sequencing (NGS) of mRNA from infected cells demonstrated that viral transcripts constituted 1% of cellular mRNAs within 6 h and 8 to 16% within 12 h. Quantitative PCR and NGS revealed the activation of key early genes at 6 h and transition to late gene activation by 12 h by both viruses. There were marked differences in the balance of E1A and E1B activation by the two viruses and in the expression of E3 immune evasion mRNAs. Ad6 was markedly more effective at suppressing major histocompatibility complex class I (MHC I) display on the cell surface and in evading TRAIL-mediated apoptosis than was Ad26. These data demonstrate shared as well as divergent life cycles in these genetically distant human adenoviruses. An understanding of these differences expands the knowledge of alternative Ad species and may inform the selection of related Ads for therapeutic development. IMPORTANCE A burgeoning number of adenoviruses (Ads) are being harnessed as therapeutics, yet the biology of these viruses is generally extrapolated from Ad2 and Ad5. Here, we are the first to compare the transcriptional programs of two genetically distant Ads by mRNA next-generation sequencing (NGS). Species C Ad6 and Ad26 are being pursued as lower-seroprevalence Ad vectors but differ at the DNA level by 34%. Head-to-head comparison in human lung cells by NGS revealed that the two viruses generally conform to our general understanding of the Ad transcriptional program. However, fine mapping revealed subtle and strong differences in how these two viruses execute these programs, including differences in the balance of E1A and E1B mRNAs and in E3 immune evasion genes. This suggests that not all adenoviruses behave like Ad2 and Ad5 and that they may have unique strategies to infect cells and evade the immune system.
Collapse
|
25
|
Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P. Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2015; 2:e975093. [PMID: 27308513 PMCID: PMC4905361 DOI: 10.4161/23723556.2014.975093] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium
| | - William J Kaiser
- Department of Microbiology and Immunology; Emory Vaccine Center; Emory University School of Medicine ; Atlanta, GA, USA
| | - Mathieu Jm Bertrand
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium; Methusalem Program; Ghent University; Ghent, Belgium
| |
Collapse
|
26
|
Interregional Coevolution Analysis Revealing Functional and Structural Interrelatedness between Different Genomic Regions in Human Mastadenovirus D. J Virol 2015; 89:6209-17. [PMID: 25833048 DOI: 10.1128/jvi.00515-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/25/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Human mastadenovirus D (HAdV-D) is exceptionally rich in type among the seven human adenovirus species. This feature is attributed to frequent intertypic recombination events that have reshuffled orthologous genomic regions between different HAdV-D types. However, this trend appears to be paradoxical, as it has been demonstrated that the replacement of some of the interacting proteins for a specific function with other orthologues causes malfunction, indicating that intertypic recombination events may be deleterious. In order to understand why the paradoxical trend has been possible in HAdV-D evolution, we conducted an interregional coevolution analysis between different genomic regions of 45 different HAdV-D types and found that ca. 70% of the genome has coevolved, even though these are fragmented into several pieces via short intertypic recombination hot spot regions. Since it is statistically and biologically unlikely that all of the coevolving fragments have synchronously recombined between different genomes, it is probable that these regions have stayed in their original genomes during evolution as a platform for frequent intertypic recombination events in limited regions. It is also unlikely that the same genomic regions have remained almost untouched during frequent recombination events, independently, in all different types, by chance. In addition, the coevolving regions contain the coding regions of physically interacting proteins for important functions. Therefore, the coevolution of these regions should be attributed at least in part to natural selection due to common biological constraints operating on all types, including protein-protein interactions for essential functions. Our results predict additional unknown protein interactions. IMPORTANCE Human mastadenovirus D, an exceptionally type-rich human adenovirus species and causative agent of different diseases in a wide variety of tissues, including that of ocular region and digestive tract, as well as an opportunistic infection in immunocompromised patients, is known to have highly diverged through frequent intertypic recombination events; however, it has also been demonstrated that the replacement of a component protein of a multiprotein system with a homologous protein causes malfunction. The present study solved this apparent paradox by looking at which genomic parts have coevolved using a newly developed method. The results revealed that intertypic recombination events have occurred in limited genomic regions and been avoided in the genomic regions encoding proteins that physically interact for a given function. This approach detects purifying selection against recombination events causing the replacement of partial components of multiprotein systems and therefore predicts physical and functional interactions between different proteins and/or genomic elements.
Collapse
|
27
|
Abstract
Human adenoviruses (HAdVs) are an important cause of infections in both immunocompetent and immunocompromised individuals, and they continue to provide clinical challenges pertaining to diagnostics and treatment. The growing number of HAdV types identified by genomic analysis, as well as the improved understanding of the sites of viral persistence and reactivation, requires continuous adaptions of diagnostic approaches to facilitate timely detection and monitoring of HAdV infections. In view of the clinical relevance of life-threatening HAdV diseases in the immunocompromised setting, there is an urgent need for highly effective treatment modalities lacking major side effects. The present review summarizes the recent progress in the understanding and management of HAdV infections.
Collapse
|
28
|
Resch U, Cuapio A, Sturtzel C, Hofer E, de Martin R, Holper-Schichl YM. Polyubiquitinated tristetraprolin protects from TNF-induced, caspase-mediated apoptosis. J Biol Chem 2014; 289:25088-100. [PMID: 25056949 DOI: 10.1074/jbc.m114.563312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of TNF to its receptor (TNFR1) elicits the spatiotemporal assembly of two signaling complexes that coordinate the balance between cell survival and cell death. We have shown previously that, following TNF treatment, the mRNA decay protein tristetraprolin (TTP) is Lys-63-polyubiquitinated by TNF receptor-associated factor 2 (TRAF2), suggesting a regulatory role in TNFR signaling. Here we demonstrate that TTP interacts with TNFR1 in a TRAF2-dependent manner, thereby initiating the MEKK1/MKK4-dependent activation of JNK activities. This regulatory function toward JNK activation but not NF-κB activation depends on lysine 105 of TTP, which we identified as the corresponding TRAF2 ubiquitination site. Disabling TTP polyubiquitination results in enhanced TNF-induced apoptosis in cervical cancer cells. Together, we uncover a novel aspect of TNFR1 signaling where TTP, in alliance with TRAF2, acts as a balancer of JNK-mediated cell survival versus death.
Collapse
Affiliation(s)
- Ulrike Resch
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Angélica Cuapio
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Caterina Sturtzel
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Erhard Hofer
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Rainer de Martin
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Yvonne M Holper-Schichl
- From the Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
29
|
Cell fate decisions regulated by K63 ubiquitination of tumor necrosis factor receptor 1. Mol Cell Biol 2014; 34:3214-28. [PMID: 24980434 DOI: 10.1128/mcb.00048-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Signaling by tumor necrosis factor (TNF) receptor 1 (TNF-R1), a prototypic member of the death receptor family, mediates pleiotropic biological outcomes ranging from inflammation and cell proliferation to cell death. Although many elements of specific signaling pathways have been identified, the main question of how these selective cell fate decisions are regulated is still unresolved. Here we identified TNF-induced K63 ubiquitination of TNF-R1 mediated by the ubiquitin ligase RNF8 as an early molecular checkpoint in the regulation of the decision between cell death and survival. Downmodulation of RNF8 prevented the ubiquitination of TNF-R1, blocked the internalization of the receptor, prevented the recruitment of the death-inducing signaling complex and the activation of caspase-8 and caspase-3/7, and reduced apoptotic cell death. Conversely, recruitment of the adaptor proteins TRADD, TRAF2, and RIP1 to TNF-R1, as well as activation of NF-κB, was unimpeded and cell growth and proliferation were significantly enhanced in RNF8-deficient cells. Thus, K63 ubiquitination of TNF-R1 can be sensed as a new level of regulation of TNF-R1 signaling at the earliest stage after ligand binding.
Collapse
|
30
|
Steinhäuser C, Dallenga T, Tchikov V, Schaible UE, Schütze S, Reiling N. Immunomagnetic Isolation of Pathogen‐Containing Phagosomes and Apoptotic Blebs from Primary Phagocytes. ACTA ACUST UNITED AC 2014; 105:14.36.1-14.36.26. [DOI: 10.1002/0471142735.im1436s105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Christine Steinhäuser
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel Germany
| | - Tobias Dallenga
- Division of Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel Germany
| | - Vladimir Tchikov
- Institute of Immunology, Christian‐Albrechts‐University of Kiel Kiel Germany
| | - Ulrich E. Schaible
- Division of Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel Germany
| | - Stefan Schütze
- Institute of Immunology, Christian‐Albrechts‐University of Kiel Kiel Germany
| | - Norbert Reiling
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel Germany
| |
Collapse
|
31
|
Qi Z, Shen L, Zhou H, Jiang Y, Lan L, Luo L, Yin Z. Phosphorylation of heat shock protein 27 antagonizes TNF-α induced HeLa cell apoptosis via regulating TAK1 ubiquitination and activation of p38 and ERK signaling. Cell Signal 2014; 26:1616-25. [PMID: 24686082 DOI: 10.1016/j.cellsig.2014.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/07/2014] [Accepted: 03/16/2014] [Indexed: 11/28/2022]
Abstract
Tumor necrosis factor (TNF)-α is a potent cytokine that regulates critical cellular processes including apoptosis. TNF-α usually triggers both survival and apoptotic signals in various cell types. Heat shock protein 27 (HSP27), an important cellular chaperone, is believed to protect cells from apoptosis. HSP27 can be phosphorylated and changed its cellular function according to different stimuli. However, available reports on the role of HSP27 phosphorylation in apoptosis remain elusive. In this study, we investigated the role of HSP27 phosphorylation in TNF-α induced apoptosis in human cervical carcinoma (HeLa) cells. We found that TNF-α induced apoptosis was enhanced if we suppressed the TNF-α induced HSP27 phosphorylation by specific inhibitor CMPD1 or MAPKAPK2 (MK2) knockdown or by overexpression of non-phosphorylatable mutant HSP27-3A. Through co-immunoprecipitation and confocal microscopy, we observed that HSP27 associated with transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) in response to TNF-α stimulation. By blocking MK2 activity or overexpressing phospho-mimetic mutant Hsp27-3D, we further showed that HSP27 phosphorylation facilitated the TNF-α induced ubiquitination and phosphorylation of TAK1 and the activations of p38 MAPK and ERK, the TAK1 downstream pro-survival signaling. In addition, we also found that increased HSP27 phosphorylation inhibited TRADD ubiquitination but did not influence the binding between TRADD and FADD in a pro-apoptotic complex. Taken together, our data indicated that HSP27 phosphorylation was involved in modulating the TNF-α induced apoptosis via interacting with TAK1 and regulating TAK1 post-translational modifications in HeLa cells. This study demonstrates that HSP27 phosphorylation serves as a novel regulator in TNF-α-induced apoptosis, and provides a new insight into the cytoprotective role of HSP27 phosphorylation.
Collapse
Affiliation(s)
- Zhilin Qi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China; Department of Biochemistry, Wannan Medical College, Wuhu, Anhui, PR China
| | - Lei Shen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Huiting Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Yi Jiang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
32
|
Puimège L, Libert C, Van Hauwermeiren F. Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev 2014; 25:285-300. [PMID: 24746195 DOI: 10.1016/j.cytogfr.2014.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
TNF is an essential regulator of the immune system. Dysregulation of TNF plays a role in the pathology of many auto-immune diseases. TNF-blocking agents have proven successful in the treatment of such diseases. Development of novel, safer or more effective drugs requires a deeper understanding of the regulation of the pro-inflammatory activities of TNF and its receptors. The ubiquitously expressed TNFR1 is responsible for most TNF effects, while TNFR2 has a limited expression pattern and performs immune-regulatory functions. Despite extensive knowledge of TNFR1 signaling, the regulation of TNFR1 expression, its modifications, localization and processing are less clear and the data are scattered. Here we review the current knowledge of TNFR1 regulation and discuss the impact this has on the host.
Collapse
Affiliation(s)
- Leen Puimège
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
33
|
Abstract
This chapter describes reports of the structural characterization of death ligands and death receptors (DRs) from the tumor necrosis factor (TNF) and TNF receptor families. The review discusses the interactions of these proteins with agonist ligands, inhibitors, and downstream signaling molecules. Though historically labeled as being implicated in programmed cell death, the function of these proteins extends to nonapoptotic pathways. The review highlights, from a structural biology perspective, the complexity of DR signaling and the ongoing challenge to discern the precise mechanisms that occur at the point of DR activation, including how the degree to which the receptors are induced to cluster may be related to the nature of the impact upon the cell. The potential for posttranslational modification and receptor internalization to play roles in DR signaling is briefly discussed.
Collapse
Affiliation(s)
- Paul C Driscoll
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, London, United Kingdom.
| |
Collapse
|
34
|
Tchikov V, Fritsch J, Schütze S. Separation of Magnetically Isolated TNF Receptosomes from Mitochondria. Methods Enzymol 2014; 535:327-49. [DOI: 10.1016/b978-0-12-397925-4.00019-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
|
36
|
Altering the sphingolipid acyl chain composition prevents LPS/GLN-mediated hepatic failure in mice by disrupting TNFR1 internalization. Cell Death Dis 2013; 4:e929. [PMID: 24263103 PMCID: PMC3847327 DOI: 10.1038/cddis.2013.451] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/20/2023]
Abstract
The involvement of ceramide in death receptor-mediated apoptosis has been widely examined with most studies focusing on the role of ceramide generated from sphingomyelin hydrolysis. We now analyze the effect of the ceramide acyl chain length by studying tumor necrosis factor α receptor-1 (TNFR1)-mediated apoptosis in a ceramide synthase 2 (CerS2) null mouse, which cannot synthesize very-long acyl chain ceramides. CerS2 null mice were resistant to lipopolysaccharide/galactosamine-mediated fulminant hepatic failure even though TNFα secretion from macrophages was unaffected. Cultured hepatocytes were also insensitive to TNFα-mediated apoptosis. In addition, in both liver and in hepatocytes, caspase activities were not elevated, consistent with inhibition of TNFR1 pro-apoptotic signaling. In contrast, Fas receptor activation resulted in the death of CerS2 null mice. Caspase activation was blocked because of the inability of CerS2 null mice to internalize the TNFR1; whereas Fc-TNFα was internalized to a perinuclear region in hepatocytes from wild-type mice, no internalization was detected in CerS2 null mice. Our results indicate that altering the acyl chain composition of sphingolipids inhibits TNFR1 internalization and inhibits selective pro-apoptotic downstream signaling for apoptosis.
Collapse
|
37
|
|
38
|
Waters JP, Pober JS, Bradley JR. Tumour necrosis factor in infectious disease. J Pathol 2013; 230:132-47. [PMID: 23460469 DOI: 10.1002/path.4187] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 02/15/2013] [Accepted: 02/23/2013] [Indexed: 12/12/2022]
Abstract
TNF signals through two distinct receptors, designated TNFR1 and TNFR2, which initiate diverse cellular effects that include cell survival, activation, differentiation, and proliferation and cell death. These cellular responses can promote immunological and inflammatory responses that eradicate infectious agents, but can also lead to local tissue injury at sites of infection and harmful systemic effects. Defining the molecular mechanisms involved in TNF responses, the effects of natural and experimental genetic diversity in TNF signalling and the effects of therapeutic blockade of TNF has increased our understanding of the key role that TNF plays in infectious disease.
Collapse
Affiliation(s)
- John P Waters
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
39
|
Schneider-Brachert W, Heigl U, Ehrenschwender M. Membrane trafficking of death receptors: implications on signalling. Int J Mol Sci 2013; 14:14475-503. [PMID: 23852022 PMCID: PMC3742255 DOI: 10.3390/ijms140714475] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.
Collapse
Affiliation(s)
- Wulf Schneider-Brachert
- Institute for Clinical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany; E-Mails: (W.S.-B.); (U.H.)
| | - Ulrike Heigl
- Institute for Clinical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany; E-Mails: (W.S.-B.); (U.H.)
| | - Martin Ehrenschwender
- Institute for Clinical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany; E-Mails: (W.S.-B.); (U.H.)
| |
Collapse
|
40
|
Steinhäuser C, Heigl U, Tchikov V, Schwarz J, Gutsmann T, Seeger K, Brandenburg J, Fritsch J, Schroeder J, Wiesmüller KH, Rosenkrands I, Walther P, Pott J, Krause E, Ehlers S, Schneider-Brachert W, Schütze S, Reiling N. Lipid-labeling facilitates a novel magnetic isolation procedure to characterize pathogen-containing phagosomes. Traffic 2012; 14:321-36. [PMID: 23231467 DOI: 10.1111/tra.12031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 11/28/2012] [Accepted: 12/11/2012] [Indexed: 02/03/2023]
Abstract
Here we describe a novel approach for the isolation and biochemical characterization of pathogen-containing compartments from primary cells: We developed a lipid-based procedure to magnetically label the surface of bacteria and visualized the label by scanning and transmission electron microscopy (SEM, TEM). We performed infection experiments with magnetically labeled Mycobacterium avium, M. tuberculosis and Listeria monocytogenes and isolated magnetic bacteria-containing phagosomes using a strong magnetic field in a novel free-flow system. Magnetic labeling of M. tuberculosis did not affect the virulence characteristics of the bacteria during infection experiments addressing host cell activation, phagosome maturation delay and replication in macrophages in vitro. Biochemical analyses of the magnetic phagosome-containing fractions provided evidence of an enhanced presence of bacterial antigens and a differential distribution of proteins involved in the endocytic pathway over time as well as cytokine-dependent changes in the phagosomal protein composition. The newly developed method represents a useful approach to characterize and compare pathogen-containing compartments, in order to identify microbial and host cell targets for novel anti-infective strategies.
Collapse
Affiliation(s)
- Christine Steinhäuser
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, 23845, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Han J, Sridevi P, Ramirez M, Ludwig KJ, Wang JYJ. β-Catenin-dependent lysosomal targeting of internalized tumor necrosis factor-α suppresses caspase-8 activation in apoptosis-resistant colon cancer cells. Mol Biol Cell 2012; 24:465-73. [PMID: 23264463 PMCID: PMC3571869 DOI: 10.1091/mbc.e12-09-0662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor-α (TNF)-induced apoptotic activation of caspase-8 requires internalization of its receptor. This study shows that constitutively activated β-catenin is required to facilitate the lysosomal delivery of internalized TNF, the inhibition of caspase-8 activation, and the suppression of apoptosis in colon cancer cells. The Wnt/β-catenin pathway is constitutively activated in more than 90% of human colorectal cancer. Activated β-catenin stimulates cell proliferation and survival, however, its antiapoptotic mechanisms are not fully understood. We show here that activated β-catenin is required to suppress caspase-8 activation, but only in colon cancer cells that are resistant to tumor necrosis factor-α (TNF)-induced apoptosis. We found that lysosomal delivery of internalized TNF occurred at a faster pace in apoptosis-resistant than in apoptosis-sensitive colon cancer cells. Retardation of endosomal trafficking through vacuolar ATPase (V-ATPase) inhibition enhanced caspase-8 activation in apoptosis-resistant but not apoptosis-sensitive cells. Interestingly, knockdown of β-catenin also prolonged TNF association with the early endosome and enhanced caspase-8 activation in apoptosis-resistant but not apoptosis-sensitive colon cancer cells. In a mouse model of inflammation-associated colon tumors, we found nuclear expression of β-catenin, resistance to TNF-induced apoptosis, and reactivation of apoptosis in vivo after cotreatment of TNF with a V-ATPase inhibitor. Together these results suggest that activated β-catenin can facilitate endosomal trafficking of internalized TNF to suppress caspase-8 activation in colon cancer cells.
Collapse
Affiliation(s)
- Jinbo Han
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | | | | | | | | |
Collapse
|
42
|
Klingseisen L, Ehrenschwender M, Heigl U, Wajant H, Hehlgans T, Schütze S, Schneider-Brachert W. E3-14.7K is recruited to TNF-receptor 1 and blocks TNF cytolysis independent from interaction with optineurin. PLoS One 2012; 7:e38348. [PMID: 22675546 PMCID: PMC3366936 DOI: 10.1371/journal.pone.0038348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Escape from the host immune system is essential for intracellular pathogens. The adenoviral protein E3-14.7K (14.7K) is known as a general inhibitor of tumor necrosis factor (TNF)-induced apoptosis. It efficiently blocks TNF-receptor 1 (TNFR1) internalization but the underlying molecular mechanism still remains elusive. Direct interaction of 14.7K and/or associated proteins with the TNFR1 complex has been discussed although to date not proven. In our study, we provide for the first time evidence for recruitment of 14.7K and the 14.7K interacting protein optineurin to TNFR1. Various functions have been implicated for optineurin such as regulation of receptor endocytosis, vesicle trafficking, regulation of the nuclear factor κB (NF-κB) pathway and antiviral signaling. We therefore hypothesized that binding of optineurin to 14.7K and recruitment of both proteins to the TNFR1 complex is essential for protection against TNF-induced cytotoxic effects. To precisely dissect the individual role of 14.7K and optineurin, we generated and characterized a 14.7K mutant that does not confer TNF-resistance but is still able to interact with optineurin. In H1299 and KB cells expressing 14.7K wild-type protein, neither decrease in cell viability nor cleavage of caspases was observed upon stimulation with TNF. In sharp contrast, cells expressing the non-protective mutant of 14.7K displayed reduced viability and cleavage of initiator and effector caspases upon TNF treatment, indicating ongoing apoptotic cell death. Knockdown of optineurin in 14.7K expressing cells did not alter the protective effect as measured by cell viability and caspase activation. Taken together, we conclude that optineurin despite its substantial role in vesicular trafficking, endocytosis of cell surface receptors and recruitment to the TNFR1 complex is dispensable for the 14.7K-mediated protection against TNF-induced apoptosis.
Collapse
Affiliation(s)
- Laura Klingseisen
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Martin Ehrenschwender
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Ulrike Heigl
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Hehlgans
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
43
|
Tumour necrosis factor receptor trafficking dysfunction opens the TRAPS door to pro-inflammatory cytokine secretion. Biosci Rep 2012; 32:105-12. [PMID: 22115362 PMCID: PMC3204872 DOI: 10.1042/bsr20110089] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytokines are secreted from macrophages and other cells of the immune system in response to pathogens. Additionally, in autoinflammatory diseases cytokine secretion occurs in the absence of pathogenic stimuli. In the case of TRAPS [TNFR (tumour necrosis factor receptor)-associated periodic syndrome], inflammatory episodes result from mutations in the TNFRSF1A gene that encodes TNFR1. This work remains controversial, however, with at least three distinct separate mechanisms of receptor dysfunction having been proposed. Central to these hypotheses are the NF-κB (nuclear factor κB) and MAPK (mitogen-activated protein kinase) families of transcriptional activators that are able to up-regulate expression of a number of genes, including pro-inflammatory cytokines. The present review examines each proposed mechanism of TNFR1 dysfunction, and addresses how these processes might ultimately impact upon cytokine secretion and disease pathophysiology.
Collapse
|
44
|
The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb'-encoded modulation of TNF-α signaling. J Virol 2011; 85:13260-70. [PMID: 21976655 DOI: 10.1128/jvi.06005-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus is a ubiquitous herpesvirus that establishes lifelong latent infection. Changes in immune homeostasis induce the reactivation of lytic infection, which is mostly inapparent in healthy individuals but often causes overt disease in immunocompromised hosts. Based on discrepant tumor necrosis factor receptor 1 surface disposition between human cytomegalovirus AD169 variants differing in the ULb' region, we identified the latency-associated gene product pUL138, which also is expressed during productive infection, as a selective potentiator of tumor necrosis factor receptor 1, one of the key receptors of innate immunity. Ectopically expressed pUL138 coprecipitated with tumor necrosis factor receptor 1, extended the protein half-life, and enhanced its signaling responses, thus leading to tumor necrosis factor receptor 1 hyperresponsiveness. Conversely, the targeted deletion of UL138 from the human cytomegaloviral genome strongly reduced tumor necrosis factor receptor 1 surface densities of infected cells. Remarkably, the comparison of UL138 deficiency to ULb' deficiency revealed the presence of further positive modulators of tumor necrosis factor alpha signal transduction encoded within the human cytomegalovirus ULb' region, identifying this region as a hub for multilayered tumor necrosis factor alpha signaling regulation.
Collapse
|
45
|
Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 2011; 82:249-58. [PMID: 21962882 DOI: 10.1016/j.critrevonc.2011.08.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023] Open
Abstract
Necrosis plays an important role in multiple physiological and pathological processes. Recently, a relatively new form of necrosis has been characterized as "necroptosis". Morphologically, necroptosis exhibits the features of necrosis; however, necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinase 1 and 3 (RIP1 and RIP3) and can be specifically inhibited by necrostatins. Necroptosis has been found to contribute to the regulation of immune system, cancer development as well as cellular responses to multiple stresses. In this review, we will summarize the signaling pathway, biological effects and pathological significance of this specific form of programmed cell death.
Collapse
|
46
|
Biology and signal transduction pathways of the Lymphotoxin-αβ/LTβR system. Cytokine Growth Factor Rev 2011; 22:301-10. [DOI: 10.1016/j.cytogfr.2011.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Liu EB, Ferreyra L, Fischer SL, Pavan JV, Nates SV, Hudson NR, Tirado D, Dyer DW, Chodosh J, Seto D, Jones MS. Genetic analysis of a novel human adenovirus with a serologically unique hexon and a recombinant fiber gene. PLoS One 2011; 6:e24491. [PMID: 21915339 PMCID: PMC3168504 DOI: 10.1371/journal.pone.0024491] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/11/2011] [Indexed: 01/08/2023] Open
Abstract
In February of 1996 a human adenovirus (formerly known as Ad-Cor-96-487) was isolated from the stool of an AIDS patient who presented with severe chronic diarrhea. To characterize this apparently novel pathogen of potential public health significance, the complete genome of this adenovirus was sequenced to elucidate its origin. Bioinformatic and phylogenetic analyses of this genome demonstrate that this virus, heretofore referred to as HAdV-D58, contains a novel hexon gene as well as a recombinant fiber gene. In addition, serological analysis demonstrated that HAdV-D58 has a different neutralization profile than all previously characterized HAdVs. Bootscan analysis of the HAdV-D58 fiber gene strongly suggests one recombination event.
Collapse
Affiliation(s)
- Elizabeth B. Liu
- Department of Bioinformatics and Computational Biology and Department of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Leonardo Ferreyra
- Virology Institute, School of Medical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Stephen L. Fischer
- Naval Hospital Camp Pendleton, Camp Pendleton, California, United States of America
| | - Jorge V. Pavan
- Virology Institute, School of Medical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Silvia V. Nates
- Virology Institute, School of Medical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Nolan Ryan Hudson
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis AFB, Fairfield, California, United States of America
| | - Damaris Tirado
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis AFB, Fairfield, California, United States of America
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donald Seto
- Department of Bioinformatics and Computational Biology and Department of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Morris S. Jones
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Tchikov V, Bertsch U, Fritsch J, Edelmann B, Schütze S. Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways. Eur J Cell Biol 2011; 90:467-75. [DOI: 10.1016/j.ejcb.2010.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023] Open
|
49
|
Compartmentalization of TNF-receptor 1 signaling: TNF-R1-associated caspase-8 mediates activation of acid sphingomyelinase in late endosomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:605-16. [PMID: 21153367 DOI: 10.1007/978-1-4419-6612-4_64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Wang H, Young SR, Gerard-O'Riley R, Hum JM, Yang Z, Bidwell JP, Pavalko FM. Blockade of TNFR1 signaling: A role of oscillatory fluid shear stress in osteoblasts. J Cell Physiol 2011; 226:1044-51. [PMID: 20857415 DOI: 10.1002/jcp.22427] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluid shear stress protects cells from TNF-α-induced apoptosis. Oscillatory fluid shear stress (OFSS) is generally perceived as physiologically relevant biophysical signal for bone cells. Here we identify several cellular mechanisms responsible for mediating the protective effects of OFSS against TNF-α-induced apoptosis in vitro. We found that exposure of MC3T3-E1 osteoblast-like cells to as little as 5 min of OFSS suppressed TNF-α-induced activation of caspase-3, cleavage of PARP and phosphorylation of histone. In contrast, H(2)O(2)-induced apoptosis was not inhibited by OFSS suggesting that OFSS might not be protecting cells from TNF-α-induced apoptosis via stimulation of global pro-survival signaling pathways. In support of this speculation, OFSS inhibition of TNF-α-induced apoptosis was unaffected by inhibitors of several pro-survival signaling pathways including pI3-kinase (LY294002), MAPK/ERK kinase (PD98059 or U0126), intracellular Ca2+ release (U73122), NO production (L-NAME), or protein synthesis (cycloheximide) that were applied to cells during exposure to OFSS and during TNF-α treatment. However, TNF-α-induced phosphorylation and degradation of IκBα was blocked by pre-exposure of cells to OFSS suggesting a more specific effect of OFSS on TNF-α signaling. We therefore focused on the mechanism of OFSS regulation of TNF-receptor 1 (TNFR1) signaling and found that OFSS (1) reduced the amount of receptor on the cell surface, (2) prevented the association of ubiquitinated RIP in TNFR1 complexes with TRADD and TRAF2, and (3) reduced TNF-α-induced IL-8 promoter activity in the nucleus. We conclude that the anti-apoptotic effect of OFSS is not mediated by activation of universal pro-survival signaling pathways. Rather, OFSS inhibits TNF-α-induced pro-apoptotic signaling which can be explained by the down-regulation of TNFR1 on the cell surface and blockade of TNFR1 downstream signaling by OFSS.
Collapse
Affiliation(s)
- Haifang Wang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|