1
|
Lee E, Chou L, Chen Z, Wong BJF. Optical Imaging of Cilia in the Head and Neck. J Clin Med 2025; 14:2059. [PMID: 40142867 PMCID: PMC11943365 DOI: 10.3390/jcm14062059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Cilia are hair-like organelles with various mechanosensory and chemosensory functions. In particular, motile cilia generate directional fluid flow important for multiple processes. Motile ciliopathies have serious clinical implications, including developmental and respiratory disorders. Evaluating the most suitable imaging methods for studying ciliary structure and function has great clinical significance. Methods: Here, we provide an overview of ciliary function, imaging modalities, and applications in ciliopathic diseases. Results: Optical imaging has become a crucial tool for studying ciliary structure and function, providing high-resolution, non-invasive imaging capabilities that are valuable for in vivo applications. Optical coherence tomography (OCT) is well suited for the visualization of ciliary anatomy and quantitative studies of microfluidic flow. Conclusions: A deeper understanding of ciliary biology can lead to novel approaches in diagnosing, treating, and monitoring ciliopathies, contributing to more effective and individualized care.
Collapse
Affiliation(s)
- Elizabeth Lee
- Beckman Laser Institute, University of California, Irvine, CA 92697, USA; (E.L.); (L.C.); (Z.C.)
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92612, USA
| | - Lidek Chou
- Beckman Laser Institute, University of California, Irvine, CA 92697, USA; (E.L.); (L.C.); (Z.C.)
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, CA 92697, USA; (E.L.); (L.C.); (Z.C.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92612, USA
| | - Brian J. F. Wong
- Beckman Laser Institute, University of California, Irvine, CA 92697, USA; (E.L.); (L.C.); (Z.C.)
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92612, USA
| |
Collapse
|
2
|
Becker ME, Martin-Sancho L, Simons LM, McRaven MD, Chanda SK, Hultquist JF, Hope TJ. Live imaging of airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. Nat Commun 2024; 15:9480. [PMID: 39488529 PMCID: PMC11531594 DOI: 10.1038/s41467-024-53791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
SARS-CoV-2 initiates infection in the conducting airways, where mucociliary clearance inhibits pathogen penetration. However, it is unclear how mucociliary clearance impacts SARS-CoV-2 spread after infection is established. To investigate viral spread at this site, we perform live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 12 days. Using a fluorescent reporter virus and markers for cilia and mucus, we longitudinally monitor mucus motion, ciliary motion, and infection. Infected cell numbers peak at 4 days post infection, forming characteristic foci that tracked mucus movement. Inhibition of MCC using physical and genetic perturbations limits foci. Later in infection, mucociliary clearance deteriorates. Increased mucus secretion accompanies ciliary motion defects, but mucociliary clearance and vectorial infection spread resume after mucus removal, suggesting that mucus secretion may mediate MCC deterioration. Our work shows that while MCC can facilitate SARS-CoV-2 spread after initial infection, subsequent MCC decreases inhibit spread, revealing a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
- Mark E Becker
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lacy M Simons
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D McRaven
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumit K Chanda
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas J Hope
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Cho DY, Rivers NJ, Lim DJ, Zhang S, Skinner D, Yang L, Menon AJ, Kelly OJ, Jones MP, Bicknel BT, Grayson JW, Harris E, Rowe SM, Woodworth BA. Glutathione and bicarbonate nanoparticles improve mucociliary transport in cystic fibrosis epithelia. Int Forum Allergy Rhinol 2024; 14:1026-1035. [PMID: 37975554 PMCID: PMC11098968 DOI: 10.1002/alr.23301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) airway disease is characterized by thick mucus and impaired mucociliary transport (MCT). Loss of functional cystic fibrosis transmembrane receptor (CFTR) leads to acidification and oxidation of airway surface mucus. Replacing bicarbonate (HCO3 -) topically fails due to rapid reabsorption and neutralization, while the scavenging antioxidant, glutathione sulfhydryl (GSH), is also rapidly degraded. The objective of this study is to investigate GSH/NaHCO3 nanoparticles as novel strategy for CF airway disease. METHODS GSH/NaHCO3 poly (lactic-co-glycolic acid) nanoparticles were tested on primary CF (F508del/F508del) epithelial cultures to evaluate dose-release curves, surface pH, toxicity, and MCT indices using micro-optical coherence tomography. In vivo tests were performed in three rabbits to assess safety and toxicity. After 1 week of daily injections, histopathology, computed tomography (CT), and blood chemistries were performed and compared to three controls. Fluorescent nanoparticles were injected into a rabbit with maxillary sinusitis and explants visualized with confocal microscopy. RESULTS Sustained release of GSH and HCO3 - with no cellular toxicity was observed over 2 weeks. Apical surface pH gradually increased from 6.54 ± 0.13 (baseline) to 7.07 ± 0.10 (24 h) (p < 0.001) and 6.87 ± 0.05 at 14 days (p < 0.001). MCT, ciliary beat frequency, and periciliary liquid were significantly increased. When injected into the maxillary sinuses of rabbits, there were no changes to histology, CT, or blood chemistries. Nanoparticles penetrated rabbit sinusitis mucus on confocal microscopy. CONCLUSION Findings suggest that GSH/NaHCO3 - nanoparticles are a promising treatment option for viscous mucus in CF and other respiratory diseases of mucus obstruction such as chronic rhinosinusitis.
Collapse
Affiliation(s)
- Do Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham Alabama, United States of America
| | - Nicholas J. Rivers
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lydia Yang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adithya J. Menon
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Olivia Jo Kelly
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Martin P. Jones
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brenton T. Bicknel
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jessica W. Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven M. Rowe
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradford A. Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
4
|
Kelly S, Genevskiy V, Björklund S, Gonzalez-Martinez JF, Poeschke L, Schröder M, Nilius G, Tatkov S, Kocherbitov V. Water Sorption and Structural Properties of Human Airway Mucus in Health and Muco-Obstructive Diseases. Biomacromolecules 2024; 25:1578-1591. [PMID: 38333985 PMCID: PMC10934264 DOI: 10.1021/acs.biomac.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Muco-obstructive diseases change airway mucus properties, impairing mucociliary transport and increasing the likelihood of infections. To investigate the sorption properties and nanostructures of mucus in health and disease, we investigated mucus samples from patients and cell cultures (cc) from healthy, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) airways. Atomic force microscopy (AFM) revealed mucin monomers with typical barbell structures, where the globule to spacer volume ratio was the highest for CF mucin. Accordingly, synchrotron small-angle X-ray scattering (SAXS) revealed more pronounced scattering from CF mucin globules and suggested shorter carbohydrate side chains in CF mucin and longer side chains in COPD mucin. Quartz crystal microbalance with dissipation (QCM-D) analysis presented water sorption isotherms of the three types of human airway mucus, where, at high relative humidity, COPD mucus had the highest water content compared to cc-CF and healthy airway mucus (HAM). The higher hydration of the COPD mucus is consistent with the observation of longer side chains of the COPD mucins. At low humidity, no dehydration-induced glass transition was observed in healthy and diseased mucus, suggesting mucus remained in a rubbery state. However, in dialyzed cc-HAM, a sorption-desorption hysteresis (typically observed in the glassy state) appeared, suggesting that small molecules present in mucus suppress the glass transition.
Collapse
Affiliation(s)
- Susyn
J. Kelly
- Fisher
& Paykel Healthcare Ltd., 15 Maurice Paykel Place, East Tamaki, Auckland NZ-2013, New Zealand
- Department
of Clinical Sciences, Ross University of
Veterinary Medicine, Basseterre KN-0101, Saint
Kitts and Nevis
| | - Vladislav Genevskiy
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| | - Sebastian Björklund
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| | | | - Lara Poeschke
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
| | - Maik Schröder
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
| | - Georg Nilius
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
- Universität
Witten/Herdecke, Witten DE-58455, Germany
| | - Stanislav Tatkov
- Fisher
& Paykel Healthcare Ltd., 15 Maurice Paykel Place, East Tamaki, Auckland NZ-2013, New Zealand
| | - Vitaly Kocherbitov
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| |
Collapse
|
5
|
Li W, Yao R, Yu N, Zhang W. Identification of a prognostic signature based on five ferroptosis-related genes for diffuse large B-cell lymphoma. Cancer Biomark 2024; 40:125-139. [PMID: 38517778 PMCID: PMC11191449 DOI: 10.3233/cbm-230325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Therapies for diffuse large B-cell lymphoma (DLBCL) are limited due to the diverse gene expression profiles and complicated immune microenvironments, making it an aggressive lymphoma. Beyond this, researches have shown that ferroptosis contributes to tumorigenesis, progression, and metastasis. We thus are interested to dissect the connection between ferroptosis and disease status of DLBCL. We aim at generating a valuable prognosis gene signature for predicting the status of patients of DLBCL, with focus on ferroptosis-related genes (FRGs). OBJECTIVE To examine the connection between ferroptosis-related genes (FRGs) and clinical outcomes in DLBCL patients based on public datasets. METHODS An expression profile dataset for DLBCL was downloaded from GSE32918 (https://www.ncbi.nlm.nih.gov/geo/ query/acc.cgi?acc=gse32918), and a ferroptosis-related gene cluster was obtained from the FerrDb database (http://www. zhounan.org/ferrdb/). A prognostic signature was developed from this gene cluster by applying a least absolute shrinkage and selection operator (LASSO) Cox regression analysis to GSE32918, followed by external validation. Its effectiveness as a biomarker and the prognostic value was determined by a receiver operator characteristic curve mono factor analysis. Finally, functional enrichment was evaluated by the package Cluster Profiler of R. RESULTS Five ferroptosis-related genes (FRGs) (GOP1, GPX2, SLC7A5, ATF4, and CXCL2) associated with DLBCL were obtained by a multivariate analysis. The prognostic power of these five FRGs was verified by TCGA (https://xenabrowser.net/datapages/?dataset=TCGA.DLBC.sampleMap%2FHiSeqV2_PANCAN&host=https%3A%2F%2Ftcga.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A44) and GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse 32918) datasets, with ROC analyses. KEGG and GO analyses revealed that upregulated genes in the high-risk group based on the gene signature were enriched in receptor interactions and other cancer-related pathways, including pathways related to abnormal metabolism and cell differentiation. CONCLUSION The newly developed signature involving GOP1, GPX2, SLC7A5, ATF4, and CXCL2 has the potential to serve as a prognostic biomarker. Furthermore, our results provide additional support for the contribution of ferroptosis to DLBCL.
Collapse
Affiliation(s)
- Wuping Li
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Ruizhe Yao
- Queen Mary College of Nanchang University, Nanchang, Jiangxi, China
| | - Nasha Yu
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Weiming Zhang
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Sears PR, Ostrowski LE. Mucociliary Transport Device Construction and Application to Study Mucociliary Clearance. Methods Mol Biol 2024; 2725:263-276. [PMID: 37856031 DOI: 10.1007/978-1-0716-3507-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Well-differentiated air-liquid interface cultures of airway epithelial cells produce and secrete mucus and have abundant cilia that beat in the apical fluid. In cultures, this ciliary beating is not well coordinated or occurs in small focal areas so the resulting mucociliary transport (MCT) is only linear over short distances. We present a method which induces ciliated cells in cultures to align during growth. The cells align along the axis of a defined circular track, thus producing a well-coordinated rotational transport which is effectively linear on length scales of ciliated cells. These modified inserts - referred to as mucociliary transport devices (MCTDs) - are simple to prepare and result reproducibly in a high percentage of cultures demonstrating complete circular transport (CCT).
Collapse
Affiliation(s)
- Patrick R Sears
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Bartlett BA, Feng Y, Fromen CA, Ford Versypt AN. Computational fluid dynamics modeling of aerosol particle transport through lung airway mucosa. Comput Chem Eng 2023; 179:108458. [PMID: 37946856 PMCID: PMC10634618 DOI: 10.1016/j.compchemeng.2023.108458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Delivery of aerosols to the lung can treat various lung diseases. However, the conducting airways are coated by a protective mucus layer with complex properties that make this form of delivery difficult. Mucus is a non-Newtonian fluid and is cleared from the lungs over time by ciliated cells. Further, its gel-like structure hinders the diffusion of particles through it. Any aerosolized treatment of lung diseases must penetrate the mucosal barrier. Using computational fluid dynamics, a model of the airway mucus and periciliary layer was constructed to simulate the transport of impacted aerosol particles. The model predicts the dosage fraction of particles of a certain size that penetrate the mucus and reach the underlying tissue, as well as the distance downstream of the dosage site where tissue concentration is maximized. Reactions that may occur in the mucus are also considered, with simulated data for the interaction of a model virus and an antibody.
Collapse
Affiliation(s)
- Blake A. Bartlett
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Catherine A. Fromen
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ashlee N. Ford Versypt
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Bos MF, Ermund A, Hansson GC, de Graaf J. Goblet cell interactions reorient bundled mucus strands for efficient airway clearance. PNAS NEXUS 2023; 2:pgad388. [PMID: 38024407 PMCID: PMC10661087 DOI: 10.1093/pnasnexus/pgad388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
The respiratory tract of larger animals is cleared by sweeping bundled strands along the airway surface. These bundled strands can be millimetric in length and consist of MUC5B mucin. They are produced by submucosal glands, and upon emerging from these glands, the long axis of the bundled strands is oriented along the cilia-mediated flow toward the oral cavity. However, after release, the bundled strands are found to have turned orthogonal to the flow, which maximizes their clearance potential. How this unexpected reorientation is accomplished is presently not well understood. Recent experiments suggest that the reorientation process involves bundled strands sticking to MUC5AC mucus threads, which are tethered to the goblet cells. Such goblet cells are present in small numbers throughout the airway epithelium. Here, we develop a minimal model for reorientation of bundled mucus strands through adhesive interactions with surface goblet cells. Our simulations reveal that goblet cell interactions can reorient the bundled strands within 10 mm of release-making reorientation on the length scale of the tracheal tube feasible-and can stabilize the orthogonal orientation. Our model also reproduces other experimental observations such as strong velocity fluctuations and significant slow-down of the bundled strand with respect to the cilia-mediated flow. We further provide insight into the strand turning mechanism by examining the effect of strand shape on the impulse exerted by a single goblet cell. We conclude that goblet cell-mediated reorientation is a viable route for bundled strand reorientation, which should be further validated in future experiment.
Collapse
Affiliation(s)
- Meike F Bos
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Joost de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
9
|
Hope T, Becker M, Martin-Sancho L, Simons L, McRaven M, Chanda S, Hultquist J. Live imaging of the airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. RESEARCH SQUARE 2023:rs.3.rs-3246773. [PMID: 37720034 PMCID: PMC10503848 DOI: 10.21203/rs.3.rs-3246773/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 initiates infection in the conducting airways, which rely on mucocilliary clearance (MCC) to minimize pathogen penetration. However, it is unclear how MCC impacts SARS-CoV-2 spread after infection is established. To understand viral spread at this site, we performed live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 9 days. Fluorescent markers for cilia and mucus allowed longitudinal monitoring of MCC, ciliary motion, and infection. The number of infected cells peaked at 4 days post-infection in characteristic foci that followed mucus movement. Inhibition of MCC using physical and genetic perturbations limited foci. Later in infection, MCC was diminished despite relatively subtle ciliary function defects. Resumption of MCC and infection spread after mucus removal suggests that mucus secretion mediates this effect. We show that MCC facilitates SARS-CoV-2 spread early in infection while later decreases in MCC inhibit spread, suggesting a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumit Chanda
- Sanford Burnham Prebys Medical Discovery Institute
| | | |
Collapse
|
10
|
Escher A, Kieninger E, Groof SD, Savas ST, Schneiter M, Tschanz SA, Frenz M, Latzin P, Casaulta C, Müller L. In Vitro Effect of Combined Hypertonic Saline and Salbutamol on Ciliary Beating Frequency and Mucociliary Transport in Human Nasal Epithelial Cells of Healthy Volunteers and Patients with Cystic Fibrosis. J Aerosol Med Pulm Drug Deliv 2023; 36:171-180. [PMID: 37196208 DOI: 10.1089/jamp.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Background: Inhalation of hypertonic saline (HS) is standard of care in patients with cystic fibrosis (CF). However, it is unclear if adding salbutamol has-besides bronchodilation-further benefits, for example, on the mucociliary clearance. We assessed this in vitro by measuring the ciliary beating frequency (CBF) and the mucociliary transport rate (MCT) in nasal epithelial cells (NECs) of healthy volunteers and patients with CF. Aims: To investigate the effect of HS, salbutamol, and its combination on (muco)ciliary activity of NECs in vitro, and to assess potential differences between healthy controls and patients with CF. Methods: NECs obtained from 10 healthy volunteers and 5 patients with CF were differentiated at the air-liquid interface and aerosolized with 0.9% isotonic saline ([IS] control), 6% HS, 0.06% salbutamol, or combined HS and salbutamol. CBF and MCT were monitored over 48-72 hours. Results: In NECs of healthy controls, the absolute CBF increase was comparable for all substances, but CBF dynamics were different: HS increased CBF slowly and its effect lasted for an extended period, salbutamol and IS increased CBF rapidly and the effect subsided similarly fast, and HS and salbutamol resulted in a rapid and long-lasting CBF increase. Results for CF cells were comparable, but less pronounced. Similar to CBF, MCT increased after the application of all the tested substances. Conclusion: CBF and MCT of NECs of healthy participants and CBF of patients with CF increased upon treatment with aerosolized IS, HS, salbutamol, or HS and salbutamol, showing a relevant effect for all tested substances. The difference in the CBF dynamics can be explained by the fact that the properties of the mucus are changed differently by different saline concentrations.
Collapse
Affiliation(s)
- Anaïs Escher
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Susan De Groof
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sibel T Savas
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Martin Schneiter
- Institute of Applied Physics, University of Bern, Bern, Switzerland
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Martin Frenz
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Loretta Müller
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Sedaghat MH, Behnia M, Abouali O. Nanoparticle Diffusion in Respiratory Mucus Influenced by Mucociliary Clearance: A Review of Mathematical Modeling. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37184652 DOI: 10.1089/jamp.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background: Inhalation and deposition of particles in human airways have attracted considerable attention due to importance of particulate pollutants, transmission of infectious diseases, and therapeutic delivery of drugs at targeted areas. We summarize current state-of-the art research in particle deposition on airway surface liquid (ASL) influenced by mucociliary clearance (MCC) by identifying areas that need further investigation. Methodology: We aim to review focus on governing and constitutive equations describing MCC geometry followed by description of mathematical modeling of ciliary forces, mucus rheology properties, and numerical approaches to solve modified time-dependent Navier-Stokes equations. We also review mathematical modeling of particle deposition in ASL influenced by MCC, particle transport in ASL in terms of Eulerian and Lagrangian approaches, and discuss the corresponding mass transport issues in this layer. Whenever required, numerical predictions are contrasted with the pertinent experimental data. Results: Results indicate that mean mucus and periciliary liquid velocities are strongly influenced by mucus rheological characteristics as well as ciliary abnormalities. However, most of the currently available literature on mucus fiber spacing, ciliary beat frequency, and particle surface chemistry is based on particle deposition on ASL by considering a fixed value of ASL velocity. The effects of real ASL flow regimes on particle deposition in this layer are limited. In addition, no other study is available on modeling nonhomogeneous and viscoelastic characteristics of mucus layer on ASL drug delivery. Conclusion: Simplification of assumptions on governing equations of drug delivery in ASL influenced by MCC leads to imposing some limitations on numerical results.
Collapse
Affiliation(s)
- Mohammad Hadi Sedaghat
- Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
| | - Mehrdad Behnia
- University of Central Florida School of Medicine, Orlando, Florida, USA
| | - Omid Abouali
- Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
12
|
Modaresi MA, Shirani E. Mucociliary clearance affected by mucus-periciliary interface stimulations using analytical solution during cough and sneeze. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:201. [PMID: 36883183 PMCID: PMC9983542 DOI: 10.1140/epjp/s13360-023-03796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Assessment of mucus velocity variations under different conditions including viscosity variation and boundary conditions is useful to develop mucosal-based medical treatments. This paper deals with the analytical investigation of mucus-periciliary velocities under mucus-periciliary interface movements and mucus viscosity variations. The results for mucus velocity show that there is no difference between the two cases under the free-slip condition. Therefore, power-law mucus can be substituted with a high viscosity Newtonian fluid since the upper boundary of the mucus layer is exposed to the free-slip condition. However, when the upper boundary of the mucus layer is under nonzero shear stress levels, including cough or sneeze, the assumption of a high viscosity Newtonian mucus layer is invalid. Moreover, mucus viscosity variations are investigated for both Newtonian and power-law mucus layers under sneeze and cough to propose a mucosal-based medical treatment. The results indicate by varying mucus viscosity up to a critical value, the direction of mucus movement changes. The critical values of viscosity in sneezing and coughing for Newtonian and power-law mucus layers are 10-4 and 5 × 10-5 and 0.0263 and 006.024 m2 s-1, respectively. Therefore, the pathogen entry into the respiratory system can be prevented by varying mucus viscosity during sneeze and cough.
Collapse
Affiliation(s)
- M. A. Modaresi
- Department of Mechanical Engineering, Isfahan University of Technology, P.O. Box 8415683111, Isfahan, Iran
| | - E. Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, P.O. Box 8415683111, Isfahan, Iran
| |
Collapse
|
13
|
Wu D, Xiang Y. Role of mucociliary clearance system in respiratory diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:275-284. [PMID: 36999475 PMCID: PMC10930340 DOI: 10.11817/j.issn.1672-7347.2023.220372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 04/01/2023]
Abstract
Mucociliary clearance system is the primary innate defense mechanism of the lung. It plays a vital role in protecting airways from microbes and irritants infection. Mucociliary clearance system, which is mediated by the actions of airway and submucosal gland epithelial cells, plays a critical role in a multilayered defense system via secreting fluids, electrolytes, antimicrobial and anti-inflammatory proteins, and mucus onto airway surfaces. Changes in environment, drugs or diseases can lead to mucus overproduction and cilia dysfunction, which in turn decrease the rate of mucociliary clearance and enhance mucus gathering. The dysfunction of mucociliary clearance system often occurs in several respiratory diseases, such as primary ciliary dysfunction, cystic fibrosis, asthma and chronic obstructive pulmonary disease, which are characterized by goblet cell metaplasia, submucosal gland cell hypertrophy, mucus hypersecretion, cilia adhesion, lodging and loss, and airway obstruction.
Collapse
Affiliation(s)
- Di Wu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| |
Collapse
|
14
|
Chen A, Wessler T, Gregory Forest M. Antibody protection from SARS-CoV-2 respiratory tract exposure and infection. J Theor Biol 2023; 557:111334. [PMID: 36306828 PMCID: PMC9597531 DOI: 10.1016/j.jtbi.2022.111334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The COVID-19 pandemic has underscored the need to understand the dynamics of SARS-CoV-2 respiratory infection and protection provided by the immune response. SARS-CoV-2 infections are characterized by a particularly high viral load, and further by the small number of inhaled virions sufficient to generate a high viral titer in the nasal passage a few days after exposure. SARS-CoV-2 specific antibodies (Ab), induced from vaccines, previous infection, or inhaled monoclonal Ab, have proven effective against SARS-CoV-2 infection. Our goal in this work is to model the protective mechanisms that Ab can provide and to assess the degree of protection from individual and combined mechanisms at different locations in the respiratory tract. Neutralization, in which Ab bind to virion spikes and inhibit them from binding to and infecting target cells, is one widely reported protective mechanism. A second mechanism of Ab protection is muco-trapping, in which Ab crosslink virions to domains on mucin polymers, effectively immobilizing them in the mucus layer. When muco-trapped, the continuous clearance of the mucus barrier by coordinated ciliary propulsion entrains the trapped viral load toward the esophagus to be swallowed. We model and simulate the protection provided by either and both mechanisms at different locations in the respiratory tract, parametrized by the Ab titer and binding-unbinding rates of Ab to viral spikes and mucin domains. Our results illustrate limits in the degree of protection by neutralizing Ab alone, the powerful protection afforded by muco-trapping Ab, and the potential for dual protection by muco-trapping and neutralizing Ab to arrest a SARS-CoV-2 infection. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Collapse
Affiliation(s)
- Alex Chen
- Department of Mathematics, California State University-Dominguez Hills, Carson, CA 90747, USA.
| | - Timothy Wessler
- Department of Mathematics, University of North Carolina—Chapel Hill, Chapel Hill, NC 27599, USA
| | - M. Gregory Forest
- Department of Mathematics, University of North Carolina—Chapel Hill, Chapel Hill, NC 27599, USA,Department of Applied Physical Sciences, University of North Carolina—Chapel Hill, Chapel Hill, NC 27599, USA,UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina—Chapel Hill, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
15
|
Chow MY, Pan HW, Lam JK. Delivery technology of inhaled therapy for asthma and COPD. ADVANCES IN PHARMACOLOGY 2023. [PMID: 37524490 DOI: 10.1016/bs.apha.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Inhaled therapy is the cornerstone of the management of asthma and chronic obstructive pulmonary disease (COPD). Drugs such as bronchodilators and corticosteroids are administered directly to the airways for local effect and rapid onset of action while systemic exposure and side effects are minimized. There are four major types of inhaler devices used clinically to generate aerosols for inhalation, namely, pressurized metered-dose inhalers (pMDIs), nebulizers, Soft Mist™ inhalers (SMIs) and dry powder inhalers (DPIs). Each of them has its own unique characteristics that can target different patient groups. For instance, patients' inhaler technique is critical for pMDIs and SMIs to achieve proper drug deposition in the lung, which could be challenging for some patients. Nebulizers are designed to deliver aerosols to patients during tidal breathing, but they require electricity to operate and are less portable than other devices. DPIs are the only device that delivers aerosols in dry powder form with better stability, but they rely on patients' inspiration effort for powder dispersion, rendering them unsuitable for patients with compromised lung function. Choosing a device that can cater for the need of individual patient is paramount for effective inhaled therapy. This chapter provides an overview of inhaled therapy for the management of asthma and COPD. The operation principles, merits and limitations of different delivery technologies are examined. Looking ahead, the challenges of delivering novel therapeutics such as biologics through the pulmonary route are also discussed.
Collapse
|
16
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Ludovico A, Moran O, Baroni D. Modulator Combination Improves In Vitro the Microrheological Properties of the Airway Surface Liquid of Cystic Fibrosis Airway Epithelia. Int J Mol Sci 2022; 23:ijms231911396. [PMID: 36232697 PMCID: PMC9569604 DOI: 10.3390/ijms231911396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a plasma membrane protein expressed on the apical surface of secretory epithelia of the airways. In the airways, defective or absent function of the CFTR protein determines abnormalities of chloride and bicarbonate secretion and, in general, of the transepithelial homeostasis that lead to alterations of airway surface liquid (ASL) composition and properties. The reduction of ASL volume impairs ciliary beating with the consequent accumulation of a sticky mucus. This situation prevents normal mucociliary clearance, favoring the survival and proliferation of bacteria and contributing to the genesis of the CF pulmonary disease. We explored the potential of some CFTR modulators, namely ivacaftor, tezacaftor, elexacaftor and their combination KaftrioTM, capable of partially recovering the basic defects of the CFTR protein, to ameliorate the transepithelial fluid transport and the viscoelastic properties of the mucus when used singly or in combination. Primary human bronchial epithelial cells obtained from CF and non-CF patients were differentiated into a mucociliated epithelia in order to assess the effects of correctors tezacaftor, elexacaftor and their combination with potentiator ivacaftor on the key properties of ASL, such as fluid reabsorption, viscosity, protein content and pH. The treatment of airway epithelia bearing the deletion of a phenylalanine at position 508 (F508del) in the CFTR gene with tezacaftor and elexacaftor significantly improved the pericilial fluid composition, reducing the fluid reabsorption, correcting the ASL pH and reducing the viscosity of the mucus. KaftrioTM was more effective than single modulators in improving all the evaluated parameters, demonstrating once more that this combination recently approved for patients 6 years and older with cystic fibrosis who have at least one F508del mutation in the CFTR gene represents a valuable tool to defeat CF.
Collapse
Affiliation(s)
| | | | - Debora Baroni
- Correspondence: ; Tel.: +39-010-647-5559; Fax: +39-010-647-5500
| |
Collapse
|
18
|
Okuda K, Shaffer KM, Ehre C. Mucins and CFTR: Their Close Relationship. Int J Mol Sci 2022; 23:10232. [PMID: 36142171 PMCID: PMC9499620 DOI: 10.3390/ijms231810232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mucociliary clearance is a critical defense mechanism for the lungs governed by regionally coordinated epithelial cellular activities, including mucin secretion, cilia beating, and transepithelial ion transport. Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, is characterized by failed mucociliary clearance due to abnormal mucus biophysical properties. In recent years, with the development of highly effective modulator therapies, the quality of life of a significant number of people living with CF has greatly improved; however, further understanding the cellular biology relevant to CFTR and airway mucus biochemical interactions are necessary to develop novel therapies aimed at restoring CFTR gene expression in the lungs. In this article, we discuss recent advances of transcriptome analysis at single-cell levels that revealed a heretofore unanticipated close relationship between secretory MUC5AC and MUC5B mucins and CFTR in the lungs. In addition, we review recent findings on airway mucus biochemical and biophysical properties, focusing on how mucin secretion and CFTR-mediated ion transport are integrated to maintain airway mucus homeostasis in health and how CFTR dysfunction and restoration of function affect mucus properties.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kendall M. Shaffer
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Chen A, Wessler T, Daftari K, Hinton K, Boucher RC, Pickles R, Freeman R, Lai SK, Forest MG. Modeling insights into SARS-CoV-2 respiratory tract infections prior to immune protection. Biophys J 2022; 121:1619-1631. [PMID: 35378080 PMCID: PMC8975607 DOI: 10.1016/j.bpj.2022.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 03/31/2022] [Indexed: 11/19/2022] Open
Abstract
Mechanistic insights into human respiratory tract (RT) infections from SARS-CoV-2 can inform public awareness as well as guide medical prevention and treatment for COVID-19 disease. Yet the complexity of the RT and the inability to access diverse regions pose fundamental roadblocks to evaluation of potential mechanisms for the onset and progression of infection (and transmission). We present a model that incorporates detailed RT anatomy and physiology, including airway geometry, physical dimensions, thicknesses of airway surface liquids (ASLs), and mucus layer transport by cilia. The model further incorporates SARS-CoV-2 diffusivity in ASLs and best-known data for epithelial cell infection probabilities, and, once infected, duration of eclipse and replication phases, and replication rate of infectious virions. We apply this baseline model in the absence of immune protection to explore immediate, short-term outcomes from novel SARS-CoV-2 depositions onto the air-ASL interface. For each RT location, we compute probability to clear versus infect; per infected cell, we compute dynamics of viral load and cell infection. Results reveal that nasal infections are highly likely within 1-2 days from minimal exposure, and alveolar pneumonia occurs only if infectious virions are deposited directly into alveolar ducts and sacs, not via retrograde propagation to the deep lung. Furthermore, to infect just 1% of the 140 m2 of alveolar surface area within 1 week, either 103 boluses each with 106 infectious virions or 106 aerosols with one infectious virion, all physically separated, must be directly deposited. These results strongly suggest that COVID-19 disease occurs in stages: a nasal/upper RT infection, followed by self-transmission of infection to the deep lung. Two mechanisms of self-transmission are persistent aspiration of infected nasal boluses that drain to the deep lung and repeated rupture of nasal aerosols from infected mucosal membranes by speaking, singing, or cheering that are partially inhaled, exhaled, and re-inhaled, to the deep lung.
Collapse
Affiliation(s)
- Alexander Chen
- Department of Mathematics, CSU Dominguez Hills, Carson, California
| | - Timothy Wessler
- Department of Mathematics, UNC Chapel Hill, Chapel Hill, North Carolina.
| | - Katherine Daftari
- Department of Mathematics, UNC Chapel Hill, Chapel Hill, North Carolina
| | - Kameryn Hinton
- Department of Applied Physical Sciences, UNC Chapel Hill, Chapel Hill, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, North Carolina
| | - Raymond Pickles
- Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, North Carolina; Department of Microbiology and Immunology, UNC Chapel Hill, Chapel Hill, North Carolina
| | - Ronit Freeman
- Department of Applied Physical Sciences, UNC Chapel Hill, Chapel Hill, North Carolina
| | - Samuel K Lai
- Department of Microbiology and Immunology, UNC Chapel Hill, Chapel Hill, North Carolina; Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill and Raleigh, North Carolina; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC Chapel Hill, Chapel Hill, North Carolina
| | - M Gregory Forest
- Department of Mathematics, UNC Chapel Hill, Chapel Hill, North Carolina; Department of Applied Physical Sciences, UNC Chapel Hill, Chapel Hill, North Carolina; Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill and Raleigh, North Carolina.
| |
Collapse
|
20
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
21
|
Plaunt AJ, Nguyen TL, Corboz MR, Malinin VS, Cipolla DC. Strategies to Overcome Biological Barriers Associated with Pulmonary Drug Delivery. Pharmaceutics 2022; 14:302. [PMID: 35214039 PMCID: PMC8880668 DOI: 10.3390/pharmaceutics14020302] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
While the inhalation route has been used for millennia for pharmacologic effect, the biological barriers to treating lung disease created real challenges for the pharmaceutical industry until sophisticated device and formulation technologies emerged over the past fifty years. There are now several inhaled device technologies that enable delivery of therapeutics at high efficiency to the lung and avoid excessive deposition in the oropharyngeal region. Chemistry and formulation technologies have also emerged to prolong retention of drug at the active site by overcoming degradation and clearance mechanisms, or by reducing the rate of systemic absorption. These technologies have also been utilized to improve tolerability or to facilitate uptake within cells when there are intracellular targets. This paper describes the biological barriers and provides recent examples utilizing formulation technologies or drug chemistry modifications to overcome those barriers.
Collapse
Affiliation(s)
- Adam J. Plaunt
- Insmed Incorporated, Bridgewater, NJ 08807, USA; (T.L.N.); (M.R.C.); (V.S.M.); (D.C.C.)
| | | | | | | | | |
Collapse
|
22
|
Arya RK, Verros GD, Thapliyal D. Towards a Mathematical Model for the Viral Progression in the Pharynx. Healthcare (Basel) 2021; 9:healthcare9121766. [PMID: 34946492 PMCID: PMC8701019 DOI: 10.3390/healthcare9121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
In this work, a comprehensive model for the viral progression in the pharynx has been developed. This one-dimension model considers both Fickian diffusion and convective flow coupled with chemical reactions, such as virus population growth, infected and uninfected cell accumulation as well as virus clearance. The effect of a sterilizing agent such as an alcoholic solution on the viral progression in the pharynx was taken into account and a parametric analysis for the effect of kinetic rate parameters on virus propagation was made. Moreover, different conditions caused by further medical treatment, such as a decrease in virus yield per infected cell, were examined. It is shown that the infection fails to establish by decreasing the virus yield per infected cell. It is believed that this work could be used to further investigate the medical treatment of viral progression in the pharynx.
Collapse
Affiliation(s)
- Raj Kumar Arya
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India;
- Correspondence: or
| | - George D. Verros
- Laboratory of Polymer and Colour Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki (AUTH), P.O. Box 454, Plagiari, Epanomi, 57500 Thessaloniki, Greece;
| | - Devyani Thapliyal
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India;
| |
Collapse
|
23
|
Varma R, Poon J, Liao Z, Aitchison JS, Waddell TK, Karoubi G, McGuigan AP. Planar organization of airway epithelial cell morphology using hydrogel grooves during ciliogenesis fails to induce ciliary alignment. Biomater Sci 2021; 10:396-409. [PMID: 34897300 DOI: 10.1039/d1bm01327k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Topographical cues are known to influence cell organization both in native tissues and in vitro. In the trachea, the matrix beneath the epithelial lining is composed of collagen fibres that run along the long axis of the airway. Previous studies have shown that grooved topography can induce morphological and cytoskeletal alignment in epithelial cell lines. In the present work we assessed the impact of substrate topography on the organization of primary human tracheal epithelial cells (HTECs) and human induced pluripotent stem cell (hiPSC)-derived airway progenitors and the resulting alignment of cilia after maturation of the airway cells under Air-Liquid-Interface (ALI) culture. Grooves with optimized dimensions were imprinted into collagen vitrigel membranes (CVM) to produce gel inserts for ALI culture. Grooved CVM substrates induced cell alignment in HTECs and hiPSC airway progenitors in submerged culture. Further, both cell types were able to terminally differentiate into a multi-ciliated epithelium on both flat and groove CVM substrates. When exposed to ALI conditions, HTECs lost alignment after 14 days. Meanwhile, hiPSC-derived airway progenitors maintained their alignment throughout 31 days of ALI culture. Interestingly, neither initial alignment on the grooves, nor maintained alignment on the grooves induced alignment of cilia basal bodies, an indication of the direction of ciliary beating direction in the airway cells. Planar organization of airway cells during or prior to ciliogenesis therefore does not appear to be a feasible strategy to control cilia organization and subsequent airway epithelial function and additional cues are likely necessary to produce cilia alignment.
Collapse
Affiliation(s)
- Ratna Varma
- Institute of Biomedical Engineering (BME), University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada. .,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, 101 College St, Toronto, ON, M5G 0A3, Canada.
| | - James Poon
- Institute of Biomedical Engineering (BME), University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada. .,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, 101 College St, Toronto, ON, M5G 0A3, Canada.
| | - Zhongfa Liao
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd, Toronto, ON M5S 3G8, Canada
| | - J Stewart Aitchison
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd, Toronto, ON M5S 3G8, Canada
| | - Thomas K Waddell
- Institute of Biomedical Engineering (BME), University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada. .,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, 101 College St, Toronto, ON, M5G 0A3, Canada.
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, 101 College St, Toronto, ON, M5G 0A3, Canada. .,Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Circle, Toronto, ON, M5S 3G8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering (BME), University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
24
|
Ghezzi M, Pozzi E, Abbattista L, Lonoce L, Zuccotti GV, D’Auria E. Barrier Impairment and Type 2 Inflammation in Allergic Diseases: The Pediatric Perspective. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1165. [PMID: 34943362 PMCID: PMC8700706 DOI: 10.3390/children8121165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023]
Abstract
Allergic diseases represent a global burden. Although the patho-physiological mechanisms are still poorly understood, epithelial barrier dysfunction and Th2 inflammatory response play a pivotal role. Barrier dysfunction, characterized by a loss of differentiation, reduced junctional integrity, and altered innate defence, underpins the pathogenesis of allergic diseases. Epithelial barrier impairment may be a potential therapeutic target for new treatment strategies Up now, monoclonal antibodies and new molecules targeting specific pathways of the immune response have been developed, and others are under investigation, both for adult and paediatric populations, which are affected by atopic dermatitis (AD), asthma, allergic rhinitis (AR), chronic rhinosinusitis with nasal polyps (CRSwNP), or eosinophilic esophagitis (EoE). In children affected by severe asthma biologics targeting IgE, IL-5 and against IL-4 and IL-13 receptors are already available, and they have also been applied in CRSwNP. In severe AD Dupilumab, a biologic which inhibits both IL-4 and IL-13, the most important cytokines involved in inflammation response, has been approved for treatment of patients over 12 years. While a biological approach has already shown great efficacy on the treatment of severe atopic conditions, early intervention to restore epithelial barrier integrity, and function may prevent the inflammatory response and the development of the atopic march.
Collapse
Affiliation(s)
- Michele Ghezzi
- Allergology and Pneumology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| | - Elena Pozzi
- Department of Pediatrics, V. Buzzi Children’s Hospital, 20154 Milan, Italy; (E.P.); (L.A.); (L.L.); (G.V.Z.)
| | - Luisa Abbattista
- Department of Pediatrics, V. Buzzi Children’s Hospital, 20154 Milan, Italy; (E.P.); (L.A.); (L.L.); (G.V.Z.)
| | - Luisa Lonoce
- Department of Pediatrics, V. Buzzi Children’s Hospital, 20154 Milan, Italy; (E.P.); (L.A.); (L.L.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, V. Buzzi Children’s Hospital, 20154 Milan, Italy; (E.P.); (L.A.); (L.L.); (G.V.Z.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Enza D’Auria
- Allergology and Pneumology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| |
Collapse
|
25
|
Woodall M, Reidel B, Kesimer M, Tarran R, Baines DL. Culture with apically applied healthy or disease sputum alters the airway surface liquid proteome and ion transport across human bronchial epithelial cells. Am J Physiol Cell Physiol 2021; 321:C954-C963. [PMID: 34613844 PMCID: PMC8714986 DOI: 10.1152/ajpcell.00234.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Airway secretions contain many signaling molecules and peptides/proteins that are
not found in airway surface liquid (ASL) generated by normal human bronchial
epithelial cells (NHBEs) in vitro. These play a key role in innate defense and
mediate communication between the epithelium, the immune cells, and the external
environment. We investigated how culture of NHBE with apically applied
secretions from healthy or diseased (cystic fibrosis, CF) lungs affected
epithelial function with a view to providing better in vitro models of the in
vivo environment. NHBEs from 6 to 8 different donors were cultured at air-liquid
interface (ALI), with apically applied sputum from normal healthy donors (normal
lung sputum; NLS) or CF donors (CFS) for 2–4 h, 48 h, or with sputum
reapplied over 48 h. Proteomics analysis was carried out on the sputa and on the
NHBE ASL before and after culture with sputa. Transepithelial electrical
resistance (TEER), short circuit current (Isc), and changes to ASL
height were measured. There were 71 proteins common to both sputa but not ASL.
The protease:protease inhibitor balance was increased in CFS compared with NLS
and ASL. Culture of NHBE with sputa for 48 h identified additional factors not
present in NLS, CFS, or ASL alone. Culture with either NLS or CFS for 48 h
increased cystic fibrosis transmembrane regulator (CFTR) activity,
calcium-activated chloride channel (CaCC) activity, and changed ASL height.
These data indicate that culture with healthy or disease sputum changes the
proteomic profile of ASL and ion transport properties of NHBE and this may
increase physiological relevance when using in vitro airway models.
Collapse
Affiliation(s)
- Maximillian Woodall
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Boris Reidel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| |
Collapse
|
26
|
Dutta RK, Chinnapaiyan S, Santiago MJ, Rahman I, Unwalla HJ. Gene-specific MicroRNA antagonism protects against HIV Tat and TGF-β-mediated suppression of CFTR mRNA and function. Biomed Pharmacother 2021; 142:112090. [PMID: 34463266 PMCID: PMC9100877 DOI: 10.1016/j.biopha.2021.112090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND MicroRNAs play an important role in health and disease. TGF-β signaling, upregulated by HIV Tat, and in chronic airway diseases and smokers upregulates miR-145-5p to suppress cystic fibrosis transmembrane conductance regulator (CFTR). CFTR suppression in chronic airway diseases like Cystic Fibrosis, COPD and smokers has been associated with suppressed MCC and recurrent lung infections and inflammation. This can explain the emergence of recurrent lung infections and inflammation in people living with HIV. METHODS Tat-induced aberrant microRNAome was identified by miRNA expression analysis. microRNA mimics and antagomirs were used to validate the identified miRNAs involved in Tat mediated CFTR mRNA suppression. CRISPR-based editing of the miRNA target sites in CFTR 3'UTR was used to determine rescue of CFTR mRNA and function in airway epithelial cell lines and in primary human bronchial epithelial cells exposed to TGF-β and Tat. FINDINGS HIV Tat upregulates miR-145-5p and miR-509-3p. The two miRNAs demonstrate co-operative effects in suppressing CFTR. CRISPR-based editing of the miRNA target site preserves CFTR mRNA and function in airway epithelial cells INTERPRETATION: Given the important roles of TGF-β signaling and the multitude of genes regulated by miRNAs, we demonstrate that CRISPR-based gene-specific microRNA antagonism approach can preserve CFTR mRNA and function in the context of HIV Tat and TGF-β signaling without suppressing expression of other genes regulated by miR-145-5p.
Collapse
Affiliation(s)
- R K Dutta
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - S Chinnapaiyan
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - M J Santiago
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - I Rahman
- University of Rochester Medical Center, Departments of Environmental Medicine and Pulmonary Medicine, Rochester, NY 14642, USA
| | - H J Unwalla
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
27
|
Nicholas TP, Boyes WK, Scoville DK, Workman TW, Kavanagh TJ, Altemeier WA, Faustman EM. The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1708. [PMID: 33768701 PMCID: PMC12042966 DOI: 10.1002/wnan.1708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/07/2022]
Abstract
The Adverse Outcome Pathway (AOP) framework is serving as a basis to integrate new data streams in order to enhance the power of predictive toxicology. AOP development for engineered nanomaterials (ENM), including silver nanoparticles (AgNP), is currently lagging behind other chemicals of regulatory interest due to our limited understanding of the mechanism by which underlying genetics or diseases directly modify host response to AgNP exposures. This also highlights the importance of considering the Aggregate Exposure Pathway (AEP) framework, which precedes the AOP framework and outlines source to target site exposure. The AEP and AOP frameworks interface at the target site, where a molecular initiating event (MIE) occurs and is followed by key events (KE) for adverse cellular and organ responses along a biological pathway and ends with the adverse organism response. The primary goal of this study is to use AgNP to interrogate the AEP-AOP framework by organizing and integrating in vitro dose-response data and in vivo exposure-response data from previous studies to evaluate the effects of interactions between host genetic and acquired factors, or gene × environment interactions (G × E), on AgNP toxicity in the respiratory system. Using this framework will help us to identify plausible key event relationships (KER) between MIE and adverse organism responses when KE are not measured using the same assay in order to derive future predictive models, guide research, and support development of tools for making risk-based, regulatory decisions on ENM. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Tyler P. Nicholas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - William K. Boyes
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - David K. Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Tomomi W. Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - William A. Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Pellegrini M, Larina A, Mourtos E, Frithiof R, Lipcsey M, Hultström M, Segelsjö M, Hansen T, Perchiazzi G. A quantitative analysis of extension and distribution of lung injury in COVID-19: a prospective study based on chest computed tomography. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:276. [PMID: 34348797 PMCID: PMC8334337 DOI: 10.1186/s13054-021-03685-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023]
Abstract
Background Typical features differentiate COVID-19-associated lung injury from acute respiratory distress syndrome. The clinical role of chest computed tomography (CT) in describing the progression of COVID-19-associated lung injury remains to be clarified. We investigated in COVID-19 patients the regional distribution of lung injury and the influence of clinical and laboratory features on its progression. Methods This was a prospective study. For each CT, twenty images, evenly spaced along the cranio-caudal axis, were selected. For regional analysis, each CT image was divided into three concentric subpleural regions of interest and four quadrants. Hyper-, normally, hypo- and non-inflated lung compartments were defined. Nonparametric tests were used for hypothesis testing (α = 0.05). Spearman correlation test was used to detect correlations between lung compartments and clinical features. Results Twenty-three out of 111 recruited patients were eligible for further analysis. Five hundred-sixty CT images were analyzed. Lung injury, composed by hypo- and non-inflated areas, was significantly more represented in subpleural than in core lung regions. A secondary, centripetal spread of lung injury was associated with exposure to mechanical ventilation (p < 0.04), longer spontaneous breathing (more than 14 days, p < 0.05) and non-protective tidal volume (p < 0.04). Positive fluid balance (p < 0.01), high plasma D-dimers (p < 0.01) and ferritin (p < 0.04) were associated with increased lung injury. Conclusions In a cohort of COVID-19 patients with severe respiratory failure, a predominant subpleural distribution of lung injury is observed. Prolonged spontaneous breathing and high tidal volumes, both causes of patient self-induced lung injury, are associated to an extensive involvement of more central regions. Positive fluid balance, inflammation and thrombosis are associated with lung injury. Trial registration Study registered a priori the 20th of March, 2020. Clinical Trials ID NCT04316884. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03685-4.
Collapse
Affiliation(s)
- Mariangela Pellegrini
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Aleksandra Larina
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Evangelos Mourtos
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Miklos Lipcsey
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden.,Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Monica Segelsjö
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tomas Hansen
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden. .,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Muñoz Castro G, Balañá Corberó A. Airway Clearance and Mucoactive Therapies. Semin Respir Crit Care Med 2021; 42:616-622. [PMID: 34261185 DOI: 10.1055/s-0041-1730922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The respiratory system is constantly exposed to external pathogens but has different and effective defense systems. The pathophysiology of bronchiectasis affects the defense system considerably in that alterations occur in the airway that reduce its effectiveness in mucociliary clearance and the greater presence of mucins leads to the accumulation of more adherent and viscous mucus. One of the pillars of treatment of this disease should be improvement of mucociliary clearance and a decrease in the adherence and viscosity of the mucus. To this end, the mobilization of secretions must be increased through effective respiratory physiotherapy techniques, which can be manual and/or instrumental. The properties of mucus can be modified to improve its mobilization through the use of a mucoactive agent. Despite the increase in the number and quality of studies, the evidence for these treatments remains scarce, although their application is recommended in all guidelines.
Collapse
Affiliation(s)
- Gerard Muñoz Castro
- Department of Pneumology, Dr. Josep Trueta University Hospital, Girona, Spain.,Bronchiectasis Group, Girona Biomedical Research Institute, Girona, Spain.,Department of Physical Therapy, EUSES & ENTI, University of Girona and University of Barcelona, Barcelona, Spain
| | - Ana Balañá Corberó
- Department of Pneumology, Hospital del Mar-Parc de Salut Mar, Barcelona, Spain.,Myogenesis, Inflammation and Muscle Function-IMIM, Barcelona, Spain.,Department of Physical Therapy, EUIFN Blanquerna URL Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Sone N, Konishi S, Igura K, Tamai K, Ikeo S, Korogi Y, Kanagaki S, Namba T, Yamamoto Y, Xu Y, Takeuchi K, Adachi Y, Chen-Yoshikawa TF, Date H, Hagiwara M, Tsukita S, Hirai T, Torisawa YS, Gotoh S. Multicellular modeling of ciliopathy by combining iPS cells and microfluidic airway-on-a-chip technology. Sci Transl Med 2021; 13:13/601/eabb1298. [PMID: 34233948 DOI: 10.1126/scitranslmed.abb1298] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/07/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Mucociliary clearance is an essential lung function that facilitates the removal of inhaled pathogens and foreign matter unidirectionally from the airway tract and is innately achieved by coordinated ciliary beating of multiciliated cells. Should ciliary function become disturbed, mucus can accumulate in the airway causing subsequent obstruction and potentially recurrent pneumonia. However, it has been difficult to recapitulate unidirectional mucociliary flow using human-derived induced pluripotent stem cells (iPSCs) in vitro and the mechanism governing the flow has not yet been elucidated, hampering the proper humanized airway disease modeling. Here, we combine human iPSCs and airway-on-a-chip technology, to demonstrate the effectiveness of fluid shear stress (FSS) for regulating the global axis of multicellular planar cell polarity (PCP), as well as inducing ciliogenesis, thereby contributing to quantifiable unidirectional mucociliary flow. Furthermore, we applied the findings to disease modeling of primary ciliary dyskinesia (PCD), a genetic disease characterized by impaired mucociliary clearance. The application of an airway cell sheet derived from patient-derived iPSCs and their gene-edited counterparts, as well as genetic knockout iPSCs of PCD causative genes, made it possible to recapitulate the abnormal ciliary functions in organized PCP using the airway-on-a-chip. These findings suggest that the disease model of PCD developed here is a potential platform for making diagnoses and identifying therapeutic targets and that airway reconstruction therapy using mechanical stress to regulate PCP might have therapeutic value.
Collapse
Affiliation(s)
- Naoyuki Sone
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Konishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koichi Igura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Tamai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Ikeo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yohei Korogi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shuhei Kanagaki
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Toshinori Namba
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yuki Yamamoto
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yifei Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology, Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuichi Adachi
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Toyofumi F Chen-Yoshikawa
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Strategic Innovation and Research Center, Teikyo University, Tokyo 173-8605, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yu-Suke Torisawa
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8540, Japan.,Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. .,Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Arzola-Martínez L, Benavente R, Vega G, Ríos M, Fonseca W, Rasky AJ, Morris S, Lukacs NW, Villalón MJ. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 2021; 321:L466-L476. [PMID: 34231389 DOI: 10.1152/ajplung.00450.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is a chronic airway inflammatory response to different triggers like inhaled allergens. Excessive ATP in fluids from patients with asthma is considered an inflammatory signal and an important autocrine/paracrine modulator of airway physiology. Here, we investigated the deleterious effect of increased extracellular ATP (eATP) concentration on the mucociliary clearance (MCC) effectiveness and determined the role of ATP releasing channels during airway inflammation in an ovalbumin (OVA)-sensitized mouse model. Our allergic mouse model exhibited high levels of eATP measured in the tracheal fluid with a luciferin-luciferase assay and reduced MCC velocity determined by microspheres tracking in the trachea ex vivo. Addition of ATP had a dual effect on MCC, where lower ATP concentration (µM) increased microspheres velocity, whereas higher concentration (mM) transiently stopped microspheres movement. Also, an augmented ethidium bromide uptake by the allergic tracheal airway epithelium suggests an increase in ATP release channel functionality during inflammatory conditions. The use of carbenoxolone, a nonspecific inhibitor of connexin and pannexin1 channels reduced the eATP concentration in the allergic mouse tracheal fluid and dye uptake by the airway epithelium, providing evidence that these ATP release channels are facilitating the net flux of ATP to the lumen during airway inflammation. However, only the specific inhibition of pannexin1 with 10Panx peptide significantly reduced eATP in bronchoalveolar lavage and decreased airway hyperresponsiveness in OVA-allergic mouse model. These data provide evidence that blocking eATP may be a pharmacological alternative to be explored in rescue therapy during episodes of airflow restriction in patients with asthma.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rebeca Benavente
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Génesis Vega
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Manuel J Villalón
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
32
|
Song D, Iverson E, Kaler L, Bader S, Scull MA, Duncan GA. Modeling Airway Dysfunction in Asthma Using Synthetic Mucus Biomaterials. ACS Biomater Sci Eng 2021; 7:2723-2733. [PMID: 33871978 DOI: 10.1021/acsbiomaterials.0c01728] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As asthma worsens, occlusion of airways with mucus significantly contributes to airflow obstruction and reduced lung function. Recent evidence from clinical studies has shown mucus obtained from adults and children with asthma possesses altered mucin composition. However, how these changes alter the functional properties of the mucus gel is not yet fully understood. To study this, we have engineered a synthetic mucus biomaterial to closely mimic the properties of native mucus in health and disease. We demonstrate that this model possesses comparable biophysical and transport properties to native mucus ex vivo collected from human subjects and in vitro isolated from human airway epithelial (HAE) tissue cultures. We found by systematically varying mucin composition that mucus gel viscoelasticity is enhanced when predominantly composed of mucin 5AC (MUC5AC), as is observed in asthma. As a result, asthma-like synthetic mucus gels are more slowly transported on the surface of HAE tissue cultures and at a similar rate to native mucus produced by HAE cultures stimulated with type 2 cytokine IL-13, known to contribute to airway inflammation and MUC5AC hypersecretion in asthma. We also discovered that the barrier function of asthma-like synthetic mucus toward influenza A virus was impaired as evidenced by the increased frequency of infection in MUC5AC-rich hydrogel-coated HAE cultures. Together, this work establishes a biomaterial-based approach to understand airway dysfunction in asthma and related muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ethan Iverson
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| | - Logan Kaler
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Shahed Bader
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Margaret A Scull
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.,Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
33
|
The Application of Bicarbonate Recovers the Chemical-Physical Properties of Airway Surface Liquid in Cystic Fibrosis Epithelia Models. BIOLOGY 2021; 10:biology10040278. [PMID: 33805545 PMCID: PMC8065534 DOI: 10.3390/biology10040278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. Deletion of phenylalanine at position 508, p.F508del, the most frequent mutation among CF patients, causes a folding and traffic defect, resulting in a dramatic reduction in the CFTR expression. To investigate whether the direct application of bicarbonate could modify the properties of the airway surface liquid (ASL), we measured the micro-viscosity, fluid transport and pH of human bronchial epithelial cells monolayers. We have demonstrated that the treatment of a CF-epithelia with an iso-osmotic solution containing bicarbonate is capable of reducing both, the ASL viscosity and the apical fluid re-absorption. We suggest the possibility of design a supportive treatment based on topical application of bicarbonate, or any other alkaline buffer.
Collapse
|
34
|
Sears PR, Bustamante-Marin XM, Gong H, Markovetz MR, Superfine R, Hill DB, Ostrowski LE. Induction of ciliary orientation by matrix patterning and characterization of mucociliary transport. Biophys J 2021; 120:1387-1395. [PMID: 33705757 PMCID: PMC8105732 DOI: 10.1016/j.bpj.2021.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Impaired mucociliary clearance (MCC) is a key feature of many airway diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. To improve MCC and develop new treatments for these diseases requires a thorough understanding of how mucus concentration, mucus composition, and ciliary activity affect MCC, and how different therapeutics impact this process. Although differentiated cultures of human airway epithelial cells are useful for investigations of MCC, the extent of ciliary coordination in these cultures varies, and the mechanisms controlling ciliary orientation are not completely understood. By introducing a pattern of ridges and grooves into the underlying collagen substrate, we demonstrate for the first time, to our knowledge, that changes in the extracellular matrix can induce ciliary alignment. Remarkably, 90% of human airway epithelial cultures achieved continuous directional mucociliary transport (MCT) when grown on the patterned substrate. These cultures maintain transport for months, allowing carefully controlled investigations of MCC over a wide range of normal and pathological conditions. To characterize the system, we measured the transport of bovine submaxillary gland mucin (BSM) under several conditions. Transport of 5% BSM was significantly reduced compared with that of 2% BSM, and treatment of 5% BSM with the reducing agent tris(2-carboxyethyl)phosphine (TCEP) reduced viscosity and increased the rate of MCT by approximately twofold. Addition of a small amount of high-molecular-weight DNA increased mucus viscosity and reduced MCT by ∼75%, demonstrating that the composition of mucus, as well as the concentration, can have significant effects on MCT. Our results demonstrate that a simple patterning of the collagen substrate results in highly coordinated ciliated cultures that develop directional MCT, and can be used to investigate the mechanisms controlling the regulation of ciliary orientation. Furthermore, the results demonstrate that this method provides an improved system for studying the effects of mucus composition and therapeutic agents on MCC.
Collapse
Affiliation(s)
- Patrick R Sears
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - Henry Gong
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Richard Superfine
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
35
|
Kelly SJ, Brodecky V, Skuza EM, Berger PJ, Tatkov S. Variability in tracheal mucociliary transport is not controlled by beating cilia in lambs in vivo during ventilation with humidified and nonhumidified air. Am J Physiol Lung Cell Mol Physiol 2021; 320:L473-L485. [PMID: 33438520 DOI: 10.1152/ajplung.00485.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucociliary transport in the respiratory epithelium depends on beating of cilia to move a mucus layer containing trapped inhaled particles toward the mouth. Little is known about the relationship between cilia beat frequency (CBF) and mucus transport velocity (MTV) in vivo under normal physiological conditions and when inspired air is dry or not fully humidified. This study was designed to use video-microscopy to simultaneously measure CBF and MTV in the tracheal epithelium through an implanted optical window in mechanically ventilated lambs. The inspired air in 6 animals was heated to body temperature and fully saturated with water for 4 hours as a baseline. In another series of experiments, 5 lambs were ventilated with air at different temperatures and humidities and the mucosal surface temperature was monitored with infrared macro-imaging. In the baseline experiments, during ventilation with fully humidified air at body temperature, CBF remained constant, mean 13.9 ± 1.6 Hz but MTV varied considerably between 0.1 and 26.1 mm/min with mean 11.0 ± 3.9 mm/min, resulting in a maximum mucus displacement of 34.2 µm/cilia beat. Fully humidified air at body temperature prevented fluctuations in the surface temperature during breathing indicating a thermodynamic balance in the airways. When lambs were ventilated with dryer air, the mucosal surface temperature and MTV dropped without a significant change in CBF. When inspired air was dry, mainly latent heat (92%) was transferred to air in the trachea, reducing the surface temperature by 5 °C. Reduced humidity of the inspired air lowered the surface temperature and reduced MTV in the epithelium during ventilation.
Collapse
Affiliation(s)
- S J Kelly
- Fisher & Paykel Healthcare, Auckland, New Zealand
| | - V Brodecky
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - E M Skuza
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - P J Berger
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - S Tatkov
- Fisher & Paykel Healthcare, Auckland, New Zealand
| |
Collapse
|
36
|
Chen D, Liu J, Wu J, Suk JS. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin Drug Deliv 2020; 18:595-606. [PMID: 33218265 DOI: 10.1080/17425247.2021.1854222] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Airway mucus gel layer serves as a key delivery barrier that limits the performance of inhaled drug delivery nanoparticles. Conventional nanoparticles are readily trapped by the airway mucus and rapidly cleared from the lung via mucus clearance mechanisms. These nanoparticles cannot distribute throughout the lung airways, long-reside in the lung and/or reach the airway epithelium. To address this challenge, strategies to enhance particle penetration through the airway mucus have been developed and proof-of-concept has been established using mucus model systems..Areas covered: In this review, we first overview the biochemical and biophysical characteristics that render the airway mucus a challenging delivery barrier. We then introduce strategies to improve particle penetration through the airway mucus. Specifically, we walk through two classes of approaches, including modification of physicochemical properties of nanoparticles and modulation of barrier properties of airway mucus.Expert opinion: State-of-the-art strategies to overcome the airway mucus barrier have been introduced and experimentally validated. However, data should be interpreted in the comprehensive context of therapeutic delivery from the site of administration to the final destination to determine clinically-relevant approaches. Further, safety should be carefully monitored, particularly when it comes to mucus-altering strategies that may perturb physiological functions of airway mucus.
Collapse
Affiliation(s)
- Daiqin Chen
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Jinhao Liu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry Wu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
38
|
Mukherjee A, MacDonald KD, Kim J, Henderson MI, Eygeris Y, Sahay G. Engineered mutant α-ENaC subunit mRNA delivered by lipid nanoparticles reduces amiloride currents in cystic fibrosis-based cell and mice models. SCIENCE ADVANCES 2020; 6:6/47/eabc5911. [PMID: 33208364 PMCID: PMC7673816 DOI: 10.1126/sciadv.abc5911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Cystic fibrosis (CF) results from mutations in the chloride-conducting CF transmembrane conductance regulator (CFTR) gene. Airway dehydration and impaired mucociliary clearance in CF is proposed to result in tonic epithelial sodium channel (ENaC) activity, which drives amiloride-sensitive electrogenic sodium absorption. Decreasing sodium absorption by inhibiting ENaC can reverse airway surface liquid dehydration. Here, we inhibit endogenous heterotrimeric ENaC channels by introducing inactivating mutant ENaC α mRNA (αmutENaC). Lipid nanoparticles carrying αmutENaC were transfected in CF-based airway cells in vitro and in vivo. We observed a significant decrease in macroscopic as well as amiloride-sensitive ENaC currents and an increase in airway surface liquid height in CF airway cells. Similarly, intranasal transfection of αmutENaC mRNA decreased amiloride-sensitive nasal potential difference in CFTRKO mice. These data suggest that mRNA-based ENaC inhibition is a powerful strategy for reducing mucus dehydration and has therapeutic potential for treating CF in all patients, independent of genotype.
Collapse
Affiliation(s)
- Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Kelvin D MacDonald
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Michael I Henderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA.
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
39
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Nicholas TP, Haick AK, Workman TW, Griffith WC, Nolin JD, Kavanagh TJ, Faustman EM, Altemeier WA. The effects of genotype × phenotype interactions on silver nanoparticle toxicity in organotypic cultures of murine tracheal epithelial cells. Nanotoxicology 2020; 14:908-928. [PMID: 32574512 PMCID: PMC12064198 DOI: 10.1080/17435390.2020.1777475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. Previous studies have identified AgNP toxicity in airway epithelial cells, but no in vitro studies to date have used organotypic cultures as a high-content in vitro model of the conducting airway to characterize the effects of interactions between host genetic and acquired factors, or gene × phenotype interactions (G × P), on AgNP toxicity. In the present study, we derived organotypic cultures from primary murine tracheal epithelial cells (MTEC) to characterize nominal and dosimetric dose-response relationships for AgNPs with a gold core on barrier dysfunction, glutathione (GSH) depletion, reactive oxygen species (ROS) production, lipid peroxidation, and cytotoxicity across two genotypes (A/J and C57BL/6J mice), two phenotypes ('Normal' and 'Type 2 [T2]-Skewed'), and two exposures (an acute exposure of 24 h and a subacute exposure of 4 h, every other day, over 5 days [5 × 4 h]). We characterized the 'T2-Skewed' phenotype as an in vitro model of chronic respiratory diseases, which was marked by increased sensitivity to AgNP-induced barrier dysfunction, GSH depletion, ROS production, lipid peroxidation, and cytotoxicity, suggesting that asthmatics are a sensitive population to AgNP exposures in occupational settings. This also suggests that exposure limits, which should be based upon the most sensitive population, should be derived using in vitro and in vivo models of chronic respiratory diseases. This study highlights the importance of considering dosimetry as well as G × P effects when screening and prioritizing potential respiratory toxicants. Such in vitro studies can be used to inform regulatory policy aimed at special protections for all populations.
Collapse
Affiliation(s)
- Tyler P. Nicholas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington, Seattle, Washington, United States
| | - Anoria K. Haick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States
| | - Tomomi W. Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
| | - William C. Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
| | - James D. Nolin
- Center for Lung Biology, University of Washington, Seattle, Washington, United States
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington, Seattle, Washington, United States
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
| | - William A. Altemeier
- Center for Lung Biology, University of Washington, Seattle, Washington, United States
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
41
|
Arora K, Lund JR, Naren NA, Zingarelli B, Naren AP. AC6 regulates the microtubule-depolymerizing kinesin KIF19A to control ciliary length in mammals. J Biol Chem 2020; 295:14250-14259. [PMID: 32683324 DOI: 10.1074/jbc.ra120.013703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
Motile cilia are hairlike structures that line the respiratory and reproductive tracts and the middle ear and generate fluid flow in these organs via synchronized beating. Cilium growth is a highly regulated process that is assumed to be important for flow generation. Recently, Kif19a, a kinesin residing at the cilia tip, was identified to be essential for ciliary length control through its microtubule depolymerization function. However, there is a lack of information on the nature of proteins and the integrated signaling mechanism regulating growth of motile cilia. Here, we report that adenylate cyclase 6 (AC6), a highly abundant AC isoform in airway epithelial cells, inhibits degradation of Kif19a by inhibiting autophagy, a cellular recycling mechanism for damaged proteins and organelles. Using epithelium-specific knockout mice of AC6, we demonstrated that AC6 knockout airway epithelial cells have longer cilia compared with the WT cells because of decreased Kif19a protein levels in the cilia. We demonstrated in vitro that AC6 inhibits AMP-activated kinase (AMPK), an important modulator of cellular energy-conserving mechanisms, and uncouples its binding with ciliary kinesin Kif19a. In the absence of AC6, activation of AMPK mobilizes Kif19a into autophagosomes for degradation in airway epithelial cells. Lower Kif19a levels upon pharmacological activation of AMPK in airway epithelial cells correlated with elongated cilia and vice versa. In all, the AC6-AMPK pathway, which is tunable to cellular cues, could potentially serve as one of the crucial ciliary growth checkpoints and could be channeled to develop therapeutic interventions for cilia-associated disorders.
Collapse
Affiliation(s)
- Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John R Lund
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nevin A Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
42
|
Gsell S, Loiseau E, D'Ortona U, Viallat A, Favier J. Hydrodynamic model of directional ciliary-beat organization in human airways. Sci Rep 2020; 10:8405. [PMID: 32439925 PMCID: PMC7242329 DOI: 10.1038/s41598-020-64695-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022] Open
Abstract
In the lung, the airway surface is protected by mucus, whose transport and evacuation is ensured through active ciliary beating. The mechanisms governing the long-range directional organization of ciliary beats, required for effective mucus transport, are much debated. Here, we experimentally show on human bronchial epithelium reconstituted in-vitro that the dynamics of ciliary-beat orientation is closely connected to hydrodynamic effects. To examine the fundamental mechanisms of this self-organization process, we build a two-dimensional model in which the hydrodynamic coupling between cilia is provided by a streamwise-alignment rule governing the local orientation of the ciliary forcing. The model reproduces the emergence of the mucus swirls observed in the experiments. The predicted swirl sizes, which scale with the ciliary density and mucus viscosity, are in agreement with in-vitro measurements. A transition from the swirly regime to a long-range unidirectional mucus flow allowing effective clearance occurs at high ciliary density and high mucus viscosity. In the latter case, the mucus flow tends to spontaneously align with the bronchus axis due to hydrodynamic effects.
Collapse
Affiliation(s)
- Simon Gsell
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | | | - Umberto D'Ortona
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
| | | | - Julien Favier
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
| |
Collapse
|
43
|
Quirouette C, Younis NP, Reddy MB, Beauchemin CAA. A mathematical model describing the localization and spread of influenza A virus infection within the human respiratory tract. PLoS Comput Biol 2020; 16:e1007705. [PMID: 32282797 PMCID: PMC7179943 DOI: 10.1371/journal.pcbi.1007705] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 04/23/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Within the human respiratory tract (HRT), virus diffuses through the periciliary fluid (PCF) bathing the epithelium. But virus also undergoes advection: as the mucus layer sitting atop the PCF is pushed along by the ciliated cell's beating cilia, the PCF and its virus content are also pushed along, upwards towards the nose and mouth. While many mathematical models (MMs) have described the course of influenza A virus (IAV) infections in vivo, none have considered the impact of both diffusion and advection on the kinetics and localization of the infection. The MM herein represents the HRT as a one-dimensional track extending from the nose down towards the lower HRT, wherein stationary cells interact with IAV which moves within (diffusion) and along with (advection) the PCF. Diffusion was found to be negligible in the presence of advection which effectively sweeps away IAV, preventing infection from disseminating below the depth at which virus first deposits. Higher virus production rates (10-fold) are required at higher advection speeds (40 μm/s) to maintain equivalent infection severity and timing. Because virus is entrained upwards, upper parts of the HRT see more virus than lower parts. As such, infection peaks and resolves faster in the upper than in the lower HRT, making it appear as though infection progresses from the upper towards the lower HRT, as reported in mice. When the spatial MM is expanded to include cellular regeneration and an immune response, it reproduces tissue damage levels reported in patients. It also captures the kinetics of seasonal and avian IAV infections, via parameter changes consistent with reported differences between these strains, enabling comparison of their treatment with antivirals. This new MM offers a convenient and unique platform from which to study the localization and spread of respiratory viral infections within the HRT.
Collapse
Affiliation(s)
| | - Nada P. Younis
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Micaela B. Reddy
- Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Catherine A. A. Beauchemin
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Japan
- * E-mail:
| |
Collapse
|
44
|
Leung C, Wadsworth SJ, Yang SJ, Dorscheid DR. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1063-L1073. [PMID: 32208929 DOI: 10.1152/ajplung.00190.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human bronchial epithelium is an important barrier tissue that is damaged or pathologically altered in various acute and chronic respiratory conditions. To represent the epithelial component of respiratory disease, it is essential to use a physiologically relevant model of this tissue. The human bronchial epithelium is a highly organized tissue consisting of a number of specialized cell types. Primary human bronchial epithelial cells (HBEC) can be differentiated into a mucociliated tissue in air-liquid interface (ALI) cultures using appropriately supplemented media under optimized growth conditions. We compared the histology, ciliary length, and function, diffusion, and barrier properties of HBEC from donors with no respiratory disease grown in two different media, PneumaCult-ALI or Bronchial Epithelial Differentiation Medium (BEDM). In the former group, HBEC have a more physiological pseudostratified morphology and mucociliary differentiation, including increased epithelial thickness, intracellular expression of airway-specific mucin protein MUC5AC, and total expression of cilia basal-body protein compared with cells from the same donor grown in the other medium. Baseline expression levels of inflammatory mediators, thymic stromal lymphopoietin (TSLP), soluble ST2, and eotaxin-3 were lower in PneumaCult-ALI. Additionally, the physiological cilia beat frequency and electrical barrier properties with transepithelial electrical resistance were significantly different between the two groups. Our study has shown that these primary cell cultures from the same donor grown in the two media possess variable structural and functional characteristics. Therefore, it is important to objectively validate primary epithelial cell cultures before experimentation to ensure they are appropriate to answer a specific scientific question.
Collapse
Affiliation(s)
- Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Samuel J Wadsworth
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - S Jasemine Yang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front Immunol 2020; 11:244. [PMID: 32153575 PMCID: PMC7047154 DOI: 10.3389/fimmu.2020.00244] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
Collapse
Affiliation(s)
- Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Elizabeth B. Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - M. Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Valery Roman-Cruz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Naomi Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Conner Copeland
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Julie Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Travis J. Wheeler
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Carlos E. Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
46
|
Nawroth JC, van der Does AM, Ryan (Firth) A, Kanso E. Multiscale mechanics of mucociliary clearance in the lung. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190160. [PMID: 31884926 PMCID: PMC7017338 DOI: 10.1098/rstb.2019.0160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Mucociliary clearance (MCC) is one of the most important defence mechanisms of the human respiratory system. Its failure is implicated in many chronic and debilitating airway diseases. However, due to the complexity of lung organization, we currently lack full understanding on the relationship between these regional differences in anatomy and biology and MCC functioning. For example, it is unknown whether the regional variability of airway geometry, cell biology and ciliary mechanics play a functional role in MCC. It therefore remains unclear whether the regional preference seen in some airway diseases could originate from local MCC dysfunction. Though great insights have been gained into the genetic basis of cilia ultrastructural defects in airway ciliopathies, the scaling to regional MCC function and subsequent clinical phenotype remains unpredictable. Understanding the multiscale mechanics of MCC would help elucidate genotype-phenotype relationships and enable better diagnostic tools and treatment options. Here, we review the hierarchical and variable organization of ciliated airway epithelium in human lungs and discuss how this organization relates to MCC function. We then discuss the relevancy of these structure-function relationships to current topics in lung disease research. Finally, we examine how state-of-the-art computational approaches can help address existing open questions. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | - Anne M. van der Does
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amy Ryan (Firth)
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Eva Kanso
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
47
|
Albano GD, Moscato M, Montalbano AM, Anzalone G, Gagliardo R, Bonanno A, Giacomazza D, Barone R, Drago G, Cibella F, Profita M. Can PBDEs affect the pathophysiologic complex of epithelium in lung diseases? CHEMOSPHERE 2020; 241:125087. [PMID: 31622892 DOI: 10.1016/j.chemosphere.2019.125087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Brominated flame-retardant (BFRs) exposure promotes multiple adverse health outcomes involved in oxidative stress, inflammation, and tissues damage. We investigated BFR effects, known as polybrominated diphenyl ethers (PBDEs) (47, 99 and 209) in an air-liquid-interface (ALI) airway tissue derived from A549 cell line, and compared with ALI culture of primary human bronchial epithelial cells (pHBEC). The cells, exposed to PBDEs (47, 99 and 209) (0.01-1 μM) for 24 h, were studied for IL-8, Muc5AC and Muc5B (mRNAs and proteins) production, as well as NOX-4 (mRNA) expression. Furthermore, we evaluated tight junction (TJ) integrity by Trans-Epithelial Electrical Resistance (TEER) measurements, and zonula occludens-1 (ZO-1) expression in the cells, and pH variations and rheological properties (elastic G', and viscous G″, moduli) in apical washes of ALI cultures. N-acetylcysteine (NAC) (10 mM) effects were tested in our experimental model of A549 cells. PBDEs (47, 99 and 209) exposure decreased TEER, ZO-1 and pH values, and increased IL-8, Muc5AC, Muc5B (mRNAs and proteins), NOX-4 (mRNA), and rheological parameters (G', G″) in ALI cultures of A549 cell line and pHBEC. NAC inhibited PBDE effects in A549 cells. PBDE inhalation might impairs human health of the lungs inducing oxidative stress, inflammatory response, loss of barrier integrity, unchecked mucus production, as well as altered physicochemical and biological properties of the fluids in airway epithelium. The treatment with anti-oxidants restored the negative effects of PBDEs in epithelial cells.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Moscato
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Angela Marina Montalbano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giulia Anzalone
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Anna Bonanno
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | | | | | - Gaspare Drago
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Mirella Profita
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
48
|
Simulation Study on the Mass Transport Based on the Ciliated Dynamic System of the Respiratory Tract. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:6036248. [PMID: 31885683 PMCID: PMC6925737 DOI: 10.1155/2019/6036248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/04/2023]
Abstract
To study the mass transport of mucociliary clearance of the human upper respiratory tract, a two-dimensional mass transport model based on the ciliated movement was established by using the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, different characteristics of the mucus layer (ML) and the periciliary liquid (PCL) were taken into account. A virtual elastic membrane was introduced to divide the two layers dynamically. All moving boundaries that were involved in the present simulation were modeled with the immersed boundary. The Newtonian fluid was used to model the flow in PCL, and the viscoelastic fluid based on the Oldroyd-B model was used for the flow in ML; the two types of flow were both solved by the LBM framework. Based on the model, the ML thickness, the cilia density, and the phase difference of adjacent cilia were regulated, respectively, to study the transport velocity of the ML. In addition, the motion law of solid particles in PCL was also studied. According to the results, four primary conclusions were drawn. (1) At a given beating pattern, the increase of the ML thickness will decrease its transport velocity. (2) Increasing the cilia density can promote the mean transport velocity of the ML. (3) By raising the phase difference of adjacent cilia to a certain scope, the transport of ML can be accelerated. (4) In PCL, particles initially located on the upper part of the cilia tend to migrate upward and then get close to the ML. The above study can provide some reasonable explanations for the mechanism of the mucociliary clearance system, which is also helpful to the further understanding of the mass transport principle of the human upper respiratory tract.
Collapse
|
49
|
Three-Dimensional Numerical Analysis of Periciliary Liquid Layer: Ciliary Abnormalities in Respiratory Diseases. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human pulmonary epithelial cells are protected by two layers of fluid—the outer watery periciliary liquid layer (PCL) and the uppermost non-Newtonian mucus layer (ML). Aerosols and inhaled toxic particles are trapped by the ML which must then be removed swiftly to avoid adverse health implications. Epithelial cells are covered with cilia that beat rapidly within the PCL. Such ciliary motion drives the mucus transport. Although cilia can penetrate slightly inside the mucus to assist mucus movement, the motion of the underlying PCL layer within the airway surface liquid (ASL) is significant in mucus and pathogens transport. As such, a detailed parametric study of the influence of different abnormal cilia characteristics, such as low beating frequency, short length, abnormal beating pattern, reduced ciliary density, and epithelium patchiness due to missing cilia on the PCL transport, is carried out numerically. Such abnormalities are found in various chronic respiratory diseases. In addition, the shear stress at the epithelium is assessed due to the importance of shear stress on the epithelial function. Using the immersed boundary (IB) method combined with the finite-difference projection method, we found that the PCL, under standard healthy conditions, has net forward motion but that different diseased conditions decrease the forward motion of the PCL, as is expected based on clinical understanding.
Collapse
|
50
|
Cho DY, Skinner D, Zhang S, Lazrak A, Lim DJ, Weeks CG, Banks CG, Han CK, Kim SK, Tearney GJ, Matalon S, Rowe SM, Woodworth BA. Korean Red Ginseng aqueous extract improves markers of mucociliary clearance by stimulating chloride secretion. J Ginseng Res 2019; 45:66-74. [PMID: 33437158 PMCID: PMC7790903 DOI: 10.1016/j.jgr.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022] Open
Abstract
Background Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. Methods Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (μOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. Results RGAE (at 30μg/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = μA/cm2)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 μm vs control, 3.9+/-0.09 μm; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. Conclusion RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Dong Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christopher G Weeks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Catherine G Banks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Chang Kyun Han
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, Konkuk University, Chungju, Republic of Korea
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|