1
|
Sahoo SS, Khiami M, Wlodarski MW. Inducible pluripotent stem cell models to study bone marrow failure and MDS predisposition syndromes. Exp Hematol 2025; 143:104669. [PMID: 39491640 DOI: 10.1016/j.exphem.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as powerful tools for in vitro modeling of bone marrow failure (BMF) syndromes and hereditary conditions predisposing to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). This review synthesizes recent advances in iPSC-based disease modeling for various inherited BMF/MDS disorders, including Fanconi anemia, dyskeratosis congenita, Diamond Blackfan anemia syndrome, Shwachman-Diamond syndrome, and severe congenital neutropenia as well as GATA2, RUNX1, ETV6, ANKRD26, SAMD9, SAMD9L, and ADH5/ALDH2 syndromes. Although the majority of these iPSC lines are derived from patient cells, some are generated by introducing patient-specific mutations into healthy iPSC backgrounds, offering complementary approaches to disease modeling. The review highlights the ability of iPSCs to recapitulate key disease phenotypes, such as impaired hematopoietic differentiation, telomere dysfunction, and defects in DNA repair or ribosome biogenesis. We discuss how these models have enhanced our understanding of disease pathomechanisms, hematopoietic defects, and potential therapeutic approaches. Challenges in generating and maintaining disease-specific iPSCs are examined, particularly for disorders involving DNA repair. We emphasize the necessity of creating isogenic controls to elucidate genotype-phenotype relationships. Furthermore, we address limitations of current iPSC models, including genetic variability among iPSC clones derived from the same patient, and difficulties in achieving robust engraftment of iPSC-derived hematopoietic progenitor cells in mouse transplantation models. The review also explores future directions, including the potential of iPSC models for drug discovery and personalized medicine approaches. This review underscores the significance of iPSC technology in advancing our understanding of inherited hematopoietic disorders and its potential to inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Majd Khiami
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
2
|
Silva JPL, Donaires FS, Gutierrez-Rodrigues F, Martins DJ, Carvalho VS, Santana BA, Cunha RLG, Kajigaya S, Menck CFM, Young NS, Kjeldsen E, Calado RT. RecQ helicase expression in patients with telomeropathies. Mol Biol Rep 2024; 51:754. [PMID: 38874681 DOI: 10.1007/s11033-024-09678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.
Collapse
Affiliation(s)
- João Paulo L Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Flávia S Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Davi J Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius S Carvalho
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Barbara A Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato L G Cunha
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eigil Kjeldsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 7 o andar, sala 743 - HCRP, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
3
|
Chatterjee S, Leach-Mehrwald M, Huang CK, Xiao K, Fuchs M, Otto M, Lu D, Dang V, Winkler T, Dunbar CE, Thum T, Bär C. Telomerase is essential for cardiac differentiation and sustained metabolism of human cardiomyocytes. Cell Mol Life Sci 2024; 81:196. [PMID: 38658440 PMCID: PMC11043037 DOI: 10.1007/s00018-024-05239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.
Collapse
Affiliation(s)
- Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Megan Leach-Mehrwald
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Mandy Otto
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Vinh Dang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Winkler
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
4
|
Ma B, Martínez P, Sánchez-Vázquez R, Blasco MA. Telomere dynamics in human pluripotent stem cells. Cell Cycle 2023; 22:2505-2521. [PMID: 38219218 PMCID: PMC10936660 DOI: 10.1080/15384101.2023.2285551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Pluripotent stem cells (PSCs) are a promising source of stem cells for regenerative therapies. Stem cell function depends on telomere maintenance mechanisms that provide them with the proliferative capacity and genome stability necessary to multiply and regenerate tissues. We show here that established human embryonic stem cells (hESCs) have stable telomere length that is dependent on telomerase but not on alternative mechanisms based on homologous recombination pathways. Here, we show that human-induced pluripotent stem cells (hiPSCs) reprogrammed from somatic cells show progressive telomere lengthening until reaching a length similar to ESCs. hiPSCs also acquire telomeric chromatin marks of ESCs including decreased abundance of tri-methylated histone H3K9 and H4K20 and HP1 heterochromatic marks, as well as of the shelterin component TRF2. These chromatin features are accompanied with increased abundance of telomere transcripts or TERRAs. We also found that telomeres of both hESCs and hiPSCs are well protected from DNA damage during telomere elongation and once full telomere length is achieved, and exhibit stable genomes. Collectively, this study highlights that hiPSCs acquire ESC features during reprogramming and reveals the telomere biology in human pluripotent stem cells (hPSCs).
Collapse
Affiliation(s)
- Buyun Ma
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Raúl Sánchez-Vázquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
5
|
Tang X, Xu R, Wang Y, Chen K, Cui S. TERC haploid cell reprogramming: a novel therapeutic strategy for aplastic anemia. Mol Med 2023; 29:94. [PMID: 37424004 DOI: 10.1186/s10020-023-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
The telomerase RNA component (TERC) gene plays an important role in telomerase-dependent extension and maintenance of the telomeres. In the event of TERC haploinsufficiency, telomere length is often affected; this, in turn, can result in the development of progeria-related diseases such as aplastic anemia (AA) and congenital keratosis. Cell reprogramming can reverse the differentiation process and can, therefore, transform cells into pluripotent stem cells with stronger differentiation and self-renewal abilities; further, cell reprograming can also extend the telomere length of these cells, which may be crucial in the diagnosis and treatment of telomere depletion diseases such as AA. In this study, we summarized the effects of TERC haploid cell reprogramming on telomere length and the correlation between this alteration and the pathogenesis of AA; by investigating the role of cell reprogramming in AA, we aimed to identify novel diagnostic indicators and therapeutic strategies for patients with AA.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Kaiqing Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
6
|
Patient-Derived iPSCs Reveal Evidence of Telomere Instability and DNA Repair Deficiency in Coats Plus Syndrome. Genes (Basel) 2022; 13:genes13081395. [PMID: 36011306 PMCID: PMC9407572 DOI: 10.3390/genes13081395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Coats plus (CP) syndrome is an inherited autosomal recessive condition that results from mutations in the conserved telomere maintenance component 1 gene (CTC1). The CTC1 protein functions as a part of the CST protein complex, a protein heterotrimer consisting of CTC1-STN1-TEN1 which promotes telomere DNA synthesis and inhibits telomerase-mediated telomere elongation. However, it is unclear how CTC1 mutations may have an effect on telomere structure and function. For that purpose, we established the very first induced pluripotent stem cell lines (iPSCs) from a compound heterozygous patient with CP carrying deleterious mutations in both alleles of CTC1. Telomere dysfunction and chromosomal instability were assessed in both circulating lymphocytes and iPSCs from the patient and from healthy controls of similar age. The circulating lymphocytes and iPSCs from the CP patient were characterized by their higher telomere length heterogeneity and telomere aberrations compared to those in control cells from healthy donors. Moreover, in contrast to iPSCs from healthy controls, the high levels of telomerase were associated with activation of the alternative lengthening of telomere (ALT) pathway in CP-iPSCs. This was accompanied by inappropriate activation of the DNA repair proteins γH2AX, 53BP1, and ATM, as well as with accumulation of DNA damage, micronuclei, and anaphase bridges. CP-iPSCs presented features of cellular senescence and increased radiation sensitivity. Clonal dicentric chromosomes were identified only in CP-iPSCs after exposure to radiation, thus mirroring the role of telomere dysfunction in their formation. These data demonstrate that iPSCs derived from CP patients can be used as a model system for molecular studies of the CP syndrome and underscores the complexity of telomere dysfunction associated with the defect of DNA repair machinery in the CP syndrome.
Collapse
|
7
|
Tellechea MF, Donaires FS, de Carvalho VS, Santana BA, da Silva FB, Tristão RS, Moreira LF, de Souza AF, Armenteros YM, Pereira LV, Calado RT. Defective hematopoietic differentiation of immune aplastic anemia patient-derived iPSCs. Cell Death Dis 2022; 13:412. [PMID: 35484113 PMCID: PMC9051057 DOI: 10.1038/s41419-022-04850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
In acquired immune aplastic anemia (AA), pathogenic cytotoxic Th1 cells are activated and expanded, driving an immune response against the hematopoietic stem and progenitor cells (HSPCs) that provokes cell depletion and causes bone marrow failure. However, additional HSPC defects may contribute to hematopoietic failure, reflecting on disease outcomes and response to immunosuppression. Here we derived induced pluripotent stem cells (iPSCs) from peripheral blood (PB) erythroblasts obtained from patients diagnosed with immune AA using non-integrating plasmids to model the disease. Erythroblasts were harvested after hematologic response to immunosuppression was achieved. Patients were screened for germline pathogenic variants in bone marrow failure-related genes and no variant was identified. Reprogramming was equally successful for erythroblasts collected from the three immune AA patients and the three healthy subjects. However, the hematopoietic differentiation potential of AA-iPSCs was significantly reduced both quantitatively and qualitatively as compared to healthy-iPSCs, reliably recapitulating disease: differentiation appeared to be more severely affected in cells from the two patients with partial response as compared to the one patient with complete response. Telomere elongation and the telomerase machinery were preserved during reprogramming and differentiation in all AA-iPSCs. Our results indicate that iPSCs are a reliable platform to model immune AA and recapitulate clinical phenotypes. We propose that the immune attack may cause specific epigenetic changes in the HSPCs that limit adequate proliferation and differentiation.
Collapse
Affiliation(s)
- Maria Florencia Tellechea
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flávia S Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius S de Carvalho
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bárbara A Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda B da Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raissa S Tristão
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lílian F Moreira
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline F de Souza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Yordanka M Armenteros
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Sharma R, Sahoo SS, Honda M, Granger SL, Goodings C, Sanchez L, Künstner A, Busch H, Beier F, Pruett-Miller SM, Valentine MB, Fernandez AG, Chang TC, Géli V, Churikov D, Hirschi S, Pastor VB, Boerries M, Lauten M, Kelaidi C, Cooper MA, Nicholas S, Rosenfeld JA, Polychronopoulou S, Kannengiesser C, Saintomé C, Niemeyer CM, Revy P, Wold MS, Spies M, Erlacher M, Coulon S, Wlodarski MW. Gain-of-function mutations in RPA1 cause a syndrome with short telomeres and somatic genetic rescue. Blood 2022; 139:1039-1051. [PMID: 34767620 PMCID: PMC8854676 DOI: 10.1182/blood.2021011980] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Sushree S Sahoo
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Masayoshi Honda
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Sophie L Granger
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Charnise Goodings
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Louis Sanchez
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7196, INSERM Unité1154, Paris, France
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Vincent Géli
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Dmitri Churikov
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Sandrine Hirschi
- Department of Respiratory Medicine and Rare Pulmonary Diseases, Strasbourg University Hospital, Strasbourg, France
| | - Victor B Pastor
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melchior Lauten
- University Hospital Schleswig-Holstein, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Charikleia Kelaidi
- Department of Pediatric Hematology/Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Megan A Cooper
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | | | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology/Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Caroline Kannengiesser
- Department of Genetics, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris University, INSERM U1152, Paris, France
| | - Carole Saintomé
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7196, INSERM Unité1154, Paris, France
- Sorbonne Université, Education and Research Unit for Life Sciences (UFR 927), Paris, France
| | - Charlotte M Niemeyer
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Patrick Revy
- Université de Paris, Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Laboratoire Labellisé Ligue, INSERM UMR 1163, Paris, France
| | - Marc S Wold
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Miriam Erlacher
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Stéphane Coulon
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| |
Collapse
|
9
|
Thongon N, Ma F, Santoni A, Marchesini M, Fiorini E, Rose A, Adema V, Ganan-Gomez I, Groarke EM, Gutierrez-Rodrigues F, Chen S, Lockyer P, Schneider S, Bueso-Ramos C, Montalban-Bravo G, Class CA, Soltysiak KA, Pellegrini M, Sahin E, Bertuch AA, DiNardo CD, Garcia-Manero G, Young NS, Dwyer K, Colla S. Hematopoiesis under telomere attrition at the single-cell resolution. Nat Commun 2021; 12:6850. [PMID: 34824242 PMCID: PMC8617077 DOI: 10.1038/s41467-021-27206-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.
Collapse
Affiliation(s)
- Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Santoni
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Marchesini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Fiorini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley Rose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shuaitong Chen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela Lockyer
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Schneider
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Cancer Center, Houston, TX, USA
| | | | - Caleb A Class
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | - Kelly A Soltysiak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Ergun Sahin
- Huffington Center On Aging, Baylor College of Medicine, Houston, TX, USA
| | - Alison A Bertuch
- Department of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karen Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Chemical inhibition of PAPD5/7 rescues telomerase function and hematopoiesis in dyskeratosis congenita. Blood Adv 2021; 4:2717-2722. [PMID: 32559291 DOI: 10.1182/bloodadvances.2020001848] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
Dyskeratosis congenita (DC) is a pediatric bone marrow failure syndrome caused by germline mutations in telomere biology genes. Mutations in DKC1 (the most commonly mutated gene in DC), the 3' region of TERC, and poly(A)-specific ribonuclease (PARN) cause reduced levels of the telomerase RNA component (TERC) by reducing its stability and accelerating TERC degradation. We have previously shown that depleting wild-type DKC1 levels by RNA interference or expression of the disease-associated A353V mutation in the DKC1 gene leads to decay of TERC, modulated by 3'-end oligoadenylation by noncanonical poly(A) polymerase 5 (PAPD5) followed by 3' to 5' degradation by EXOSC10. Furthermore, the constitutive genetic silencing of PAPD5 is sufficient to rescue TERC levels, restore telomerase function, and elongate telomeres in DKC1_A353V mutant human embryonic stem cells (hESCs). Here, we tested a novel PAPD5/7 inhibitor (RG7834), which was originally discovered in screens against hepatitis B viral loads in hepatic cells. We found that treatment with RG7834 rescues TERC levels, restores correct telomerase localization in DKC1 and PARN-depleted cells, and is sufficient to elongate telomeres in DKC1_A353V hESCs. Finally, treatment with RG7834 significantly improved definitive hematopoietic potential from DKC1_A353V hESCs, indicating that the chemical inhibition of PAPD5 is a potential therapy for patients with DC and reduced TERC levels.
Collapse
|
11
|
Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11:483. [PMID: 33198819 PMCID: PMC7667818 DOI: 10.1186/s13287-020-01998-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Munroe M, Niero EL, Fok WC, Vessoni AT, Jeong H, Brenner KA, Batista LFZ. Telomere Dysfunction Activates p53 and Represses HNF4α Expression Leading to Impaired Human Hepatocyte Development and Function. Hepatology 2020; 72:1412-1429. [PMID: 32516515 PMCID: PMC7693115 DOI: 10.1002/hep.31414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Telomere attrition is a major risk factor for end-stage liver disease. Due to a lack of adequate models and intrinsic difficulties in studying telomerase in physiologically relevant cells, the molecular mechanisms responsible for liver disease in patients with telomere syndromes remain elusive. To circumvent that, we used genome editing to generate isogenic human embryonic stem cells (hESCs) harboring clinically relevant mutations in telomerase and subjected them to an in vitro, stage-specific hepatocyte differentiation protocol that resembles hepatocyte development in vivo. APPROACH AND RESULTS Using this platform, we observed that while telomerase is highly expressed in hESCs, it is quickly silenced, specifically due to telomerase reverse transcriptase component (TERT) down-regulation, immediately after endoderm differentiation and completely absent in in vitro-derived hepatocytes, similar to what is observed in human primary hepatocytes. While endoderm derivation is not impacted by telomere shortening, progressive telomere dysfunction impaired hepatic endoderm formation. Consequently, hepatocyte derivation, as measured by expression of specific hepatic markers as well by albumin expression and secretion, is severely compromised in telomerase mutant cells with short telomeres. Interestingly, this phenotype was not caused by cell death induction or senescence. Rather, telomere shortening prevents the up-regulation and activation of human hepatocyte nuclear factor 4 alpha (HNF4α) in a p53-dependent manner. Both reactivation of telomerase and silencing of p53 rescued hepatocyte formation in telomerase mutants. Likewise, the conditional expression (doxycycline-controlled) of HNF4α, even in cells that retained short telomeres, accrued DNA damage, and exhibited p53 stabilization, successfully restored hepatocyte formation from hESCS. CONCLUSIONS Our data show that telomere dysfunction acts as a major regulator of HNF4α during hepatocyte development, pointing to a target in the treatment of liver disease in telomere-syndrome patients.
Collapse
Affiliation(s)
- Michael Munroe
- Department of MedicineWashington University in St. LouisSt. LouisMO
| | | | - Wilson Chun Fok
- Department of MedicineWashington University in St. LouisSt. LouisMO
| | | | - Ho‐Chang Jeong
- Department of MedicineWashington University in St. LouisSt. LouisMO
| | - Kirsten Ann Brenner
- Department of MedicineWashington University in St. LouisSt. LouisMO
- Present address:
Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI
| | - Luis Francisco Zirnberger Batista
- Department of MedicineWashington University in St. LouisSt. LouisMO
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMO
- Center of Regenerative MedicineWashington University in St. LouisSt. LouisMO
| |
Collapse
|
13
|
Brzeźniakiewicz-Janus K, Rupa-Matysek J, Gil L. Acquired Aplastic Anemia as a Clonal Disorder of Hematopoietic Stem Cells. Stem Cell Rev Rep 2020; 16:472-481. [PMID: 32270433 PMCID: PMC7253510 DOI: 10.1007/s12015-020-09971-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aplastic anemia is rare disorder presenting with bone marrow failure syndrome due to autoimmune destruction of early hematopoietic stem cells (HSCs) and stem cell progenitors. Recent advances in newer genomic sequencing and other molecular techniques have contributed to a better understanding of the pathogenesis of aplastic anemia with respect to the inflammaging, somatic mutations, cytogenetic abnormalities and defective telomerase functions of HSCs. These have been summarized in this review and may be helpful in differentiating aplastic anemia from hypocellular myelodysplastic syndrome. Furthermore, responses to immunosuppressive therapy and outcomes may be determined by molecular pathogenesis of HSCs autoimmune destruction, as well as treatment personalization in the future.
Collapse
Affiliation(s)
- Katarzyna Brzeźniakiewicz-Janus
- Department of Hematology, Multi-Specialist Hospital Gorzów Wielkopolski, Faculty of Medicine and Health Science, University of Zielona Góra, Gorzów Wielkopolski, Poland.
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
14
|
Guttula PK, Gupta MK. Examining the co-expression, transcriptome clustering and variation using fuzzy cluster network of testicular stem cells and pluripotent stem cells compared with other cell types. Comput Biol Chem 2020; 85:107227. [PMID: 32044562 DOI: 10.1016/j.compbiolchem.2020.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/10/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
Stem cells are crucial in the field of tissue regeneration and developmental biology. Embryonic stem cells (ESCs) which are pluripotent in nature are derived from the inner cell mass of blastocyst. The gene expression profiles of ESCs and Induced pluripotent stem cells (iPSCs) were compared to identify the differences. Spermatogonial stem cells (SSCs) are also known as Germ-line stem cells (GSCs) present in testis is having the capability of producing the sperm in their whole lifetime. Therefore can be reprogrammed into pluripotent cells called male germline pluripotent cells (gPSCs). It is very difficult to interpret the larger genomic data sets which are available in public databases without high computational facilities. In order to identify the similar groups We studied the co-expression, clustering of the transcriptome and variation of the transcriptome of the GSCs, gPSCs, ESCs and other cell types using fuzzy clustering using AutoSOME. The series matrix file with GSE ID GSE11274 was retrieved and subjected to the various normalization methods, corresponding rows and columns were clustered using p values, ensemble runs, and different running modes. Transcriptome analysis using the proposed approach intuitively and consistently characterized the variation in cell-cell significantly. Collectively, our results suggest that the GSCs and the ESCs displayed differential gene expression profiles, and the GSCs possessed the potential to acquire pluripotency based on the high expression of epigenetic factors and transcription factors. These data may provide novel insights into the reprogramming mechanism of GSCs.
Collapse
Affiliation(s)
- Praveen Kumar Guttula
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
15
|
Donaires FS, Alves-Paiva RM, Gutierrez-Rodrigues F, da Silva FB, Tellechea MF, Moreira LF, Santana BA, Traina F, Dunbar CE, Winkler T, Calado RT. Telomere dynamics and hematopoietic differentiation of human DKC1-mutant induced pluripotent stem cells. Stem Cell Res 2019; 40:101540. [PMID: 31479877 DOI: 10.1016/j.scr.2019.101540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Telomeropathies are a group of phenotypically heterogeneous diseases molecularly unified by pathogenic mutations in telomere-maintenance genes causing critically short telomeres. X-linked dyskeratosis congenita (DC), the prototypical telomere disease, manifested with ectodermal dysplasia, cancer predisposition, and severe bone marrow failure, is caused by mutations in DKC1, encoding a protein responsible for telomerase holoenzyme complex stability. To investigate the effects of pathogenic DKC1 mutations on telomere repair and hematopoietic development, we derived induced pluripotent stem cells (iPSCs) from fibroblasts of a DC patient carrying the most frequent mutation: DKC1 p.A353V. Telomeres eroded immediately after reprogramming in DKC1-mutant iPSCs but stabilized in later passages. The telomerase activity of mutant iPSCs was comparable to that observed in human embryonic stem cells, and no evidence of alternative lengthening of telomere pathways was detected. Hematopoietic differentiation was carried out in DKC1-mutant iPSC clones that resulted in increased capacity to generate hematopoietic colony-forming units compared to controls. Our study indicates that telomerase-dependent telomere maintenance is defective in pluripotent stem cells harboring DKC1 mutation and unable to elongate telomeres, but sufficient to maintain cell proliferation and self-renewal, as well as to support the primitive hematopoiesis, the program that is recapitulated with our differentiation protocol.
Collapse
Affiliation(s)
- Flavia S Donaires
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel M Alves-Paiva
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda Gutierrez-Rodrigues
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda Borges da Silva
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Florencia Tellechea
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian Figueiredo Moreira
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Barbara A Santana
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiola Traina
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cynthia E Dunbar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Winkler
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Georgomanoli M, Papapetrou EP. Modeling blood diseases with human induced pluripotent stem cells. Dis Model Mech 2019; 12:12/6/dmm039321. [PMID: 31171568 PMCID: PMC6602313 DOI: 10.1242/dmm.039321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from somatic cells through a reprogramming process, which converts them to a pluripotent state, akin to that of embryonic stem cells. Over the past decade, iPSC models have found increasing applications in the study of human diseases, with blood disorders featuring prominently. Here, we discuss methodological aspects pertaining to iPSC generation, hematopoietic differentiation and gene editing, and provide an overview of uses of iPSCs in modeling the cell and gene therapy of inherited genetic blood disorders, as well as their more recent use as models of myeloid malignancies. We also discuss the strengths and limitations of iPSCs compared to model organisms and other cellular systems commonly used in hematology research.
Collapse
Affiliation(s)
- Maria Georgomanoli
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Posttranscriptional modulation of TERC by PAPD5 inhibition rescues hematopoietic development in dyskeratosis congenita. Blood 2019; 133:1308-1312. [PMID: 30728146 DOI: 10.1182/blood-2018-11-885368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Reduced levels of TERC, the telomerase RNA component, cause dyskeratosis congenita (DC) in patients harboring mutations in TERC, PARN, NOP10, NHP2, NAF1, or DKC1. Inhibition of the noncanonical poly(A) polymerase PAPD5, or the exosome RNA degradation complex, partially restores TERC levels in immortalized DKC1 mutant cells, but it remains unknown if modulation of posttranscriptional processing of TERC could improve hematopoietic output in DC. We used human embryonic stem cells (hESCs) with a common dyskerin mutation (DKC1_A353V), which have defective telomere maintenance and reduced definitive hematopoietic potential, to understand the effects of reducing EXOSC3 activity, or silencing PAPD5-mediated oligoadenylation, on hematopoietic progenitor specification and function in DC. Reduction of EXOSC3 or PAPD5 levels in DKC1 mutant hESCs led to functional improvements in TERC levels and telomerase activity, with concomitant telomere elongation and reduced levels of DNA damage signaling. Interestingly, the silencing of PAPD5, but not EXOSC3, significantly restored definitive hematopoietic potential in DKC1 mutant cells. Mechanistically, we show that PAPD5 inhibition is sustained in differentiated CD34+ cells, with a concomitant increase in mature, functional, forms of TERC, indicating that regulation of PAPD5 is a potential strategy to reverse hematologic dysfunction in DC patients.
Collapse
|
18
|
Elbadry MI, Espinoza JL, Nakao S. Disease modeling of bone marrow failure syndromes using iPSC-derived hematopoietic stem progenitor cells. Exp Hematol 2019; 71:32-42. [PMID: 30664904 DOI: 10.1016/j.exphem.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 01/19/2023]
Abstract
The plasticity of induced pluripotent stem cells (iPSCs) with the potential to differentiate into virtually any type of cells and the feasibility of generating hematopoietic stem progenitor cells (HSPCs) from patient-derived iPSCs (iPSC-HSPCs) has many potential applications in hematology. For example, iPSC-HSPCs are being used for leukemogenesis studies and their application in various cell replacement therapies is being evaluated. The use of iPSC-HSPCs can now provide an invaluable resource for the study of diseases associated with the destruction of HSPCs, such as bone marrow failure syndromes (BMFSs). Recent studies have shown that generating iPSC-HSPCs from patients with acquired aplastic anemia and other BMFSs is not only feasible, but is also a powerful tool for understanding the pathogenesis of these disorders. In this article, we highlight recent advances in the application of iPSCs for disease modeling of BMFSs and discuss the discoveries of these studies that provide new insights in the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Mahmoud I Elbadry
- Hematology/Respiratory Medicine, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Sohag University, Egypt
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Shinji Nakao
- Hematology/Respiratory Medicine, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
19
|
Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:71-94. [DOI: 10.1007/978-3-030-11096-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Jose SS, Tidu F, Burilova P, Kepak T, Bendickova K, Fric J. The Telomerase Complex Directly Controls Hematopoietic Stem Cell Differentiation and Senescence in an Induced Pluripotent Stem Cell Model of Telomeropathy. Front Genet 2018; 9:345. [PMID: 30210531 PMCID: PMC6123533 DOI: 10.3389/fgene.2018.00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Telomeropathies are rare disorders associated with impaired telomere length control mechanisms that frequently result from genetic mutations in the telomerase complex. Dyskeratosis congenita is a congenital progressive telomeropathy in which mutation in the telomerase RNA component (TERC) impairs telomere maintenance leading to accelerated cellular senescence and clinical outcomes resembling premature aging. The most severe clinical feature is perturbed hematopoiesis and bone-marrow failure, but the underlying mechanisms are not fully understood. Here, we developed a model of telomerase function imbalance using shRNA to knockdown TERC expression in human induced pluripotent stem cells (iPSCs). We then promoted in vitro hematopoiesis in these cells to analyze the effects of TERC impairment. Reduced TERC expression impaired hematopoietic stem-cell (HSC) differentiation and increased the expression of cellular senescence markers and production of reactive oxygen species. Interestingly, telomere length was unaffected in shTERC knockdown iPSCs, leading to conclusion that the phenotype is controlled by non-telomeric functions of telomerase. We then assessed the effects of TERC-depletion in THP-1 myeloid cells and again observed reduced hematopoietic and myelopoietic differentiative potential. However, these cells exhibited impaired telomerase activity as verified by accelerated telomere shortening. shTERC-depleted iPSC-derived and THP-1-derived myeloid precursors had lower phagocytic capacity and increased ROS production, indicative of senescence. These findings were confirmed using a BIBR1532 TERT inhibitor, suggesting that these phenotypes are dependent on telomerase function but not directly linked to telomere length. These data provide a better understanding of the molecular processes driving the clinical signs of telomeropathies and identify novel roles of the telomerase complex other than regulating telomere length.
Collapse
Affiliation(s)
- Shyam Sushama Jose
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Federico Tidu
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Burilova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kepak
- Pediatric Oncology Translational Research, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Pediatric Hematology and Oncology, The University Hospital Brno, Brno, Czechia
| | - Kamila Bendickova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Fric
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
21
|
Melguizo-Sanchis D, Xu Y, Taheem D, Yu M, Tilgner K, Barta T, Gassner K, Anyfantis G, Wan T, Elango R, Alharthi S, El-Harouni AA, Przyborski S, Adam S, Saretzki G, Samarasinghe S, Armstrong L, Lako M. iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell Death Dis 2018; 9:128. [PMID: 29374141 PMCID: PMC5833558 DOI: 10.1038/s41419-017-0141-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/22/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
Abstract
Aplastic Anemia (AA) is a bone marrow failure (BMF) disorder, resulting in bone marrow hypocellularity and peripheral pancytopenia. Severe aplastic anemia (SAA) is a subset of AA defined by a more severe phenotype. Although the immunological nature of SAA pathogenesis is widely accepted, there is an increasing recognition of the role of dysfunctional hematopoietic stem cells in the disease phenotype. While pediatric SAA can be attributable to genetic causes, evidence is evolving on previously unrecognized genetic etiologies in a proportion of adults with SAA. Thus, there is an urgent need to better understand the pathophysiology of SAA, which will help to inform the course of disease progression and treatment options. We have derived induced pluripotent stem cell (iPSC) from three unaffected controls and three SAA patients and have shown that this in vitro model mimics two key features of the disease: (1) the failure to maintain telomere length during the reprogramming process and hematopoietic differentiation resulting in SAA-iPSC and iPSC-derived-hematopoietic progenitors with shorter telomeres than controls; (2) the impaired ability of SAA-iPSC-derived hematopoietic progenitors to give rise to erythroid and myeloid cells. While apoptosis and DNA damage response to replicative stress is similar between the control and SAA-iPSC-derived-hematopoietic progenitors, the latter show impaired proliferation which was not restored by eltrombopag, a drug which has been shown to restore hematopoiesis in SAA patients. Together, our data highlight the utility of patient specific iPSC in providing a disease model for SAA and predicting patient responses to various treatment modalities.
Collapse
Affiliation(s)
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Dheraj Taheem
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | | | - Tomas Barta
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Katja Gassner
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - George Anyfantis
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Tengfei Wan
- The Ageing Biology Centre. Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Ramu Elango
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Alharthi
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf A El-Harouni
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Soheir Adam
- Hematology Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine, Duke University Medical Center, Durham, USA
| | - Gabriele Saretzki
- The Ageing Biology Centre. Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Sujith Samarasinghe
- Department of Hematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK.
| |
Collapse
|
22
|
Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms. Blood Adv 2018; 2:36-48. [PMID: 29344583 DOI: 10.1182/bloodadvances.2017008110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022] Open
Abstract
Biallelic germline mutations in RTEL1 (regulator of telomere elongation helicase 1) result in pathologic telomere erosion and cause dyskeratosis congenita. However, the role of RTEL1 mutations in other bone marrow failure (BMF) syndromes and myeloid neoplasms, and the contribution of monoallelic RTEL1 mutations to disease development are not well defined. We screened 516 patients for germline mutations in telomere-associated genes by next-generation sequencing in 2 independent cohorts; one constituting unselected patients with idiopathic BMF, unexplained cytopenia, or myeloid neoplasms (n = 457) and a second cohort comprising selected patients on the basis of the suspicion of constitutional/familial BMF (n = 59). Twenty-three RTEL1 variants were identified in 27 unrelated patients from both cohorts: 7 variants were likely pathogenic, 13 were of uncertain significance, and 3 were likely benign. Likely pathogenic RTEL1 variants were identified in 9 unrelated patients (7 heterozygous and 2 biallelic). Most patients were suspected to have constitutional BMF, which included aplastic anemia (AA), unexplained cytopenia, hypoplastic myelodysplastic syndrome, and macrocytosis with hypocellular bone marrow. In the other 18 patients, RTEL1 variants were likely benign or of uncertain significance. Telomeres were short in 21 patients (78%), and 3' telomeric overhangs were significantly eroded in 4. In summary, heterozygous RTEL1 variants were associated with marrow failure, and telomere length measurement alone may not identify patients with telomere dysfunction carrying RTEL1 variants. Pathogenicity assessment of heterozygous RTEL1 variants relied on a combination of clinical, computational, and functional data required to avoid misinterpretation of common variants.
Collapse
|
23
|
Alves-Paiva RM, Kajigaya S, Feng X, Chen J, Desierto M, Wong S, Townsley DM, Donaires FS, Bertola A, Gao B, Young NS, Calado RT. Telomerase enzyme deficiency promotes metabolic dysfunction in murine hepatocytes upon dietary stress. Liver Int 2018; 38:144-154. [PMID: 28741793 PMCID: PMC5741503 DOI: 10.1111/liv.13529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/15/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Short telomeres and genetic telomerase defects are risk factors for some human liver diseases, ranging from non-alcoholic fatty liver disease and non-alcoholic steatohepatitis to cirrhosis. In murine models, telomere dysfunction has been shown to metabolically compromise hematopoietic cells, liver and heart via the activation of the p53-PGC axis. METHODS Tert- and Terc-deficient mice were challenged with liquid high-fat diet. Liver metabolic contents were analysed by CE-TOFMS and liver fat content was confirmed by confocal and electronic microscopy. RESULTS Tert-deficient but not Terc-deficient mice develop hepatocyte injury and frank steatosis when challenged with liquid high-fat diet. Upon high-fat diet, Tert-/- hepatocytes fail to engage the citric acid cycle (TCA), with an imbalance of NADPH/NADP+ and NADH/NAD+ ratios and depletion of intermediates of TCA cycle, such as cis-aconitic acid. Telomerase deficiency caused an intrinsic metabolic defect unresponsive to environmental challenge. Chemical inhibition of telomerase by zidovudine recapitulated the abnormal Tert-/- metabolic phenotype in Terc-/- hepatocytes. CONCLUSIONS Our findings indicate that in telomeropathies short telomeres are not the only molecular trigger and telomerase enzyme deficiency provokes hepatocyte metabolic dysfunction, abrogates response to environmental challenge, and causes cellular injury and steatosis, providing a mechanism for liver damage in telomere diseases.
Collapse
Affiliation(s)
- Raquel M. Alves-Paiva
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil,Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil,Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Marie Desierto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M. Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Flávia S. Donaires
- Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil
| | - Adeline Bertola
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Rodrigo T. Calado
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil,Center for Cell-based Therapy, São Paulo Research Foundation (FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Calado RT, Clé DV. Treatment of inherited bone marrow failure syndromes beyond transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:96-101. [PMID: 29222242 PMCID: PMC6142589 DOI: 10.1182/asheducation-2017.1.96] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite significant progress in transplantation by the addition of alternative hematopoietic stem cell sources, many patients with inherited bone marrow failure syndromes are still not eligible for a transplant. In addition, the availability of sequencing panels has significantly improved diagnosis by identifying cryptic inherited cases. Androgens are the main nontransplant therapy for bone marrow failure in dyskeratosis congenita and Fanconi anemia, reaching responses in up to 80% of cases. Danazol and oxymetholone are more commonly used, but virilization and liver toxicity are major adverse events. Diamond-Blackfan anemia is commonly treated with corticosteroids, but most patients eventually become refractory to this treatment and toxicity is limiting. Growth factors still have a role in inherited cases, especially granulocyte colony-stimulating factor in congenital neutropenias. Novel therapies are warranted and thrombopoietin receptor agonists, leucine, quercetin, and novel gene therapy approaches may benefit inherited cases in the future.
Collapse
Affiliation(s)
- Rodrigo T Calado
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, SP, Brazil
| | - Diego V Clé
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, SP, Brazil
| |
Collapse
|
25
|
Donati B, Pietrelli A, Pingitore P, Dongiovanni P, Caddeo A, Walker L, Baselli G, Pelusi S, Rosso C, Vanni E, Daly A, Mancina RM, Grieco A, Miele L, Grimaudo S, Craxi A, Petta S, De Luca L, Maier S, Soardo G, Bugianesi E, Colli F, Romagnoli R, Anstee QM, Reeves HL, Fracanzani AL, Fargion S, Romeo S, Valenti L. Telomerase reverse transcriptase germline mutations and hepatocellular carcinoma in patients with nonalcoholic fatty liver disease. Cancer Med 2017; 6:1930-1940. [PMID: 28677271 PMCID: PMC5548883 DOI: 10.1002/cam4.1078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022] Open
Abstract
In an increasing proportion of cases, hepatocellular carcinoma (HCC) develops in patients with nonalcoholic fatty liver disease (NAFLD). Mutations in telomerase reverse transcriptase (hTERT) are associated with familial liver diseases. The aim of this study was to examine telomere length and germline hTERT mutations as associated with NAFLD-HCC. In 40 patients with NAFLD-HCC, 45 with NAFLD-cirrhosis and 64 healthy controls, peripheral blood telomere length was evaluated by qRT-PCR and hTERT coding regions and intron-exon boundaries sequenced. We further analyzed 78 patients affected by primary liver cancer (NAFLD-PLC, 76 with HCC). Enrichment of rare coding mutations (allelic frequency <0.001) was evaluated by Burden test. Functional consequences were estimated in silico and by over-expressing protein variants in HEK-293 cells. We found that telomere length was reduced in individuals with NAFLD-HCC versus those with cirrhosis (P = 0.048) and healthy controls (P = 0.0006), independently of age and sex. We detected an enrichment of hTERT mutations in NAFLD-HCC, that was confirmed when we further considered a larger cohort of NAFLD-PLC, and was more marked in female patients (P = 0.03). No mutations were found in cirrhosis and local controls, and only one in 503 healthy Europeans from the 1000 Genomes Project (allelic frequency = 0.025 vs. <0.001; P = 0.0005). Mutations with predicted functional impact, including the frameshift Glu113Argfs*79 and missense Glu668Asp, cosegregated with liver disease in two families. Three patients carried missense mutations (Ala67Val in homozygosity, Pro193Leu and His296Pro in heterozygosity) in the N-terminal template-binding domain (P = 0.037 for specific enrichment). Besides Glu668Asp, the Ala67Val variant resulted in reduced intracellular protein levels. In conclusion, we detected an association between shorter telomeres in peripheral blood and rare germline hTERT mutations and NAFLD-HCC.
Collapse
|
26
|
p53 Mediates Failure of Human Definitive Hematopoiesis in Dyskeratosis Congenita. Stem Cell Reports 2017; 9:409-418. [PMID: 28757166 PMCID: PMC5550027 DOI: 10.1016/j.stemcr.2017.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022] Open
Abstract
Dyskeratosis congenita (DC) is a bone marrow failure syndrome associated with telomere dysfunction. The progression and molecular determinants of hematopoietic failure in DC remain poorly understood. Here, we use the directed differentiation of human embryonic stem cells harboring clinically relevant mutations in telomerase to understand the consequences of DC-associated mutations on the primitive and definitive hematopoietic programs. Interestingly, telomere shortening does not broadly impair hematopoiesis, as primitive hematopoiesis is not impaired in DC cells. In contrast, while phenotypic definitive hemogenic endothelium is specified, the endothelial-to-hematopoietic transition is impaired in cells with shortened telomeres. This failure is caused by DNA damage accrual and is mediated by p53 stabilization. These observations indicate that detrimental effects of telomere shortening in the hematopoietic system are specific to the definitive hematopoietic lineages. This work illustrates how telomere dysfunction impairs hematopoietic development and creates a robust platform for therapeutic discovery for treatment of DC patients. CRISPR/Cas9 was used to generate different DC-associated mutations in hESCs Telomere shortening specifically impairs definitive hematopoietic specification Genetic instability and p53 activation regulate hematopoietic specification in DC In vitro hematopoietic failure resembles phenotypes of aplastic anemia in DC
Collapse
|
27
|
Elbadry MI, Espinoza JL, Nakao S. Induced pluripotent stem cell technology: A window for studying the pathogenesis of acquired aplastic anemia and possible applications. Exp Hematol 2017; 49:9-18. [DOI: 10.1016/j.exphem.2016.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/09/2016] [Accepted: 12/25/2016] [Indexed: 01/08/2023]
|
28
|
Allegra A, Innao V, Penna G, Gerace D, Allegra AG, Musolino C. Telomerase and telomere biology in hematological diseases: A new therapeutic target. Leuk Res 2017; 56:60-74. [PMID: 28196338 DOI: 10.1016/j.leukres.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.
Collapse
Affiliation(s)
- Alessandro Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vanessa Innao
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppa Penna
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Demetrio Gerace
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Andrea G Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Caterina Musolino
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
29
|
iPSCs and fibroblast subclones from the same fibroblast population contain comparable levels of sequence variations. Proc Natl Acad Sci U S A 2017; 114:1964-1969. [PMID: 28167771 DOI: 10.1073/pnas.1616035114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome integrity of induced pluripotent stem cells (iPSCs) has been extensively studied in recent years, but it is still unclear whether iPSCs contain more genomic variations than cultured somatic cells. One important question is the origin of genomic variations detected in iPSCs-whether iPSC reprogramming induces such variations. Here, we undertook a unique approach by deriving fibroblast subclones and clonal iPSC lines from the same fibroblast population and applied next-generation sequencing to compare genomic variations in these lines. Targeted deep sequencing of parental fibroblasts revealed that most variants detected in clonal iPSCs and fibroblast subclones were rare variants inherited from the parental fibroblasts. Only a small number of variants remained undetectable in the parental fibroblasts, which were thus likely to be de novo. Importantly, the clonal iPSCs and fibroblast subclones contained comparable numbers of de novo variants. Collectively, our data suggest that iPSC reprogramming is not mutagenic.
Collapse
|
30
|
Hong SG, Yada RC, Choi K, Carpentier A, Liang TJ, Merling RK, Sweeney CL, Malech HL, Jung M, Corat MAF, AlJanahi AA, Lin Y, Liu H, Tunc I, Wang X, Palisoc M, Pittaluga S, Boehm M, Winkler T, Zou J, Dunbar CE. Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers. Mol Ther 2017; 25:44-53. [PMID: 28129126 DOI: 10.1016/j.ymthe.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Nonhuman primate (NHP) induced pluripotent stem cells (iPSCs) offer the opportunity to investigate the safety, feasibility, and efficacy of proposed iPSC-derived cellular delivery in clinically relevant in vivo models. However, there is need for stable, robust, and safe labeling methods for NHP iPSCs and their differentiated lineages to study survival, proliferation, tissue integration, and biodistribution following transplantation. Here we investigate the utility of the adeno-associated virus integration site 1 (AAVS1) as a safe harbor for the addition of transgenes in our rhesus macaque iPSC (RhiPSC) model. A clinically relevant marker gene, human truncated CD19 (hΔCD19), or GFP was inserted into the AAVS1 site in RhiPSCs using the CRISPR/Cas9 system. Genetically modified RhiPSCs maintained normal karyotype and pluripotency, and these clones were able to further differentiate into all three germ layers in vitro and in vivo. In contrast to transgene delivery using randomly integrating viral vectors, AAVS1 targeting allowed stable transgene expression following differentiation. Off-target mutations were observed in some edited clones, highlighting the importance of careful characterization of these cells prior to downstream applications. Genetically marked RhiPSCs will be useful to further advance clinically relevant models for iPSC-based cell therapies.
Collapse
Affiliation(s)
- So Gun Hong
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA.
| | - Ravi Chandra Yada
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Kyujoo Choi
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Arnaud Carpentier
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Randall K Merling
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Colin L Sweeney
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Moonjung Jung
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Marcus A F Corat
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; Multidisciplinar Center for Biological Research, University of Campinas, Campinas, SP 13083-877, Brazil
| | - Aisha A AlJanahi
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; Department of Chemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C. 20057, USA
| | - Yongshun Lin
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Huimin Liu
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Systems Biology Core, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Xujing Wang
- Systems Biology Core, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Maryknoll Palisoc
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Hayashi Y. Human Mutations Affecting Reprogramming into Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.3934/celltissue.2017.1.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
A balance between elongation and trimming regulates telomere stability in stem cells. Nat Struct Mol Biol 2016; 24:30-39. [PMID: 27918544 PMCID: PMC5215970 DOI: 10.1038/nsmb.3335] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/06/2016] [Indexed: 02/07/2023]
Abstract
Telomere length maintenance ensures self-renewal of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), however the mechanisms governing telomere length homeostasis in these cell types are unclear. Here, we report that telomere length is determined by the balance between telomere elongation mediated by telomerase and telomere trimming, controlled by the homologous recombination proteins XRCC3 and Nbs1 that generate single-stranded C-rich telomeric DNA and double-stranded telomeric circular DNA (T-circles), respectively. We found that reprogramming of differentiated cells induces T-circle and single stranded C-rich telomeric DNA accumulation, indicating the activation of telomere trimming pathways that compensate telomerase dependent telomere elongation in hiPSCs. Excessive telomere elongation compromises telomere stability and promotes the formation of partially single-stranded telomeric DNA circles (C-circles) in hESCs, suggesting heightened sensitivity of stem cells to replication stress at overly long telomeres. Thus, tight control of telomere length homeostasis is essential to maintain telomere stability in hESCs.
Collapse
|
33
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
34
|
Uchida N, Haro-Mora JJ, Fujita A, Lee DY, Winkler T, Hsieh MM, Tisdale JF. Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease. Stem Cells 2016; 35:586-596. [PMID: 27739611 DOI: 10.1002/stem.2517] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022]
Abstract
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596.
Collapse
Affiliation(s)
- Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Juan J Haro-Mora
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Atsushi Fujita
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Duck-Yeon Lee
- Biochemistry Core, NHLBI, NIH, Bethesda, Maryland, USA
| | | | - Matthew M Hsieh
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
35
|
Baljevic M, Dumitriu B, Lee JW, Paietta EM, Wiernik PH, Racevskis J, Chen C, Stein EM, Gallagher RE, Rowe JM, Appelbaum FR, Powell BL, Larson RA, Coutré SE, Lancet J, Litzow MR, Luger SM, Young NS, Tallman MS. Telomere Length Recovery: A Strong Predictor of Overall Survival in Acute Promyelocytic Leukemia. Acta Haematol 2016; 136:210-218. [PMID: 27632567 DOI: 10.1159/000448160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022]
Abstract
Telomeres are the capping ends of chromosomes that protect the loss of genetic material and prevent chromosomal instability. In human tissue-specific stem/progenitor cells, telomere length (TL) is maintained by the telomerase complex, which consists of a reverse transcriptase catalytic subunit (TERT) and an RNA template (TERC). Very short telomeres and loss-of-function mutations in the TERT and TERC genes have been reported in acute myeloid leukemia, but the role of telomeres in acute promyelocytic leukemia (APL) has not been well established. We report the results for a large cohort of 187 PML/RARα-positive APL patients. No germline mutations in the TERT or TERC genes were identified. Codon 279 and 1062 TERT polymorphisms were present at a frequency similar to that in the general population. TL measured in blood or marrow mononuclear cells at diagnosis was significantly shorter in the APL patients than in healthy volunteers, and shorter telomeres at diagnosis were significantly associated with high-risk disease. For patients who achieved complete remission, the median increase in TL from diagnosis to remission (delta TL) was 2.0 kilobase (kb), and we found delta TL to be the most powerful predictor of overall survival when compared with well-established risk factors for poor outcomes in APL.
Collapse
Affiliation(s)
- Muhamed Baljevic
- Oncology/Hematology Division, The University of Nebraska Medical Center, Omaha, Nebr., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bai Y, Feng M, Liu S, Wei H, Li L, Zhang X, Shen C, Zhang S, Ma N. Differential gene expression in mouse spermatogonial stem cells and embryonic stem cells. Int J Mol Med 2016; 38:423-32. [PMID: 27353491 PMCID: PMC4934932 DOI: 10.3892/ijmm.2016.2658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/17/2016] [Indexed: 01/21/2023] Open
Abstract
Mouse spermatogonial stem cells (mSSCs) may be reprogrammed to become pluripotent stem cells under in vitro culture conditions, due to epigenetic modifications, which are closely associated with the expression of transcription factors and epigenetic factors. Thus, this study was conducted to compare the gene expression of transcription factors and epigenetic factors in mSSCs and mouse embryonic stem cells (mESCs). Firstly, the freshly isolated mSSCs [mSSCs (f)] were enriched by magnetic-activated cell sorting with Thy1.2 (CD90.2) microbeads, and the typical morphological characteristics were maintained under in vitro culture conditions for over 5 months to form long-term propagated mSSCs [mSSCs (l)]. These mSSCs (l) expressed pluripotency-associated genes and were induced to differentiate into sperm. Our findings indicated that the mSSCs (l) expressed high levels of the transcription factors, Lin28 and Prmt5, and the epigenetic factors, Tet3, Parp1, Max, Tert and Trf1, in comparison with the mESCs, with the levels of Prmt5, Tet3, Parp1 and Tert significantly higher than those in the mESCs. There was no significant difference in Kdm2b expression between mSSCs (l) and mESCs. Furthermore, the gene expression of N-Myc, Dppa2, Tbx3, Nr5a2, Prmt5, Tet3, Parp1, Max, Tert and Trf1 in the mSSCs (l) was markedly higher in comparison to that in the mSSCs (f). Collectively, our results suggest that the mSSCs and the mESCs displayed differential gene expression profiles, and the mSSCs possessed the potential to acquire pluripotency based on the high expression of transcription factors and epigenetic factors. These data may provide novel insights into the reprogramming mechanism of mSSCs.
Collapse
Affiliation(s)
- Yinshan Bai
- Department of Histology and Embryology, School of Basic Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Meiying Feng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Shanshan Liu
- Department of Histology and Embryology, School of Basic Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Li Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xianwei Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Chao Shen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Ningfang Ma
- Department of Histology and Embryology, School of Basic Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
37
|
Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, Hardy N, Mihalek AD, Lingala S, Kim YJ, Yao J, Jones E, Gochuico BR, Heller T, Wu CO, Calado RT, Scheinberg P, Young NS. Danazol Treatment for Telomere Diseases. N Engl J Med 2016; 374:1922-31. [PMID: 27192671 PMCID: PMC4968696 DOI: 10.1056/nejmoa1515319] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic defects in telomere maintenance and repair cause bone marrow failure, liver cirrhosis, and pulmonary fibrosis, and they increase susceptibility to cancer. Historically, androgens have been useful as treatment for marrow failure syndromes. In tissue culture and animal models, sex hormones regulate expression of the telomerase gene. METHODS In a phase 1-2 prospective study involving patients with telomere diseases, we administered the synthetic sex hormone danazol orally at a dose of 800 mg per day for a total of 24 months. The goal of treatment was the attenuation of accelerated telomere attrition, and the primary efficacy end point was a 20% reduction in the annual rate of telomere attrition measured at 24 months. The occurrence of toxic effects of treatment was the primary safety end point. Hematologic response to treatment at various time points was the secondary efficacy end point. RESULTS After 27 patients were enrolled, the study was halted early, because telomere attrition was reduced in all 12 patients who could be evaluated for the primary end point; in the intention-to-treat analysis, 12 of 27 patients (44%; 95% confidence interval [CI], 26 to 64) met the primary efficacy end point. Unexpectedly, almost all the patients (11 of 12, 92%) had a gain in telomere length at 24 months as compared with baseline (mean increase, 386 bp [95% CI, 178 to 593]); in exploratory analyses, similar increases were observed at 6 months (16 of 21 patients; mean increase, 175 bp [95% CI, 79 to 271]) and 12 months (16 of 18 patients; mean increase, 360 bp [95% CI, 209 to 512]). Hematologic responses occurred in 19 of 24 patients (79%) who could be evaluated at 3 months and in 10 of 12 patients (83%) who could be evaluated at 24 months. Known adverse effects of danazol--elevated liver-enzyme levels and muscle cramps--of grade 2 or less occurred in 41% and 33% of the patients, respectively. CONCLUSIONS In our study, treatment with danazol led to telomere elongation in patients with telomere diseases. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT01441037.).
Collapse
Affiliation(s)
- Danielle M Townsley
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Bogdan Dumitriu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Delong Liu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Angélique Biancotto
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Barbara Weinstein
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Christina Chen
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Nathan Hardy
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Andrew D Mihalek
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Shilpa Lingala
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Yun Ju Kim
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Jianhua Yao
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Elizabeth Jones
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Bernadette R Gochuico
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Theo Heller
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Colin O Wu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Rodrigo T Calado
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Phillip Scheinberg
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Neal S Young
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| |
Collapse
|
38
|
Takahashi N, Davy PMC, Gardner LH, Mathews J, Yamazaki Y, Allsopp RC. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle. PLoS One 2016; 11:e0154309. [PMID: 27148974 PMCID: PMC4858237 DOI: 10.1371/journal.pone.0154309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023] Open
Abstract
Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells.
Collapse
Affiliation(s)
- Natsumi Takahashi
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Philip M. C. Davy
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Lauren H. Gardner
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Juanita Mathews
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Yuki Yamazaki
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Richard C. Allsopp
- Institute for Biogenesis Research, John A Burns School of Medicine, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
39
|
Panero J, Alves-Paiva RM, Roisman A, Santana-Lemos BA, Falcão RP, Oliveira G, Martins D, Stanganelli C, Slavutsky I, Calado RT. Acquired TERT promoter mutations stimulate TERT transcription in mantle cell lymphoma. Am J Hematol 2016; 91:481-5. [PMID: 26852175 DOI: 10.1002/ajh.24324] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 01/07/2023]
Abstract
Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm with poor prognosis. Acquired telomerase reverse transcriptase gene promoter (TERTp) mutations are among the most frequent somatic non-coding mutations in cancers. In this study, the prevalence of TERTp mutations in 24 MCL and 21 other lymphoid neoplasias (oLN) was investigated. Eight MCL samples (33%) carried TERTp mutations, two homozygous and six heterozygous (seven C228T and one C250T), which directly correlated with higher TERT transcription, mitochondrial DNA copy number, and IGHV mutational status in MCL neoplastic cells. TERTp mutations were not found in oLN. TERTp mutations correlated with more lymphoma proliferation and tumor burden, as suggested by the higher number of lymphoma cells circulating in peripheral blood, and tended to associate with longer MCL telomeres, especially in homozygous mutants, although not statistically significant. Telomere-biology genes were overexpressed in MCL cells in comparison to healthy lymphocytes, but were not influenced by mutation status. The findings described for the first time that acquired TERTp mutations are common in MCL but not in other lymphoid neoplasms. It was also demonstrated that TERTp mutations are associated with higher TERT mRNA expression in MCL cells in vivo and higher tumor burden, suggesting these mutations as a driver event in MCL development and progression.
Collapse
Affiliation(s)
- Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental; CONICET-Academia Nacional de Medicina; Buenos Aires C1425AUM Argentina
| | - Raquel M. Alves-Paiva
- Divisão De Hematologia, Departamento de Clínica Médica; Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Ribeirão Preto SP 14048-900 Brazil
- Centro de Terapia Celular; Fundação de Amparo À Pesquisa do Estado de São Paulo (FAPESP); Ribeirão Preto SP 14048-900 Brazil
| | - Alejandro Roisman
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental; CONICET-Academia Nacional de Medicina; Buenos Aires C1425AUM Argentina
| | - Barbara A. Santana-Lemos
- Divisão De Hematologia, Departamento de Clínica Médica; Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Ribeirão Preto SP 14048-900 Brazil
- Centro de Terapia Celular; Fundação de Amparo À Pesquisa do Estado de São Paulo (FAPESP); Ribeirão Preto SP 14048-900 Brazil
| | - Roberto P. Falcão
- Divisão De Hematologia, Departamento de Clínica Médica; Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Ribeirão Preto SP 14048-900 Brazil
- Centro de Terapia Celular; Fundação de Amparo À Pesquisa do Estado de São Paulo (FAPESP); Ribeirão Preto SP 14048-900 Brazil
| | - Gustavo Oliveira
- Divisão De Hematologia, Departamento de Clínica Médica; Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Ribeirão Preto SP 14048-900 Brazil
| | - Diego Martins
- Divisão De Hematologia, Departamento de Clínica Médica; Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Ribeirão Preto SP 14048-900 Brazil
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas; Academia Nacional de Medicina; Buenos Aires C1425AUM Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental; CONICET-Academia Nacional de Medicina; Buenos Aires C1425AUM Argentina
| | - Rodrigo T. Calado
- Divisão De Hematologia, Departamento de Clínica Médica; Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Ribeirão Preto SP 14048-900 Brazil
- Centro de Terapia Celular; Fundação de Amparo À Pesquisa do Estado de São Paulo (FAPESP); Ribeirão Preto SP 14048-900 Brazil
| |
Collapse
|
40
|
Sabapathy V, Kumar S. hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine. J Cell Mol Med 2016; 20:1571-88. [PMID: 27097531 PMCID: PMC4956943 DOI: 10.1111/jcmm.12839] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/14/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft‐versus‐host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human‐induced pluripotent stem cells (hiPSCs) has been shown in recent pre‐clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue‐derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC‐derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human‐induced PSC‐derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint‐free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC‐derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render iMSC's effectiveness in translational medicine.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Stem Cell Research, A Unit of inStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sanjay Kumar
- Center for Stem Cell Research, A Unit of inStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
41
|
Fujita A, Uchida N, Haro-Mora JJ, Winkler T, Tisdale J. β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs. Stem Cells 2016; 34:1541-52. [PMID: 26866725 DOI: 10.1002/stem.2335] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/19/2016] [Indexed: 01/10/2023]
Abstract
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552.
Collapse
Affiliation(s)
- Atsushi Fujita
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Juan J Haro-Mora
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - John Tisdale
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
42
|
Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 2016; 13:707-19. [PMID: 26786236 DOI: 10.1080/15476286.2015.1134413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.
Collapse
Affiliation(s)
- Jonathan H Teichroeb
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Joohwan Kim
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Dean H Betts
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada.,b Children's Health Research Institute, Lawson Health Research Institute , London , Ontario , Canada
| |
Collapse
|
43
|
Modeling Human Bone Marrow Failure Syndromes Using Pluripotent Stem Cells and Genome Engineering. Mol Ther 2015; 23:1832-42. [PMID: 26435409 DOI: 10.1038/mt.2015.180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
The combination of epigenetic reprogramming with advanced genome editing technologies opened a new avenue to study disease mechanisms, particularly of disorders with depleted target tissue. Bone marrow failure syndromes (BMFS) typically present with a marked reduction of peripheral blood cells due to a destroyed or dysfunctional bone marrow compartment. Somatic and germline mutations have been etiologically linked to many cases of BMFS. However, without the ability to study primary patient material, the exact pathogenesis for many entities remained fragmentary. Capturing the pathological genotype in induced pluripotent stem cells (iPSCs) allows studying potential developmental defects leading to a particular phenotype. The lack of hematopoietic stem and progenitor cells in these patients can also be overcome by differentiating patient-derived iPSCs into hematopoietic lineages. With fast growing genome editing techniques, such as CRISPR/Cas9, correction of disease-causing mutations in iPSCs or introduction of mutations in cells from healthy individuals enable comparative studies that may identify other genetic or epigenetic events contributing to a specific disease phenotype. In this review, we present recent progresses in disease modeling of inherited and acquired BMFS using reprogramming and genome editing techniques. We also discuss the challenges and potential shortcomings of iPSC-based models for hematological diseases.
Collapse
|
44
|
Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients. PLoS One 2015; 10:e0127414. [PMID: 25992652 PMCID: PMC4436374 DOI: 10.1371/journal.pone.0127414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed “corrected” lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human patients have so far not shown defects in pseudouridylation or ribosomal RNA processing. None of the mutant iPS cells presented here show decreased pseudouridine levels in rRNA or defective rRNA processing suggesting telomere maintenance defects account for most of the phenotype of X-linked DC. Finally gene expression analysis of the iPS cells shows that WNT signaling is significantly decreased in all mutant cells, raising the possibility that defective WNT signaling may contribute to disease pathogenesis.
Collapse
|
45
|
Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood 2014; 125:793-802. [PMID: 25499762 DOI: 10.1182/blood-2014-06-566810] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited multisystem disorder, characterized by oral leukoplakia, nail dystrophy, and abnormal skin pigmentation, as well as high rates of bone marrow (BM) failure, solid tumors, and other medical problems such as osteopenia. DC and telomere biology disorders (collectively referred to as TBD here) are caused by germline mutations in telomere biology genes leading to very short telomeres and limited proliferative potential of hematopoietic stem cells. We found that skeletal stem cells (SSCs) within the BM stromal cell population (BMSCs, also known as BM-derived mesenchymal stem cells), may contribute to the hematologic phenotype. TBD-BMSCs exhibited reduced clonogenicity, spontaneous differentiation into adipocytes and fibrotic cells, and increased senescence in vitro. Upon in vivo transplantation into mice, TBD-BMSCs failed to form bone or support hematopoiesis, unlike normal BMSCs. TERC reduction (a TBD-associated gene) in normal BMSCs by small interfering TERC-RNA (siTERC-RNA) recapitulated the TBD-BMSC phenotype by reducing proliferation and secondary colony-forming efficiency, and by accelerating senescence in vitro. Microarray profiles of control and siTERC-BMSCs showed decreased hematopoietic factors at the messenger RNA level and decreased secretion of factors at the protein level. These findings are consistent with defects in SSCs/BMSCs contributing to BM failure in TBD.
Collapse
|
46
|
Sung LY, Chang WF, Zhang Q, Liu CC, Liou JY, Chang CC, Ou-Yang H, Guo R, Fu H, Cheng WTK, Ding ST, Chen CM, Okuka M, Keefe DL, Chen YE, Liu L, Xu J. Telomere elongation and naive pluripotent stem cells achieved from telomerase haplo-insufficient cells by somatic cell nuclear transfer. Cell Rep 2014; 9:1603-1609. [PMID: 25464850 DOI: 10.1016/j.celrep.2014.10.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/25/2014] [Accepted: 10/18/2014] [Indexed: 01/13/2023] Open
Abstract
Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs) have been efficiently achieved by somatic cell nuclear transfer (SCNT). We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc(+/-)) mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc(+/-) cells exhibit naive pluripotency as evidenced by generation of Terc(+/-) ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells.
Collapse
Affiliation(s)
- Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan, ROC; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100 Taiwan, ROC
| | - Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology and Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chia-Chia Liu
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350 Taiwan, ROC
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350 Taiwan, ROC
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Huan Ou-Yang
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology and Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology and Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Winston T K Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC; Department of Animal Science and Biotechnology, Tunghai University, Taichung, 407 Taiwan, ROC
| | - Shih-Torng Ding
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Chuan-Mu Chen
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan, ROC; Rong-Hsing Translational Medicine Center and iEGG Center, National Chung Hsing University, Taichung, 402 Taiwan, ROC
| | - Maja Okuka
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology and Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Ueda Y, Calado RT, Norberg A, Kajigaya S, Roos G, Hellstrom-Lindberg E, Young NS. A mutation in the H/ACA box of telomerase RNA component gene (TERC) in a young patient with myelodysplastic syndrome. BMC MEDICAL GENETICS 2014; 15:68. [PMID: 24948335 PMCID: PMC4073180 DOI: 10.1186/1471-2350-15-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
Abstract
Background Telomeres are repeated sequences (the hexanucleotide TTAGGG in vertebrates) located at chromosome ends of eukaryotes, protecting DNA from end joining or degradation. Telomeres become shorter with each cell cycle, but telomerase, a ribonucleoprotein complex, alleviates this attrition. The telomerase RNA component (TERC) is an essential element of telomerase, serving as a template for telomere elongation. The H/ACA domain of TERC is indispensable for telomere biogenesis. Mutations in the telomerase components allow accelerated telomere loss, resulting in various disease manifestations, including bone marrow failure. To date, this is the first detailed report of an H-box mutation in TERC that is related to human disease. Case presentation A 26-year-old man with myelodysplastic syndrome (MDS) had very short telomeres. Sequencing identified a single heterozygous mutation in the H box of the patient’s TERC gene. The same mutation was also present in his father and his son, demonstrating that it was germline in origin. The telomere length in the father’s blood was shorter compared to age-matched healthy controls, while it was normal in the son and also in the sperm cells of the patient. In vitro experiments suggested that the mutation was responsible for the telomere shortening in the patient’s leukocytes and contributed to the pathogenesis of bone marrow failure in our patient. Conclusion We analyzed a mutation (A377G) in the H box of TERC in a young MDS patient who had significantly short-for-age telomeres. As telomeres protect chromosomes from instability, it is highly plausible that this genetic lesion was responsible for the patient’s hematological manifestations, including marrow failure and aneuploidy in the hematopoietic stem cell compartment.
Collapse
Affiliation(s)
- Yasutaka Ueda
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10-CRC, Rm 3E-5216, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Telomerase as a "stemness" enzyme. SCIENCE CHINA-LIFE SCIENCES 2014; 57:564-70. [PMID: 24829107 DOI: 10.1007/s11427-014-4666-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/06/2014] [Indexed: 12/20/2022]
Abstract
Pluripotent or multipotent stem cells are involved in development and tissue homeostasis; they have the ability to self-renew and differentiate into various types of functional cells. To maintain these properties, stem cells must undergo sustained or unlimited proliferation that requires the stabilization of telomeres, which are essential for chromosome end protection. Telomerase, an RNA-dependent DNA polymerase, synthesizes telomeric DNA. Through the lengthening of telomeres the lifespans of cells are extended, or indefinite proliferation is conferred; this is intimately associated with stem cell phenotype. This review highlights our current understanding of telomerase as a "stemness" enzyme and discusses the underlying implications.
Collapse
|
49
|
Bueno C, Roldan M, Anguita E, Romero-Moya D, Martín-Antonio B, Rosu-Myles M, del Cañizo C, Campos F, García R, Gómez-Casares M, Fuster JL, Jurado M, Delgado M, Menendez P. Bone marrow mesenchymal stem cells from patients with aplastic anemia maintain functional and immune properties and do not contribute to the pathogenesis of the disease. Haematologica 2014; 99:1168-75. [PMID: 24727813 DOI: 10.3324/haematol.2014.103580] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition. Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvironment because of their immunomodulatory properties and their ability to support hematopoiesis, and they have been involved in the pathogenesis of several hematologic malignancies. We investigated whether bone marrow mesenchymal stem cells contribute, directly or indirectly, to the pathogenesis of aplastic anemia. We found that mesenchymal stem cell cultures can be established from the bone marrow of aplastic anemia patients and display the same phenotype and differentiation potential as their counterparts from normal bone marrow. Mesenchymal stem cells from aplastic anemia patients support the in vitro homeostasis and the in vivo repopulating function of CD34(+) cells, and maintain their immunosuppressive and anti-inflammatory properties. These data demonstrate that bone marrow mesenchymal stem cells from patients with aplastic anemia do not have impaired functional and immunological properties, suggesting that they do not contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Clara Bueno
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Mar Roldan
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Eduardo Anguita
- Servicio de Hematología, Hospital Clínico San Carlos, Madrid, Spain
| | - Damia Romero-Moya
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Beatriz Martín-Antonio
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Michael Rosu-Myles
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Consuelo del Cañizo
- Department of Hematology, University Hospital of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Francisco Campos
- Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico-Health Research Institute of Santiago de Compostela, Spain
| | - Regina García
- Servicio de Hematología, Hospital Clínico de Málaga, Málaga, Spain
| | - Maite Gómez-Casares
- Servicio de Hematología, Hospital Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Jose Luis Fuster
- Sección de Oncohematología Pediátrica, Hospital Virgen de Arrixaca, Murcia, Spain
| | - Manuel Jurado
- Servicio de Hematología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain Instituciò Catalana de Reserca i Estudis Avançats (ICREA), Barcellona, Spain
| |
Collapse
|
50
|
Rio P, Baños R, Lombardo A, Quintana-Bustamante O, Alvarez L, Garate Z, Genovese P, Almarza E, Valeri A, Díez B, Navarro S, Torres Y, Trujillo JP, Murillas R, Segovia JC, Samper E, Surralles J, Gregory PD, Holmes MC, Naldini L, Bueren JA. Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol Med 2014; 6:835-48. [PMID: 24859981 PMCID: PMC4203359 DOI: 10.15252/emmm.201303374] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies.
Collapse
Affiliation(s)
- Paula Rio
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Rocio Baños
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Lara Alvarez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Zita Garate
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Antonio Valeri
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Begoña Díez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | | | - Juan P Trujillo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain Universidad Autónoma Barcelona/CIBERER, Barcelona, Spain
| | - Rodolfo Murillas
- Division of Epithelial Biomedicine, CIEMAT/CIBERER, Madrid, Spain
| | - Jose C Segovia
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | | | | | | | | | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy Vita Salute San Raffaele University, Milan, Italy
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|