1
|
Lin Y, Yang Q, Zeng R. Crosstalk between macrophages and adjacent cells in AKI to CKD transition. Ren Fail 2025; 47:2478482. [PMID: 40110623 PMCID: PMC11926904 DOI: 10.1080/0886022x.2025.2478482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Acute kidney injury (AKI), triggered by ischemia, sepsis, toxicity, or obstruction, is marked by a rapid impairment of renal function and could lead to the initiation and advancement of chronic kidney disease (CKD). The concept of AKI to CKD transition has gained much interest. Despite a series of studies highlighting the diverse roles of renal macrophages in the immune response following AKI, the intricate mechanisms of macrophage-driven cell-cell communication in AKI to CKD transition remains incompletely understood. In this review, we introduce the dynamic phenotype change of macrophages under the different stages of kidney injury. Importantly, we present novel perspectives on the extensive interaction of renal macrophages with adjacent cells, including tubular epithelial cells, vascular endothelial cells, fibroblasts, and other immune cells via soluble factors, extracellular vesicles, and direct contact, to facilitate the transition from AKI to CKD. Additionally, we summarize the potential therapeutic strategies based on the adverse macrophage-neighboring cell crosstalk.
Collapse
Affiliation(s)
- Yanping Lin
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wang Y, Li Q. Integrated multiomics analysis identifies potential biomarkers and therapeutic targets for autophagy associated AKI to CKD transition. Sci Rep 2025; 15:13687. [PMID: 40258914 PMCID: PMC12012120 DOI: 10.1038/s41598-025-97269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/03/2025] [Indexed: 04/23/2025] Open
Abstract
This study explored the relationship between acute kidney injury (AKI) and chronic kidney disease (CKD), focusing on autophagy-related genes and their immune infiltration during the transition from AKI to CKD. We performed weighted correlation network analysis (WGCNA) using two microarray datasets (GSE139061 and GSE66494) in the GEO database and identified autophagy signatures by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA enrichment analysis. Machine learning algorithms such as LASSO, random forest, and XGBoost were used to construct the diagnostic model, and the diagnostic performance of GSE30718 (AKI) and GSE37171 (CKD) was used as validation cohorts to evaluate its diagnostic performance. The study identified 14 autophagy candidate genes, among which ATP6V1C1 and COPA were identified as key biomarkers that were able to effectively distinguish between AKI and CKD. Immune cell infiltration and GSEA analysis revealed immune dysregulation in AKI, and these genes were associated with inflammation and immune pathways. Single-cell analysis showed that ATP6V1C1 and COPA were specifically expressed in AKI and CKD, which may be related to renal fibrosis. In addition, drug prediction and molecular docking analysis proposed SZ(+)-(S)-202-791 and PDE4 inhibitor 16 as potential therapeutic agents. In summary, this study provides new insights into the relationship between AKI and CKD and lays a foundation for the development of new treatment strategies.
Collapse
Affiliation(s)
- Yaojun Wang
- Clinical Medical College, Affiliated Hospital, Hebei University, Baoding, 071000, Hebei, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China.
| |
Collapse
|
3
|
Liu X, Pang S, Jiang Y, Wang L, Liu Y. The Role of Macrophages in Atherosclerosis: Participants and Therapists. Cardiovasc Drugs Ther 2025; 39:459-472. [PMID: 37864633 DOI: 10.1007/s10557-023-07513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Currently, atherosclerosis, characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel, is considered to be a metabolic disease. As the most abundant innate immune cells in the body, macrophages play a key role in the onset, progression, or regression of atherosclerosis. For example, macrophages exhibit several polarization states in response to microenvironmental stimuli; an increasing proportion of macrophages, polarized toward M2, can suppress inflammation, scavenge cell debris and apoptotic cells, and contribute to tissue repair and fibrosis. Additionally, specific exosomes, generated by macrophages containing certain miRNAs and effective efferocytosis of macrophages, are crucial for atherosclerosis. Therefore, macrophages have emerged as a novel potential target for anti-atherosclerosis therapy. This article reviews the role of macrophages in atherosclerosis from different aspects: origin, phenotype, exosomes, and efferocytosis, and discusses new approaches for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
4
|
Ayaz D, Diniz G, Pulular AG, Solakoğlu Kahraman D, Varol U, Özkavruk Eliyatkın N, Sayhan S, Kayapınar AK. The Prognostic Role of Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 Expressions in Gastric Carcinomas. Curr Oncol 2025; 32:190. [PMID: 40277747 PMCID: PMC12026346 DOI: 10.3390/curroncol32040190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The survival rate among stomach adenocarcinoma patients is exceedingly low. NGAL (neutrophil gelatinase-associated lipocalin) has pivotal roles in cell proliferation, immunity, and tumorigenesis. KIM-1 (Kidney Injury Molecule-1), also referred to as TIM-1 and HAVcr-1, is a transmembrane glycoprotein located in healthy immune cells and epithelial cells, and its upregulated form is generally found in several human cancers. Aim: The aim of this study was to investigate the prognostic significance of the expression of KIM-1 and NGAL in stomach cancers and identify NGAL-positive inflammatory cells in the tumor microenvironment. Materials and Methods: We immunohistochemically evaluated the expression of NGAL and KIM1 in 172 cases of stomach adenocarcinomas. Result: The mean age of the patients was 64.07 ± 12.35 years, and the mean and median follow-up period were 25.5 and 20.3 months, respectively. The expression rates of KIM-1 and NGAL in tumor cells were identical at 31.4% (n = 54). In 27 of these cases, both proteins were present. Among the deceased patients, the rate of simultaneous KIM-1 and NGAL positivity was relatively higher (p = 0.041). NGAL-positive inflammatory cells were observed in 13.4% of cases, with no significant correlation between these cells and survival times (p = 0.497). However, there was a negative correlation between survival times and KIM-1 (p = 0.037) and NGAL (p = 0.016) expressions in tumor cells. Conclusions: The present study has shown that KIM-1- and NGAL-positive tumor cells are influential in gastric tumorigenesis. Given the progress in anti-KIM-1 therapy, the presence of KIM-1 expression could contribute to the development of new treatment options for aggressive gastric cancer. However, these discoveries need to be validated in larger-scale studies.
Collapse
Affiliation(s)
- Duygu Ayaz
- Department of Pathology, İzmir Faculty of Medicine, University of Health Sciences Turkey, İzmir Tepecik Education and Research Hospital, İzmir 35020, Turkey; (D.S.K.); (S.S.)
| | - Gülden Diniz
- Department of Pathology, İzmir Democracy University, Buca Seyfi Demirsoy Hospital, İzmir 35390, Turkey; (G.D.); (A.G.P.)
| | - Ayşe Gül Pulular
- Department of Pathology, İzmir Democracy University, Buca Seyfi Demirsoy Hospital, İzmir 35390, Turkey; (G.D.); (A.G.P.)
| | - Dudu Solakoğlu Kahraman
- Department of Pathology, İzmir Faculty of Medicine, University of Health Sciences Turkey, İzmir Tepecik Education and Research Hospital, İzmir 35020, Turkey; (D.S.K.); (S.S.)
| | - Umut Varol
- Department of Medical Oncology, İzmir Democracy University, Buca Seyfi Demirsoy Hospital, İzmir 35390, Turkey;
| | - Nuket Özkavruk Eliyatkın
- Department of Pathology, Izmir Katip Çelebi University, Atatürk Education and Research Hospital, İzmir 35360, Turkey;
| | - Sevil Sayhan
- Department of Pathology, İzmir Faculty of Medicine, University of Health Sciences Turkey, İzmir Tepecik Education and Research Hospital, İzmir 35020, Turkey; (D.S.K.); (S.S.)
| | - Ali Kemal Kayapınar
- Department of General Surgery, University of Health Sciences Turkey, Izmir City Hospital, İzmir 35540, Turkey;
| |
Collapse
|
5
|
Zhang J, Xie X, Li Y, Wang H, Zhang L, Shi P, Wei J, Zhang L, Lu Y, Cui L, Liu X, Liang X. Emo@KP MBs Modulates the TGF-β1/Smad Signaling Pathway by in situ Micro-Nano Conversion to Reduce Renal Inflammation and Fibrosis Caused by Unilateral Ureteral Obstruction. Int J Nanomedicine 2025; 20:3731-3747. [PMID: 40162332 PMCID: PMC11951927 DOI: 10.2147/ijn.s499550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Emodin alleviates renal interstitial fibrosis (RIF) and reduces inflammation by inhibiting the TGF-β1/Smad pathway, thus improving CKD outcomes. However, its clinical use is limited due to poor solubility and side effects. This study developed a targeted drug delivery system using αKIM-1 modified microbubbles carrying Emodin to enhance accumulation in renal tissues with high KIM-1 expression. Methods Emo@KP MBs were characterized by TEM and DLS, and their drug loading and encapsulation rates were measured by UV-VIS-NIR spectroscopy. Biocompatibility was assessed in vitro with HK-2 cells and in vivo via hematological and pathological markers. Contrast-enhanced ultrasound (CEUS) and fluorescence imaging were used for real-time visualization of treatment. Therapeutic experiments were performed on a unilateral ureteral obstruction (UUO) mouse model treated with Emo@KP MBs + US on days 1 and 3 post-surgery. Renal function, cytokine levels, and histological analysis were detected to evaluate therapeutic effects. Results Emo@KP MBs exhibited spherical structures (2 ~ 4 μm) with good stability. Ultrasound targeted microbubble destruction (UTMD) enabled controlled release of Emodin. CEUS and fluorescence imaging showed enhanced drug accumulation in diseased kidneys. In the UUO + Emo@KP MBs/US group, renal function was improved, inflammatory cytokines (IL-1β, TNF-α) were decreased, and renal lesions and collagen deposition were reduced. Immunohistochemistry revealed the downregulation of TGF-β, Smad2/3, and α-SMA, and upregulation of E-cadherin. Conclusion Emo@KP MBs enhanced drug delivery efficiency and therapeutic efficacy through αKIM-1 targeting and UTMD, while providing real-time imaging capabilities, suggesting good potential as a therapeutic approach to reduce renal inflammation and fibrosis in UUO.
Collapse
Affiliation(s)
- Jinxia Zhang
- Department of Ultrasound, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Xinxin Xie
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yuanjing Li
- Department of Ultrasound, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Haonan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Lijuan Zhang
- Department of Ultrasound, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Peiqi Shi
- Department of Ultrasound, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Jing Wei
- Department of Ultrasound, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Ling Zhang
- Department of Ultrasound, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Yingdong Lu
- Department of Ultrasound, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Xiaoning Liu
- Department of Ultrasound, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| |
Collapse
|
6
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
7
|
Cavagna I, Fiuzat M, Lala A, Januzzi J, Abraham W, Dimond M, Konstam M, O'Connor C, Costanzo MR. Inertia Is Not an Option: Laying the Foundation for a Consensus on the Assessment of Kidney Function in Acute Decompensated Heart Failure. J Card Fail 2025:S1071-9164(25)00093-4. [PMID: 40015595 DOI: 10.1016/j.cardfail.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Affiliation(s)
| | | | - Anuradha Lala
- Mount Sinai Fuster Heart Hospital, New York, New York
| | - James Januzzi
- Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | - Christopher O'Connor
- Inova Schar Heart and Vascular, Falls Church, Virginia; Duke University, Durham, North Carolina
| | | |
Collapse
|
8
|
Tao H, Ma R, Cui J, Yang Z, He W, Li Y, Zhao Y. Immunomodulatory effect of efferocytosis at the maternal-fetal interface. Cell Commun Signal 2025; 23:49. [PMID: 39865240 PMCID: PMC11770964 DOI: 10.1186/s12964-025-02055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Efferocytosis is a mechanism by which phagocytes efficiently clear apoptotic cells, averting their secondary necrosis and the subsequent release of potentially immunogenic or cytotoxic substances that can trigger strong immune and inflammatory responses. During efferocytosis, the metabolic pathways of phagocytes are transformed, which, along with the catabolism of apoptotic cargo, can affect their function and inflammatory state. Extensive apoptosis occurs during placental development, and some studies reported the immunomodulatory effects of efferocytosis at the maternal-fetal interface. The dysregulation of efferocytosis is strongly linked to pregnancy complications such as preeclampsia and recurrent spontaneous abortion. In this review, we discuss the mechanisms of efferocytosis and its relationships with metabolism and inflammation. We also highlight the roles of professional and non-professional phagocytes in efferocytosis at the maternal-fetal interface and their impact on pregnancy outcomes and explore relevant regulatory factors. These insights are expected to guide future basic research and clinical strategies for identifying efferocytosis-related molecules as potential predictors or therapeutic targets in obstetric diseases.
Collapse
Affiliation(s)
- Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wencong He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yanan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
- Department of Prenatal Diagnosis Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
9
|
Cai J, Kang F, Han M, Huang X, Yan W, Wan F, Li J. Comparison of Effect Sevoflurane-Based Anesthesia and Propofol-Based Anesthesia on the Early Postoperative Renal Function of Living Kidney Transplant Donors: A Randomized Controlled Trial. Drug Des Devel Ther 2025; 19:491-503. [PMID: 39872635 PMCID: PMC11771174 DOI: 10.2147/dddt.s486393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Purpose Living kidney transplantation is a common treatment for end-stage renal disease. The impact of anaesthetics on postoperative biomarkers of renal injury in living kidney transplant donors is not well understood. Patients and Methods 70 transplant donors who underwent kidney extraction were randomly assigned to following two groups: sevoflurane (S group) and propofol (P group). Urine and blood were collected before induction and 1, 2, 6 days after operation. Kidney injury marker-1 (KIM-1), interleukin-18 (IL-18) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were measured by enzyme-linked immunosorbent assay. Record the cystatin C, glomerular filtration rate, urine output during perioperative period. Results There were both increases in biomarkers of kidney injury before and 1, 2 and 6 days after the anaesthetic surgery in donors, However, no statistical differences in KIM-1 (P (0.42 pg/mL (95% CI 0.21 to 0.63 pg/mL)) vs S (0.26 pg/mL (95% CI 0.02 to 0.49 pg/mL)), -0.16 pg/mL (95% CI -0.48 to 0.16 pg/mL)), IL-18 (P (178.54 pg/mL (95% CI 110.15 to 24693 pg/mL)) vs S (175.86 pg/mL (95% CI 100.35 to 251.38 pg/mL)), -2.68 pg/mL (95% CI -105.61 to 100.25 pg/mL)), and TIMP-2 (P (12.88 ng/mL (95% CI 8.69 to 17.07 ng/mL)) vs S (14.85 ng/mL (95% CI 10.23 to 19.46 ng/mL)), 1.97 ng/mL (95% CI -4.30 to 8.23 ng/mL)) concentration changes between the two types of anaesthesia. Conclusion There was no difference between sevoflurane and propofol anaesthesia on postoperative changes in biomarkers of renal injury in living kidney transplant donors.
Collapse
Affiliation(s)
- Jianyue Cai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Xiang Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wenlong Yan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Fuzhen Wan
- Department of Gastrointestinal Surgery, The second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Juan Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
10
|
Bizhani S, Afshari A, Yaghobi R. BK Polyomavirus and acute kidney injury in transplant recipients: signaling pathways and molecular mechanisms. Virol J 2025; 22:2. [PMID: 39755619 PMCID: PMC11700467 DOI: 10.1186/s12985-024-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Acute kidney injury (AKI) is a condition that can result in changes in both urine production and creatinine levels in the bloodstream, complicating the treatment process and worsening outcomes for many hospitalized patients. BK polyomavirus (BKPyV), a member of the Polyomaviridae family, is prevalent in the population and remains latent in the body. It can reactivate in individuals with a compromised immune system, particularly post-kidney transplant, and can activate various transcription factors and immune mediators. Although reactivation is often asymptomatic, it can present as AKI, which is a risk factor for early loss of the transplanted organ. The immune response to BKPyV is crucial in controlling the virus and safeguarding organs from damage during infection. Understanding BKPyV pathways may offer novel opportunities for effectively treating BKPyV-associated complications. This review seeks to elucidate the potential mechanisms by which BKPyV reactivation can lead to AKI by analyzing various signaling pathways, as well as the identification of molecular mechanisms that BKPyV may utilize to induce AKI.
Collapse
Affiliation(s)
- Samar Bizhani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Jiang YY, Jiang XL, Yu HN. Dysregulation of lipid metabolism in chronic kidney disease and the role of natural products. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:261-278. [PMID: 39162795 DOI: 10.1007/s00210-024-03373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Dysregulation of lipid metabolism plays a key role in the onset and progression of CKD, and a thorough understanding of its regulatory mechanisms is essential for the development of effective treatments. In recent years, an increasing number of studies have focused on the pharmacological activities of natural products and their application in the treatment of chronic diseases. Natural products, including plant extracts and bioactive compounds, have been shown to exert anti-inflammatory, antioxidant, antifibrosis, and anti-apoptotic effects through various signaling pathways in the treatment of CKD. Many natural products have been shown to target dysregulated lipid metabolism through various signaling pathways. This review summarizes the key regulatory factors and signaling pathways involved in the dysregulation of lipid metabolism in chronic kidney disease (CKD), highlighting their importance as potential therapeutic targets. Recently published research on the potential therapeutic benefits of natural products for the treatment of CKD was described. These studies have revealed the multi-target role of natural products in the regulation of lipid metabolism. Natural products show great potential in targeting lipid metabolism-related pathways, offering a novel research direction for the treatment of CKD while providing a scientific basis and experimental support for the development of new treatment strategies.
Collapse
Affiliation(s)
- Yang-Yi Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Li Jiang
- Nephrology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Hai-Ning Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
12
|
Ibrahim H, Sharawy MH, Hamed MF, Abu-Elsaad N. Peficitinib halts acute kidney injury via JAK/STAT3 and growth factors immunomodulation. Eur J Pharmacol 2024; 984:177020. [PMID: 39349115 DOI: 10.1016/j.ejphar.2024.177020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Acute Kidney Injury (AKI) is characterized by a sudden loss of kidney function and its management continues to be a challenge. In this study the effect of peficitinib, a Janus kinase inhibitor (JAKi), was studied in an aim to stop the progression of AKI at an early point of injury. Adult male mice were injected with aristolochic acid (AA) a single dose (10 mg/kg, i.p) to induce AKI. Peficitinib was injected in one of the two tested doses (5 or 10 mg/kg, i.p) 1 h after AA injection and was continued daily for seven days. Histopathological evaluation showed that peficitinib alleviated necrosis and hyaline cast formation induced by aristolochic acid. It decreased serum creatinine and the kidney injury molecule-1 (KIM-1) elevated by AA. Peficitinib also mitigated AA induced oxidative stress through regulating total antioxidant capacity (TAC) and reduced glutathione (GSH) level in renal tissue. Additionally, renal sections isolated from groups that received peficitinib revealed a decrease in vascular endothelial growth factor receptor 1 interstitial expression and transforming growth factor-beta 1 (TGF-β1) renal level. Peficitinib received groups showed a decrease in the active phosphorylated form of signal transducers and activators of transcription (STAT3). Moreover, peficitinib decreased renal protein levels and gene expression of the pro-inflammatory cytokines; interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ). These findings suggest that peficitinib is helpful in halting AKI progression into chronic kidney disease through modulating JAK/STAT3 dependent inflammatory pathways and growth factors involved in normal glomerular function.
Collapse
Affiliation(s)
- Hassnaa Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt; Pharmacist at Urology and Nephrology Center, Mansoura University, Mansoura, 33516, Egypt
| | - Maha H Sharawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt.
| | - Mohamed F Hamed
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 33516, Egypt
| | - Nashwa Abu-Elsaad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 33516, Egypt
| |
Collapse
|
13
|
Chen TK, Estrella MM, Katz R, Sarnak MJ, Grams ME, Cushman M, Levitan EB, Parikh CR, Kimmel PL, Bonventre JV, Coca SG, Gutiérrez OM, Ix JH, Shlipak MG. Plasma Biomarkers of Kidney Health and Mortality in Diabetes and Chronic Kidney Disease in the REGARDS Study. Clin J Am Soc Nephrol 2024; 19:1585-1593. [PMID: 39652331 PMCID: PMC11637710 DOI: 10.2215/cjn.0000000000000544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/17/2024] [Indexed: 12/14/2024]
Abstract
Key Points In diabetes and CKD, creatinine- and cystatin C–based eGFR has a strong inverse correlation with plasma TNF receptor 1, TNF receptor 2, and soluble urokinase-type plasminogen activator receptor. Higher plasma soluble TNF receptors 1 and 2 and soluble urokinase-type plasminogen activator receptor were each individually associated with mortality, independent of baseline kidney measures. Background Several plasma biomarkers of kidney health have been associated with CKD progression in persons with diabetes, but their associations with mortality risk have been largely unexplored. Methods In a random sample of 594 participants with diabetes and creatinine-based eGFR <60 ml/min per 1.73 m2 from the REGARDS cohort study, Cox proportional hazards regression was used to determine hazard ratios of mortality by plasma concentrations of soluble TNF receptors 1 and 2 (TNFR1 and TNFR2), soluble urokinase-type plasminogen activator receptor (suPAR), kidney injury molecule 1 (KIM-1), chitinase 3–like 1 (YKL-40), and monocyte chemotactic protein 1 (MCP-1). Covariates included sociodemographic and clinical factors, urine albumin-to-creatinine ratio (UACR), and creatinine- and cystatin C–based eGFR (eGFRcr-cys). Results At baseline, the mean age was 70 years, 47% were male, 53% self-identified as Black, mean±SD eGFRcr-cys was 41±13 ml/min per 1.73 m2, and median (interquartile range) UACR was 32 (9–224) mg/g. Correlations with eGFRcr-cys were stronger for TNFR1, TNFR2, and suPAR (r =−0.72 to −0.76) than for KIM-1, YKL-40, and MCP-1 (r =−0.10 to −0.40). With a median follow-up of 7 years, 332 participants died. In models adjusted for sociodemographic and clinical factors, each SD higher baseline concentration of plasma TNFR1 (hazard ratio [HR], 1.28; 95% confidence interval [CI], 1.20 to 1.38), TNFR2 (HR, 1.61; 95% CI, 1.42 to 1.82), suPAR (HR, 1.33; 95% CI, 1.22 to 1.44), KIM-1 (HR, 1.20; 95% CI, 1.08 to 1.33), and YKL-40 (HR, 1.23; 95% CI, 1.11 to 1.38) was associated with higher risk of all-cause mortality, whereas MCP-1 was not. Upon further adjustment for baseline eGFRcr-cys and UACR, only the associations for TNFR1 (HR, 1.16; 95% CI, 1.04 to 1.29), TNFR2 (HR, 1.34; 95% CI, 1.12 to 1.60), and suPAR (HR, 1.23; 95% CI, 1.11 to 1.36) persisted. Conclusions Among adults with diabetes and CKD, higher plasma TNFR1, TNFR2, and suPAR were associated with all-cause mortality, independent of baseline kidney function.
Collapse
Affiliation(s)
- Teresa K. Chen
- Kidney Health Research Collaborative and Department of Medicine, University of California, San Francisco and San Francisco VA Health Care System, San Francisco, California
| | - Michelle M. Estrella
- Kidney Health Research Collaborative and Department of Medicine, University of California, San Francisco and San Francisco VA Health Care System, San Francisco, California
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Mark J. Sarnak
- Division of Nephrology, Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| | - Morgan E. Grams
- Department of Medicine, New York University Langone School of Medicine, New York, New York
| | - Mary Cushman
- Departments of Medicine and Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Emily B. Levitan
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, Alabama
| | - Chirag R. Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joseph V. Bonventre
- Division of Renal Medicine and Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven G. Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Orlando M. Gutiérrez
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joachim H. Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Michael G. Shlipak
- Kidney Health Research Collaborative and Department of Medicine, University of California, San Francisco and San Francisco VA Health Care System, San Francisco, California
| |
Collapse
|
14
|
Zhu LR, Cui W, Liu HP. Research progress and advances in endoplasmic reticulum stress regulation of acute kidney injury. Ren Fail 2024; 46:2433160. [PMID: 39586579 PMCID: PMC11590187 DOI: 10.1080/0886022x.2024.2433160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Acute kidney injury (AKI) is a common and severe clinical disorder in which endoplasmic reticulum (ER) stress plays an important regulatory role. In this review, we summarize the research progress on the relationship between ER stress and AKI. It emphasizes the importance of maintaining a balance between promoting and protecting ER stress during AKI and highlights the potential of ER stress-targeted drugs as a new therapeutic approach for AKI. The article also discusses the need for developing drugs that target ER stress effectively while avoiding adverse effects on normal cells and tissues. The review concludes that with a more comprehensive understanding of ER stress mechanisms and advancements in research techniques, more effective treatment options for AKI can be developed in the future.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| |
Collapse
|
15
|
Tao J, Shen X, Qian H, Ding Q, Wang L. TIM proteins and microRNAs: distinct impact and promising interactions on transplantation immunity. Front Immunol 2024; 15:1500228. [PMID: 39650660 PMCID: PMC11621082 DOI: 10.3389/fimmu.2024.1500228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Achieving sustained activity and tolerance in of allogeneic grafts after post-transplantation remains a substantial challenge. The response of the immune system to "non-self" MHC-antigenic peptides initiates a crucial phase, wherein blocking positive co-stimulatory signals becomes imperative to ensure graft survival and tolerance. MicroRNAs (miRNAs) inhibit mRNA translation or promote mRNA degradation by complementary binding of mRNA seed sequences, which ultimately affects protein synthesis. These miRNAs exhibit substantial promise as diagnostic, prognostic, and therapeutic candidates for within the realm of solid organ transplantations. Current research has highlighted three members of the T cell immunoglobulin and mucin domain (TIM) family as a novel therapeutic avenue in transplantation medicine and alloimmunization. The interplay between miRNAs and TIM proteins has been extensively explored in viral infections, inflammatory responses, and post-transplantation ischemia-reperfusion injuries. This review aims to elucidate the distinct roles of miRNAs and TIM in transplantation immunity and delineate their interdependent relationships in terms of targeted regulation. Specifically, this investigation sought seeks to uncover the potential of miRNA interaction with TIM, aiming to induce immune tolerance and bolster allograft survival after transplantation. This innovative strategy holds substantial promise in for the future of transplantation science and practice.
Collapse
Affiliation(s)
- Jialing Tao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiaoxuan Shen
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| | - Qing Ding
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lihong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| |
Collapse
|
16
|
Zhang L, Kitzmiller CE, Richard AS, Popli S, Choe H. The ability of human TIM1 to bind phosphatidylethanolamine enhances viral uptake and efferocytosis compared to rhesus and mouse orthologs. J Virol 2024; 98:e0164924. [PMID: 39475278 PMCID: PMC11575270 DOI: 10.1128/jvi.01649-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024] Open
Abstract
T-cell immunoglobulin and mucin (TIM) family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals, such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and viral infection. Here, we show that rhesus macaque TIM1 (rhTIM1) and mouse TIM1 (mTIM1) bind PS but not PE, and that their inability to bind PE makes them less efficient than hTIM1. We also show that alteration of only two residues of mTIM1 or rhTIM1 enables them to bind both PE and PS, and that these PE-binding variants are more efficient at phagocytosis and mediating viral entry. Further, we demonstrate that the mucin domain also contributes to the binding of the virions and apoptotic cells, although it does not directly bind phospholipid. Interestingly, contribution of the hTIM1 mucin domain is more pronounced in the presence of a PE-binding head domain. These results demonstrate that rhTIM1 and mTIM1 are inherently less functional than hTIM1, owing to their inability to bind PE and their less functional mucin domains. They also imply that mouse and macaque models underestimate the activity of hTIM1.IMPORTANCEWe previously reported that human T-cell immunoglobulin and mucin protein 1 (TIM1) binds phosphatidylethanolamine (PE) as well as phosphatidylserine (PS), and that PE is exposed on the apoptotic cells and viral envelopes. Moreover, TIM1 recognition of PE contributes to phagocytic clearance of apoptotic cells and virus uptake. Here, we report that unlike human TIM1, murine and rhesus TIM1 orthologs bind only PS, and as a result, their ability to clear apoptotic cells or promote virus infection is less efficient. These findings are significant because they imply that the activity of TIM1 in humans is greater than what the studies conducted in common animal models would indicate.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, Florida, USA
| | - Claire E Kitzmiller
- Division of Infectious Disease, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Audrey S Richard
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, Florida, USA
| | - Sonam Popli
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, Florida, USA
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, Florida, USA
| |
Collapse
|
17
|
Zhang T, Widdop RE, Ricardo SD. Transition from acute kidney injury to chronic kidney disease: mechanisms, models, and biomarkers. Am J Physiol Renal Physiol 2024; 327:F788-F805. [PMID: 39298548 DOI: 10.1152/ajprenal.00184.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly recognized as interconnected conditions with overlapping pathophysiological mechanisms. This review examines the transition from AKI to CKD, focusing on the molecular mechanisms, animal models, and biomarkers essential for understanding and managing this progression. AKI often progresses to CKD due to maladaptive repair processes, persistent inflammation, and fibrosis, with both conditions sharing common pathways involving cell death, inflammation, and extracellular matrix (ECM) deposition. Current animal models, including ischemia-reperfusion injury (IRI) and nephrotoxic damage, help elucidate these mechanisms but have limitations in replicating the complexity of human disease. Emerging biomarkers such as kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and soluble tumor necrosis factor receptors (TNFRs) show promise in early detection and monitoring of disease progression. This review highlights the need for improved animal models and biomarker validation to better mimic human disease and enhance clinical translation. Advancing our understanding of the AKI-to-CKD transition through targeted therapies and refined research approaches holds the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Chen H, Song J, Zeng L, Zha J, Zhu J, Chen A, Liu Y, Dong Z, Chen G. Dietary sodium modulates mTORC1-dependent trained immunity in macrophages to accelerate CKD development. Biochem Pharmacol 2024; 229:116505. [PMID: 39181336 DOI: 10.1016/j.bcp.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Chronic Kidney Disease (CKD) is a significant global health issue linked to dietary habits, especially high salt intake. However, the precise mechanisms driving this progression remain incompletely understood. This study reveals that a high-salt diet intensifies macrophage trained immunity, leading to a marked pro-inflammatory response upon repeated pathogenic exposures, as evidenced by increased renal damage and fibrosis. Under high-salt conditions, there was an induction of CD45+F4/80+ macrophage infiltration into the renal tissue, accompanied by heightened production of inflammatory cytokines. Distinct responses were observed between circulating and resident renal macrophages to a high-salt diet, with a notable upsurge in the migration of pro-inflammatory macrophages, driven by CCL2-CCR2 signaling and aberrant mTORC1 pathway activation. Treatment with rapamycin-liposome effectively reduced this inflammatory cascade by mitigating mTORC1 signaling. Transplantation of monocytes from CKD mice with a high-salt diet significantly exacerbates renal inflammatory damage in the host mice, showing increased migratory tendency and inflammatory activity. The cell co-culture experiment further confirmed that macrophages derived from CKD mice, particularly those under conditions of high salt exposure, significantly induced apoptosis and inflammatory responses in renal tubular cells. Taken together, recurrent exposure to LPS elicits the activation of trained immunity, consequently augmenting inflammatory response of monocytes/macrophages in the involved kidneys. The high-salt diet exacerbates this phenomenon, attributable at least in part to the overactivation of the mTORC1 pathway. This research emphasizes the importance of dietary modulation and targeted immunological interventions in slowing CKD progression, providing new insights into mTORC1-mediated pathophysiological mechanisms and potential management strategies for CKD.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Song
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zeng
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anqun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
19
|
Hu JQ, Zheng DC, Huang L, Yang X, Ning CQ, Zhou J, Yu LL, Zhou H, Xie Y. Suppression of ZEB1 by Ethyl caffeate attenuates renal fibrosis via switching glycolytic reprogramming. Pharmacol Res 2024; 209:107407. [PMID: 39270946 DOI: 10.1016/j.phrs.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Renal fibrosis (RF) is a common endpoint of various chronic kidney diseases, leading to functional impairment and ultimately progressing to end-stage renal failure. Glycolytic reprogramming plays a critical role in the pathogenesis of fibrosis, which maybe a potential therapeutic target for treating renal fibrosis. Here, we revealed the novel role of ZEB1 in renal fibrosis, and whether targeting ZEB1 is the underlying mechanism for the anti-fibrotic effects of ethyl caffeate (EC) to regulate the glycolytic process. Treatment of EC attenuated the renal fibrosis and inhibited ZEB1 expression in vivo and in vitro, reducing the upregulated expression of glycolytic enzymes (HK2, PKM2, PFKP) and key metabolites (lactic acid, pyruvate). ZEB1 overexpression promoted the renal fibrosis and glycolysis, whereas knockout of ZEB1 apparently attenuated renal fibrosis in vivo and in vitro. EC interacted with ZEB1 to modulate the glycolytic enzymes for suppressing the elevated glycolytic reprogramming during renal fibrosis. In summary, our study reveals that ZEB1 plays an important role in regulating glycolytic reprogramming during the renal tubular epithelial cell fibrosis, suggesting inhibition of ZEB1 may be a potential strategy for treating renal fibrosis. Additionally, EC is a potential new drug candidate for the treatment of renal fibrosis and CKD.
Collapse
Affiliation(s)
- Jia-Qin Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China
| | - Li Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China
| | - Xi Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China
| | - Cang-Qiong Ning
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, China.
| |
Collapse
|
20
|
Hua R, Yu P, Zheng W, Wu N, Yu W, Kong Q, He J, Qin L. Tim-1-mediated extracellular matrix promotes the development of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1761-1773. [PMID: 39444345 PMCID: PMC11693869 DOI: 10.3724/abbs.2024191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Tim-1 (T-cell immunoglobulin and mucin domain 1), also known as Kim-1 (kidney injury molecule 1) or hepatitis A virus cellular receptor 1 (HAVCR1), is a transmembrane protein expressed on various immune and epithelial cells. It plays a role in modulating inflammatory and immune responses. In this study, we find that Tim-1 is overexpressed in hepatocellular carcinoma (HCC) samples and that its expression is significantly correlated with postoperative survival. Bulk RNA sequencing reveals a general upregulation of extracellular matrix-related genes in HCC tissues with Tim-1 overexpression. The results of the cell and in vivo experiments reveal that Tim-1 in HCC not only affects biological processes such as the proliferation, migration, and invasion of HCC cells but also broadly promotes extracellular matrix processes by influencing cytokine secretion. Further studies demonstrate that Tim-1 mediates the activation of hepatic stellate cells and upregulates Th1 and Th2 cytokines, thereby promoting HCC progression. Thus, Tim-1 may represent a novel target for future interventions in HCC and liver fibrosis.
Collapse
Affiliation(s)
- Ruheng Hua
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Department of Gastrointestinal SurgeryAffiliated Hospital of Nantong UniversityNantong226001China
| | - Pengfei Yu
- Affiliated Huishan Hospital of Xinglin CollegeNantong UniversityWuxi Huishan District People’s HospitalWuxi214100China
| | - Wanting Zheng
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Research Institute of General SurgeryJinling HospitalNanjing University School of MedicineNanjing210095China
| | - Nuwa Wu
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wangjianfei Yu
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Qingyu Kong
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Jun He
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Lei Qin
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
21
|
Melchinger I, Guo K, Li X, Guo J, Cantley LG, Xu L. VCAM-1 mediates proximal tubule-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition. Am J Physiol Renal Physiol 2024; 327:F610-F622. [PMID: 39116349 PMCID: PMC11483080 DOI: 10.1152/ajprenal.00076.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Studies in animal models have suggested a linkage between the inflammatory response to injury and subsequent nephron loss during the acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Failure of normal repair during the CKD transition correlates with de novo expression of vascular cell adhesion protein-1 (VCAM-1) by a subset of injured proximal tubule cells. This study identified the role of VCAM-1 expression in promoting the failed repair state. Single-cell transcriptome analysis of patients with AKI and CKD and whole kidney RNA and protein analyses of mouse models of CKD confirmed a marked increase of VCAM-1 expression in the proximal tubules of injured kidneys. In immortalized mouse proximal tubular cells and primary cultured renal cells (PCRCs), VCAM-1 expression was induced by proinflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Analyses of bulk RNA sequencing of TNF-α-treated primary cultured renal cells or pseudo-bulk RNA sequencing of biopsies from Kidney Precision Medicine Project datasets indicated activation of NF-κB and an enrichment of inflammatory response and cell adhesion pathways in VCAM-1-positive cells. Pharmacological inhibition of NF-κB signaling or genetic deletion of myeloid differentiation factor 88 and TIR domain-containing adapter-inducing interferon-β suppressed TNF-α- and IL-1β-induced VCAM-1 expression in vitro. TNF-α stimulation or overexpression of VCAM-1 significantly increased splenocyte adhesion to the mouse proximal tubular monolayer in culture. These results demonstrate that persistence of proinflammatory cytokines after AKI can induce NF-κB-dependent VCAM-1 expression by proximal tubule cells, mediating increased immune cell adhesion to the tubule and thus promoting further tubule injury and greater risk of progression from AKI to CKD.NEW & NOTEWORTHY We demonstrated the induction of VCAM-1 and its biological function in proximal tubules. We found that proinflammatory cytokines (TNF-α and IL-1β) significantly induced VCAM-1 expression via NF-κB signaling pathway. TNF-α treatment or overexpression of VCAM-1 in immortalized MPT cells increased CD45+ splenocyte adhesion. Pharmacological inhibition of NF-κB or genetic deletion of Vcam1 suppressed TNF-α-induced splenocyte adhesion in vitro, suggesting that VCAM-1 mediates proximal tubular-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition.
Collapse
Affiliation(s)
- Isabel Melchinger
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Kailin Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Xiaoxu Li
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jiankan Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Lloyd G Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
22
|
Steinhauser C, Yakac A, Markgraf W, Kromnik S, Döcke A, Talhofer P, Thiele C, Malberg H, Sommer U, Baretton GB, Füssel S, Thomas C, Putz J. Assessing Biomarkers of Porcine Kidneys under Normothermic Machine Perfusion-Can We Gain Insight into a Marginal Organ? Int J Mol Sci 2024; 25:10280. [PMID: 39408610 PMCID: PMC11476884 DOI: 10.3390/ijms251910280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
To identify potentially transplantable organs in a pool of marginal kidneys, 33 porcine slaughterhouse kidneys were perfused for 4 h with whole blood. During the normothermic perfusion, plasma, urine, and tissue samples were taken. Several biomarkers for tubule injury, endothelial activation, and inflammatory response were evaluated for a potential correlation with macroscopic appearance, histology, and filtration activity. Generally, biomarker levels increased during perfusion. TLR-4, EDN-1, and NGAL were not associated with any classification. In contrast, a steeper increase in NAG and IL-6 in plasma correlated with a poor macroscopic appearance at 4 h, indicating a higher inflammatory response in the kidneys with worse macroscopy early on, potentially due to more damage at the tubules. Although long-term effects on the graft could not be assessed in this setting, early observation under machine perfusion with whole blood was feasible. It allowed the assessment of kidneys under conditions comparable to reperfusion. This setting could give surgeons further insight into the quality of marginal kidneys and an opportunity to pre-treat them.
Collapse
Affiliation(s)
- Carla Steinhauser
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Abdulbaki Yakac
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Wenke Markgraf
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Susanne Kromnik
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Andreas Döcke
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Philipp Talhofer
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Christine Thiele
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Hagen Malberg
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Susanne Füssel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Juliane Putz
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| |
Collapse
|
23
|
de Ponte MC, Cardoso VG, Costa-Pessoa JMD, Lopes-Gonçalves G, Pereira BMV, Thieme K, Oliveira-Souza M. Renal ischemia/reperfusion induces prominent progressive kidney disease in diabetic mice. Am J Physiol Endocrinol Metab 2024; 327:E302-E312. [PMID: 39018175 DOI: 10.1152/ajpendo.00237.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Acute kidney injury (AKI) is a public health concern associated with high rates of mortality, even in milder cases. One of the reasons for the difficulty in managing AKI in patients is due to its association with pre-existing comorbidities, such as diabetes. In fact, diabetes increases the susceptibility to develop more severe AKI after renal ischemia. However, the long-term effects of this association are not known. Thus, an experimental model was designed to evaluate the chronic effects of renal ischemia/reperfusion (IR) in streptozotocin (STZ)-treated mice. We focused on the glomerular and tubulointerstitial damage, as well as kidney function and metabolic profile. It was found that pre-existing diabetes may potentiate progressive kidney disease after AKI, mainly by exacerbating proinflammatory and sustaining fibrotic responses and altering renal glucose metabolism. To our knowledge, this is the first report that highlights the long-term effects of renal IR on diabetes. The findings of this study can support the management of AKI in clinical practice.NEW & NOTEWORTHY This study demonstrated that early diabetes potentiates progressive kidney disease after ischemia/reperfusion (IR)-induced acute kidney injury, mainly by exacerbating pro-inflammatory and sustaining fibrotic responses and altering renal glucose metabolism. Thus, these findings will contribute to the therapeutic support of patients with type 1 diabetes with eventual renal IR intervention in clinical practice.
Collapse
Affiliation(s)
- Mariana Charleaux de Ponte
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa Gerolde Cardoso
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Martins da Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Guilherme Lopes-Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Maria Veloso Pereira
- Laboratory of Cellular and Molecular Bases of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karina Thieme
- Laboratory of Cellular and Molecular Bases of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
25
|
Muto Y, Dixon EE, Yoshimura Y, Ledru N, Kirita Y, Wu H, Humphreys BD. Epigenetic reprogramming driving successful and failed repair in acute kidney injury. SCIENCE ADVANCES 2024; 10:eado2849. [PMID: 39110788 PMCID: PMC11305376 DOI: 10.1126/sciadv.ado2849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E. Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
26
|
Jiang M, Wang X, Chen Z, Wang X, An Y, Ding L, Xu M, Fan B, Jiao P, Wang C, Wang M, Sun H, Zhao S, Gong Y. Lipolysis-Stimulated Lipoprotein Receptor in Proximal Tubule, BMP-SMAD Signaling, and Kidney Disease. J Am Soc Nephrol 2024; 35:1016-1033. [PMID: 38809616 PMCID: PMC11377808 DOI: 10.1681/asn.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Key Points
We identify that lipolysis-stimulated lipoprotein receptor is highly enriched in the nucleus of mouse and human kidney.This study provides new insights into the role of lipolysis-stimulated lipoprotein receptor in kidney disease.
Background
Lipolysis-stimulated lipoprotein receptor (LSR) is a single-pass membrane protein that plays essential roles in tricellular tight junction organization in the epithelium and endothelium, but its function in kidney physiology and disease development remains unknown.
Methods
Conditional Lsr deletion mice were generated and analyzed to investigate the function of LSR in proximal tubule. Unilateral ischemia-reperfusion was used as an injury model to investigate the role of LSR in AKI and the progression to CKD. Detailed mechanistic analyses were conducted using whole-transcriptome RNA sequencing, immunofluorescence, dual-luciferase reporter gene assay, coimmunoprecipitation, RNA immunoprecipitation, and adeno-associated virus-mediated gene overexpression and knockdown.
Results
The nuclear localization of LSR was found in the kidney. Proximal tubule–specific Lsr knockout mice exhibited alleviated kidney damage and fibrosis compared with those in wild-type mice in response unilateral ischemia-reperfusion injury. Loss of LSR resulted in downregulation of Chrdl1 and activation of bone morphogenetic protein (BMP)-mothers against decapentaplegic homolog (SMAD) signaling in proximal tubules. Treatment with CHRDL1 counteracted the protective effect of LSR deletion in the unilaterally ischemic injured kidney. In addition, the systemic delivery of Chrdl1 short hairpin RNA attenuated injury-induced kidney fibrosis. LSR formed a complex with 14-3-3θ in the nucleus of proximal tubular cells, thereby reducing the interaction between human antigen R and 14-3-3θ, consequently leading to the translocation of unbound human antigen R to the cytoplasm. The absence of LSR promoted the association of 14-3-3θ with human antigen R, potentially resulting in decreased human antigen R levels in the cytoplasm. Reduced human antigen R levels impaired Chrdl1 mRNA stability, subsequently leading to the activation of BMP-SMAD signaling.
Conclusions
Deletion of LSR in proximal tubule deregulated Chrdl1 to activate BMP-SMAD signaling and ameliorated kidney disease.
Collapse
Affiliation(s)
- Min Jiang
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Xiangdong Wang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Zhenni Chen
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Xin Wang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Yanan An
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Lixia Ding
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Mengyuan Xu
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Baozhen Fan
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Peng Jiao
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Chao Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingxia Wang
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Hui Sun
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Shengtian Zhao
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yongfeng Gong
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| |
Collapse
|
27
|
Zhang L, Kitzmiller CE, Richard AS, Popli S, Choe H. The ability of human TIM1 to bind phosphatidylethanolamine enhances viral uptake and efferocytosis compared to rhesus and mouse orthologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605603. [PMID: 39131348 PMCID: PMC11312472 DOI: 10.1101/2024.07.29.605603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
T-cell Immunoglobulin and Mucin (TIM)-family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and virus infection. Here we show that rhesus macaque TIM1 (rhTIM1) and mouse TIM1 (mTIM1) bind PS but not PE and that their inability to bind PE makes them less efficient than hTIM1. We also show that alteration of only two residues of mTIM1 or rhTIM1 enables them to bind both PE and PS, and that these PE-binding variants are more efficient at phagocytosis and mediating viral entry. Further, we demonstrate that the mucin domain also contributes to the binding of the virions and apoptotic cells, although it does not directly bind phospholipid. Interestingly, contribution of the hTIM1 mucin domain is more pronounced in the presence of a PE-binding head domain. These results demonstrate that rhTIM1 and mTIM1 are inherently less functional than hTIM1, owing to their inability to bind PE and their less functional mucin domains. They also imply that mouse and macaque models underestimate the activity of hTIM1.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Claire E. Kitzmiller
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Audrey S. Richard
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Sonam Popli
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| |
Collapse
|
28
|
Berezin AE, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AA. An overview of circulating and urinary biomarkers capable of predicting the transition of acute kidney injury to chronic kidney disease. Expert Rev Mol Diagn 2024; 24:627-647. [PMID: 39007888 DOI: 10.1080/14737159.2024.2379355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Acute kidney injury (AKI) defined by a substantial decrease in kidney function within hours to days and is often irreversible with higher risk to chronic kidney disease (CKD) transition. AREAS COVERED The authors discuss the diagnostic and predictive utilities of serum and urinary biomarkers on AKI and on the risk of AKI-to-CKD progression. The authors focus on the relevant literature covering evidence of circulating and urinary biomarkers' capability to predict the transition of AKI to CKD. EXPERT OPINION Based on the different modalities of serum and urinary biomarkers, multiple biomarker panel seems to be potentially useful to distinguish between various types of AKI, to detect the severity and the risk of AKI progression, to predict the clinical outcome and evaluate response to the therapy. Serum/urinary neutrophil gelatinase-associated lipocalin (NGAL), serum/urinary uromodulin, serum extracellular high mobility group box-1 (HMGB-1), serum cystatin C and urinary liver-type fatty acid-binding protein (L-FABP) were the most effective in the prediction of AKI-to-CKD transition regardless of etiology and the presence of critical state in patients. The current clinical evidence on the risk assessments of AKI progression is mainly based on the utility of combination of functional, injury and stress biomarkers, mainly NGAL, L-FABP, HMGB-1 and cystatin C.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tetiana A Berezina
- Department of Internal Medicine & Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | | |
Collapse
|
29
|
Iba T, Helms J, Maier CL, Levi M, Scarlatescu E, Levy JH. The role of thromboinflammation in acute kidney injury among patients with septic coagulopathy. J Thromb Haemost 2024; 22:1530-1540. [PMID: 38382739 DOI: 10.1016/j.jtha.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Inflammation and coagulation are critical self-defense mechanisms for mitigating infection that can nonetheless induce tissue injury and organ dysfunction. In severe cases, like sepsis, a dysregulated thromboinflammatory response may result in multiorgan dysfunction. Sepsis-associated acute kidney injury (AKI) is a significant contributor to patient morbidity and mortality. The connection between AKI and thromboinflammation is largely due to unique aspects of the renal vasculature. Specifically, the interaction between blood cells with the endothelial, glomerular, and peritubular capillary systems during thromboinflammation reduces oxygen supply to tubular epithelial cells. Previous studies have focused on tubular epithelial cell damage due to hypoxia, oxidative stress, and nephrotoxins. Although these factors are pivotal in acute tubular injury or necrosis, recent studies have demonstrated that AKI in sepsis encompasses a mixture of tubular and glomerular damage subtypes. In cases of sepsis-induced coagulopathy, thromboinflammation within the glomerulus and peritubular capillaries is an important pathogenic mechanism for AKI. Unfortunately, and despite the use of renal replacement therapy, the development of AKI in sepsis continues to be associated with high morbidity, mortality, and clinical challenges requiring alternative approaches. This review introduces the important role of thromboinflammation in AKI pathogenesis and details innovative vascular-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- French National Institute of Health and Medical Research, United Medical Resources 1260, Regenerative Nanomedicine, Federation de Medicine Translationnelle de Strasbourg, Strasbourg University Hospital, Medical Intensive Care Unit - NHC, Strasbourg University, Strasbourg, France
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Medicine, University College London Hospitals National Health Service Foundation Trust, Cardio-metabolic Programme-National Institute for Health and Care Research University College London Hospitals/University College London Biomedical Research Centre, London, United Kingdom
| | - Ecaterina Scarlatescu
- University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania; Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
30
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
31
|
Brozat JF, Harbalioğlu N, Hohlstein P, Abu Jhaisha S, Pollmanns MR, Adams JK, Wirtz TH, Hamesch K, Yagmur E, Weiskirchen R, Tacke F, Trautwein C, Koch A. Elevated Serum KIM-1 in Sepsis Correlates with Kidney Dysfunction and the Severity of Multi-Organ Critical Illness. Int J Mol Sci 2024; 25:5819. [PMID: 38892009 PMCID: PMC11172102 DOI: 10.3390/ijms25115819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The kidney injury molecule (KIM)-1 is shed from proximal tubular cells in acute kidney injury (AKI), relaying tubular epithelial proliferation. Additionally, KIM-1 portends complex immunoregulation and is elevated after exposure to lipopolysaccharides. It thus may represent a biomarker in critical illness, sepsis, and sepsis-associated AKI (SA-AKI). To characterise and compare KIM-1 in these settings, we analysed KIM-1 serum concentrations in 192 critically ill patients admitted to the intensive care unit. Irrespective of kidney dysfunction, KIM-1 serum levels were significantly higher in patients with sepsis compared with other critical illnesses (191.6 vs. 132.2 pg/mL, p = 0.019) and were highest in patients with urogenital sepsis, followed by liver failure. Furthermore, KIM-1 levels were significantly elevated in critically ill patients who developed AKI within 48 h (273.3 vs. 125.8 pg/mL, p = 0.026) or later received renal replacement therapy (RRT) (299.7 vs. 146.3 pg/mL, p < 0.001). KIM-1 correlated with markers of renal function, inflammatory parameters, hematopoietic function, and cholangiocellular injury. Among subcomponents of the SOFA score, KIM-1 was elevated in patients with hyperbilirubinaemia (>2 mg/dL, p < 0.001) and thrombocytopenia (<150/nL, p = 0.018). In univariate and multivariate regression analyses, KIM-1 predicted sepsis, the need for RRT, and multi-organ dysfunction (MOD, SOFA > 12 and APACHE II ≥ 20) on the day of admission, adjusting for relevant comorbidities, bilirubin, and platelet count. Additionally, KIM-1 in multivariate regression was able to predict sepsis in patients without prior (CKD) or present (AKI) kidney injury. Our study suggests that next to its established role as a biomarker in kidney dysfunction, KIM-1 is associated with sepsis, biliary injury, and critical illness severity. It thus may offer aid for risk stratification in these patients.
Collapse
Affiliation(s)
- Jonathan Frederik Brozat
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Neval Harbalioğlu
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| | - Philipp Hohlstein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| | - Samira Abu Jhaisha
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| | - Maike Rebecca Pollmanns
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| | - Jule Katharina Adams
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| | - Theresa Hildegard Wirtz
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| | - Karim Hamesch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| | - Eray Yagmur
- Institute of Laboratory Medicine, Western Palatine Hospital, Hellmut-Hartert-Straße 1, 67655 Kaiserslautern, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Christian Trautwein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| | - Alexander Koch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, University Hospital RWTH Aachen, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.F.B.); (N.H.); (P.H.); (S.A.J.); (M.R.P.); (J.K.A.); (T.H.W.); (K.H.); (C.T.)
| |
Collapse
|
32
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Huang L, Xu J, Jia K, Wu Y, Yuan W, Liao Z, Cheng B, Luo Q, Tian G, Lu H. Butylparaben induced zebrafish (Danio rerio) kidney injury by down-regulating the PI3K-AKT pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134129. [PMID: 38565019 DOI: 10.1016/j.jhazmat.2024.134129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 μM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.
Collapse
Affiliation(s)
- Lirong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Jiaxin Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yulin Wu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhipeng Liao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| |
Collapse
|
34
|
Brown T, Defarges A, Monteith G, Appleby R, Bienzle D. Determination of the reference interval for urine kidney injury molecule-1 in 50 healthy cats. J Feline Med Surg 2024; 26:1098612X241238923. [PMID: 38647460 PMCID: PMC11103318 DOI: 10.1177/1098612x241238923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVES The aim of the present study was to establish a reference interval (RI) for urine kidney injury molecule-1 (KIM-1) in healthy cats. METHODS History, physical examination, blood pressure, and feline immunodeficiency virus and feline leukemia virus serology status were determined. A complete blood cell count, serum biochemical profile, urinalysis and kidney ultrasound were performed, and N-terminal pro-brain natriuretic peptide, total thyroxine (TT4) and urine KIM-1 were measured. An RI was calculated and the effect of age, sex, body condition score (BCS), blood pressure, symmetric dimethylarginine (SDMA), serum creatinine concentration (SCr), phosphorus, TT4, urine specific gravity (USG) and mid-sagittal kidney length on urine KIM-1 was evaluated using a general linear model. RESULTS Of 69 recruited cats, 50 met the inclusion criteria. There were 35 male cats and 15 female cats, with a median age of 4.3 years (range 1.0-12.3), median weight of 5.11 kg (range 2.52-8.45) and median BCS of 6/9 (range 3-8). The median serum concentrations were SDMA 11.0 µg/dl (range 2-14), SCr 88.5 µmol/l (range 47-136), phosphorus 1.41 mmol/l (range 0.8-2.2) and TT4 32.0 nmol/l (range 17-51). Median USG was 1.057 (range 1.035-1.076), mid-sagittal left kidney length was 3.50 cm (range 2.94-4.45) and mid-sagittal right kidney length was 3.70 cm (range 3.06-4.55). The derived RI for urine KIM-1 was 0.02-0.68. USG was a significant (P <0.001) predictor of urine KIM-1. Individually, age, sex, blood pressure, BCS, SDMA, SCr, phosphorus, TT4 and mid-sagittal kidney length were not significant predictors of urine KIM-1. In a multivariate model, if combined with USG, SDMA concentration was predictive (P = 0.030) of urine KIM-1. CONCLUSIONS AND RELEVANCE Urine concentration was significantly correlated with urine KIM-1, which will be an important consideration when interpreting findings in cats with potential kidney injury.
Collapse
Affiliation(s)
- Tori Brown
- Mississauga Oakville Veterinary Emergency Hospital, Oakville, ON, Canada
| | - Alice Defarges
- Department of Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Gabrielle Monteith
- Department of Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Ryan Appleby
- Department of Clinical Studies, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
35
|
Fu Y, Xiang Y, Wei Q, Ilatovskaya D, Dong Z. Rodent models of AKI and AKI-CKD transition: an update in 2024. Am J Physiol Renal Physiol 2024; 326:F563-F583. [PMID: 38299215 PMCID: PMC11208034 DOI: 10.1152/ajprenal.00402.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Yu Xiang
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Daria Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
- Research Department, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| |
Collapse
|
36
|
Buse M, Cheng M, Jankowski V, Lellig M, Sterzer V, Strieder T, Leuchtle K, Martin IV, Seikrit C, Brinkkoettter P, Crispatzu G, Floege J, Boor P, Speer T, Kramann R, Ostendorf T, Moeller MJ, Costa IG, Stamellou E. Lineage tracing reveals transient phenotypic adaptation of tubular cells during acute kidney injury. iScience 2024; 27:109255. [PMID: 38444605 PMCID: PMC10914483 DOI: 10.1016/j.isci.2024.109255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Tubular injury is the hallmark of acute kidney injury (AKI) with a tremendous impact on patients and health-care systems. During injury, any differentiated proximal tubular cell (PT) may transition into a specific injured phenotype, so-called "scattered tubular cell" (STC)-phenotype. To understand the fate of this specific phenotype, we generated transgenic mice allowing inducible, reversible, and irreversible tagging of these cells in a murine AKI model, the unilateral ischemia-reperfusion injury (IRI). For lineage tracing, we analyzed the kidneys using single-cell profiling during disease development at various time points. Labeled cells, which we defined by established endogenous markers, already appeared 8 h after injury and showed a distinct expression set of genes. We show that STCs re-differentiate back into fully differentiated PTs upon the resolution of the injury. In summary, we show the dynamics of the phenotypic transition of PTs during injury, revealing a reversible transcriptional program as an adaptive response during disease.
Collapse
Affiliation(s)
- Marc Buse
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Michaela Lellig
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Thiago Strieder
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Katja Leuchtle
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Ina V. Martin
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Paul Brinkkoettter
- Department II of Internal Medicine and Centre for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Giuliano Crispatzu
- Department II of Internal Medicine and Centre for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Timotheus Speer
- Medical Clinic 4, Nephrology, University of Frankfurt und Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Marcus J. Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
37
|
Zhou R, Liu H, Hou X, Liu Q, Sun S, Li X, Cao W, Nie W, Shi C, Chen W. Bi-functional KIT-PR1P peptides combine with VEGF to protect ischemic kidney in rats by targeting to Kim-1. Regen Ther 2024; 25:162-173. [PMID: 38178930 PMCID: PMC10765240 DOI: 10.1016/j.reth.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Acute kidney injury (AKI) was a disease with a high mortality mainly caused by renal ischemia/reperfusion injury (I/R). Although the current non-targeted administration of vascular endothelial growth factor (VEGF) for AKI had been revealed to facilitate the recovery of renal I/R, how to targeted deliver VEGF and to retain it efficiently in the ischemic kidney was critical for its clinical application. Methods In present study, bi-functional KIT-PR1P peptides were constructed which bond VEGF through PR1P domain, and targeted ischemic kidney through KIT domain to interact with biomarker of AKI-kidney injury molecule-1 (Kim-1). Then the targeted and therapeutic effects of KIT-PR1P/VEGF in AKI was explored in vitro and in vivo. Results The results showed KIT-PR1P exhibited better angiogenic capacity and targeting ability to hypoxia HK-2 cells with up-regulated Kim-1 in vitro. When KIT-PR1P/VEGF was used for the treatment of renal I/R through intravenous administration in vivo, KIT-PR1P could guide VEGF and retain its effective concentration in ischemic kidney. In addition, KIT-PR1P/VEGF promoted angiogenesis, alleviated renal tubular injury and fibrosis, and finally promoted functional recovery of renal I/R. Conclusion These results indicated that the bi-functional KIT-PR1P peptides combined with VEGF would be a promising strategy for the treatment of AKI by targeting to Kim-1.
Collapse
Affiliation(s)
- Runxue Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Hang Liu
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, 266700, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics Cand Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qi Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, 266000, China
| | - Shuwei Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaoge Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Weihong Nie
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
38
|
Ding F, Zhang S, Chen Q, Xie X, Xi Z, Ge Z, Zuo X, Yang X, Willner I, Fan C, Li Q, Xia Q. Programmable Atom-Like Nanoparticle Reporters for High-Precision Urinalysis of In Situ Membrane Proteins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310199. [PMID: 38096904 DOI: 10.1002/adma.202310199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Indexed: 12/22/2023]
Abstract
The expression of disease-specific membrane proteins (MPs) is a crucial indicator for evaluating the onset and progression of diseases. Urinalysis of in situ MPs has the potential for point-of-care disease diagnostics, yet remains challenging due to the lack of molecular reporter to transform the expression information of in situ MPs into the measurable urine composition. Herein, a series of tetrahedral DNA frameworks (TDFs) are employed as the cores of programmable atom-like nanoparticles (PANs) to direct the self-assembly of PAN reporters with defined ligand valence and spatial distribution. With the rational spatial organization of ligands, the interaction between PAN reporters and MPs exhibits superior stability on cell-membrane interface under renal tubule-mimic fluid microenvironment, thus enabling high-fidelity conversion of MPs expression level into binding events and reverse assessment of in situ MP levels via measurement of the renal clearance efficiency of PAN reporters. Such PAN reporter-mediated signal transformation mechanism empowers urinalysis of the onset of acute kidney injury at least 6 h earlier than the existing methods with an area under the curve of 100%. This strategy has the potential for urinalysis of a variety of in situ membrane proteins.
Collapse
Affiliation(s)
- Fei Ding
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Shuangye Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Chen
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhifeng Xi
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xiurong Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, World Laureates Association, Shanghai, 201203, China
| | - Qiang Xia
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| |
Collapse
|
39
|
Yin G, Wang Z, Li P, Cao Y, Zhou Z, Wu W, Li X, Lou Q. Tim-3 deficiency aggravates cadmium nephrotoxicity via regulation of NF-κB signaling and mitochondrial damage. Int Immunopharmacol 2024; 128:111434. [PMID: 38176346 DOI: 10.1016/j.intimp.2023.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Kidney is the target organ of serious cadmium injury. Kidney damage caused by cadmium exposure is greatly influenced by the inflammatory response and mitochondrial damage. T cell immunoglobulin domain and mucin domain 3 (Tim-3) is an essential protein that functions as a negative immunological checkpoint to regulate inflammatory responses. Mice were given cadmium treatments at various dosages (0, 1.5, 3, 4.5 mg/kg) and times (0, 3, 5, 7 days) to assess the effects of cadmium on kidney damage. We found that the optimal way to induce kidney injury in mice was to inject 4.5 mg/kg of cadmium intraperitoneally for five days. It is interesting that giving mice 4.5 mg/kg of cadmium intravenously for seven days drastically lowered their survival rate. After cadmium exposure, Tim-3 knockout mice exhibited higher blood concentrations of urea nitrogen and creatinine compared to control mice. Tim-3 impacted the expression of oxidative stress-associated genes such as UDP glucuronosyltransferase family 1 member A9 (Ugt1a9), oxidative stress-induced growth inhibitor 2 (Osgin2), and S100 calcium binding protein A8 (S100a8), according to RNA-seq and real-time RT-PCR data. Tim-3 deficiency also resulted in activated nuclear factor-kappa B (NF-κB) signaling pathway. The NF-κB inhibitor 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) significantly alleviated cell apoptosis, oxidative stress response, and renal tubule inflammation in Tim-3 knockout mice exposed to cadmium. Furthermore, cadmium caused obvious B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) translocation from cytoplasm to mitochondria, which can be inhibited by TPCA-1. In conclusion, Tim-3 prevented mitochondrial damage and NF-κB signaling activation, hence providing protection against cadmium nephrotoxicity.
Collapse
Affiliation(s)
- Guanyi Yin
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Zhonghang Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Peiyao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Yaping Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Ziou Zhou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Wenbin Wu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Xuemiao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
40
|
Zhang Y, Zhao H, Zhang J. Hyaluronidase inhibitor sHA2.75 alleviates ischemia-reperfusion-induced acute kidney injury. Cell Cycle 2024; 23:248-261. [PMID: 38526145 PMCID: PMC11057651 DOI: 10.1080/15384101.2024.2309019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/01/2023] [Accepted: 11/26/2023] [Indexed: 03/26/2024] Open
Abstract
Hyaluronidases (HAases) are enzymes that degrade hyaluronic acid (HA) in the animal kingdom. The HAases-HA system is crucial for HA homeostasis and plays a significant role in biological processes and extracellular matrix (ECM)-related pathophysiological conditions. This study aims to explore the role of inhibiting the HAases-HA system in acute kidney injury (AKI). We selected the potent inhibitor "sHA2.75" to inhibit HAase activity through mixed inhibitory mechanisms. The ischemia-reperfusion mouse model was established using male BALB/c mice (7-9 weeks old), and animals were subjected to subcapsular injection with 50 mg/kg sHA2.75 twice a week to evaluate the effects of sHA2.75 on AKI on day 1, 5 and 14 after ischemia-reperfusion or sham procedure. Blood and tissue samples were collected for immunohistochemistry, biochemical, and quantitative analyses. sHA2.75 significantly reduced blood urea nitrogen (BUN) and serum creatinine levels in AKI mouse models. Expression of kidney injury-related genes such as Kidney injury molecule-1 (KIM-1), Neutrophil Gelatinase-Associated Lipocalin (NGAL), endothelial nitric oxide synthase (eNOS), type I collagen (Col1), type III collagen (Col3), alpha-smooth muscle actin (α-SMA) showed significant downregulation in mouse kidney tissues after sHA2.75 treatment. Moreover, sHA2.75 treatment led to decreased plasma levels of Interleukin-6 (IL-6) proteins and reduced mRNA levels in renal tissues of AKI mice. Inhibitor sHA2.75 administration in the AKI mouse model downregulated kidney injury-related biomarkers and immune-specific genes, thereby alleviating AKI in vivo. These findings suggest the potential use of HAase inhibitors for treating ischemic reperfusion-induced kidney injury.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Huajiang Zhao
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Zhang
- Department of Laboratory, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Yu Z, Pang H, Yang Y, Luo D, Zheng H, Huang Z, Zhang M, Ren K. Microglia dysfunction drives disrupted hippocampal amplitude of low frequency after acute kidney injury. CNS Neurosci Ther 2024; 30:e14363. [PMID: 37469216 PMCID: PMC10848109 DOI: 10.1111/cns.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/21/2023] Open
Abstract
AIMS Acute kidney injury (AKI) has been associated with a variety of neurological problems, while the neurobiological mechanism remains unclear. In the present study, we utilized resting-state functional magnetic resonance imaging (rs-fMRI) to detect brain injury at an early stage and investigated the impact of microglia on the neuropathological mechanism of AKI. METHODS Rs-fMRI data were collected from AKI rats and the control group with a 9.4-Tesla scanner at 24, 48, and 72 h post administration of contrast medium or saline. The amplitude of low-frequency fluctuations (ALFF) was then compared across the groups at each time course. Additionally, flow cytometry and SMART-seq2 were employed to evaluate microglia. Furthermore, pathological staining and Western blot were used to analyze the samples. RESULTS MRI results revealed that AKI led to a decreased ALFF in the hippocampus, particularly in the 48 h and 72 h groups. Additionally, western blot suggested that AKI-induced the neuronal apoptosis at 48 h and 72 h. Flow cytometry and confocal microscopy images demonstrated that AKI activated the aggregation of microglia into neurons at 24 h, with a strong upregulation of M1 polarization at 48 h and peaking at 72 h, accompanying with the release of proinflammatory cytokines. The ALFF value was strongly correlated with the proportion of microglia (|r| > 0.80, p < 0.001). CONCLUSIONS Our study demonstrated that microglia aggregation and inflammatory factor upregulation are significant mechanisms of AKI-induced neuronal apoptosis. We used fMRI to detect the alterations in hippocampal function, which may provide a noninvasive method for the early detection of brain injury after AKI.
Collapse
Affiliation(s)
- Ziyang Yu
- School of MedicineXiamen UniversityXiamenChina
| | - Huize Pang
- Department of RadiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yifan Yang
- School of MedicineXiamen UniversityXiamenChina
| | - Doudou Luo
- School of MedicineXiamen UniversityXiamenChina
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Zicheng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Mingxia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Ke Ren
- School of MedicineXiamen UniversityXiamenChina
- Department of RadiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
42
|
Muto Y, Dixon EE, Yoshimura Y, Ledru N, Kirita Y, Wu H, Humphreys BD. Epigenetic reprogramming driving successful and failed repair in acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576421. [PMID: 38328130 PMCID: PMC10849487 DOI: 10.1101/2024.01.20.576421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition we generated a single nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting especially activation of proinflammatory pathways. We further generated single nucleus multiomic data from four human AKI samples including validation by genome-wide identification of NF-kB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubule cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E. Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
43
|
Fu Y, Sun D, Qin Y, Zheng T, Zhou Z, Zhou X, Zhao X, Xu Y, Huang B. Development and application of an amplified luminescent proximity homogeneous assay-linked immunosorbent assay for the accurate quantification of kidney injury molecule-1. Front Mol Biosci 2024; 10:1280681. [PMID: 38304229 PMCID: PMC10832993 DOI: 10.3389/fmolb.2023.1280681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024] Open
Abstract
Background: Kidney injury molecule-1 (Kim-1), a specific marker of kidney injury, is usually not expressed in normal kidneys or at very low levels but is highly expressed in injured renal tubular epithelial cells until the damaged cells recover completely. Therefore, we aimed to develop an efficient and highly sensitive assay to accurately quantify Kim-1 levels in human serum and urine. Methods: In this study, a novel immunoassay was developed and named amplified luminescent proximity homogeneous assay-linked immunosorbent assay (AlphaLISA). Anti-Kim-1 antibodies can be directly coupled to carboxyl-modified donor and acceptor beads for the rapid detection of Kim-1 by double-antibody sandwich method. Serum and urine samples for Kim-1 measurements were obtained from 129 patients with nephropathy and 17 healthy individuals. Results: The linear range of Kim-1 detected by AlphaLISA was 3.83-5000 pg/mL, the coefficients of variation of intra-assay and inter-assay batches were 3.36%-4.71% and 5.61%-11.84%, respectively, and the recovery rate was 92.31%-99.58%. No cross reactions with neutrophil gelatinase-associated lipocalin, liver-type fatty acid binding protein, and matrix metalloproteinase-3 were observed. A good correlation (R 2 = 0.9086) was found between the findings of Kim-1-TRFIA and Kim-AlphaLISA for the same set of samples. In clinical trials, both serum and urine Kim-1 levels were significantly higher in patients with nephropathy than in healthy individuals, especially in patients with acute kidney injury. Furthermore, serum Kim-1 was superior to urinary Kim-1 in distinguishing between patients with nephropathy and healthy individuals. Conclusion: The developed Kim-1-AlphaLISA is highly efficient, precise, and sensitive, and it is suitable for the rapid detection of patients with acute kidney injury.
Collapse
Affiliation(s)
- Yulin Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Danqin Sun
- Department of Nephrology, Jiangnan University Medicine Center, Wuxi, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tianyu Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zixuan Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Xu
- Department of Nephrology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
44
|
Szumilas D, Owczarek AJ, Brzozowska A, Niemir ZI, Olszanecka-Glinianowicz M, Chudek J. The Value of Urinary NGAL, KIM-1, and IL-18 Measurements in the Early Detection of Kidney Injury in Oncologic Patients Treated with Cisplatin-Based Chemotherapy. Int J Mol Sci 2024; 25:1074. [PMID: 38256147 PMCID: PMC10816507 DOI: 10.3390/ijms25021074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cisplatin is still a widely used anticancer drug characterized by significant nephrotoxicity. Acute kidney injury (AKI), diagnosed based on the Kidney Disease: Improving Global Outcomes (KDIGO) criteria, has limitations, including a delayed increase in creatinine. We determined the usefulness of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and interleukin-18 (IL-18) in diagnosing AKI according to the KDIGO criteria in patients treated with cisplatin. We recruited 21 subjects starting cisplatin-based chemotherapy (Cisplatin-based group) and 11 treated with carboplatin-based chemotherapy or 5-fluorouracil regimens (non-cisplatin-based group). Blood and urine samples were collected during four subsequent cycles of chemotherapy (68 and 38 cycles, respectively). AKI occurred in four patients in the cisplatin-based group (5.9% of 68 cisplatin-based chemotherapy cycles). Among them, three urinary markers were increased by over 100% in two cases, two in one case and one in another. A doubling of at least one investigated parameter was observed more frequently during cisplatin-based chemotherapy (80.3% vs. 52.8%; OR = 3.65, 95% CI: 1.49-8.90; p < 0.01). The doubling of at least one new urinary AKI marker was more common in patients receiving cisplatin and frequently was not associated with overt AKI. Thus, a subclinical kidney injury detected by these markers occurs more frequently than deterioration in kidney function stated with creatinine changes.
Collapse
Affiliation(s)
- Dawid Szumilas
- Department of Internal Diseases and Oncological Chemotherapy, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, 40-027 Katowice, Poland;
| | - Aleksander Jerzy Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.J.O.); (A.B.); (M.O.-G.)
| | - Aniceta Brzozowska
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.J.O.); (A.B.); (M.O.-G.)
| | - Zofia Irena Niemir
- Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland;
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.J.O.); (A.B.); (M.O.-G.)
| | - Jerzy Chudek
- Department of Internal Diseases and Oncological Chemotherapy, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, 40-027 Katowice, Poland;
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.J.O.); (A.B.); (M.O.-G.)
| |
Collapse
|
45
|
Habeichi NJ, Amin G, Lakkis B, Kataya R, Mericskay M, Booz GW, Zouein FA. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147. FRONT BIOSCI-LANDMRK 2024; 29:8. [PMID: 38287815 PMCID: PMC10924798 DOI: 10.31083/j.fbl2901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/31/2024]
Abstract
Kidney damage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur even in patients with no underlying kidney disease. Signs of kidney problems can progress to a state that demands dialysis and hampering recovery. Although not without controversy, emerging evidence implicates direct infectivity of SARS-CoV-2 in the kidney. At the early stage of the pandemic, consideration was mainly on the well-recognized angiotensin-converting enzyme 2 (ACE2) receptor as being the site for viral interaction and subsequent cellular internalization. Despite the abundance of ACE2 receptors in the kidneys, researchers have expanded beyond ACE2 and identified novel viral entry pathways that could be advantageously explored as therapeutic targets. This review presents the potential involvement of toll-like receptor 4 (TLR-4), kidney injury molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1), and cluster of differentiation 147 (CD147) in SARS-CoV-2-associated renal damage. In this context, we address the unresolved issues surrounding SARS-CoV-2 renal infectivity.
Collapse
Affiliation(s)
- Nada J. Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bachir Lakkis
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, 1107-2020 Beirut, Lebanon
| | - Rayane Kataya
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
46
|
Cao Y, Hu B, Fan Y, Wang W, Chi M, Nasser MI, Ma K, Liu C. The effects of apoptosis inhibitor of macrophage in kidney diseases. Eur J Med Res 2024; 29:21. [PMID: 38178221 PMCID: PMC10765713 DOI: 10.1186/s40001-023-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Kidney disease is a progressive and irreversible condition in which immunity is a contributing factor that endangers human health. It is widely acknowledged that macrophages play a significant role in developing and causing numerous kidney diseases. The increasing focus on the mechanism by which macrophages express apoptosis inhibitor of macrophages (AIM) in renal diseases has been observed. AIM is an apoptosis inhibitor that stops different things that cause apoptosis from working. This keeps AIM-bound cell types alive. Notably, the maintenance of immune cell viability regulates immunity. As our investigation progressed, we concluded that AIM has two sides when it comes to renal diseases. AIM can modulate renal phagocytosis, expedite the elimination of renal tubular cell fragments, and mitigate tissue injury. AIM can additionally exacerbate the development of renal fibrosis and kidney disease by prolonging inflammation. IgA nephropathy (IgAN) may also worsen faster if more protein is in the urine. This is because IgA and immunoglobulin M are found together and expressed. In the review, we provide a comprehensive overview of prior research and concentrate on the impacts of AIM on diverse subcategories of nephropathies. We discovered that AIM is closely associated with renal diseases by playing a positive or negative role in the onset, progression, or cure of kidney disease. AIM is thus a potentially effective therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yixia Cao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Boyan Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yunhe Fan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
- Renal Department and Nephrology Institute, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China.
| |
Collapse
|
47
|
Li N, Zhang X, Wan P, Yu M, Min J. Combination of Urinary Neutrophil Gelatinase-associated Lipocalin, Kidney Injury Molecular-1, and Angiotensinogen for the Early Diagnosis and Mortality Prediction of Septic Acute Kidney Injury. Comb Chem High Throughput Screen 2024; 27:1033-1045. [PMID: 37855356 DOI: 10.2174/0113862073263073231011060142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is one of the most severe complications of sepsis. This study was conducted to analyze the role of urinary neutrophil gelatinase-associated lipocalin (uNGAL), urinary kidney injury molecular-1 (uKIM-1), and urinary angiotensinogen (uAGT) in the early diagnosis and mortality prediction of septic AKI. METHODS The prospective study enrolled 80 sepsis patients in the ICU and 100 healthy individuals and divided patients into an AKI group and a non-AKI group. uNGAL, uKIM-1, uAGT, serum creatinine/procalcitonin/C-reaction protein, and other indicators were determined, and clinical prediction scores were recorded. The sensitivity and specificity of uNGAL, uKIM-1, and uAGT in diagnosis and mortality prediction were analyzed by the receiver operator characteristic (ROC) curve and the area under the curve (AUC). RESULTS uNGAL, uKIM-1, and uAGT levels were higher in sepsis patients than healthy controls, higher in AKI patients than non-AKI patients, and higher in AKI-2 and AKI-3 patients than AKI-1 patients. At 0 h after admission, the combined efficacy of three indicators in septic AKI diagnosis (ROC-AUC: 0.770; sensitivity: 82.5%; specificity: 70.0%) was better than a single indicator. At 24 h, uNGAL, uKIM-1, and uAGT levels were higher in sepsis non-survivals than survivals and higher in septic AKI non-survivals than septic AKI survivals. The combined efficacy of three indicators in the prediction of sepsis/septic AKI mortality (ROC-AUC: 0.828/0.847; sensitivity: 71.4%/100.0%; specificity: 82.7%/66.7%) was better than a single indicator. CONCLUSION uNGAL, uKIM-1, and uAGT levels were increased in septic AKI, and their combination helped the early diagnosis and mortality prediction.
Collapse
Affiliation(s)
- Na Li
- Department of Critical Care Medicine, Dangyang Renmin Hospital of Hubei Province, Yichang, 444100, China
| | - Xuelian Zhang
- Department of Critical Care Medicine, Dangyang Renmin Hospital of Hubei Province, Yichang, 444100, China
| | - Peng Wan
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University (Yichang Central People's Hospital), Yichang, 443000, China
| | - Min Yu
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University (Yichang Central People's Hospital), Yichang, 443000, China
| | - Jinyi Min
- Department of Critical Care Medicine, Dangyang Renmin Hospital of Hubei Province, Yichang, 444100, China
| |
Collapse
|
48
|
Taguchi K, Sugahara S, Elias BC, Pabla NS, Canaud G, Brooks CR. IL-22 is secreted by proximal tubule cells and regulates DNA damage response and cell death in acute kidney injury. Kidney Int 2024; 105:99-114. [PMID: 38054920 PMCID: PMC11068062 DOI: 10.1016/j.kint.2023.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 12/07/2023]
Abstract
Acute kidney injury (AKI) affects over 13 million people worldwide annually and is associated with a 4-fold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces cell death and worsens AKI. The factors that trigger DDR to switch from pro-repair to pro-cell death remain to be resolved. Here we investigated the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identified PTCs as a novel source of urinary IL-22. Functionally, IL-22 binding IL-22RA1 on PTCs amplified the DDR. Treating primary PTCs with IL-22 alone induced rapid activation of the DDR. The combination of IL-22 and either cisplatin- or AA-induced cell death in primary PTCs, while the same dose of cisplatin or AA alone did not. Global deletion of IL-22 protected against cisplatin- or AA-induced AKI, reduced expression of DDR components, and inhibited PTC cell death. To confirm PTC IL-22 signaling contributed to AKI, we knocked out IL-22RA1 specifically in kidney tubule cells. IL-22RA1ΔTub mice displayed reduced DDR activation, cell death, and kidney injury compared to controls. Thus, targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with repair of damaged DNA.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sho Sugahara
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bertha C Elias
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Craig R Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
49
|
Yang W, Zhang M, Li J, Qu S, Zhou F, Liu M, Li L, Liu Z, Zen K. YTHDF1 mitigates acute kidney injury via safeguarding m 6A-methylated mRNAs in stress granules of renal tubules. Redox Biol 2023; 67:102921. [PMID: 37857002 PMCID: PMC10587769 DOI: 10.1016/j.redox.2023.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Acute kidney injury (AKI) presents a daunting challenge with limited therapeutic options. To explore the contribution of N6-methyladenosine (m6A) in AKI development, we have investigated m6A-modified mRNAs within renal tubular cells subjected to injuries induced by diverse stressors. Notably, while the overall level of m6A-modified RNA remains unaltered in renal tubular cells facing stress, a distinct phenomenon emerges-mRNAs bearing m6A methylation exhibit a pronounced tendency to accumulate within stress granules (SGs), structures induced in response to these challenges. Cumulation of m6A-modified mRNA in SGs is orchestrated by YTHDF1, a m6A 'reader' closely associated with SGs. Strikingly, AKI patients and various mouse AKI models showcase elevated levels of renal tubular YTHDF1. Depleting YTHDF1 within renal tubular cells leads to a marked reduction in m6A-modified mRNA accumulation within SGs, accompanied by an escalation in cell apoptosis under stress challenges. The significance of YTHDF1's protective role is further underscored by findings in AKI mouse models triggered by cisplatin or renal ischemia-reperfusion treatments. In particular, renal tubular-specific YTHDF1 knockout mice exhibit heightened AKI severity when contrasted with their wild-type counterparts. Mechanistic insights reveal that YTHDF1 fulfills a crucial function by safeguarding m6A-modified mRNAs that favor cell survival-exemplified by SHPK1-within SGs amid stress-challenged renal tubular cells. Our findings collectively shed light on the pivotal role of YTHDF1 in shielding renal tubules against AKI, through its adeptness in recruiting and preserving m6A-modified mRNAs within stress-induced SGs.
Collapse
Affiliation(s)
- Wenwen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Jiacheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Shuang Qu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fenglian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Minghui Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Limin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
50
|
Li N, Han L, Wang X, Qiao O, Zhang L, Gong Y. Biotherapy of experimental acute kidney injury: emerging novel therapeutic strategies. Transl Res 2023; 261:69-85. [PMID: 37329950 DOI: 10.1016/j.trsl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Li Zhang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|