1
|
Liu Y, Yuan J, Zhang Y, Ma T, Ji Q, Tian S, Liu C. Non-coding RNA as a key regulator and novel target of apoptosis in diabetic cardiomyopathy: Current status and future prospects. Cell Signal 2025; 128:111632. [PMID: 39922440 DOI: 10.1016/j.cellsig.2025.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The occurrence of diabetic cardiomyopathy (DCM) can be independent of several risk factors such as hypertension and myocardial ischemia, which can lead to heart failure, thus seriously threatening human health and life. Sustained hyperglycemic stimulation can induce cardiomyocyte apoptosis, which is recognized as the pathological basis of DCM. It has been demonstrated that dysregulation induced by apoptosis is closely associated to progression of DCM, but mechanisms behind it requires further clarification. Currently, increasing evidence has shown that non-coding RNA (ncRNA), especially microRNA, long-chain non-coding RNA (lncRNA), and circular RNA (circRNA), play a regulative role in apoptosis, thus affecting the progression of DCM. Notably, some ncRNAs have also exhibit potential significance as biomarkers and/or therapeutic targets for patients with DCM. In this review, recent findings regarding the potential mechanisms of ncRNA in regulating apoptosis and their role in the progression of DCM were systematically summarized in this research. The conclusion reveals that ncRNA abnormalities exert a crucial role in pathological changes of DCM, which offers potential therapeutic targets for the prevention of DCM.
Collapse
Affiliation(s)
- Yicheng Liu
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Yuan
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yuhang Zhang
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Ma
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qianqian Ji
- Department one of Cardiovascular Disease, Tai'an Hospital of Traditional Chinese Medicine, Taian 271000, China
| | - Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunxiao Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Liu S, Wu J, Jiang H, Zhou Y, Huang X, Wang Y, Xie Z, Liao Z, Ding Z, Liu J, Hu X, Mao H, Liu S, Chen B. CircFBLN2 regulates duck myoblast proliferation and differentiation through miR-22-5p and MEF2C interaction. Poult Sci 2025; 104:105063. [PMID: 40120247 PMCID: PMC11987613 DOI: 10.1016/j.psj.2025.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
The growth and development of duck skeletal muscle significantly affect duck meat production, making it essential to understand the molecular mechanisms underlying these processes. Circular RNAs (circRNAs) and microRNAs (miRNAs) are identified in many species and play essential roles in the regulation of myogenic processes; however, research on circRNAs and miRNAs involved in the duck skeletal muscle development is limited. In prior whole-transcriptome RNA sequencing study, we identified differential expression of miR-22-5p and the novel circular RNA circFBLN2, which arises from the second exon of the FBLN2 gene, in duck primary myoblasts (DPMs). In this study, we confirmed the circular structure of circFBLN2 and explored its expression patterns and functional implications in myogenesis. To elucidate the function of circFBLN2 in the myogenic processes of duck, we conducted experiments involving both the silencing and overexpression of circFBLN2 in DPMs. Our findings indicated that circFBLN2 inhibits DPM proliferation while promoting their differentiation. Conversely, when miR-22-5p was silenced and overexpressed, it exhibited opposing effects by promoting the proliferation of DPMs and inhibiting their differentiation. These results suggest a complex dynamic interplay between circFBLN2 and miR-22-5p in the regulation of DPMs proliferation and differentiation. Additionally, our results revealed that both circFBLN2 and myocyte enhancer factor 2 C (MEF2C) act as sponges for miR-22-5p, as demonstrated by binding predictions and dual-luciferase reporter assays. These results offer novel perspectives on the regulatory pathways underlying the duck embryonic skeletal muscle development, underscoring the pivotal function of circFBLN2 in the regulation of miR-22-5p expression. This research deepens our comprehension of the molecular underpinnings of avian myogenesis, potentially paving the way for more effective approaches to bolster growth and development of livestock.
Collapse
Affiliation(s)
- Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuwen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yuxiang Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhanbin Xie
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Zurong Liao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhenxvan Ding
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
3
|
Jia H, Kaster N, Khan R, Ayari-Akkari A. The Roles of myomiRs in the Pathogenesis of Sarcopenia: From Literature to In Silico Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01373-0. [PMID: 40025274 DOI: 10.1007/s12033-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
Senile sarcopenia is a condition of age-associated muscular disorder and is a significant health issue around the world. In the current review, we curated the information from the NCBI, PubMed, and Google Scholar literature and explored the non-genetic and genetic causes of senile sarcopenia. Interestingly, the myomiRs such as miR-1, miR-206, miR-133a, miR-133b, miR-208b, and miR-499 are skeletal muscle's critical structural and functional regulators. However, very scattered information is available regarding the roles of myomiRs in different skeletal muscle phenotypes through a diverse list of known target genes. Therefore, these pieces of information must be organized to focus on the conserved target genes and comparable effects of the myomiRs in regulating senile sarcopenia. Hence, in the present review, the roles of pathogenetic factors in regulating senile sarcopenia were highlighted. The literature was further curated for the roles of myomiRs such as hsa-miR-1-3p/206, hsa-miR-27-3p, hsa-miR-146-5p, and hsa-miR-499-5p and their target genes. Additionally, we used different bioinformatics tools and predicted target genes of the myomiRs and found the most critical target genes, shared pathways, and their standard functions in regulating muscle structure and functions. The information gathered in the current review will help the researchers to explore their possible therapeutic potential, especially the use of the myomiRs for the treatment of senile sarcopenia.
Collapse
Affiliation(s)
- Huanxia Jia
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang, 461000, Henan, People's Republic of China
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
4
|
An X, Sun L, Zheng H, Xiao Y, Sun W, Yu D. Mitochondria-associated non-coding RNAs and their impact on drug resistance. Front Pharmacol 2025; 16:1472804. [PMID: 40078288 PMCID: PMC11897306 DOI: 10.3389/fphar.2025.1472804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Drug resistance is a prevalent challenge in clinical disease treatment, often leading to disease relapse and poor prognosis. Therefore, it is crucial to gain a deeper understanding of the molecular mechanisms underlying drug resistance and to develop targeted strategies for its effective prevention and management. Mitochondria, as vital energy-producing organelles within cells, have been recognized as key regulators of drug sensitivity. Processes such as mitochondrial fission, fusion, mitophagy, changes in membrane potential, reactive oxygen species (ROS) accumulation, and oxidative phosphorylation (OXPHOS) are all linked to drug sensitivity. Non-coding RNAs (ncRNAs) enriched in mitochondria (mtncRNA), whether transcribed from mitochondrial DNA (mtDNA) or from the nucleus and transported to mitochondria, can regulate the transcription and translation of mtDNA, thus influencing mitochondrial function, including mitochondrial substance exchange and energy metabolism. This, in turn, directly or indirectly affects cellular sensitivity to drugs. This review summarizes the types of mtncRNAs associated with drug resistance and the molecular mechanisms regulating drug resistance. Our aim is to provide insights and strategies for overcoming drug resistance by modulating mtncRNAs.
Collapse
Affiliation(s)
- Xingna An
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lina Sun
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Zheng
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yinghui Xiao
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Wenlun W, Chaohang Y, Yan H, Wenbin L, Nanqing Z, Qianmin H, Shengcai W, Qing Y, Shirui Y, Feng Z, Lingyun Z. Developing a ceRNA-based lncRNA-miRNA-mRNA regulatory network to uncover roles in skeletal muscle development. FRONTIERS IN BIOINFORMATICS 2025; 4:1494717. [PMID: 39882307 PMCID: PMC11774864 DOI: 10.3389/fbinf.2024.1494717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.). LncRNA-miRNA relationships were predicted using miRcode and lncBaseV2, with miRNA-mRNA pairs identified via miRcode, miRDB, and Targetscan7. Based on the ceRNA theory, we constructed and visualized the lncRNA-miRNA-mRNA regulatory network using ggalluvial among other R packages. GO, Reactome, KEGG, and GSEA explored interactions in muscle development and regeneration. We identified five candidate lncRNAs (Xist, Gas5, Pvt1, Airn, and Meg3) as potential mediators in these processes and microgravity-induced muscle wasting. Additionally, we created a detailed lncRNA-miRNA-mRNA regulatory network, including interactions such as lncRNA Xist/miR-126/IRS1, lncRNA Xist/miR-486-5p/GAB2, lncRNA Pvt1/miR-148/RAB34, and lncRNA Gas5/miR-455-5p/SOCS3. Significant signaling pathway changes (PI3K/Akt, MAPK, NF-κB, cell cycle, AMPK, Hippo, and cAMP) were observed during muscle development, regeneration, and atrophy. Despite bioinformatics challenges, our research underscores the significant roles of lncRNAs in muscle protein synthesis, degradation, cell proliferation, differentiation, function, and metabolism under both normal and microgravity conditions. This study offers new insights into the molecular mechanisms governing skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Wang Wenlun
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Yu Chaohang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Huang Yan
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Li Wenbin
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zhou Nanqing
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Hu Qianmin
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Wu Shengcai
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Yuan Qing
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Yu Shirui
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zhang Feng
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zhu Lingyun
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhu L, Chen H, Yang S. LncSL: A Novel Stacked Ensemble Computing Tool for Subcellular Localization of lncRNA by Amino Acid-Enhanced Features and Two-Stage Automated Selection Strategy. Int J Mol Sci 2024; 25:13734. [PMID: 39769496 PMCID: PMC11678684 DOI: 10.3390/ijms252413734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Long non-coding RNA (lncRNA) is a non-coding RNA longer than 200 nucleotides, crucial for functions like cell cycle regulation and gene transcription. Accurate localization prediction from sequence information is vital for understanding lncRNA's biological roles. Computational methods offer an effective alternative to traditional experimental methods for annotating lncRNA subcellular positions. Existing machine learning-based methods are limited and often overlook regions with coding potential that affect the function of lncRNA. Therefore, we propose a new model called LncSL. For feature encoding, both lncRNA sequences and amino acid sequences from open reading frames (ORFs) are employed. And we selected the most suitable features by CatBoost and integrated them into a new feature set. Additionally, a voting process with seven feature selection algorithms identified the higher contributive features for training our final stacked model. Additionally, an automatic model selection strategy is constructed to find a better performance meta-model for assembling LncSL. This study specifically focuses on predicting the subcellular localization of lncRNA in the nucleus and cytoplasm. On two benchmark datasets called S1 and S2 datasets, LncSL outperformed existing methods by 6.3% to 12.3% in the Matthew's correlation coefficient on a balanced test dataset. On an unbalanced independent test dataset sourced from S1, LncSL improved by 4.7% to 18.6% in the Matthew's correlation coefficient, which further demonstrates that LncSL is superior to other compared methods. In all, this study presents an effective method for predicting lncRNA subcellular localization through enhancing sequence information, which is always overlooked by traditional methods, and addressing contributive meta-model selection problems, which can offer new insights for other bioinformatics problems.
Collapse
Affiliation(s)
| | | | - Sen Yang
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China; (L.Z.); (H.C.)
| |
Collapse
|
7
|
Gong Z, Zhang X, Cui J, Chen W, Huang X, Yang Q, Li T, Zhang W. IFRD2, a target of miR-2400, regulates myogenic differentiation of bovine skeletal muscle satellite cells via decreased phosphorylation of ERK1/2 proteins. J Muscle Res Cell Motil 2024; 45:253-262. [PMID: 38896394 DOI: 10.1007/s10974-024-09677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The proliferation and differentiation of skeletal muscle satellite cells is a complex physiological process involving various transcription factors and small RNA molecules. This study aimed to understand the regulatory mechanisms underlying these processes, focusing on interferon-related development factor 2 (IFRD2) as a target gene of miRNA-2400 in bovine skeletal MuSCs (MuSCs). IFRD2 was identified as a target gene of miRNA-2400 involved in regulating the proliferation and differentiation of bovine skeletal MuSCs. Our results indicate that miR-2400 can target binding the 3'UTR of IFRD2 and inhibit its translation. mRNA and protein expression levels of IFRD2 increased significantly with increasing days of differentiation. Moreover, overexpression of the IFRD2 gene inhibited proliferation and promoted differentiation of bovine MuSCs. Conversely, the knockdown of the gene had the opposite effect. Overexpression of IFRD2 resulted in the inhibition of ERK1/2 phosphorylation levels in bovine MuSCs, which in turn promoted differentiation. In summary, IFRD2, as a target gene of miR-2400, crucially affects bovine skeletal muscle proliferation and differentiation by precisely regulating ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Zhian Gong
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Xiaoyu Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Jingxuan Cui
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Wen Chen
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Xin Huang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
- Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang Province, 161000, PR China
| | - Qingzhu Yang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
- Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang Province, 161000, PR China
| | - Tie Li
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China.
| |
Collapse
|
8
|
Barilani M, Peli V, Manzini P, Pistoni C, Rusconi F, Pinatel EM, Pischiutta F, Tace D, Iachini MC, Elia N, Tribuzio F, Banfi F, Sessa A, Cherubini A, Dolo V, Bollati V, Fiandra L, Longhi E, Zanier ER, Lazzari L. Extracellular Vesicles from Human Induced Pluripotent Stem Cells Exhibit a Unique MicroRNA and CircRNA Signature. Int J Biol Sci 2024; 20:6255-6278. [PMID: 39664576 PMCID: PMC11628337 DOI: 10.7150/ijbs.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Extracellular vesicles (EV) have emerged as promising cell-free therapeutics in regenerative medicine. However, translating primary cell line-derived EV to clinical applications requires large-scale manufacturing and several challenges, such as replicative senescence, donor heterogeneity, and genetic instability. To address these limitations, we used a reprogramming approach to generate human induced pluripotent stem cells (hiPSC) from the young source of cord blood mesenchymal stem/stromal cells (CBMSC). Capitalizing on their inexhaustible supply potential, hiPSC offer an attractive EV reservoir. Our approach encompassed an exhaustive characterization of hiPSC-EV, aligning with the rigorous MISEV2023 guidelines. Analyses demonstrated physical features compatible with small EV (sEV) and established their identity and purity. Moreover, the sEV-shuttled non-coding (nc) RNA landscape, focusing on the microRNA and circular RNA cargo, completed the molecular signature. The kinetics of the hiPSC-sEV release and cell internalization assays unveiled robust EV production and consistent uptake by human neurons. Furthermore, hiPSC-sEV demonstrated ex vivo cell tissue-protective properties. Finally, via bioinformatics, the potential involvement of the ncRNA cargo in the hiPSC-sEV biological effects was explored. This study significantly advances the understanding of pluripotent stem cell-derived EV. We propose cord blood MSC-derived hiPSC as a promising source for potentially therapeutic sEV.
Collapse
Affiliation(s)
- Mario Barilani
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valeria Peli
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paolo Manzini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Clelia Pistoni
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Francesco Rusconi
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Eva Maria Pinatel
- ITB-CNR, Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Francesca Pischiutta
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Dorian Tace
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria Chiara Iachini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Noemi Elia
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Tribuzio
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Federica Banfi
- San Raffaele Scientific Institute, Division of Neuroscience, Neuroepigenetics Unit, Milano, Italy
| | - Alessandro Sessa
- San Raffaele Scientific Institute, Division of Neuroscience, Neuroepigenetics Unit, Milano, Italy
| | - Alessandro Cherubini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milano, Italy
| | - Elena Longhi
- Laboratory of Transplant Immunology SC Trapianti Lombardia - NITp. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa R Zanier
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
9
|
Romero B, Hoque P, Robinson KG, Lee SK, Sinha T, Panda A, Shrader MW, Parashar V, Akins RE, Batish M. The circular RNA circNFIX regulates MEF2C expression in muscle satellite cells in spastic cerebral palsy. J Biol Chem 2024; 300:107987. [PMID: 39542245 PMCID: PMC11697776 DOI: 10.1016/j.jbc.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Cerebral palsy (CP) is a pediatric onset disorder with poorly understood molecular causes and progression, making early diagnosis difficult. Circular RNAs are regulatory RNAs that show promise as biomarkers in various diseases but the role of circular RNAs in CP is beginning to be understood. This study identified the role of circNFIX in regulating the expression of myocyte-specific enhancer factor 2C (MEF2C), an important transcription factor for sarcomere development. We found that circNFIX is downregulated in the muscle cells of individuals with CP, and its localization shifts toward the nucleus as visualized using single-molecule resolution imaging. The decreased expression of circNFIX, MEF2C, and MEF2C targets persisted throughout myoblasts to myotubes differentiation, and in the skeletal muscle tissue. Bioinformatic and experimental validation confirmed that circNFIX acts as a sponge for miR373-3p, a microRNA that represses MEF2C translation. In normal muscle, circNFIX derepresses MEF2C translation by sponging miR373-3p, allowing for normal sarcomere generation. In CP, reduced circNFIX expression results in loss of miRNA sponging, leading to lower MEF2C expression and downregulation of sarcomere genes, potentially causing shortened and dysfunctional muscle fibers. Knockdown (KD) of circNFIX reduced myogenic capacity of myoblasts to fuse and form myotubes similar to CP cells evident from the lower fusion index in CP and KD as compared to control myotubes. This is the first study reporting reduction of MEF2C in CP and single-molecule resolution imaging of circNFIX's subcellular distribution and its role in CP, suggesting circNFIX as a potential therapeutic target and biomarker for early CP diagnosis.
Collapse
Affiliation(s)
- Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Parsa Hoque
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Karyn G Robinson
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Stephanie K Lee
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Tanvi Sinha
- Institute of Life Science (ILS), Nalco Square, Bhubaneswar, Odisha, India
| | - Amaresh Panda
- Institute of Life Science (ILS), Nalco Square, Bhubaneswar, Odisha, India
| | - Michael W Shrader
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Robert E Akins
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
10
|
Mcleod JC, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza AC, Colenso-Semple L, McKendry J, Morton RW, Mitchell CJ, Oikawa SY, Wahlestedt C, Paul Chapple J, McGlory C, Timmons JA, Phillips SM. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.606848. [PMID: 39416175 PMCID: PMC11482748 DOI: 10.1101/2024.08.11.606848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customised RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n=144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR - which was leukocyte-associated (FDR = 4.9 ×10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C. Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, Canada
| | - Robert W. Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sara Y. Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, Canada
| | - James A. Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Mcleod J, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza A, Colenso-Semple L, McKendry J, Morton R, Mitchell C, Oikawa S, Wahlestedt C, Chapple J, McGlory C, Timmons J, Phillips S. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. NAR MOLECULAR MEDICINE 2024; 1:ugae016. [PMID: 39669123 PMCID: PMC11632610 DOI: 10.1093/narmme/ugae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customized RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n = 144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR-which was leukocyte-associated (false discovery rate [FDR] = 4.9 × 10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, V6T 1Z4, Canada
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Cameron J Mitchell
- School of Kinesiology, University of British Columbia, BC, V6T 1Z1, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Claes Wahlestedt
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, K7L 3N6, Canada
| | - James A Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
12
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
13
|
Lei Z, Zhu Z, Yao Z, Dai X, Dong Y, Chen B, Wang S, Wang S, Bentum-Ennin L, Jin L, Gu H, Hu W. Reciprocal interactions between lncRNAs and MYC in colorectal cancer: partners in crime. Cell Death Dis 2024; 15:539. [PMID: 39075086 PMCID: PMC11286766 DOI: 10.1038/s41419-024-06918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Proto-oncogenic MYC is frequently dysregulated in colorectal cancer (CRC). In the past decades, long noncoding RNAs (lncRNAs) have emerged as important regulators in cancers, acting as scaffolds, molecular decoys, post-transcriptional regulators, and others. Interestingly, lncRNAs are able to control MYC expression both at transcriptional and post-transcriptional levels. It is suggested that the reciprocal interaction of MYC and lncRNAs often occurs in CRC. MYC can affect the cell fate by promoting or inhibiting the transcription of some lncRNAs. At the same time, some lncRNAs can also affect MYC expression or transcriptional activity, and in turn decide the cell fate. In this review we summarized the current knowledge about the MYC and lncRNA axis, focusing on its mutual regulation, roles in CRC, and proposed potential therapeutic prospects for CRC treatment.
Collapse
Affiliation(s)
- Zhen Lei
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhipu Zhu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhihui Yao
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Xiangyu Dai
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Yi Dong
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Bing Chen
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Songyu Wang
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Siyue Wang
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Lutterodt Bentum-Ennin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China
| | - Lei Jin
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China.
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China.
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China.
| |
Collapse
|
14
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
15
|
Qiu J, Gu R, Shi Q, Zhang X, Gu J, Xiang J, Xu J, Yang Y, Shan K. Long noncoding RNA ZFAS1: A novel anti-apoptotic target in Fuchs endothelial corneal dystrophy. Exp Eye Res 2024; 241:109832. [PMID: 38369232 DOI: 10.1016/j.exer.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading cause of endothelial keratoplasty without efficacious drug treatment. Recent studies have emphasized the involvement of epigenetic regulation in FECD development. Long non-coding RNAs (lncRNAs) are recognized as crucial epigenetic regulators in diverse cellular processes and ocular diseases. In this study, we revealed the expression patterns of lncRNAs using high-throughput sequencing technology in FECD mouse model, and identified 979 significantly dysregulated lncRNAs. By comparing the data from FECD human cell model, we obtained a series of homologous lncRNAs with similar expression patterns, and revealed that these homologous lncRNAs were enriched in FECD related biological functions, with apoptosis (mmu04210) showing the highest enrichment score. In addition, we investigated the role of lncRNA zinc finger antisense 1 (ZFAS1) in apoptotic process. This study would broaden our understanding of epigenetic regulation in FECD development, and provide potential anti-apoptotic targets for FECD therapy.
Collapse
Affiliation(s)
- Jini Qiu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Ruiping Gu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Qian Shi
- Yixing Eye Hospital, Yixing, Jiangsu, China
| | - Xueling Zhang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jiayu Gu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jun Xiang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jianjiang Xu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Yujing Yang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Kun Shan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
16
|
Liang X, Di F, Wei H, Liu N, Chen C, Wang X, Sun M, Zhang M, Li M, Zhang J, Zhang S. Functional identification of long non-coding RNAs induced by PM 2.5 in microglia through microarray analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116136. [PMID: 38387142 DOI: 10.1016/j.ecoenv.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
As a dominating air pollutant, atmospheric fine particulate matter within 2.5 μm in diameter (PM2.5) has attracted increasing attention from the researchers all over the world, which will lead to various adverse effects on the central nervous system (CNS), yet the potential mechanism is unclear. In this study, the microglia (BV2 cell line) were exposed to different concentrations of PM2.5 (5, 10 and 20 μg/cm2) for 24 h. It was found that PM2.5 could result in adverse effects on microglia such as decreased cell viability, structural damage and even cell death. And it was reported that long non-coding RNAs (lncRNAs) could participate in multitudinous neurological diseases. Therefore, the microarray analysis was conducted in order to disclose the underlying neurotoxicity mechanism of PM2.5 by ascertaining the differentially expressed lncRNAs (DElncRNAs). The consequences indicated that the DElncRNAs were enriched in various biological pathways, including ferroptosis, IL-17 signaling pathway and NOD-like receptor signaling pathway. Moreover, the cis- and trans-regulated mRNAs by DElncRNAs as well as the corresponding transcriptional factors (TFs) were observed, such as CEBPA, MYC, MEIS1 and KLF4. In summary, our study supplies some candidate libraries and potential preventive target against PM2.5-induced toxicity through targeting lncRNAs. Furthermore, the post-transcriptional regulation will contribute to the future research on PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Xue Liang
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China.
| | - Fanglin Di
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Haiyun Wei
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Natong Liu
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Chao Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Xinzhi Wang
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Min Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250117, China
| |
Collapse
|
17
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
18
|
Li S, Qiu N, Ni A, Hamblin MH, Yin KJ. Role of regulatory non-coding RNAs in traumatic brain injury. Neurochem Int 2024; 172:105643. [PMID: 38007071 PMCID: PMC10872636 DOI: 10.1016/j.neuint.2023.105643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Na Qiu
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI, 02903, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 1212 Webber Hall, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ke-Jie Yin
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
19
|
He Y, Yang P, Yuan T, Zhang L, Yang G, Jin J, Yu T. miR-103-3p Regulates the Proliferation and Differentiation of C2C12 Myoblasts by Targeting BTG2. Int J Mol Sci 2023; 24:15318. [PMID: 37894995 PMCID: PMC10607603 DOI: 10.3390/ijms242015318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle, a vital and intricate organ, plays a pivotal role in maintaining overall body metabolism, facilitating movement, and supporting normal daily activities. An accumulating body of evidence suggests that microRNA (miRNA) holds a crucial role in orchestrating skeletal muscle growth. Therefore, the primary aim of this study was to investigate the influence of miR-103-3p on myogenesis. In our study, the overexpression of miR-103-3p was found to stimulate proliferation while suppressing differentiation in C2C12 myoblasts. Conversely, the inhibition of miR-103-3p expression yielded contrasting effects. Through bioinformatics analysis, potential binding sites of miR-103-3p with the 3'UTR region of BTG anti-proliferative factor 2 (BTG2) were predicted. Subsequently, dual luciferase assays conclusively demonstrated BTG2 as the direct target gene of miR-103-3p. Further investigation into the role of BTG2 in C2C12 myoblasts unveiled that its overexpression impeded proliferation and encouraged differentiation in these cells. Notably, co-transfection experiments showcased that the overexpression of BTG2 could counteract the effects induced by miR-103-3p. In summary, our findings elucidate that miR-103-3p promotes proliferation while inhibiting differentiation in C2C12 myoblasts by targeting BTG2.
Collapse
Affiliation(s)
- Yulin He
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Peiyu Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tiantian Yuan
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lin Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Taiyong Yu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
20
|
Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C, XueJie Y. Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol 2023; 14:1227945. [PMID: 37744337 PMCID: PMC10512060 DOI: 10.3389/fimmu.2023.1227945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are common autoimmune diseases that affect skeletal muscle quality and function. The lack of an early diagnosis and treatment can lead to irreversible muscle damage. Non-coding RNAs (ncRNAs) play an important role in inflammatory transfer, muscle regeneration, differentiation, and regulation of specific antibody levels and pain in IIMs. ncRNAs can be detected in blood and hair; therefore, ncRNAs detection has great potential for diagnosing, preventing, and treating IIMs in conjunction with other methods. However, the specific roles and mechanisms underlying the regulation of IIMs and their subtypes remain unclear. Here, we review the mechanisms by which micro RNAs and long non-coding RNA-messenger RNA networks regulate IIMs to provide a basis for ncRNAs use as diagnostic tools and therapeutic targets for IIMs.
Collapse
Affiliation(s)
- Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu GuangXuan
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Wan GenMeng
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Chang Bo
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Cao H, Du T, Li C, Wu L, Liu J, Guo Y, Li X, Yang G, Jin J, Shi X. MicroRNA-668-3p inhibits myoblast proliferation and differentiation by targeting Appl1. BMC Genomics 2023; 24:415. [PMID: 37488537 PMCID: PMC10364376 DOI: 10.1186/s12864-023-09431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Skeletal muscle is the largest tissue in the body, and it affects motion, metabolism and homeostasis. Skeletal muscle development comprises myoblast proliferation, fusion and differentiation to form myotubes, which subsequently form mature muscle fibres. This process is strictly regulated by a series of molecular networks. Increasing evidence has shown that noncoding RNAs, especially microRNAs (miRNAs), play vital roles in regulating skeletal muscle growth. Here, we showed that miR-668-3p is highly expressed in skeletal muscle. METHODS Proliferating and differentiated C2C12 cells were transfected with miR-668-3p mimics and/or inhibitor, and the mRNA and protein levels of its target gene were evaluated by RT‒qPCR and Western blotting analysis. The targeting of Appl1 by miR-668-3p was confirmed by dual luciferase assay. The interdependence of miR-668-3p and Appl1 was verified by cotransfection of C2C12 cells. RESULTS Our data reveal that miR-668-3p can inhibit myoblast proliferation and myogenic differentiation. Phosphotyrosine interacting with PH domain and leucine zipper 1 (Appl1) is a target gene of miR-668-3p, and it can promote myoblast proliferation and differentiation by activating the p38 MAPK pathway. Furthermore, the inhibitory effect of miR-668-3p on myoblast cell proliferation and myogenic differentiation could be rescued by Appl1. CONCLUSION Our results indicate a new mechanism by which the miR-668-3p/Appl1/p38 MAPK pathway regulates skeletal muscle development.
Collapse
Affiliation(s)
- Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianning Du
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Microbial Research Institute of Liaoning Province, Chaoyang, Liaoning, China
| | - Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Wu
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jieming Liu
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Guo
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
22
|
Wu S, Wu Y, Deng S, Lei X, Yang X. Emerging roles of noncoding RNAs in human cancers. Discov Oncol 2023; 14:128. [PMID: 37439905 DOI: 10.1007/s12672-023-00728-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Studies have found that RNA encoding proteins only account for a small part of the total number, most RNA is non-coding RNA, and non-coding RNA may affect the occurrence and development of human cancers by affecting gene expression, therefore play an important role in human pathology. At present, ncRNAs studied include miRNA, circRNA, lncRNA, piRNA, and snoRNA, etc. After decades of research, the basic role of these ncRNAs in many cancers has been clear. As far as we know, the role of miRNAs in cancer is one of the hottest research directions, however, it is also found that the imbalance of ncRNAs will affect the occurrence of gastric cancer, breast cancer, lung cancer, meanwhile, it may also affect the prognosis of these cancers. Therefore, the study of ncRNAs in cancers may help to find new cancer diagnostic and treatment methods. Here, we reviewed the biosynthesis and characteristics of miRNA, cricRNA, and lncRNA etc., their roles in human cancers, as well as the mechanism through which these ncRNAs affect human cancers.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
24
|
Shree B, Das K, Sharma V. Emerging role of transforming growth factor-β-regulated long non-coding RNAs in prostate cancer pathogenesis. CANCER PATHOGENESIS AND THERAPY 2023; 1:195-204. [PMID: 38327834 PMCID: PMC10846338 DOI: 10.1016/j.cpt.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2024]
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Despite aggressive therapy involving surgery and hormonal treatments, the recurrence and emergence of metastatic castration-resistant prostate cancer (CRPCa) remain a major challenge. Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway is crucial to PCa development and progression. This also contributes to androgen receptor activation and the emergence of CRPC. In addition, TGF-β signaling regulates long non-coding RNA (lncRNA) expression in multiple cancers, including PCa. Here, we discuss the complex regulatory network of lncRNAs and TGF-β signaling in PCa and their potential applications in diagnosing, prognosis, and treating PCa. Further investigations on the role of lncRNAs in the TGF-β pathway will help to better understand PCa pathogenesis.
Collapse
Affiliation(s)
- Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Koyel Das
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
25
|
Zhao X, Yuan J, Jia J, Zhang J, Liu J, Chen Q, Li T, Wu Z, Wu H, Miao X, Wu T, Li B, Cheng X. Role of non‑coding RNAs in cartilage endplate (Review). Exp Ther Med 2023; 26:312. [PMID: 37273754 PMCID: PMC10236100 DOI: 10.3892/etm.2023.12011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Cartilage endplate (CEP) degeneration is considered one of the major causes of intervertebral disc degeneration (IDD), which causes non-specific neck and lower back pain. In addition, several non-coding RNAs (ncRNAs), including long ncRNAs, microRNAs and circular RNAs have been shown to be involved in the regulation of various diseases. However, the particular role of ncRNAs in CEP remains unclear. Identifying these ncRNAs and their interactions may prove to be is useful for the understanding of CEP health and disease. These RNA molecules regulate signaling pathways and biological processes that are critical for a healthy CEP. When dysregulated, they can contribute to the development disease. Herein, studies related to ncRNAs interactions and regulatory functions in CEP are reviewed. In addition, a summary of the current knowledge regarding the deregulation of ncRNAs in IDD in relation to their actions on CEP cell functions, including cell proliferation, apoptosis and extracellular matrix synthesis/degradation is presented. The present review provides novel insight into the pathogenesis of IDD and may shed light on future therapeutic approaches.
Collapse
Affiliation(s)
- Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiwen Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
26
|
Dabi Y, Favier A, Razakamanantsoa L, Suisse S, Marie Y, Touboul C, Ferrier C, Bendifallah S, Daraï E. Value of non-coding RNAs to assess lymph node status in cervical cancer. Front Oncol 2023; 13:1144672. [PMID: 37234986 PMCID: PMC10206114 DOI: 10.3389/fonc.2023.1144672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cervical cancer (CC) is the fourth cancer in women and is the leading cause of cancer death in 42 countries. Lymph node metastasis is a determinant prognostic factor, as underlined in the latest FIGO classification. However, assessment of lymph node status remains difficult, despite the progress of imaging such as PET-CT and MRI. In the specific setting of CC, all data underlined the need for new biomarkers easily available to assess lymph node status. Previous studies have underlined the potential value of ncRNA expression in gynecological cancers. In this review, we aimed to evaluate the contribution of ncRNAs in tissue and biofluid samples to determine lymph node status in CC with potential impact on both surgical and adjuvant therapies. In tissue samples, our analysis found that there are arguments to support the role of ncRNAs in physiopathology, differential diagnosis from normal tissue, preinvasive and invasive tumors. In biofluids, despite small studies especially concerning miRNAs expression, promising data opens up new avenue to establish a non-invasive signature for lymph node status as well as a tool to predict response to neo- and adjuvant therapies, thus improving management algorithm of patients with CC.
Collapse
Affiliation(s)
- Yohann Dabi
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Amelia Favier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Léo Razakamanantsoa
- Sorbonne University, Inserm UMR S 938, Centre de recherche de saint Antoine (CRSA), Hôpital Saint Antoine, Paris, France
- Department of Radiology imaging and Interventional speciality imaging, Tenon Hospital, Paris, France
| | | | - Yannick Marie
- Gentoyping and Sequencing core facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Cyril Touboul
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Clément Ferrier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Sofiane Bendifallah
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Emile Daraï
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| |
Collapse
|
27
|
Zhang J, Sheng H, Zhang L, Li X, Guo Y, Wang Y, Guo H, Ding X. Bta-miR-206 and a Novel lncRNA-lncA2B1 Promote Myogenesis of Skeletal Muscle Satellite Cells via Common Binding Protein HNRNPA2B1. Cells 2023; 12:cells12071028. [PMID: 37048101 PMCID: PMC10093610 DOI: 10.3390/cells12071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Skeletal muscle satellite cells (MuSCs) can proliferate, differentiate, and self-renew, and can also participate in muscle formation and muscle injury repair. Long noncoding RNAs (lncRNAs) can play an important role with the RNA binding protein and microRNAs (miRNAs) to regulate the myogenesis of bovine MuSCs, however, its molecular mechanism is still being explored. In this study, differentially expressed 301 lncRNAs were identified during the myogenic differentiation of cells based on an in vitro model of induced differentiation of bovine MuSCs using RNA sequencing (RNA-seq). Based on the ability of miR-206 to regulate myogenic cell differentiation, a new kind of lncRNA-lncA2B1 without protein-coding ability was found, which is expressed in the nucleus and cytoplasm. Subsequently, lncA2B1 inhibited cell proliferation by downregulating the expression of the proliferation marker Pax7 and promoted myogenic differentiation by upregulating the expression of the differentiation marker MyHC, whose regulatory function is closely related to miR-206. By RNA pulldown/LC-MS experiments, heterogeneous ribonucleoprotein A2/B1 (HNRNPA2B1), and DExH-Box Helicase 9 (DHX9) were identified as common binding proteins of lncA2B1 and miR-206. Overexpression of lncA2B1 and miR-206 significantly upregulated the expression level of HNRNPA2B1. Downregulation of HNRNPA2B1 expression significantly decreased the expression level of the differentiation marker MyHC, which indicates that miR-206 and lncA2B1 regulate myogenic differentiation of bovine MuSCs by acting on HNRNPA2B1. This study screened and identified a novel lncRNA-lncA2B1, which functions with miR-206 to regulate myogenesis via the common binding proteins HNRNPA2B1. The results of this study provide a new way to explore the molecular mechanisms by which lncRNAs and miRNAs regulate muscle growth and development.
Collapse
Affiliation(s)
- Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yimin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence:
| |
Collapse
|
28
|
Li M, Zhang N, Li J, Ji M, Zhao T, An J, Cai C, Yang Y, Gao P, Cao G, Guo X, Li B. CircRNA Profiling of Skeletal Muscle in Two Pig Breeds Reveals CircIGF1R Regulates Myoblast Differentiation via miR-16. Int J Mol Sci 2023; 24:ijms24043779. [PMID: 36835196 PMCID: PMC9965117 DOI: 10.3390/ijms24043779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Muscle development is closely related to meat quality and production. CircRNAs, with a closed-ring structure, have been identified as a key regulator of muscle development. However, the roles and mechanisms of circRNAs in myogenesis are largely unknown. Hence, in order to unravel the functions of circRNAs in myogenesis, the present study explored circRNA profiling in skeletal muscle between Mashen and Large White pigs. The results showed that a total of 362 circRNAs, which included circIGF1R, were differentially expressed between the two pig breeds. Functional assays showed that circIGF1R promoted myoblast differentiation of porcine skeletal muscle satellite cells (SMSCs), while it had no effect on cell proliferation. In consideration of circRNA acting as a miRNA sponge, dual-luciferase reporter and RIP assays were performed and the results showed that circIGF1R could bind miR-16. Furthermore, the rescue experiments showed that circIGF1R could counteract the inhibitory effect of miR-16 on cell myoblast differentiation. Thus, circIGF1R may regulate myogenesis by acting as a miR-16 sponge. In conclusion, this study successfully screened candidate circRNAs involved in the regulation of porcine myogenesis and demonstrated that circIGF1R promotes myoblast differentiation via miR-16, which lays a theoretical foundation for understanding the role and mechanism of circRNAs in regulating porcine myoblast differentiation.
Collapse
|
29
|
Chang MW, Yang JH, Tsitsipatis D, Yang X, Martindale J, Munk R, Pandey P, Banskota N, Romero B, Batish M, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Wilson G, Gorospe M. Enhanced myogenesis through lncFAM-mediated recruitment of HNRNPL to the MYBPC2 promoter. Nucleic Acids Res 2022; 50:13026-13044. [PMID: 36533518 PMCID: PMC9825165 DOI: 10.1093/nar/gkac1174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.
Collapse
Affiliation(s)
- Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
30
|
Song YL, Yang MH, Zhang S, Wang H, Kai KL, Yao CX, Dai FF, Zhou MJ, Li JB, Wei ZR, Yin Z, Zhu WG, Xue L, Zang MX. A GRIP-1-EZH2 switch binding to GATA-4 is linked to the genesis of rhabdomyosarcoma through miR-29a. Oncogene 2022; 41:5223-5237. [PMID: 36309571 DOI: 10.1038/s41388-022-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Terminal differentiation failure is an important cause of rhabdomyosarcoma genesis, however, little is known about the epigenetic regulation of aberrant myogenic differentiation. Here, we show that GATA-4 recruits polycomb group proteins such as EZH2 to negatively regulate miR-29a in undifferentiated C2C12 myoblast cells, whereas recruitment of GRIP-1 to GATA-4 proteins displaces EZH2, resulting in the activation of miR-29a during myogenic differentiation of C2C12 cells. Moreover, in poorly differentiated rhabdomyosarcoma cells, EZH2 still binds to the miR-29a promoter with GATA-4 to mediate transcriptional repression of miR-29a. Interestingly, once re-differentiation of rhabdomyosarcoma cells toward skeletal muscle, EZH2 was dispelled from miR-29a promoter which is similar to that in myogenic differentiation of C2C12 cells. Eventually, this expression of miR-29a results in limited rhabdomyosarcoma cell proliferation and promotes myogenic differentiation. We thus establish that GATA-4 can function as a molecular switch in the up- and downregulation of miR-29a expression. We also demonstrate that GATA-4 acts as a tumor suppressor in rhabdomyosarcoma partly via miR-29a, which thus provides a potential therapeutic target for rhabdomyosarcoma.
Collapse
Affiliation(s)
- Yang-Liu Song
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming-Hui Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Si Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Kun-Lun Kai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chun-Xia Yao
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Dai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Biao Li
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongnan Yin
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Cancer Center of Peking University Third Hospital, Peking University Third Hospital, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
31
|
Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017-2022). Biomolecules 2022; 12:biom12121774. [PMID: 36551201 PMCID: PMC9775338 DOI: 10.3390/biom12121774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes. It is also the main cause of blindness caused by multicellular damage involving retinal endothelial cells, ganglial cells, and pigment epithelial cells in adults worldwide. Currently available drugs for DR do not meet the clinical needs; thus, new therapeutic targets are warranted. Noncoding RNAs (ncRNAs), a new type of biomarkers, have attracted increased attention in recent years owing to their crucial role in the occurrence and development of DR. NcRNAs mainly include microRNAs, long noncoding RNAs, and circular RNAs, all of which regulate gene and protein expression, as well as multiple biological processes in DR. NcRNAs, can regulate the damage caused by various retinal cells; abnormal changes in the aqueous humor, exosomes, blood, tears, and the formation of new blood vessels. This study reviews the different sources of the three ncRNAs-microRNAs, long noncoding RNAs, and circular RNAs-involved in the pathogenesis of DR and the related drug development progress. Overall, this review improves our understanding of the role of ncRNAs in various retinal cells and offers therapeutic directions and targets for DR treatment.
Collapse
|
32
|
Battistelli C, Garbo S, Maione R. MyoD-Induced Trans-Differentiation: A Paradigm for Dissecting the Molecular Mechanisms of Cell Commitment, Differentiation and Reprogramming. Cells 2022; 11:3435. [PMID: 36359831 PMCID: PMC9654159 DOI: 10.3390/cells11213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 10/20/2023] Open
Abstract
The discovery of the skeletal muscle-specific transcription factor MyoD represents a milestone in the field of transcriptional regulation during differentiation and cell-fate reprogramming. MyoD was the first tissue-specific factor found capable of converting non-muscle somatic cells into skeletal muscle cells. A unique feature of MyoD, with respect to other lineage-specific factors able to drive trans-differentiation processes, is its ability to dramatically change the cell fate even when expressed alone. The present review will outline the molecular strategies by which MyoD reprograms the transcriptional regulation of the cell of origin during the myogenic conversion, focusing on the activation and coordination of a complex network of co-factors and epigenetic mechanisms. Some molecular roadblocks, found to restrain MyoD-dependent trans-differentiation, and the possible ways for overcoming these barriers, will also be discussed. Indeed, they are of critical importance not only to expand our knowledge of basic muscle biology but also to improve the generation skeletal muscle cells for translational research.
Collapse
Affiliation(s)
| | | | - Rossella Maione
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
33
|
Emerging Role of Non-Coding RNAs in Aortic Dissection. Biomolecules 2022; 12:biom12101336. [PMID: 36291545 PMCID: PMC9599213 DOI: 10.3390/biom12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular acute disease with high incidence and mortality, and it seriously threatens patients’ lives and health. The pathogenesis of AD mainly includes vascular inflammation, extracellular matrix degradation, and phenotypic conversion as well as apoptosis of vascular smooth muscle cells (VSMCs); however, its detailed mechanisms are still not fully elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are an emerging class of RNA molecules without protein-coding ability, and they play crucial roles in the progression of many diseases, including AD. A growing number of studies have shown that the dysregulation of ncRNAs contributes to the occurrence and development of AD by modulating the expression of specific target genes or the activity of related proteins. In addition, some ncRNAs exhibit great potential as promising biomarkers and therapeutic targets in AD treatment. In this review, we systematically summarize the recent findings on the underlying mechanism of ncRNA involved in AD regulation and highlight their clinical application as biomarkers and therapeutic targets in AD treatment. The information reviewed here will be of great benefit to the development of ncRNA-based therapeutic strategies for AD patients.
Collapse
|
34
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
35
|
Advances in the Current Understanding of the Mechanisms Governing the Acquisition of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153744. [PMID: 35954408 PMCID: PMC9367587 DOI: 10.3390/cancers14153744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Despite aggressive treatment and androgen-deprivation therapy, most prostate cancer patients ultimately develop castration-resistant prostate cancer (CRPC), which is associated with high mortality rates. However, the mechanisms governing the development of CRPC are poorly understood, and androgen receptor (AR) signaling has been shown to be important in CRPC through AR gene mutations, gene overexpression, co-regulatory factors, AR shear variants, and androgen resynthesis. A growing number of non-AR pathways have also been shown to influence the CRPC progression, including the Wnt and Hh pathways. Moreover, non-coding RNAs have been identified as important regulators of the CRPC pathogenesis. The present review provides an overview of the relevant literature pertaining to the mechanisms governing the molecular acquisition of castration resistance in prostate cancer, providing a foundation for future, targeted therapeutic efforts.
Collapse
|
36
|
Yang JH, Chang MW, Tsitsipatis D, Yang X, Martindale J, Munk R, Cheng A, Izydore E, Pandey PR, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Gorospe M. LncRNA OIP5-AS1-directed miR-7 degradation promotes MYMX production during human myogenesis. Nucleic Acids Res 2022; 50:7115-7133. [PMID: 35736212 PMCID: PMC9262585 DOI: 10.1093/nar/gkac524] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Correspondence may also be addressed to Jen-Hao Yang. Tel: +1 410 454 8392;
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Aiwu Cheng
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Elizabeth Izydore
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- To whom correspondence should be addressed. Tel: +1 410 454 8412;
| |
Collapse
|
37
|
Fu X, Li S, Jia M, Xu B, Yang L, Ma R, Cheng H, Yang W, Hu P. Myogenesis controlled by a long non-coding RNA 1700113A16RIK and post-transcriptional regulation. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:13. [PMID: 35366685 PMCID: PMC8977255 DOI: 10.1186/s13619-022-00114-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/22/2022] [Indexed: 01/05/2023]
Abstract
Long non-coding (lnc) RNA plays important roles in many cellular processes. The function of the vast majority of lncRNAs remains unknown. Here we identified that lncRNA-1700113A16RIK existed in skeletal muscle stem cells (MuSCs) and was significantly elevated during MuSC differentiation. Knockdown of 1700113A16RIK inhibits the differentiation of muscle stem cells. In contrast, overexpression of 1700113A16RIK promotes the differentiation of muscle stem cells. Further study shows the muscle specific transcription factor Myogenin (MyoG) positively regulates the expression of 1700113A16RIK by binding to the promoter region of 1700113A16RIK. Mechanistically, 1700113A16RIK may regulate the expression of myogenic genes by directly binding to 3'UTR of an important myogenic transcription factor MEF2D, which in turn promotes the translation of MEF2D. Taken together, our results defined 1700113A16RIK as a positive regulator of MuSC differentiation and elucidated a mechanism as to how 1700113A16RIK regulated MuSC differentiation.
Collapse
Affiliation(s)
- Xin Fu
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Sheng Li
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Minzhi Jia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bo Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lele Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruimiao Ma
- Guangzhou Laboratory, Guangzhou, 510700, Guangdong, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenjun Yang
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China.
| | - Ping Hu
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China. .,Guangzhou Laboratory, Guangzhou, 510700, Guangdong, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
38
|
Yang F, Ao X, Ding L, Ye L, Zhang X, Yang L, Zhao Z, Wang J. Non-coding RNAs in Kawasaki disease: Molecular mechanisms and clinical implications. Bioessays 2022; 44:e2100256. [PMID: 35355301 DOI: 10.1002/bies.202100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022]
Abstract
Kawasaki disease (KD) is an acute self-limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high-throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been identified to involved in KD. However, the role of ncRNAs in KD has not been comprehensively elucidated. Therefore, it is significative to study the regulatory role of ncRNA in KD, which might help to uncover new and effective therapeutic strategies for KD. In this review, we summarize recent studies on ncRNA in KD from the perspectives of immune disorders, inflammatory disorders, and endothelial dysfunction, and highlight the potential of ncRNAs as therapeutic targets for KD.
Collapse
Affiliation(s)
- Fuqing Yang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Ding
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Ye
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lanting Yang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Zhonghao Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Costa R, Rodia MT, Pacilio S, Angelini C, Cenacchi G. LGMD D2 TNPO3-Related: From Clinical Spectrum to Pathogenetic Mechanism. Front Neurol 2022; 13:840683. [PMID: 35309568 PMCID: PMC8931187 DOI: 10.3389/fneur.2022.840683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are clinically and genetically heterogeneous diseases presenting with a wide clinical spectrum. Autosomal dominant LGMDs represent about 10–15% of LGMDs and include disorders due to defects of DNAJB6, transportin-3 (TNPO3), HNRNPDL, Calpain-3 (CAPN3), and Bethlem myopathy. This review article aims to describe the clinical spectrum of LGMD D2 TNPO3-related, a rare disease due to heterozygous mutation in the TNPO3 gene. TNPO3 encodes for transportin-3, which belongs to the importin beta family and transports into the nucleus serine/arginine-rich (SR) proteins, such as splicing factors, and HIV-1 proteins, thus contributing to viral infection. The purpose of this review is to present and compare the clinical features and the genetic and histopathological findings described in LGMD D2, performing a comparative analytical description of all the families and sporadic cases identified. Even if the causative gene and mutations of this disease have been identified, the pathogenic mechanisms are still an open issue; therefore, we will present an overview of the hypotheses that explain the pathology of LGMD D2 TNPO3-related.
Collapse
Affiliation(s)
- Roberta Costa
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Teresa Rodia
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serafina Pacilio
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Corrado Angelini
- Laboratory for Neuromuscular Diseases, Campus Pietro d'Abano, University of Padova, Padova, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
- *Correspondence: Giovanna Cenacchi
| |
Collapse
|
40
|
Role of MicroRNAs and Long Non-Coding RNAs in Sarcopenia. Cells 2022; 11:cells11020187. [PMID: 35053303 PMCID: PMC8773898 DOI: 10.3390/cells11020187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is an age-related pathological process characterized by loss of muscle mass and function, which consequently affects the quality of life of the elderly. There is growing evidence that non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a key role in skeletal muscle physiology. Alterations in the expression levels of miRNAs and lncRNAs contribute to muscle atrophy and sarcopenia by regulating various signaling pathways. This review summarizes the recent findings regarding non-coding RNAs associated with sarcopenia and provides an overview of sarcopenia pathogenesis promoted by multiple non-coding RNA-mediated signaling pathways. In addition, we discuss the impact of exercise on the expression patterns of non-coding RNAs involved in sarcopenia. Identifying non-coding RNAs associated with sarcopenia and understanding the molecular mechanisms that regulate skeletal muscle dysfunction during aging will provide new insights to develop potential treatment strategies.
Collapse
|
41
|
Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021; 10:cells10102512. [PMID: 34685492 PMCID: PMC8533951 DOI: 10.3390/cells10102512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- COVID-19
- Homeostasis
- Humans
- Mice
- MicroRNAs/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/virology
- Myocardium/metabolism
- Origin of Life
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Untranslated/genetics
- RNA, Viral/metabolism
- Regeneration
- SARS-CoV-2/genetics
Collapse
Affiliation(s)
- Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Fabio Desideri
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Center for Life Nano & Neuro-Science of Instituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Correspondence:
| |
Collapse
|
42
|
Koscianska E, Kozlowska E, Fiszer A. Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies. Int J Mol Sci 2021; 22:6089. [PMID: 34200099 PMCID: PMC8201210 DOI: 10.3390/ijms22116089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been reported to be implicated in cell fate determination and various human diseases. All ncRNA molecules are emerging as key regulators of diverse cellular processes; however, little is known about the regulatory interaction among these various classes of RNAs. It has been proposed that the large-scale regulatory network across the whole transcriptome is mediated by competing endogenous RNA (ceRNA) activity attributed to both protein-coding and ncRNAs. ceRNAs are considered to be natural sponges of miRNAs that can influence the expression and availability of multiple miRNAs and, consequently, the global mRNA and protein levels. In this review, we summarize the current understanding of the role of ncRNAs in two neuromuscular diseases, myotonic dystrophy type 1 and 2 (DM1 and DM2), and the involvement of expanded CUG and CCUG repeat-containing transcripts in miRNA-mediated RNA crosstalk. More specifically, we discuss the possibility that long repeat tracts present in mutant transcripts can be potent miRNA sponges and may affect ceRNA crosstalk in these diseases. Moreover, we highlight practical information related to innovative disease modelling and studying RNA regulatory networks in cells. Extending knowledge of gene regulation by ncRNAs, and of complex regulatory ceRNA networks in DM1 and DM2, will help to address many questions pertinent to pathogenesis and treatment of these disorders; it may also help to better understand general rules of gene expression and to discover new rules of gene control.
Collapse
Affiliation(s)
- Edyta Koscianska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (E.K.); (A.F.)
| | | | | |
Collapse
|
43
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
44
|
Li M, Zhang N, Zhang W, Hei W, Cai C, Yang Y, Lu C, Gao P, Guo X, Cao G, Li B. Comprehensive analysis of differentially expressed circRNAs and ceRNA regulatory network in porcine skeletal muscle. BMC Genomics 2021; 22:320. [PMID: 33932987 PMCID: PMC8088698 DOI: 10.1186/s12864-021-07645-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA), a novel class of non-coding RNA, has a closed-loop structure with important functions in skeletal muscle growth. The purpose of this study was to investigate the role of differentially expressed circRNAs (DEcircRNAs), as well as the DEcircRNA-miRNA-mRNA regulatory network, at different stages of porcine skeletal muscle development. Here, we present a panoramic view of circRNA expression in porcine skeletal muscle from Large White and Mashen pigs at 1, 90, and 180 days of age. RESULTS We identified a total of 5819 circRNAs. DEcircRNA analysis at different stages showed 327 DEcircRNAs present in both breeds. DEcircRNA host genes were concentrated predominately in TGF-β, MAPK, FoxO, and other signaling pathways related to skeletal muscle growth and fat deposition. Further prediction showed that 128 DEcircRNAs could bind to 253 miRNAs, while miRNAs could target 945 mRNAs. The constructed ceRNA network plays a vital role in skeletal muscle growth and development, and fat deposition. Circ_0015885/miR-23b/SESN3 in the ceRNA network attracted our attention. miR-23b and SESN3 were found to participate in skeletal muscle growth regulation, also playing an important role in fat deposition. Using convergent and divergent primer amplification, RNase R digestion, and qRT-PCR, circ_0015885, an exonic circRNA derived from Homer Scaffold Protein 1 (HOMER1), was confirmed to be differentially expressed during skeletal muscle growth. In summary, circ_0015885 may further regulate SESN3 expression by interacting with miR-23b to function in skeletal muscle. CONCLUSIONS This study not only enriched the circRNA library in pigs, but also laid a solid foundation for the screening of key circRNAs during skeletal muscle growth and intramural fat deposition. In addition, circ_0015885/miR-23b/SESN3, a new network regulating skeletal muscle growth and fat deposition, was identified as important for increasing the growth rate of pigs and improving meat quality.
Collapse
Affiliation(s)
- Meng Li
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Na Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Wei Hei
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
45
|
The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD. Biomedicines 2021; 9:biomedicines9020219. [PMID: 33672764 PMCID: PMC7924625 DOI: 10.3390/biomedicines9020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
In skeletal muscle, long noncoding RNAs (lncRNAs) are involved in dystrophin protein stabilization but also in the regulation of myocytes proliferation and differentiation. Hence, they could represent promising therapeutic targets and/or biomarkers for Duchenne and Becker muscular dystrophy (DMD/BMD). DMD and BMD are X-linked myopathies characterized by a progressive muscular dystrophy with or without dilatative cardiomyopathy. Two-thirds of DMD gene mutations are represented by deletions, and 63% of patients carrying DMD deletions are eligible for 45 to 55 multi-exons skipping (MES), becoming BMD patients (BMDΔ45-55). We analyzed the genomic lncRNA presence in 38 BMDΔ45-55 patients and characterized the lncRNA localized in introns 44 and 55 of the DMD gene. We highlighted that all four lncRNA are differentially expressed during myogenesis in immortalized and primary human myoblasts. In addition, the lncRNA44s2 was pointed out as a possible accelerator of differentiation. Interestingly, lncRNA44s expression was associated with a favorable clinical phenotype. These findings suggest that lncRNA44s2 could be involved in muscle differentiation process and become a potential disease progression biomarker. Based on these results, we support MES45-55 therapy and propose that the design of the CRISPR/Cas9 MES45-55 assay consider the lncRNA sequences bordering the exonic 45 to 55 deletion.
Collapse
|
46
|
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021; 220:e202009045. [PMID: 33464299 PMCID: PMC7816648 DOI: 10.1083/jcb.202009045] [Citation(s) in RCA: 895] [Impact Index Per Article: 223.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Subcellular localization of RNAs has gained attention in recent years as a prevalent phenomenon that influences numerous cellular processes. This is also evident for the large and relatively novel class of long noncoding RNAs (lncRNAs). Because lncRNAs are defined as RNA transcripts >200 nucleotides that do not encode protein, they are themselves the functional units, making their subcellular localization critical to their function. The discovery of tens of thousands of lncRNAs and the cumulative evidence involving them in almost every cellular activity render assessment of their subcellular localization essential to fully understanding their biology. In this review, we summarize current knowledge of lncRNA subcellular localization, factors controlling their localization, emerging themes, including the role of lncRNA isoforms and the involvement of lncRNAs in phase separation bodies, and the implications of lncRNA localization on their function and on cellular behavior. We also discuss gaps in the current knowledge as well as opportunities that these provide for novel avenues of investigation.
Collapse
Affiliation(s)
| | | | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
47
|
Costa R, Rodia MT, Zini N, Pegoraro V, Marozzo R, Capanni C, Angelini C, Lattanzi G, Santi S, Cenacchi G. Morphological study of TNPO3 and SRSF1 interaction during myogenesis by combining confocal, structured illumination and electron microscopy analysis. Mol Cell Biochem 2021; 476:1797-1811. [PMID: 33452620 PMCID: PMC7940345 DOI: 10.1007/s11010-020-04023-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Transportin3 (TNPO3) shuttles the SR proteins from the cytoplasm to the nucleus. The SR family includes essential splicing factors, such as SRSF1, that influence alternative splicing, controlling protein diversity in muscle and satellite cell differentiation. Given the importance of alternative splicing in the myogenic process and in the maintenance of healthy muscle, alterations in the splicing mechanism might contribute to the development of muscle disorders. Combining confocal, structured illumination and electron microscopy, we investigated the expression of TNPO3 and SRSF1 during myogenesis, looking at nuclear and cytoplasmic compartments. We investigated TNPO3 and its interaction with SRSF1 and we observed that SRSF1 remained mainly localized in the nucleus, while TNPO3 decreased in the cytoplasm and was strongly clustered in the nuclei of differentiated myotubes. In conclusion, combining different imaging techniques led us to describe the behavior of TNPO3 and SRSF1 during myogenesis, showing that their dynamics follow the myogenic process and could influence the proteomic network necessary during myogenesis. The combination of different high-, super- and ultra-resolution imaging techniques led us to describe the behavior of TNPO3 and its interaction with SRSF1, looking at nuclear and cytoplasmic compartments. These observations represent a first step in understanding the role of TNPO3 and SRFSF1 in complex mechanisms, such as myogenesis.
Collapse
Affiliation(s)
- Roberta Costa
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy.,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Teresa Rodia
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy.,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Valentina Pegoraro
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Roberta Marozzo
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Cristina Capanni
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Corrado Angelini
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Giovanna Lattanzi
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Spartaco Santi
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy. .,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
48
|
Yang JH, Chang MW, Pandey PR, Tsitsipatis D, Yang X, Martindale JL, Munk R, De S, Abdelmohsen K, Gorospe M. Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression. Nucleic Acids Res 2021; 48:12943-12956. [PMID: 33270893 DOI: 10.1093/nar/gkaa1151] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Long noncoding (lnc)RNAs potently regulate gene expression programs in physiology and disease. Here, we describe a key function for lncRNA OIP5-AS1 in myogenesis, the process whereby myoblasts differentiate into myotubes during muscle development and muscle regeneration after injury. In human myoblasts, OIP5-AS1 levels increased robustly early in myogenesis, and its loss attenuated myogenic differentiation and potently reduced the levels of the myogenic transcription factor MEF2C. This effect relied upon the partial complementarity of OIP5-AS1 with MEF2C mRNA and the presence of HuR, an RNA-binding protein (RBP) with affinity for both transcripts. Remarkably, HuR binding to MEF2C mRNA, which stabilized MEF2C mRNA and increased MEF2C abundance, was lost after OIP5-AS1 silencing, suggesting that OIP5-AS1 might serve as a scaffold to enhance HuR binding to MEF2C mRNA, in turn increasing MEF2C production. These results highlight a mechanism whereby a lncRNA promotes myogenesis by enhancing the interaction of an RBP and a myogenic mRNA.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
49
|
Cipriano A, Macino M, Buonaiuto G, Santini T, Biferali B, Peruzzi G, Colantoni A, Mozzetta C, Ballarino M. Epigenetic regulation of Wnt7b expression by the cis-acting long noncoding RNA Lnc-Rewind in muscle stem cells. eLife 2021; 10:54782. [PMID: 33432928 PMCID: PMC7837680 DOI: 10.7554/elife.54782] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle possesses an outstanding capacity to regenerate upon injury due to the adult muscle stem cell (MuSC) activity. This ability requires the proper balance between MuSC expansion and differentiation, which is critical for muscle homeostasis and contributes, if deregulated, to muscle diseases. Here, we functionally characterize a novel chromatin-associated long noncoding RNA (lncRNA), Lnc-Rewind, which is expressed in murine MuSCs and conserved in human. We find that, in mouse, Lnc-Rewind acts as an epigenetic regulator of MuSC proliferation and expansion by influencing the expression of skeletal muscle genes and several components of the WNT (Wingless-INT) signalling pathway. Among them, we identified the nearby Wnt7b gene as a direct Lnc-Rewind target. We show that Lnc-Rewind interacts with the G9a histone lysine methyltransferase and mediates the in cis repression of Wnt7b by H3K9me2 deposition. Overall, these findings provide novel insights into the epigenetic regulation of adult muscle stem cells fate by lncRNAs.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Martina Macino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) at Sapienza University of Rome, Rome, Italy
| | - Giulia Buonaiuto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Beatrice Biferali
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) at Sapienza University of Rome, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) at Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
50
|
Visualization of Nuclear and Cytoplasmic Long Noncoding RNAs at Single-Cell Level by RNA-FISH. Methods Mol Biol 2021; 2157:251-280. [PMID: 32820409 DOI: 10.1007/978-1-0716-0664-3_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The RNA fluorescence in situ hybridization (RNA-FISH) methodology offers an attractive strategy to deepen our knowledge on the long noncoding RNA biology. In this chapter, we provide a comprehensive overview of the current RNA-FISH protocols available for imaging nuclear and cytoplasmic lncRNAs within cells or tissues. We describe a multicolor approach optimized for the simultaneous visualization of these transcripts with their specific molecular interactors, such as proteins or DNA sequences. Common challenges faced by this methodology such as cell-type specific permeabilization, target accessibility, image acquisition, and post-acquisition analyses are also discussed.
Collapse
|