1
|
Molinari P, Cravedi P. What makes the kidney so tolerant? J Clin Invest 2024; 134:e183501. [PMID: 39145458 PMCID: PMC11324287 DOI: 10.1172/jci183501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Various organ allografts differ in their propensity to be spontaneously accepted without any immunosuppressive treatment. Understanding the mechanisms behind these differences can aid in managing alloimmune responses in general. C57BL/6 mice naturally accept DBA/2J kidney allografts, forming tertiary lymphoid organs containing regulatory T cells (rTLOs), crucial for graft acceptance. In this issue of the JCI, Yokose and colleagues revealed that rTLOs promote conversion of cytotoxic alloreactive CD8+ T cells into exhausted/regulatory ones, through an IFN-γ-mediated mechanism. Their study provides insights into tolerance development that could help promote the acceptance of grafts at higher risk of rejection.
Collapse
Affiliation(s)
- Paolo Molinari
- Translational Transplant Research Center (TTRC), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Paolo Cravedi
- Translational Transplant Research Center (TTRC), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Lan X, Zhang J, Ren S, Wang H, Shao B, Qin Y, Qin H, Sun C, Zhu Y, Li G, Wang H. Oxymatrine combined with rapamycin to attenuate acute cardiac allograft rejection. Heliyon 2024; 10:e29448. [PMID: 38655317 PMCID: PMC11036008 DOI: 10.1016/j.heliyon.2024.e29448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Background and aim Solid organ transplantation remains a life-saving therapeutic option for patients with end-stage organ dysfunction. Acute cellular rejection (ACR), dominated by dendritic cells (DCs) and CD4+ T cells, is a major cause of post-transplant mortality. Inhibiting DC maturation and directing the differentiation of CD4+ T cells toward immunosuppression are keys to inhibiting ACR. We propose that oxymatrine (OMT), a quinolizidine alkaloid, either alone or in combination with rapamycin (RAPA), attenuates ACR by inhibiting the mTOR-HIF-1α pathway. Methods Graft damage was assessed using haematoxylin and eosin staining. Intragraft CD11c+ and CD4+ cell infiltrations were detected using immunohistochemical staining. The proportions of mature DCs, T helper (Th) 1, Th17, and Treg cells in the spleen; donor-specific antibody (DSA) secretion in the serum; mTOR-HIF-1α expression in the grafts; and CD4+ cells and bone marrow-derived DCs (BMDCs) were evaluated using flow cytometry. Results OMT, either alone or in combination with RAPA, significantly alleviated pathological damage; decreased CD4+ and CD11c+ cell infiltration in cardiac allografts; reduced the proportion of mature DCs, Th1 and Th17 cells; increased the proportion of Tregs in recipient spleens; downregulated DSA production; and inhibited mTOR and HIF-1α expression in the grafts. OMT suppresses mTOR and HIF-1α expression in BMDCs and CD4+ T cells in vitro. Conclusions Our study suggests that OMT-based therapy can significantly attenuate acute cardiac allograft rejection by inhibiting DC maturation and CD4+ T cell responses. This process may be related to the inhibition of the mTOR-HIF-1α signaling pathway by OMT.
Collapse
Affiliation(s)
- Xu Lan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| |
Collapse
|
3
|
Stucchi A, Maspes F, Montee-Rodrigues E, Fousteri G. Engineered Treg cells: The heir to the throne of immunotherapy. J Autoimmun 2024; 144:102986. [PMID: 36639301 DOI: 10.1016/j.jaut.2022.102986] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.
Collapse
Affiliation(s)
- Adriana Stucchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Maspes
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ely Montee-Rodrigues
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Cambridge Epigenetix, Cambridge, Cambridgeshire, United Kingdom
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
4
|
Jiang S, Su H. Exploration of the shared gene signatures and biological mechanisms between ischemia-reperfusion injury and antibody-mediated rejection in renal transplantation. Transpl Immunol 2024; 83:102001. [PMID: 38266883 DOI: 10.1016/j.trim.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) plays a crucial role in graft loss during allogeneic renal transplantation. In renal transplantation, ischemia-reperfusion injury (IRI) is unavoidable, serves as a major contributor to acute rejection, and is linked to graft loss. However, the mechanisms underlying IRI and ABMR are unclear. Therefore, this study aimed to investigate the shared genetic characteristics and biological mechanisms between IRI and ABMR. METHODS Gene expressions for IRI (GSE43974) and ABMR (GSE129166 and GSE36059) were retrieved from the Gene Expression Omnibus database. The shared differentially expressed genes (DEGs) of IRI and ABMR were identified, and subsequent functional enrichment analysis was performed. Immune cell infiltration in ABMR and its relationship with the shared DEGs were investigated using the CIBERSORT method. Random forest analysis, a protein-protein interaction network, and Cytoscape were used to screen hub genes, which were subsequently subjected to gene set enrichment analysis, miRNA prediction, and transcription factors analysis. The survival analysis was performed through Kaplan-Meier curves. Finally, drug compound prediction was performed on the shared DEGs using the Drug Signature Database. RESULTS Overall, 27 shared DEGs were identified between the renal IRI and ABMR groups. Among these, 24 genes exhibited increased co-expression, whereas none showed decreased co-expression. The shared DEGs were primarily enriched in the inflammation signaling pathways. Notably, CD4 memory T cells were identified as potential critical mediators of IRI, leading to ABMR. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), interferon regulatory factor 1 (IRF1), and early growth response 2 (EGR2) were identified as key components in the potential mechanism that link IRI and ABMR. Patients undergoing renal transplantation with higher expression levels of TNFAIP3, IRF1, and EGR2 exhibited decreased survival rates compared to those with lower expression levels. CONCLUSION Inflammation is a key mechanism that links IRI and ABMR, with a potential role played by CD4 memory T cells. Furthermore, TNFAIP3, IRF1, and EGR2 are implicated in the underlying mechanism between IRI and ABMR.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Tang Y, Li L. The Application of Nanovaccines in Autoimmune Diseases. Int J Nanomedicine 2024; 19:367-388. [PMID: 38229706 PMCID: PMC10790641 DOI: 10.2147/ijn.s440612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Autoimmune diseases are diseases caused by the body's chronic immune responses to self-antigens and attacks on the host's own cells, tissues and organs. The dysfunction of innate immunity and adaptive immunity leads to the destruction of autoimmune tolerance, which is the most basic factor leading to pathogenesis. The optimal strategy for autoimmune diseases is to modify the host immune system to restore tolerance. The ideal effect of therapeutic autoimmune diseases is to eliminate the autoantigen-specific spontaneous immune response without interfering with the immune response against other antigens. Therapeutic nanovaccines that produce immune tolerance conform to this principle. Nanomaterials provide a platform for antigen loading and modification due to their unique physical and chemical properties. Nanovaccines based on nanomaterial technology can simultaneously enable antigens and adjuvants to be absorbed by immune cells and induce rapid and durable immunity. Nanovaccines have the advantages of being able to be designed and loaded and of better protecting antigens from premature degradation. Nanovaccines also have the ability to target specific tissues or cells through optimized design. We review the latest research progress of nanovaccines for autoimmune diseases and the design strategies of nanovaccines to promote the development of more effective nanovaccines for autoimmune diseases.
Collapse
Affiliation(s)
- Yuhong Tang
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| |
Collapse
|
7
|
Sasaki K, Kubo M, Wang YC, Lu L, Vujevich V, Wood-Trageser MA, Golnoski K, Lesniak A, Gunabushanam V, Ganoza A, Wijkstrom MJ, Humar A, Demetris AJ, Thomson AW, Ezzelarab MB. Multiple infusions of ex vivo-expanded regulatory T cells promote CD163 + myeloid cells and kidney allograft survival in non-lymphodepleted non-human primates. Kidney Int 2024; 105:84-98. [PMID: 37839695 DOI: 10.1016/j.kint.2023.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Clinical verification of adoptively transferred regulatory T cell (Treg) efficacy in transplantation remains challenging. Here, we examined the influence of autologous ex vivo-expanded polyclonal Tregs on kidney graft survival in a clinically relevant non-human primate model. Peripheral blood Tregs were isolated and expanded using artificial antigen presenting cells. Immunosuppression was comprised of tapered tacrolimus and CTLA4 immunoglobulin, in five animals each without or with Treg infusions. Escalating Treg doses were administered 6, 10, 13, 16, 20, 23, 27 and 30 days after transplant. Infused Tregs were monitored for Treg signature, anti-apoptotic (Bcl-2) and proliferation (Ki67) marker expression. Treg infusions prolonged median graft survival time significantly from 35 to 70 days. Treg marker (Ki67 and Bcl-2) expression by infused Tregs diminished after their infusion but remained comparable to that of circulating native Tregs. No major changes in circulating donor-reactive T cell responses or total Treg percentages, or in graft-infiltrating T cell subsets were observed with Treg infusion. However, Treg infusion was associated with significant increases in CD163 expression by circulating HLA-DR+ myeloid cells and elevated levels of circulating soluble CD163. Further, graft-infiltrating CD163+ cells were increased with Treg infusion. Thus, multiple Treg infusions were associated with M2-like myeloid cell enhancement that may mediate immunomodulatory, anti-inflammatory and graft reparative effects.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masahiko Kubo
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu-Chao Wang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Veronica Vujevich
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle A Wood-Trageser
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kayla Golnoski
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew Lesniak
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vikraman Gunabushanam
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Armando Ganoza
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin J Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abhinav Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J Demetris
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
9
|
Kinney SM, Ortaleza K, Won SY, Licht BJM, Sefton MV. Immunomodulation by subcutaneously injected methacrylic acid-based hydrogels and tolerogenic dendritic cells in a mouse model of autoimmune diabetes. Biomaterials 2023; 301:122265. [PMID: 37586232 DOI: 10.1016/j.biomaterials.2023.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Type 1 diabetes is an autoimmune disease associated with the destruction of insulin-producing β cells. Immunotherapies are being developed to mitigate autoimmune diabetes. One promising option is the delivery of tolerogenic dendritic cells (DCs) primed with specific β-cell-associated autoantigens. These DCs can combat autoreactive cells and promote expansion of β-cell-specific regulatory immune cells, including Tregs. Tolerogenic DCs are typically injected systemically (or near target lymph nodes) in suspension, precluding control over the microenvironment surrounding tolerogenic DC interactions with the host. In this study we show that degradable, synthetic methacrylic acid (MAA)-based hydrogels are an inherently immunomodulating delivery vehicle that enhances tolerogenic DC therapy in the context of autoimmune diabetes. MAA hydrogels were found to affect the local recruitment and activation state of macrophages, DCs, T cells and other cells. Delivering tolerogenic DCs in the MAA hydrogel improved the local host response (e.g., fewer cytotoxic T cells) and enhanced peripheral Treg expansion. Non obese diabetic (NOD) mice treated with tolerogenic DCs subcutaneously injected in MAA hydrogels showed a delay in onset of autoimmune diabetes compared to control vehicles. Our findings further demonstrate the usefulness of MAA-based hydrogels as platforms for regenerative medicine in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Sean M Kinney
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Krystal Ortaleza
- Institute of Biomedical Engineering, University of Toronto, Canada
| | - So-Yoon Won
- Institute of Biomedical Engineering, University of Toronto, Canada
| | | | - Michael V Sefton
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
10
|
Khan MA, Lau CL, Krupnick AS. Monitoring regulatory T cells as a prognostic marker in lung transplantation. Front Immunol 2023; 14:1235889. [PMID: 37818354 PMCID: PMC10561299 DOI: 10.3389/fimmu.2023.1235889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Lung transplantation is the major surgical procedure, which restores normal lung functioning and provides years of life for patients suffering from major lung diseases. Lung transplant recipients are at high risk of primary graft dysfunction, and chronic lung allograft dysfunction (CLAD) in the form of bronchiolitis obliterative syndrome (BOS). Regulatory T cell (Treg) suppresses effector cells and clinical studies have demonstrated that Treg levels are altered in transplanted lung during BOS progression as compared to normal lung. Here, we discuss levels of Tregs/FOXP3 gene expression as a crucial prognostic biomarker of lung functions during CLAD progression in clinical lung transplant recipients. The review will also discuss Treg mediated immune tolerance, tissue repair, and therapeutic strategies for achieving in-vivo Treg expansion, which will be a potential therapeutic option to reduce inflammation-mediated graft injuries, taper the toxic side effects of ongoing immunosuppressants, and improve lung transplant survival rates.
Collapse
|
11
|
Schaier M, Morath C, Wang L, Kleist C, Opelz G, Tran TH, Scherer S, Pham L, Ekpoom N, Süsal C, Ponath G, Kälble F, Speer C, Benning L, Nusshag C, Mahler CF, Pego da Silva L, Sommerer C, Hückelhoven-Krauss A, Czock D, Mehrabi A, Schwab C, Waldherr R, Schnitzler P, Merle U, Schwenger V, Krautter M, Kemmner S, Fischereder M, Stangl M, Hauser IA, Kälsch AI, Krämer BK, Böhmig GA, Müller-Tidow C, Reiser J, Zeier M, Schmitt M, Terness P, Schmitt A, Daniel V. Five-year follow-up of a phase I trial of donor-derived modified immune cell infusion in kidney transplantation. Front Immunol 2023; 14:1089664. [PMID: 37483623 PMCID: PMC10361653 DOI: 10.3389/fimmu.2023.1089664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background The administration of modified immune cells (MIC) before kidney transplantation led to specific immunosuppression against the allogeneic donor and a significant increase in regulatory B lymphocytes. We wondered how this approach affected the continued clinical course of these patients. Methods Ten patients from a phase I clinical trial who had received MIC infusions prior to kidney transplantation were retrospectively compared to 15 matched standard-risk recipients. Follow-up was until year five after surgery. Results The 10 MIC patients had an excellent clinical course with stable kidney graft function, no donor-specific human leukocyte antigen antibodies (DSA) or acute rejections, and no opportunistic infections. In comparison, a retrospectively matched control group receiving standard immunosuppressive therapy had a higher frequency of DSA (log rank P = 0.046) and more opportunistic infections (log rank P = 0.033). Importantly, MIC patients, and in particular the four patients who had received the highest cell number 7 days before surgery and received low immunosuppression during follow-up, continued to show a lack of anti-donor T lymphocyte reactivity in vitro and high CD19+CD24hiCD38hi transitional and CD19+CD24hiCD27+ memory B lymphocytes until year five after surgery. Conclusions MIC infusions together with reduced conventional immunosuppression were associated with good graft function during five years of follow-up, no de novo DSA development and no opportunistic infections. In the future, MIC infusions might contribute to graft protection while reducing the side effects of immunosuppressive therapy. However, this approach needs further validation in direct comparison with prospective controls. Trial registration https://clinicaltrials.gov/, identifier NCT02560220 (for the TOL-1 Study). EudraCT Number: 2014-002086-30.
Collapse
Affiliation(s)
- Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
- TolerogenixX GmbH, Heidelberg, ;Germany
| | - Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
- TolerogenixX GmbH, Heidelberg, ;Germany
- German Center for Infection Research, German Center for Infection Research (DZIF), Thematic Translational Unit (TTU)-Infections of the Immunocompromised Host (IICH), Partner Site Heidelberg, Heidelberg, ;Germany
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, ;Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Christian Kleist
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Gerhard Opelz
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Thuong Hien Tran
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Sabine Scherer
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Lien Pham
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Naruemol Ekpoom
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
- Transplant Immunology Research Center of Excellence, Koç University, Istanbul, ;Türkiye
| | - Gerald Ponath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
- TolerogenixX GmbH, Heidelberg, ;Germany
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Christoph F. Mahler
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
- German Center for Infection Research, German Center for Infection Research (DZIF), Thematic Translational Unit (TTU)-Infections of the Immunocompromised Host (IICH), Partner Site Heidelberg, Heidelberg, ;Germany
| | - Angela Hückelhoven-Krauss
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Rüdiger Waldherr
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Paul Schnitzler
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Uta Merle
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Vedat Schwenger
- Department of Nephrology, Klinikum der Landeshauptstadt Stuttgart, Stuttgart, ;Germany
| | - Markus Krautter
- Department of Nephrology, Klinikum der Landeshauptstadt Stuttgart, Stuttgart, ;Germany
| | - Stephan Kemmner
- Transplant Center, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, ;Germany
| | - Michael Fischereder
- Division of Nephrology, Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München (LMU), Munich, ;Germany
| | - Manfred Stangl
- Department of General, Visceral, and Transplant Surgery, University Hospital Munich, Ludwig-Maximilians-Universität München (LMU), Munich, ;Germany
| | - Ingeborg A. Hauser
- Medical Clinic III, Department of Nephrology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, ;Germany
| | - Anna-Isabelle Kälsch
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, ;Germany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, ;Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, ;Austria
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, IL, ;United States
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Peter Terness
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, ;Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Volker Daniel
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| |
Collapse
|
12
|
Research advances on targeted-Treg therapies on immune-mediated kidney diseases. Autoimmun Rev 2023; 22:103257. [PMID: 36563769 DOI: 10.1016/j.autrev.2022.103257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The primary function of regulatory T cells (Tregs) is blocking the pathogenic immunological response mediated by autoreactive cells, establishing and maintaining immune homeostasis in tissues. Kidney diseases are often caused by Immune imbalance, including alloimmune graft damage after renal transplantation, direct immune-mediated kidney diseases like membranous nephropathy (MN) and anti-glomerular basement membrane (anti-GBM) glomerulonephritis, as well as indirect immune-mediated ones like Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAVs), IgA nephropathy (IgAN) and lupus nephritis (LN). Treg cells are deficient numerically and/or functionally in those kidney diseases. Targeted-Treg therapies, including adoptive Tregs transfer therapy and low-dose IL-2 therapy, have begun to thrive in treating autoimmune diseases in recent years. However, the clinical use of targeted Treg-therapies is rarely mentioned in those kidney diseases above except for kidney transplantation. This article mainly discusses the newest progressions of targeted-Treg therapies in those specific examples of immune-mediated kidney diseases. Meanwhile, we also reviewed the main factors that affect Treg development and differentiation, hoping to inspire new strategies to develop target Tregs-therapies. Lastly, we emphasize the significant impediments and prospects to the clinical translation of target-Treg therapy. We advocate for more preclinical and clinical studies on target Tregs-therapies to decipher Tregs in those diseases.
Collapse
|
13
|
Morath C, Schaier M, Ibrahim E, Wang L, Kleist C, Opelz G, Süsal C, Ponath G, Aly M, Alvarez CM, Kälble F, Speer C, Benning L, Nusshag C, Pego da Silva L, Sommerer C, Hückelhoven-Krauss A, Czock D, Mehrabi A, Schwab C, Waldherr R, Schnitzler P, Merle U, Tran TH, Scherer S, Böhmig GA, Müller-Tidow C, Reiser J, Zeier M, Schmitt M, Terness P, Schmitt A, Daniel V. Induction of Long-Lasting Regulatory B Lymphocytes by Modified Immune Cells in Kidney Transplant Recipients. J Am Soc Nephrol 2023; 34:160-174. [PMID: 36137752 PMCID: PMC10101591 DOI: 10.1681/asn.2022020210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We recently demonstrated that donor-derived modified immune cells (MICs)-PBMCs that acquire immunosuppressive properties after a brief treatment-induced specific immunosuppression against the allogeneic donor when administered before kidney transplantation. We found up to a 68-fold increase in CD19 + CD24 hi CD38 hi transitional B lymphocytes compared with transplanted controls. METHODS Ten patients from a phase 1 clinical trial who had received MIC infusions before kidney transplantation were followed to post-transplant day 1080. RESULTS Patients treated with MICs had a favorable clinical course, showing no donor-specific human leukocyte antigen antibodies or acute rejections. The four patients who had received the highest dose of MICs 7 days before surgery and were on reduced immunosuppressive therapy showed an absence of in vitro lymphocyte reactivity against stimulatory donor blood cells, whereas reactivity against third party cells was preserved. In these patients, numbers of transitional B lymphocytes were 75-fold and seven-fold higher than in 12 long-term survivors on minimal immunosuppression and four operationally tolerant patients, respectively ( P <0.001 for both). In addition, we found significantly higher numbers of other regulatory B lymphocyte subsets and a gene expression signature suggestive of operational tolerance in three of four patients. In MIC-treated patients, in vitro lymphocyte reactivity against donor blood cells was restored after B lymphocyte depletion, suggesting a direct pathophysiologic role of regulatory B lymphocytes in donor-specific unresponsiveness. CONCLUSIONS These results indicate that donor-specific immunosuppression after MIC infusion is long-lasting and associated with a striking increase in regulatory B lymphocytes. Donor-derived MICs appear to be an immunoregulatory cell population that when administered to recipients before transplantation, may exert a beneficial effect on kidney transplants. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER MIC Cell Therapy for Individualized Immunosuppression in Living Donor Kidney Transplant Recipients (TOL-1), NCT02560220.
Collapse
Affiliation(s)
- Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Eman Ibrahim
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Kleist
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Opelz
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University, Istanbul, Turkey
| | - Gerald Ponath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Mostafa Aly
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Cristiam M. Alvarez
- Cellular Immunology and Immunogenetics Group, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Waldherr
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul Schnitzler
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uta Merle
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thuong Hien Tran
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Scherer
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, Illinois
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schmitt
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Terness
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
van der Elst G, Varol H, Hermans M, Baan CC, Duong-van Huyen JP, Hesselink DA, Kramann R, Rabant M, Reinders MEJ, von der Thüsen JH, van den Bosch TPP, Clahsen-van Groningen MC. The mast cell: A Janus in kidney transplants. Front Immunol 2023; 14:1122409. [PMID: 36891297 PMCID: PMC9986315 DOI: 10.3389/fimmu.2023.1122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Mast cells (MCs) are innate immune cells with a versatile set of functionalities, enabling them to orchestrate immune responses in various ways. Aside from their known role in allergy, they also partake in both allograft tolerance and rejection through interaction with regulatory T cells, effector T cells, B cells and degranulation of cytokines and other mediators. MC mediators have both pro- and anti-inflammatory actions, but overall lean towards pro-fibrotic pathways. Paradoxically, they are also seen as having potential protective effects in tissue remodeling post-injury. This manuscript elaborates on current knowledge of the functional diversity of mast cells in kidney transplants, combining theory and practice into a MC model stipulating both protective and harmful capabilities in the kidney transplant setting.
Collapse
Affiliation(s)
- G van der Elst
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - H Varol
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - M Hermans
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - C C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - D A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - R Kramann
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - M Rabant
- Department of Pathology, Necker Hospital, APHP, Paris, France
| | - M E J Reinders
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - T P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - M C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Hirai T, Lin PY, Ramos TL, Simonetta F, Su LL, Picton LK, Baker J, Lohmeyer JK, Garcia KC, Negrin RS. IL-2 receptor engineering enhances regulatory T cell function suppressed by calcineurin inhibitor. Am J Transplant 2022; 22:3061-3068. [PMID: 36031344 PMCID: PMC10184573 DOI: 10.1111/ajt.17181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023]
Abstract
Clinical trials utilizing regulatory T cell (Treg) therapy in organ transplantation have shown promising results, however, the choice of a standard immunosuppressive regimen is still controversial. Calcineurin inhibitors (CNIs) are one of the most common immunosuppressants for organ transplantation, although they may negatively affect Tregs by inhibiting IL-2 production by conventional T cells. As a strategy to replace IL-2 signaling selectively in Tregs, we have introduced an engineered orthogonal IL-2 (ortho IL-2) cytokine/cytokine receptor (R) pair that specifically binds with each other but does not bind with their wild-type counterparts. Murine Tregs were isolated from recipients and retrovirally transduced with ortho IL-2Rβ during ex vivo expansion. Transduced Tregs (ortho Tregs) were transferred into recipient mice in a mixed hematopoietic chimerism model with tacrolimus administration. Ortho IL-2 treatment significantly increased the ortho IL-2Rβ(+) Treg population in the presence of tacrolimus without stimulating other T cell subsets. All the mice treated with tacrolimus plus ortho IL-2 achieved heart allograft tolerance, even after tacrolimus cessation, whereas those receiving tacrolimus treatment alone did not. These data demonstrate that Treg therapy can be adopted into a CNI-based regimen by utilizing cytokine receptor engineering.
Collapse
Affiliation(s)
- Toshihito Hirai
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Teresa L. Ramos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Leon L. Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lora K. Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Lin J, Lv J, Yu S, Chen Y, Wang H, Chen J. Transcript Engineered Extracellular Vesicles Alleviate Alloreactive Dynamics in Renal Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202633. [PMID: 36073846 PMCID: PMC9631077 DOI: 10.1002/advs.202202633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Direct contact of membrane molecules and cytokine interactions orchestrate immune homeostasis. However, overcoming the threshold of distance and velocity barriers, and achieving adhesion mediated immune interaction remain difficult. Here, inspired by the natural chemotaxis of regulatory T cells, multifunctionalized FOXP3 genetic engineered extracellular vesicles, termed Foe-TEVs, are designed, which display with adhesive molecules, regulatory cytokines, and coinhibitory contact molecules involving CTLA-4 and PD-1, by limited exogenous gene transduction. Foe-TEVs effectively adhere to the tubular, endothelial, and glomerular regions of allogeneic injury in the renal allograft, mitigating cell death in situ and chronic fibrosis transition. Remarkably, transcript engineering reverses the tracking velocity of vesicles to a retained phenotype and enhanced arrest coefficient by a factor of 2.16, directly interacting and attenuating excessive allosensitization kinetics in adaptive lymphoid organs. In murine allogeneic transplantation, immune adhesive Foe-TEVs alleviate pathological responses, restore renal function with well ordered ultrastructure and improved glomerular filtration rate, and prolong the survival period of the recipient from 30.16 to 92.81 days, demonstrating that the delivery of extracellular vesicles, genetically engineered for immune adhesive, is a promising strategy for the treatment of graft rejection.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
- Zhejiang University‐University of Edinburgh InstituteSchool of MedicineZhejiang UniversityHangzhouZhejiang Province310003P. R. China
| | - Junhao Lv
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Shiping Yu
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Ying Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Huiping Wang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Jianghua Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| |
Collapse
|
17
|
Benallegue N, Nicol B, Lasselin J, Bézie S, Flippe L, Regue H, Vimond N, Remy S, Garcia A, Le Frère F, Anegon I, Laplaud D, Guillonneau C. Patients With Severe Multiple Sclerosis Exhibit Functionally Altered CD8 + Regulatory T Cells. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200016. [PMID: 36266052 PMCID: PMC9621606 DOI: 10.1212/nxi.0000000000200016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Studies of immune dysfunction in MS have mostly focused on CD4+ Tregs, but the role of CD8+ Tregs remains largely unexplored. We previously evidenced the suppressive properties of rat and human CD8+CD45RClow/neg Tregs from healthy individuals, expressing Forkhead box P3 (FOXP3) and acting through interferon-gamma (IFN-γ), transforming growth factor beta (TGFβ), and interleukin-34 (IL-34). secretions to regulate immune responses and control diseases such as transplant rejection. To better understand CD8+CD45RClow/neg Tregs contribution to MS pathology, we further investigated their phenotype, function, and transcriptome in patients with MS. METHODS We enrolled adults with relapsing-remitting MS and age-matched and sex-matched healthy volunteers (HVs). CD8+ T cells were segregated based on low or lack of expression of CD45RC. First, the frequency in CSF and blood, phenotype, transcriptome, and function of CD8+CD45RClow and neg were investigated according to exacerbation status and secondarily, according to clinical severity based on the MS severity score (MSSS) in patients with nonexacerbating MS. We then induced active MOG35-55 EAE in C57Bl/6 mice and performed adoptive transfer of fresh and expanded CD8+CD45RCneg Tregs to assess their ability to mitigate neuroinflammation in vivo. RESULTS Thirty-one untreated patients with relapsing-remitting MS were compared with 40 age-matched and sex-matched HVs. We demonstrated no difference of CSF CD8+CD45RClow and CD8+CD45RCneg proportions, but blood CD8+CD45RClow frequency was lower in patients with MS exacerbation when compared with that in HVs. CD8+CD45RCneg Tregs but not CD8+CD45RClow showed higher suppressive capacities in vitro in MS patients with exacerbation than in patients without acute inflammatory attack. In vitro functional assays showed a compromised suppression capacity of CD8+CD45RClow Tregs in patients with nonexacerbating severe MS, defined by the MSSS. We then characterized murine CD8+CD45RCneg Tregs and demonstrated the potential of CD45RCneg cells to migrate to the CNS and mitigate experimental autoimmune encephalomyelitis in vivo. DISCUSSION Altogether, these results suggest a defect in the number and function of CD8+CD45RClow Tregs during MS relapse and an association of CD8+CD45RClow Tregs dysfunction with MS severity. Thus, CD8+CD45RClow/neg T cells might bring new insights into the pathophysiology and new therapeutic approaches of MS.
Collapse
Affiliation(s)
- Nail Benallegue
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Bryan Nicol
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Juliette Lasselin
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Severine Bézie
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Lea Flippe
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Hadrien Regue
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Nadege Vimond
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Severine Remy
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Alexandra Garcia
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Fabienne Le Frère
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Ignacio Anegon
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - David Laplaud
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Carole Guillonneau
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France.
| |
Collapse
|
18
|
Kang IH, Baliga UK, Chatterjee S, Chakraborty P, Choi S, Buchweitz N, Li H, Wu Y, Yao H, Mehrotra S, Mehrotra M. Quantitative increase in T regulatory cells enhances bone remodeling in osteogenesis imperfecta. iScience 2022; 25:104818. [PMID: 36034228 PMCID: PMC9400089 DOI: 10.1016/j.isci.2022.104818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023] Open
Abstract
Osteogenesis imperfecta (OI) is characterized by repeated bone fractures. Recent studies have shown that T lymphocytes and regulatory T cells (Tregs) regulate the functions of osteoclasts and osteoblasts, thus playing a role in bone turnover. We demonstrate an activated effector phenotype and higher secretion of pro-inflammatory cytokines, IFN-γ, and TNF-α in OI peripheral T cells as compared with wild-type (WT). Suppressive Tregs (spleen and thymus) were qualitatively similar, whereas there was a quantitative decrease in OI versus WT. Restoring Treg numbers by systemic transplantation in OI mice resulted in reduced T cell activation and effector cytokine secretion that correlated with significant improvements in tibial trabecular and cortical bone parameters and stiffness of femur, along with increased osteoblast mineralization and decreased osteoclast numbers. Therefore, Tregs can dampen the pro-inflammatory environment and enhance bone remodeling in OI mice. Thus, this study will be helpful in developing future autologous immunotherapy-based treatment modalities for OI.
Collapse
Affiliation(s)
- In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Uday K. Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Seungho Choi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan Buchweitz
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
| | - Hong Li
- Depatment of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yongren Wu
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
| | - Hai Yao
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Center for Oral Health Research, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
19
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
20
|
Andrade MS, Young JS, Pollard JM, Yin D, Alegre ML, Chong AS. Linked sensitization by memory CD4+ T cells prevents costimulation blockade–induced transplantation tolerance. JCI Insight 2022; 7:159205. [PMID: 35674134 PMCID: PMC9220839 DOI: 10.1172/jci.insight.159205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Dominant infectious tolerance explains how brief tolerance-inducing therapies result in lifelong tolerance to donor antigens and “linked” third-party antigens, while recipient sensitization and ensuing immunological memory prevent the successful induction of transplant tolerance. In this study, we juxtapose these 2 concepts to test whether mechanisms of dominant infectious tolerance can control a limited repertoire of memory T and B cells. We show that sensitization to a single donor antigen is sufficient to prevent stable transplant tolerance, rendering it unstable. Mechanistic studies revealed that recall antibody responses and memory CD8+ T cell expansion were initially controlled, but memory CD4+Foxp3– T cell (Tconv) responses were not. Remarkably, naive donor-specific Tconvs at tolerance induction also acquired a resistance to tolerance, proliferating and acquiring a phenotype similar to memory Tconvs. This phenomenon of “linked sensitization” underscores the challenges of reprogramming a primed immune response toward tolerance and identifies a potential therapeutic checkpoint for synergizing with costimulation blockade to achieve transplant tolerance in the clinic.
Collapse
|
21
|
Mittal SK, Cho W, Elbasiony E, Guan Y, Foulsham W, Chauhan SK. Mesenchymal stem cells augment regulatory T cell function via CD80-mediated interactions and promote allograft survival. Am J Transplant 2022; 22:1564-1577. [PMID: 35170213 PMCID: PMC11261724 DOI: 10.1111/ajt.17001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) and regulatory T cells (Tregs) both have been shown to modulate the alloimmune response and promote transplant survival. Mounting evidence suggests that MSCs augment Treg function, but the mechanisms underlying this phenomenon have not been fully deciphered. Here, we identified that MSCs express substantial levels of CD80 and evaluated its immunoregulatory function using in vivo and in vitro experiments. Our in vitro culture assays demonstrated that MSCs induce expression of FoxP3 in Tregs in a contact-dependent manner, and the blockade of CD80 abrogates this FoxP3 induction and Treg-mediated suppression of T cell proliferation. Moreover, supplementation of soluble CD80 significantly upregulated FoxP3 expression. Using a well-characterized murine model of corneal transplantation, we show that silencing CD80 in MSCs diminishes the capacity of MSCs to promote selective graft infiltration of Tregs, promote FoxP3 expression and upregulate suppressive function of Tregs. Consequently, MSCs, following CD80 knockdown, failed to promote corneal allograft survival.
Collapse
Affiliation(s)
- Sharad K Mittal
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - WonKyung Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Yilin Guan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - William Foulsham
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Sekiya T, Kasahara H, Takemura R, Fujita S, Kato J, Doki N, Katayama Y, Ozawa Y, Takada S, Eto T, Fukuda T, Ichinohe T, Takanashi M, Onizuka M, Atsuta Y, Okamoto S, Yoshimura A, Takaki S, Mori T. Essential Roles of the Transcription Factor NR4A1 in Regulatory T Cell Differentiation under the Influence of Immunosuppressants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2122-2130. [PMID: 35387841 DOI: 10.4049/jimmunol.2100808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Calcineurin inhibitors (CNIs), used as immunosuppressants, have revolutionized transplantation medicine with their strong suppressive activity on alloreactive T lymphocytes; however, they may also cause various adverse effects, including an increased risk for infection and nephrotoxicity. Regulatory T (Treg) cells can complement the deleterious side effects of CNIs with their effective Ag-specific suppressive activities. However, several studies have shown that CNIs suppress Treg cell differentiation. Therefore, an understanding of the mechanisms by which CNIs suppress Treg cell differentiation, as well as an approach for promoting the differentiation of Treg cells in the presence of CNIs, has significant clinical value. In this article, we report that the nuclear orphan receptor Nr4a1 plays a pivotal role in Treg cell differentiation in the presence of CNIs. Unlike that of its family members, Nr4a2 and Nr4a3, the expression of Nr4a1 was not suppressed by CNI treatment, thereby mediating Treg cell differentiation in the presence of CNIs. In a mouse allogeneic graft-versus-host disease model, Nr4a1 mediated tolerance by promoting Treg cell differentiation in mice administered cyclosporine A, prolonging the survival of recipients. Furthermore, activation of Nr4a1 via its agonist partially restored Treg cell differentiation, which was suppressed by cyclosporine A treatment. Finally, we found that the rs2701129 single-nucleotide polymorphism, which was shown to downregulate NR4A1 expression, showed a trend toward a higher incidence of chronic graft-versus-host disease in patients undergoing hematopoietic stem cell transplantation. Therefore, our study will be of clinical significance because we demonstrated the role of Nr4a1 in Treg cell differentiation in the presence of CNIs.
Collapse
Affiliation(s)
- Takashi Sekiya
- Section of Immune Response Modification, Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan;
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Hidenori Kasahara
- Department of Pathology, New York University School of Medicine, New York, NY
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryo Takemura
- Clinical and Translational Research Center, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Shinya Fujita
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Jun Kato
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuta Katayama
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Aichi, Japan
| | - Satoru Takada
- Leukemia Research Center, Saiseikai Maebashi Hospital, Gunma, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Minoko Takanashi
- Technical Department, Japanese Red Cross Society Blood Service Headquarters, Tokyo, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Aichi, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan; and
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan;
- Department of Hematology, Tokyo Medical and Dental University School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
23
|
Zhang L, Long X, Yin Y, Wang J, Zhu H, Chen J, Wang Y, Chen Y, Wang X. Histone methyltransferase Nsd2 ensures maternal-fetal immune tolerance by promoting regulatory T-cell recruitment. Cell Mol Immunol 2022; 19:634-643. [PMID: 35322173 PMCID: PMC9061842 DOI: 10.1038/s41423-022-00849-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Regulatory T cells (Tregs) are fundamentally important for maintaining systemic immune homeostasis and are also required for immune tolerance at the maternal-fetal interface during pregnancy. Recent studies have suggested that epigenetic regulation is critically involved in Treg development and function. However, the role of H3K36me has not yet been investigated. Here, we found that the H3K36me2 methyltransferase Nsd2 was highly expressed in Tregs. Although loss of Nsd2 did not impair systemic Treg development or function, the level of Tregs at the maternal-fetal interface was significantly decreased in pregnant Nsd2 conditional knockout mice. Consequently, maternal-fetal immune tolerance was disrupted in the absence of Nsd2 in Tregs, and the pregnant mice showed severe fetal loss. Mechanistically, Nsd2 was found to upregulate CXCR4 expression via H3K36me2 modification to promote Treg cell recruitment into the decidua and suppress the anti-fetal immune response. Overall, our data identified Nsd2 as a critical epigenetic regulator of Treg recruitment for maternal-fetal tolerance.
Collapse
Affiliation(s)
- Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
- Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huamin Zhu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuliang Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
25
|
Lapp MM, Lin G, Komin A, Andrews L, Knudson M, Mossman L, Raimondi G, Arciero JC. Modeling the Potential of Treg-Based Therapies for Transplant Rejection: Effect of Dose, Timing, and Accumulation Site. Transpl Int 2022; 35:10297. [PMID: 35479106 PMCID: PMC9035492 DOI: 10.3389/ti.2022.10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
Introduction: The adoptive transfer of regulatory T cells (Tregs) has emerged as a method to promote graft tolerance. Clinical trials have demonstrated the safety of adoptive transfer and are now assessing their therapeutic efficacy. Strategies that generate large numbers of antigen specific Tregs are even more efficacious. However, the combinations of factors that influence the outcome of adoptive transfer are too numerous to be tested experimentally. Here, mathematical modeling is used to predict the most impactful treatment scenarios. Methods: We adapted our mathematical model of murine heart transplant rejection to simulate Treg adoptive transfer and to correlate therapeutic efficacy with Treg dose and timing, frequency of administration, and distribution of injected cells. Results: The model predicts that Tregs directly accumulating to the graft are more protective than Tregs localizing to draining lymph nodes. Inhibiting antigen-presenting cell maturation and effector functions at the graft site was more effective at modulating rejection than inhibition of T cell activation in lymphoid tissues. These complex dynamics define non-intuitive relationships between graft survival and timing and frequency of adoptive transfer. Conclusion: This work provides the framework for better understanding the impact of Treg adoptive transfer and will guide experimental design to improve interventions.
Collapse
Affiliation(s)
- Maya M. Lapp
- Department of Mathematics, The College of Wooster, Wooster, OH, United States
| | - Guang Lin
- Department of Mathematics, Purdue University, West Lafayette, IN, United States
| | - Alexander Komin
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Leah Andrews
- Department of Mathematics, St. Olaf College, Northfield, MN, United States
| | - Mei Knudson
- Department of Mathematics, Carleton College, Northfield, MN, United States
| | - Lauren Mossman
- Department of Mathematics, St. Olaf College, Northfield, MN, United States
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Giorgio Raimondi, ; Julia C. Arciero,
| | - Julia C. Arciero
- Department of Mathematical Sciences, Indiana University-Purdue University of Indianapolis, Indianapolis, IN, United States,*Correspondence: Giorgio Raimondi, ; Julia C. Arciero,
| |
Collapse
|
26
|
Skartsis N, Peng Y, Ferreira LMR, Nguyen V, Ronin E, Muller YD, Vincenti F, Tang Q. IL-6 and TNFα Drive Extensive Proliferation of Human Tregs Without Compromising Their Lineage Stability or Function. Front Immunol 2022; 12:783282. [PMID: 35003100 PMCID: PMC8732758 DOI: 10.3389/fimmu.2021.783282] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
Treg therapies are being tested in clinical trials in transplantation and autoimmune diseases, however, the impact of inflammation on Tregs remains controversial. We challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFα and observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28) beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNγ, IL-4, and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2 using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS expression. These results prompted us to consider using CD28SA together with IL-6 and TNFα without aCD3/28 beads (beadless) as an alternative protocol for therapeutic Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative phosphorylation, increased energy production, and higher antioxidant potential during beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive functions in vitro and in vivo. These results demonstrate that human Tregs positively respond to proinflammatory cytokines with enhanced proliferation without compromising their lineage identity or function. This property can be harnessed for therapeutic Treg manufacturing.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Yani Peng
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Leonardo M R Ferreira
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Emilie Ronin
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Yannick D Muller
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
27
|
Shimozawa K, Contreras-Ruiz L, Sousa S, Zhang R, Bhatia U, Crisalli KC, Brennan LL, Turka LA, Markmann JF, Guinan EC. Ex vivo generation of regulatory T cells from liver transplant recipients using costimulation blockade. Am J Transplant 2022; 22:504-518. [PMID: 34528383 PMCID: PMC9078620 DOI: 10.1111/ajt.16842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
The potential of adoptive cell therapy with regulatory T cells (Tregs) to promote transplant tolerance is under active exploration. However, the impact of specific transplant settings and protocols on Treg manufacturing is not well-delineated. Here, we compared the use of peripheral blood mononuclear cells (PBMCs) from patients before or after liver transplantation to the use of healthy control PBMCs to determine their suitability for Treg manufacture using ex vivo costimulatory blockade with belatacept. Despite liver failure or immunosuppressive therapy, the capacity for Treg expansion during the manufacturing process was preserved. These experiments did not identify performance or quality issues that disqualified the use of posttransplant PBMCs-the currently favored protocol design. However, as Treg input correlated with output, significant CD4-lymphopenia in both pre- and posttransplant patients limited Treg yield. We therefore turned to leukapheresis posttransplant to improve absolute yield. To make deceased donor use feasible, we also developed protocols to substitute splenocytes for PBMCs as allostimulators. In addition to demonstrating that this Treg expansion strategy works in a liver transplant context, this preclinical study illustrates how characterizing cellular input populations and their performance can both inform and respond to clinical trial design and Treg manufacturing requirements.
Collapse
Affiliation(s)
- Katsuyoshi Shimozawa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA,Nihon University School of Medicine, Department of Pediatrics and Child Health, Tokyo, Japan
| | | | - Sofia Sousa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruan Zhang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Urvashi Bhatia
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kerry C Crisalli
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Boston MA
| | - Lisa L. Brennan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Laurence A. Turka
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Boston MA
| | - James F. Markmann
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Boston MA,Department of Surgery, Harvard Medical School, Boston MA
| | - Eva C. Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA,Department of Radiation Oncology, Harvard Medical School, Boston MA
| |
Collapse
|
28
|
Strategies to Improve Immune Suppression Post-Liver Transplantation: A Review. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the first liver transplantation operation (LT) in 1967 by Thomas Starzl, efforts to increase survival and prevent rejection have taken place. The development of calcineurin inhibitors (CNIs) in the 1980s led to a surge in survival post-transplantation, and since then, strategies to prevent graft loss and preserve long-term graft function have been prioritized. Allograft rejection is mediated by the host immune response to donor antigens. Prevention of rejection can be achieved through either immunosuppression or induction of tolerance. This leads to a clinical dilemma, as the choice of an immunosuppressive agent is not an easy task, with considerable patient and graft-related morbidities. On the other hand, the induction of graft tolerance remains a challenge. Despite the fact that the liver exhibits less rejection than any other transplanted organs, spontaneous graft tolerance is rare. Most immunosuppressive medications have been incriminated in renal, cardiovascular, and neurological complications, relapse of viral hepatitis, and recurrence of HCC and other cancers. Efforts to minimize immunosuppression are directed toward decreasing medication side effects, increasing cost effectiveness, and decreasing economic burden without increasing the risk of rejection. In this article, we will discuss recent advances in strategies for improving immunosuppression following liver transplantation.
Collapse
|
29
|
Muller YD, Ferreira LMR, Ronin E, Ho P, Nguyen V, Faleo G, Zhou Y, Lee K, Leung KK, Skartsis N, Kaul AM, Mulder A, Claas FHJ, Wells JA, Bluestone JA, Tang Q. Precision Engineering of an Anti-HLA-A2 Chimeric Antigen Receptor in Regulatory T Cells for Transplant Immune Tolerance. Front Immunol 2021; 12:686439. [PMID: 34616392 PMCID: PMC8488356 DOI: 10.3389/fimmu.2021.686439] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-ζ signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.
Collapse
Affiliation(s)
- Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Emilie Ronin
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Patrick Ho
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Gaetano Faleo
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Nikolaos Skartsis
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Anupurna M Kaul
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Safinia N, Vaikunthanathan T, Lechler RI, Sanchez‐Fueyo A, Lombardi G. Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance? Eur J Immunol 2021; 51:2373-2386. [PMID: 34375446 PMCID: PMC10015994 DOI: 10.1002/eji.202048875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver disease. Breakthroughs in surgical practice and immunosuppression have seen considerable advancements in survival after transplantation. However, the intricate management of immunosuppressive regimens, balancing desired immunological quiescence while minimizing toxicity has proven challenging. Diminishing improvements in long-term morbidity and mortality have been inextricably linked with the protracted use of these medications. As such, there is now enormous interest to devise protocols that will allow us to minimize or completely withdraw immunosuppressants after transplantation. Immunosuppression withdrawal trials have proved the reality of tolerance following liver transplantation, however, without intervention will only occur after several years at the risk of potential cumulative immunosuppression-related morbidity. Focus has now been directed at accelerating this phenomenon through tolerance-inducing strategies. In this regard, efforts have seen the use of regulatory cell immunotherapy. Here we focus particularly on regulatory T cells, discussing preclinical data that propagated several clinical trials of adoptive cell therapy in liver transplantation. Furthermore, we describe efforts to further optimize the specificity and survival of regulatory cell therapy guided by concurrent immunomonitoring studies and the development of novel technologies including chimeric antigen receptors and co-administration of low-dose IL-2.
Collapse
Affiliation(s)
- Niloufar Safinia
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Robert Ian Lechler
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Giovanna Lombardi
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| |
Collapse
|
31
|
He X, Li S, Zhang J, Cao L, Yang C, Rong P, Yi S, Ghimire K, Ma X, Wang W. Benefit of Belatacept in Cord Blood-Derived Regulatory T Cell-Mediated Suppression of Alloimmune Response. Cell Transplant 2021; 30:9636897211046556. [PMID: 34570631 PMCID: PMC8718163 DOI: 10.1177/09636897211046556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of Regulatory T cells (Tregs) in tolerance induction post-transplantation is well-established, but Tregs adoptive transfer alone without combined immunosuppressants have failed so far in achieving clinical outcomes. Here we applied a set of well-designed criteria to test the influence of commonly used immunosuppressants (belatacept, tacrolimus, and mycophenolate) on cord blood-derived Tregs (CB-Tregs). Our study shows that while none of these immunosuppressants modulated the stability and expression of homing molecules by CB-Tregs, belatacept met all other selective criteria, shown by its ability to enhance CB-Tregs-mediated in vitro suppression of the allogeneic response without affecting their viability, proliferation, mitochondrial metabolism and expression of functional markers. In contrast, treatment with tacrolimus or mycophenolate led to reduced expression of functional molecule GITR in CB-Tregs, impaired their viability, proliferation and mitochondrial metabolism. These findings indicate that belatacept could be considered as a candidate in Tregs-based clinical immunomodulation regimens to induce transplant tolerance.
Collapse
Affiliation(s)
- Xing He
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Sang Li
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Juan Zhang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Lu Cao
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pengfei Rong
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shounan Yi
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China.,Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xiaoqian Ma
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Wei Wang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
32
|
Cao C, Yao Y, Zeng R. Lymphocytes: Versatile Participants in Acute Kidney Injury and Progression to Chronic Kidney Disease. Front Physiol 2021; 12:729084. [PMID: 34616308 PMCID: PMC8488268 DOI: 10.3389/fphys.2021.729084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Acute kidney injury (AKI) remains a major global public health concern due to its high morbidity and mortality. The progression from AKI to chronic kidney disease (CKD) makes it a scientific problem to be solved. However, it is with lack of effective treatments. Summary: Both innate and adaptive immune systems participate in the inflammatory process during AKI, and excessive or dysregulated immune responses play a pathogenic role in renal fibrosis, which is an important hallmark of CKD. Studies on the pathogenesis of AKI and CKD have clarified that renal injury induces the production of various chemokines by renal parenchyma cells or resident immune cells, which recruits multiple-subtype lymphocytes in circulation. Some infiltrated lymphocytes exacerbate injury by proinflammatory cytokine production, cytotoxicity, and interaction with renal resident cells, which constructs the inflammatory environment and induces further injury, even death of renal parenchyma cells. Others promote tissue repair by producing protective cytokines. In this review, we outline the diversity of these lymphocytes and their mechanisms to regulate the whole pathogenic stages of AKI and CKD; discuss the chronological responses and the plasticity of lymphocytes related to AKI and CKD progression; and introduce the potential therapies targeting lymphocytes of AKI and CKD, including the interventions of chemokines, cytokines, and lymphocyte frequency regulation in vivo, adaptive transfer of ex-expanded lymphocytes, and the treatments of gut microbiota or metabolite regulations based on gut-kidney axis. Key Message: In the process of AKI and CKD, T helper (Th) cells, innate, and innate-like lymphocytes exert mainly pathogenic roles, while double-negative T (DNT) cells and regulatory T cells (Tregs) are confirmed to be protective. Understanding the mechanisms by which lymphocytes mediate renal injury and renal fibrosis is necessary to promote the development of specific therapeutic strategies to protect from AKI and prevent the progression of CKD.
Collapse
Affiliation(s)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Wang X, MacParland SA, Perciani CT. Immunological Determinants of Liver Transplant Outcomes Uncovered by the Rat Model. Transplantation 2021; 105:1944-1956. [PMID: 33417410 PMCID: PMC8376267 DOI: 10.1097/tp.0000000000003598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
For many individuals with end-stage liver disease, the only treatment option is liver transplantation. However, liver transplant rejection is observed in 24%-80% of transplant patients and lifelong drug regimens that follow the transplant procedure lead to serious side effects. Furthermore, the pool of donor livers available for transplantation is far less than the demand. Well-characterized and physiologically relevant models of liver transplantation are crucial to a deeper understanding of the cellular processes governing the outcomes of liver transplantation and serve as a platform for testing new therapeutic strategies to enhance graft acceptance. Such a model has been found in the rat transplant model, which has an advantageous size for surgical procedures, similar postoperative immunological progression, and high genome match to the human liver. From rat liver transplant studies published in the last 5 years, it is clear that the rat model serves as a strong platform to elucidate transplant immunological mechanisms. Using the model, we have begun to uncover potential players and possible therapeutic targets to restore liver tolerance and preserve host immunocompetence. Here, we present an overview of recent literature for rat liver transplant models, with an aim to highlight the value of the models and to provide future perspectives on how these models could be further characterized to enhance the overall value of rat models to the field of liver transplantation.
Collapse
Affiliation(s)
- Xinle Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sonya A MacParland
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Catia T Perciani
- Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| |
Collapse
|
34
|
Ezzelarab MB, Zhang H, Sasaki K, Lu L, Zahorchak AF, van der Windt DJ, Dai H, Perez-Gutierrez A, Bhama JK, Thomson AW. Ex Vivo Expanded Donor Alloreactive Regulatory T Cells Lose Immunoregulatory, Proliferation, and Antiapoptotic Markers After Infusion Into ATG-lymphodepleted, Nonhuman Primate Heart Allograft Recipients. Transplantation 2021; 105:1965-1979. [PMID: 33587433 PMCID: PMC8239063 DOI: 10.1097/tp.0000000000003617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Regulatory T cell (Treg) therapy is a promising approach to amelioration of allograft rejection and promotion of organ transplant tolerance. However, the fate of infused Treg, and how this relates to their therapeutic efficacy using different immunosuppressive regimens is poorly understood. Our aim was to analyze the tissue distribution, persistence, replicative activity and phenotypic stability of autologous, donor antigen alloreactive Treg (darTreg) in anti-thymocyte globulin (ATG)-lymphodepleted, heart-allografted cynomolgus monkeys. METHODS darTreg were expanded ex vivo from flow-sorted, circulating Treg using activated donor B cells and infused posttransplant into recipients of major histocompatibility complex-mismatched heart allografts. Fluorochrome-labeled darTreg were identified and characterized in peripheral blood, lymphoid, and nonlymphoid tissues and the graft by flow cytometric analysis. RESULTS darTreg selectively suppressed autologous T cell responses to donor antigens in vitro. However, following their adoptive transfer after transplantation, graft survival was not prolonged. Early (within 2 wk posttransplant; under ATG, tacrolimus, and anti-IL-6R) or delayed (6-8 wk posttransplant; under rapamycin) darTreg infusion resulted in a rapid decline in transferred darTreg in peripheral blood. Following their early or delayed infusion, labeled cells were evident in lymphoid and nonlymphoid organs and the graft at low percentages (<4% CD4+ T cells). Notably, infused darTreg showed reduced expression of immunoregulatory molecules (Foxp3 and CTLA4), Helios, the proliferative marker Ki67 and antiapoptotic Bcl2, compared with preinfusion darTreg and endogenous CD4+CD25hi Treg. CONCLUSIONS Lack of therapeutic efficacy of infused darTreg in lymphodepleted heart graft recipients appears to reflect loss of a regulatory signature and proliferative and survival capacity shortly after infusion.
Collapse
Affiliation(s)
- Mohamed B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hong Zhang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dirk J. van der Windt
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angelica Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jay K. Bhama
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Affiliation(s)
- Sundaram Hariharan
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Ajay K Israni
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Gabriel Danovitch
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| |
Collapse
|
36
|
Salinas VH, Stüve O. Systems Approaches to Unravel T Cell Function and Therapeutic Potential in Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2021; 206:669-675. [PMID: 33526601 DOI: 10.4049/jimmunol.2000954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Producing Ag-specific immune responses constrained to target tissues or cells that can be engaged or disengaged at will is predicated on understanding the network of genes governing immune cell function, defining the rules underlying Ag specificity, and synthesizing the tools to engineer them. The successes and limitations of chimeric Ag receptor (CAR) T cells emphasize this goal, and advances in high-throughput sequencing, large-scale genomic screens, single-cell profiling, and genetic modification are providing the necessary data to bring it to fruition-including a broader application into the treatment of autoimmune diseases. In this review, we delve into the implementation of these developments, survey the relevant works, and propose a framework for generating the next generation of synthetic T cells informed by the principles learned from these systems approaches.
Collapse
Affiliation(s)
- Victor H Salinas
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and .,Neurology Section, Medical Service, U.S. Department of Veterans Affairs, North Texas Health Care System, Dallas, TX 75216
| |
Collapse
|
37
|
White MPJ, Smyth DJ, Cook L, Ziegler SF, Levings MK, Maizels RM. The parasite cytokine mimic Hp-TGM potently replicates the regulatory effects of TGF-β on murine CD4 + T cells. Immunol Cell Biol 2021; 99:848-864. [PMID: 33988885 PMCID: PMC9214624 DOI: 10.1111/imcb.12479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Transforming growth factor‐beta (TGF‐β) family proteins mediate many vital biological functions in growth, development and regulation of the immune system. TGF‐β itself controls immune homeostasis and inflammation, including conversion of naïve CD4+ T cells into Foxp3+ regulatory T cells (Tregs) in the presence of interleukin‐2 and T‐cell receptor ligands. The helminth parasite Heligmosomoides polygyrus exploits this pathway through a structurally novel TGF‐β mimic (Hp‐TGM), which binds to mammalian TGF‐β receptors and induces Tregs. Here, we performed detailed comparisons of Hp‐TGM with mammalian TGF‐β. Compared with TGF‐β, Hp‐TGM induced greater numbers of Foxp3+ Tregs (iTregs), with more intense Foxp3 expression. Both ligands upregulated Treg functional markers CD73, CD103 and programmed death‐ligand 1, but Hp‐TGM induced significantly higher CD39 expression than did TGF‐β. Interestingly, in contrast to canonical TGF‐β signaling through Smad2/3, Hp‐TGM stimulation was slower and more sustained. Gene expression profiles induced by TGF‐β and Hp‐TGM were remarkably similar, and both types of iTregs suppressed T‐cell responses in vitro and experimental autoimmune encephalomyelitis‐driven inflammation in vivo. In vitro, both types of iTregs were equally stable under inflammatory conditions, but Hp‐TGM‐induced iTregs were more stable in vivo during dextran sodium sulfate‐induced colitis, with greater retention of Foxp3 expression and lower conversion to a ROR‐γt+ phenotype. Altogether, results from this study suggest that the parasite cytokine mimic, Hp‐TGM, may deliver a qualitatively different signal to CD4+ T cells with downstream consequences for the long‐term stability of iTregs. These data highlight the potential of Hp‐TGM as a new modulator of T‐cell responses in vitro and in vivo.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Laura Cook
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Steven F Ziegler
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA
| | - Megan K Levings
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
38
|
Macedo C, Tran LM, Zahorchak AF, Dai H, Gu X, Ravichandran R, Mohanakumar T, Elinoff B, Zeevi A, Styn MA, Humar A, Lakkis FG, Metes DM, Thomson AW. Donor-derived regulatory dendritic cell infusion results in host cell cross-dressing and T cell subset changes in prospective living donor liver transplant recipients. Am J Transplant 2021; 21:2372-2386. [PMID: 33171019 PMCID: PMC8215622 DOI: 10.1111/ajt.16393] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 01/25/2023]
Abstract
Regulatory dendritic cells (DCreg) promote transplant tolerance following their adoptive transfer in experimental animals. We investigated the feasibility, safety, fate, and impact on host T cells of donor monocyte-derived DCreg infused into prospective, living donor liver transplant patients, 7 days before transplantation. The DCreg expressed a tolerogenic gene transcriptional profile, high cell surface programed death ligand-1 (PD-L1):CD86 ratios, high IL-10/no IL-12 productivity and poor ability to stimulate allogeneic T cell proliferation. Target DCreg doses (range 2.5-10 × 106 cells/kg) were achieved in all but 1 of 15 recipients, with no infusion reactions. Following DCreg infusion, transiently elevated levels of donor HLA and immunoregulatory PD-L1, CD39, and CD73 were detected in circulating small extracellular vesicles. At the same time, flow and advanced image stream analysis revealed intact DCreg and "cross-dressing" of host DCs in blood and lymph nodes. PD-L1 co-localization with donor HLA was observed at higher levels than with recipient HLA. Between DCreg infusion and transplantation, T-bethi Eomeshi memory CD8+ T cells decreased, whereas regulatory (CD25hi CD127- Foxp3+ ): T-bethi Eomeshi CD8+ T cell ratios increased. Thus, donor-derived DCreg infusion may induce systemic changes in host antigen-presenting cells and T cells potentially conducive to modulated anti-donor immune reactivity at the time of transplant.
Collapse
Affiliation(s)
- Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lillian M. Tran
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan F. Zahorchak
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Helong Dai
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xinyan Gu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Beth Elinoff
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Mindi A. Styn
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Abhinav Humar
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fadi G. Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Diana M. Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Lee LM, Zhang H, Lee K, Liang H, Merleev A, Vincenti F, Maverakis E, Thomson AW, Tang Q. A Comparison of Ex Vivo Expanded Human Regulatory T Cells Using Allogeneic Stimulated B Cells or Monocyte-Derived Dendritic Cells. Front Immunol 2021; 12:679675. [PMID: 34220826 PMCID: PMC8253048 DOI: 10.3389/fimmu.2021.679675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Alloreactive regulatory T cells (arTregs) are more potent than polyclonal Tregs at suppressing immune responses to transplant antigens. Human arTregs can be expanded with allogeneic CD40L-stimulated B cells (sBcs) or stimulated-matured monocyte-derived dendritic cells (sDCs). Here, we compared the expansion efficiency and properties of arTregs stimulated ex vivo using these two types of antigen-presenting cells. Compared to sBcs, sDCs stimulated Tregs to expand two times more in number. The superior expansion-inducing capacity of sDCs correlated with their higher expression of CD80, CD86, and T cell-attracting chemokines. sBc- and sDC-arTregs expressed comparable levels of FOXP3, HELIOS, CD25, CD27, and CD62L, demethylated FOXP3 enhancer and in vitro suppressive function. sBc- and sDCs-arTregs had similar gene expression profiles that were distinct from primary Tregs. sBc- and sDC-arTregs exhibited similar low frequencies of IFN-γ, IL-4, and IL-17A-producing cells, and the cytokine-producing arTregs expressed high levels of FOXP3. Almost all sBc- and sDC-arTregs expressed CXCR3, which may enable them traffic to inflammatory sites. Thus, sDCs-arTregs that expand more readily, are phenotypically similar to sBc-arTregs, supporting sDCs as a viable alternative for arTreg production for clinical evaluation.
Collapse
Affiliation(s)
- Linda M Lee
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Hong Zhang
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karim Lee
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Horace Liang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Alexander Merleev
- Department of Dermatology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
Adhikary SR, Cuthbertson P, Nicholson L, Bird KM, Sligar C, Hu M, O'Connell PJ, Sluyter R, Alexander SI, Watson D. Post-transplant cyclophosphamide limits reactive donor T cells and delays the development of graft-versus-host disease in a humanized mouse model. Immunology 2021; 164:332-347. [PMID: 34021907 DOI: 10.1111/imm.13374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT) that develops when donor T cells in the graft become reactive against the host. Post-transplant cyclophosphamide (PTCy) is increasingly used in mismatched allo-HSCT, but how PTCy impacts donor T cells and reduces GVHD is unclear. This study aimed to determine the effect of PTCy on reactive human donor T cells and GVHD development in a preclinical humanized mouse model. Immunodeficient NOD-scid-IL2Rγnull mice were injected intraperitoneally (i.p.) with 20 × 106 human peripheral blood mononuclear cells stained with carboxyfluorescein succinimidyl ester (CFSE) (day 0). Mice were subsequently injected (i.p.) with PTCy (33 mg kg-1 ) (PTCy-mice) or saline (saline-mice) (days 3 and 4). Mice were assessed for T-cell depletion on day 6 and monitored for GVHD for up to 10 weeks. Flow cytometric analysis of livers at day 6 revealed lower proportions of reactive (CFSElow ) human (h) CD3+ T cells in PTCy-mice compared with saline-mice. Over 10 weeks, PTCy-mice showed reduced weight loss and clinical GVHD, with prolonged survival and reduced histological liver GVHD compared with saline-mice. PTCy-mice also demonstrated increased splenic hCD4+ :hCD8+ T-cell ratios and reduced splenic Tregs (hCD4+ hCD25+ hCD127lo ) compared with saline-mice. This study demonstrates that PTCy reduces GVHD in a preclinical humanized mouse model. This corresponded to depletion of reactive human donor T cells, but fewer human Tregs.
Collapse
Affiliation(s)
- Sam R Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Leigh Nicholson
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Katrina M Bird
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Min Hu
- Westmead Institute for Medical Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
41
|
Aghabi YO, Yasin A, Kennedy JI, Davies SP, Butler AE, Stamataki Z. Targeting Enclysis in Liver Autoimmunity, Transplantation, Viral Infection and Cancer. Front Immunol 2021; 12:662134. [PMID: 33953725 PMCID: PMC8089374 DOI: 10.3389/fimmu.2021.662134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent liver inflammation can lead to cirrhosis, which associates with significant morbidity and mortality worldwide. There are no curative treatments beyond transplantation, followed by long-term immunosuppression. The global burden of end stage liver disease has been increasing and there is a shortage of donor organs, therefore new therapies are desperately needed. Harnessing the power of the immune system has shown promise in certain autoimmunity and cancer settings. In the context of the liver, regulatory T cell (Treg) therapies are in development. The hypothesis is that these specialized lymphocytes that dampen inflammation may reduce liver injury in patients with chronic, progressive diseases, and promote transplant tolerance. Various strategies including intrinsic and extracorporeal expansion of Treg cells, aim to increase their abundance to suppress immune responses. We recently discovered that hepatocytes engulf and delete Treg cells by enclysis. Herein, we propose that inhibition of enclysis may potentiate existing regulatory T cell therapeutic approaches in patients with autoimmune liver diseases and in patients receiving a transplant. Moreover, in settings where the abundance of Treg cells could hinder beneficial immunity, such us in chronic viral infection or liver cancer, enhancement of enclysis could result in transient, localized reduction of Treg cell numbers and tip the balance towards antiviral and anti-tumor immunity. We describe enclysis as is a natural process of liver immune regulation that lends itself to therapeutic targeting, particularly in combination with current Treg cell approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Zania Stamataki
- College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
42
|
Ellias SD, Larson EL, Taner T, Nyberg SL. Cell-Mediated Therapies to Facilitate Operational Tolerance in Liver Transplantation. Int J Mol Sci 2021; 22:4016. [PMID: 33924646 PMCID: PMC8069094 DOI: 10.3390/ijms22084016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapies using immune cells or non-parenchymal cells of the liver have emerged as potential treatments to facilitate immunosuppression withdrawal and to induce operational tolerance in liver transplant (LT) recipients. Recent pre-clinical and clinical trials of cellular therapies including regulatory T cells, regulatory dendritic cells, and mesenchymal cells have shown promising results. Here we briefly summarize current concepts of cellular therapy for induction of operational tolerance in LT recipients.
Collapse
Affiliation(s)
- Samia D. Ellias
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
| | - Ellen L. Larson
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
| | - Timucin Taner
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott L. Nyberg
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
| |
Collapse
|
43
|
Marfil-Garza BA, Hefler J, Bermudez De Leon M, Pawlick R, Dadheech N, Shapiro AMJ. Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation. Endocr Rev 2021; 42:198-218. [PMID: 33247733 DOI: 10.1210/endrev/bnaa028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) have become highly relevant in the pathophysiology and treatment of autoimmune diseases, such as type 1 diabetes (T1D). As these cells are known to be defective in T1D, recent efforts have explored ex vivo and in vivo Treg expansion and enhancement as a means for restoring self-tolerance in this disease. Given their capacity to also modulate alloimmune responses, studies using Treg-based therapies have recently been undertaken in transplantation. Islet transplantation provides a unique opportunity to study the critical immunological crossroads between auto- and alloimmunity. This procedure has advanced greatly in recent years, and reports of complete abrogation of severe hypoglycemia and long-term insulin independence have become increasingly reported. It is clear that cellular transplantation has the potential to be a true cure in T1D, provided the remaining barriers of cell supply and abrogated need for immune suppression can be overcome. However, the role that Tregs play in islet transplantation remains to be defined. Herein, we synthesize the progress and current state of Treg-based therapies in T1D and islet transplantation. We provide an extensive, but concise, background to understand the physiology and function of these cells and discuss the clinical evidence supporting potency and potential Treg-based therapies in the context of T1D and islet transplantation. Finally, we discuss some areas of opportunity and potential research avenues to guide effective future clinical application. This review provides a basic framework of knowledge for clinicians and researchers involved in the care of patients with T1D and islet transplantation.
Collapse
Affiliation(s)
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Mario Bermudez De Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| |
Collapse
|
44
|
Hickson LJ, Herrmann SM, McNicholas BA, Griffin MD. Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. KIDNEY360 2021; 2:542-557. [PMID: 34316720 PMCID: PMC8312727 DOI: 10.34067/kid.0005692020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Drawing from basic knowledge of stem-cell biology, embryonic development, wound healing, and aging, regenerative medicine seeks to develop therapeutic strategies that complement or replace conventional treatments by actively repairing diseased tissue or generating new organs and tissues. Among the various clinical-translational strategies within the field of regenerative medicine, several can be broadly described as promoting disease resolution indirectly through local or systemic interactions with a patient's cells, without permanently integrating or directly forming new primary tissue. In this review, we focus on such therapies, which we term disease-modulating regenerative therapies (DMRT), and on the extent to which they have been translated into the clinical arena in four distinct areas of nephrology: renovascular disease (RVD), sepsis-associated AKI (SA-AKI), diabetic kidney disease (DKD), and kidney transplantation (KTx). As we describe, the DMRT that has most consistently progressed to human clinical trials for these indications is mesenchymal stem/stromal cells (MSCs), which potently modulate ischemic, inflammatory, profibrotic, and immune-mediated tissue injury through diverse paracrine mechanisms. In KTx, several early-phase clinical trials have also tested the potential for ex vivo-expanded regulatory immune cell therapies to promote donor-specific tolerance and prevent or resolve allograft injury. Other promising DMRT, including adult stem/progenitor cells, stem cell-derived extracellular vesicles, and implantable hydrogels/biomaterials remain at varying preclinical stages of translation for these renal conditions. To date (2021), no DMRT has gained market approval for use in patients with RVD, SA-AKI, DKD, or KTx, and clinical trials demonstrating definitive, cost-effective patient benefits are needed. Nonetheless, exciting progress in understanding the disease-specific mechanisms of action of MSCs and other DMRT, coupled with increasing knowledge of the pathophysiologic basis for renal-tissue injury and the experience gained from pioneering early-phase clinical trials provide optimism that influential, regenerative treatments for diverse kidney diseases will emerge in the years ahead.
Collapse
Affiliation(s)
- LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
- Critical Care Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| |
Collapse
|
45
|
Fortunato M, Morali K, Passeri L, Gregori S. Regulatory Cell Therapy in Organ Transplantation: Achievements and Open Questions. Front Immunol 2021; 12:641596. [PMID: 33708227 PMCID: PMC7940680 DOI: 10.3389/fimmu.2021.641596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
The effective development of innovative surgical applications and immunosuppressive agents have improved remarkable advancements in solid organ transplantation. Despite these improvements led to prevent acute rejection and to promote short-term graft survival, the toxicity of long-term immunosuppression regiments has been associated to organ failure or chronic graft rejection. The graft acceptance is determined by the balance between the regulatory and the alloreactive arm of the immune system. Hence, enhance regulatory cells leading to immune tolerance would be the solution to improve long-term allograft survival which, by reducing the overall immunosuppression, will provide transplanted patients with a better quality of life. Regulatory T cells (Tregs), and regulatory myeloid cells (MRCs), including regulatory macrophages and tolerogenic dendritic cells, are promising cell populations for restoring tolerance. Thus, in the last decade efforts have been dedicated to apply regulatory cell-based therapy to improve the successful rate of organ transplantation and to promote allogeneic tolerance. More recently, this approach has been translated into clinical application. The aim of this review is to summarize and discuss results on regulatory cell-based strategies, focusing on Tregs and MRCs, in terms of safety, feasibility, and efficacy in clinical studies of organ transplantation.
Collapse
Affiliation(s)
- Marta Fortunato
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Konstantina Morali
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Passeri
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Deng B, Zhang W, Zhu Y, Li Y, Li D, Li B. FOXP3 + regulatory T cells and age-related diseases. FEBS J 2021; 289:319-335. [PMID: 33529458 DOI: 10.1111/febs.15743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Regulatory T (Treg) cells are critical for the maintenance of immune homeostasis. Dysregulation of Treg cells has been implicated in the pathogenesis of autoimmunity and chronic inflammation, while aging is characterized by an accumulation of inflammatory markers in the peripheral blood, a phenomenon known as 'inflammaging'. The relationship between Treg cells and age-related diseases remains to be further studied. Increasing evidence revealed that Treg cells' dysfunction occurs in aged patients, suggesting that immune therapies targeting Treg cells may be a promising approach to treat diseases such as cancers and autoimmune diseases. Furthermore, drugs targeting Treg cells show encouraging results and contribute to CD8+ T-cell-mediated cytotoxic killing of tumor and infected cells. In general, a better understanding of Treg cell function may help us to develop new immune therapies against aging. In this review, we discuss potential therapeutic strategies to modify immune responses of relevance for aging to prevent and treat age-related diseases, as well as the challenges posed by the translation of novel immune therapies into clinical practice.
Collapse
Affiliation(s)
- Biaolong Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Weiqi Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Yicheng Zhu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Yangyang Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
47
|
Wang F, Chen X, Li J, Wang D, Huang H, Li X, Bi Z, Peng Y, Zhang X, Li G, Wang J, Wang C, Fu Q, Liu L. Dose- and Time-Dependent Effects of Human Mesenchymal Stromal Cell Infusion on Cardiac Allograft Rejection in Mice. Stem Cells Dev 2021; 30:203-213. [PMID: 33371825 DOI: 10.1089/scd.2019.0300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heart transplantation is the final life-saving therapeutic strategy for many end-stage heart diseases. Long-term immunosuppressive regimens are needed to prevent allograft rejection. Mesenchymal stromal cells (MSCs) have been shown as immunomodulatory therapy for organ transplantation. However, the effect of dose and timing of MSC treatment on heart transplantation has not yet been examined. In this study, we infused three doses (1 × 106, 2 × 106, or 5 × 106 cells) of human MSCs (hMSCs) to the recipient BALB/c mice before (7 days or 24 h) or after (24 h) receiving C57BL/6 cardiac transplants. We found that infusion of high dose hMSCs (5 × 106) at 24 h post-transplantation significantly prolonged the survival time of cardiac grafts. To delineate the underlying mechanism, grafts, spleens, and draining lymph nodes were harvested for analysis. Dose-dependent effect of hMSC treatment was shown in: (1) alleviation of International Society of Heart and Lung Transplantation (ISHLT) score in grafts; (2) reduction of the population of CD4+ and CD8+ T cells; (3) increase of regulatory T (Treg) cells; (4) and decrease of serum levels of inflammatory cytokines and donor-specific antibodies. Taken together, we showed timing critical and dose-dependent immunomodulatory effects of hMSC treatment against acute allograft rejection in a mouse model of heart transplantation.
Collapse
Affiliation(s)
- Feng Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Huiting Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xirui Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zirong Bi
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanwen Peng
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| |
Collapse
|
48
|
Pathak S, Meyer EH. Tregs and Mixed Chimerism as Approaches for Tolerance Induction in Islet Transplantation. Front Immunol 2021; 11:612737. [PMID: 33658995 PMCID: PMC7917336 DOI: 10.3389/fimmu.2020.612737] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Pancreatic islet transplantation is a promising method for the treatment of type 1 and type 3 diabetes whereby replacement of islets may be curative. However, long-term treatment with immunosuppressive drugs (ISDs) remains essential for islet graft survival. Current ISD regimens carry significant side-effects for transplant recipients, and are also toxic to the transplanted islets. Pre-clinical efforts to induce immune tolerance to islet allografts identify ways in which the recipient immune system may be reeducated to induce a sustained transplant tolerance and even overcome autoimmune islet destruction. The goal of these efforts is to induce tolerance to transplanted islets with minimal to no long-term immunosuppression. Two most promising cell-based therapeutic strategies for inducing immune tolerance include T regulatory cells (Tregs) and donor and recipient hematopoietic mixed chimerism. Here, we review preclinical studies which utilize Tregs for tolerance induction in islet transplantation. We also review myeloablative and non-myeloablative hematopoietic stem cell transplantation (HSCT) strategies in preclinical and clinical studies to induce sustained mixed chimerism and allograft tolerance, in particular in islet transplantation. Since Tregs play a critical role in the establishment of mixed chimerism, it follows that the combination of Treg and HSCT may be synergistic. Since the success of the Edmonton protocol, the feasibility of clinical islet transplantation has been established and nascent clinical trials testing immune tolerance strategies using Tregs and/or hematopoietic mixed chimerism are underway or being formulated.
Collapse
Affiliation(s)
- Shiva Pathak
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Everett H. Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
49
|
Morath C, Schmitt A, Kleist C, Daniel V, Opelz G, Süsal C, Ibrahim E, Kälble F, Speer C, Nusshag C, Pego da Silva L, Sommerer C, Wang L, Ni M, Hückelhoven-Krauss A, Czock D, Merle U, Mehrabi A, Sander A, Hackbusch M, Eckert C, Waldherr R, Schnitzler P, Müller-Tidow C, Hoheisel JD, Mustafa SA, Alhamdani MS, Bauer AS, Reiser J, Zeier M, Schmitt M, Schaier M, Terness P. Phase I trial of donor-derived modified immune cell infusion in kidney transplantation. J Clin Invest 2021; 130:2364-2376. [PMID: 31990685 DOI: 10.1172/jci133595] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDPreclinical experiments have shown that donor blood cells, modified in vitro by an alkylating agent (modified immune cells [MICs]), induced long-term specific immunosuppression against the allogeneic donor.METHODSIn this phase I trial, patients received either 1.5 × 106 MICs per kg BW on day -2 (n = 3, group A), or 1.5 × 108 MICs per kg BW on day -2 (n = 3, group B) or day -7 (n = 4, group C) before living donor kidney transplantation in addition to post-transplantation immunosuppression. The primary outcome measure was the frequency of adverse events (AEs) until day 30 (study phase) with follow-up out to day 360.RESULTSMIC infusions were extremely well tolerated. During the study phase, 10 treated patients experienced a total of 69 AEs that were unlikely to be related or not related to MIC infusion. No donor-specific human leukocyte antigen Abs or rejection episodes were noted, even though the patients received up to 1.3 × 1010 donor mononuclear cells before transplantation. Group C patients with low immunosuppression during follow-up showed no in vitro reactivity against stimulatory donor blood cells on day 360, whereas reactivity against third-party cells was still preserved. Frequencies of CD19+CD24hiCD38hi transitional B lymphocytes (Bregs) increased from a median of 6% before MIC infusion to 20% on day 180, which was 19- and 68-fold higher, respectively, than in 2 independent cohorts of transplanted controls. The majority of Bregs produced the immunosuppressive cytokine IL-10. MIC-treated patients showed the Immune Tolerance Network operational tolerance signature.CONCLUSIONMIC administration was safe and could be a future tool for the targeted induction of tolerogenic Bregs.TRIAL REGISTRATIONEudraCT number: 2014-002086-30; ClinicalTrials.gov identifier: NCT02560220.FUNDINGFederal Ministry for Economic Affairs and Technology, Berlin, Germany, and TolerogenixX GmbH, Heidelberg, Germany.
Collapse
Affiliation(s)
- Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, Germany.,Department of Hematology, Oncology and Rheumatology
| | - Christian Kleist
- Transplantation Immunology, Institute of Immunology.,Department of Nuclear Medicine
| | | | | | - Caner Süsal
- Transplantation Immunology, Institute of Immunology
| | - Eman Ibrahim
- Transplantation Immunology, Institute of Immunology
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, Germany.,Department of Hematology, Oncology and Rheumatology
| | - Ming Ni
- Department of Hematology, Oncology and Rheumatology
| | | | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology
| | | | | | - Anja Sander
- Institute of Medical Biometry and Informatics
| | | | | | | | - Paul Schnitzler
- Virology, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jörg D Hoheisel
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany
| | - Shakhawan A Mustafa
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany.,Kurdistan Institution for Strategic Studies and Scientific Research, Kurdistan Region, Iraq
| | | | - Andrea S Bauer
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush Medical College, Rush University, Chicago, Illinois, USA
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | | |
Collapse
|
50
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Boyman O, Caramori G, Cari L, Fan Chung K, Diamant Z, Eguiluz-Gracia I, Knol EF, Kolios A, Levi-Schaffer F, Nocentini G, Palomares O, Redegeld F, Van Esch B, Stellato C. Immune modulation via T regulatory cell enhancement: Disease-modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases-An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy 2021; 76:90-113. [PMID: 32593226 DOI: 10.1111/all.14478] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Therapeutic advances using targeted biologicals and small-molecule drugs have achieved significant success in the treatment of chronic allergic, autoimmune, and inflammatory diseases particularly for some patients with severe, treatment-resistant forms. This has been aided by improved identification of disease phenotypes. Despite these achievements, not all severe forms of chronic inflammatory and autoimmune diseases are successfully targeted, and current treatment options, besides allergen immunotherapy for selected allergic diseases, fail to change the disease course. T cell-based therapies aim to cure diseases through the selective induction of appropriate immune responses following the delivery of engineered, specific cytotoxic, or regulatory T cells (Tregs). Adoptive cell therapies (ACT) with genetically engineered T cells have revolutionized the oncology field, bringing curative treatment for leukemia and lymphoma, while therapies exploiting the suppressive functions of Tregs have been developed in nononcological settings, such as in transplantation and autoimmune diseases. ACT with Tregs are also being considered in nononcological settings such as cardiovascular disease, obesity, and chronic inflammatory disorders. After describing the general features of T cell-based approaches and current applications in autoimmune diseases, this position paper reviews the experimental models testing or supporting T cell-based approaches, especially Treg-based approaches, in severe IgE-mediated responses and chronic respiratory airway diseases, such as severe asthma and COPD. Along with an assessment of challenges and unmet needs facing the application of ACT in these settings, this article underscores the potential of ACT to offer curative options for patients with severe or treatment-resistant forms of these immune-driven disorders.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Ian M Adcock
- Molecular Cell Biology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence Center, Lund University, Lund, Sweden
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), Respiratory Medicine Unit, University of Messina, Messina, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute, Imperial College London & Royal Brompton & Harefield NHS Trust, London, UK
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy & Pharmacology, University Groningen, University Medical Center Groningen and QPS-NL, Groningen, Netherlands
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Málaga-Instituto de Investigación Biomédica de Málaga (IBIMA)-ARADyAL, Málaga, Spain
| | - Edward F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Betty Van Esch
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|