1
|
Chu X, Han Z, Li B, Yang T. Plasma proteins and different onset subtype of COPD: Proteome-wide Mendelian randomization study and co-localization analyses. Medicine (Baltimore) 2025; 104:e42409. [PMID: 40355193 PMCID: PMC12074030 DOI: 10.1097/md.0000000000042409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Several studies have reported a strong association between plasma proteins and chronic obstructive pulmonary disease (COPD). However, the directionality and causality of the association and whether proteins effected COPD remain unclear. Therefore, we used Proteome-wide Mendelian randomization (MR) study and co-localization analyses to estimate the casual relationship between them. Summary-level data of 2923 plasma protein levels were extracted from a large-scale protein quantitative trait loci study including 54,219 individuals by the UK Biobank Pharma Proteomics Project. The outcome data for COPD and its subtypes were sourced from the FinnGen study. MR analysis was conducted to estimate the associations between protein and COPD and its subtypes risk. Additionally, phenome-wide MR analysis, and candidate drug prediction were employed to identify potential causal circulating proteins and novel drug targets. STROBE MR guidelines are followed for the study. We assessed the effect of 1929 plasma proteins on COPD. We found that Seven proteins, 4 proteins, and 3 proteins were associated with overall COPD, early-onset COPD, and later-onset COPD risk, respectively. MHC class I polypeptide-related sequence B_A (MICB_MICA) and tyrosine-protein kinase receptor tie-1 (TIE-1) would increase 8% and 27% COPD risk (MICB_MICA: odds ratios [OR], 1.08; 95% CI, 1.05-1.10; PFDR = 2.53 × 10-5; TIE-1: OR, 1.27; 95% CI, 1.13-1.43; PFDR = .012). There was negative association of Septin-8 and Butyrophilin subfamily 1 member A1 (BTN1A1) with overall COPD risk (Septin-8: OR, 0.68; 95% CI, 0.57-0.79; PFDR = 8.00 × 10-4 BTN1A1: OR, 0.82; 95% CI, 0.75-0.90; PFDR = .010). There was a protective effect of BTN1A1 on early COPD incidence (OR, 0.72; 95% CI, 0.63-0.83; PFDR = .002). However, there was no evidence indicating a shared causal variant between the other proteins and COPD and its subtypes in these regions (all posterior probability.H4 < .8). The study revealed the causal relationship between several plasma proteins and COPD and its subtypes, providing new theoretical support for understanding COPD.
Collapse
Affiliation(s)
- Xu Chu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Henan University of Science & Technology, Luoyang, P.R. China
| | - Zhifa Han
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Baicun Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Ting Yang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| |
Collapse
|
2
|
Li Z, Zhang Q, Zhang X, Jin Q, Yue Q, Li N, Liu H, Fujimoto M, Jin G. Dihydroartemisinin inhibits melanoma migration and metastasis by affecting angiogenesis. Phytother Res 2025; 39:1679-1693. [PMID: 37982352 PMCID: PMC12013856 DOI: 10.1002/ptr.8065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Tumor angiogenesis is critical for tumor metastasis by providing oxygen, nutrients, and metastatic pathways. As a potential anti-angiogenic agent, Dihydroartemisinin (DHA) can effectively inhibit tumor metastasis. However, the mechanism how it regulates angiogenesis to affect tumor metastasis has not been fully clarified. To investigate the mechanisms of how DHA regulates melanoma progression. In this study, bioinformatics methods were used to analyze the correlation between angiogenesis and melanoma metastasis. Then, B16F10, A375, HUVECs and mouse metastasis models were adapted to clarify the inhibition of DHA in melanoma. GESA analysis revealed melanoma metastasis significantly positive correlated with angiogenesis. Meanwhile, DHA significantly decreased melanoma nodules and lung wet weight in metastatic tumor mice, and inhibited the expression of the angiogenic marker CD31 in vitro and in vivo. Similarly, DHA inhibited the expression of the angiogenic signal molecule VEGFR2 in A375 and B16F10 cells, and significantly suppressed the formation of their tubular structures. DHA-treated supernatants significantly inhibited the tubule-forming ability as well as lateral and longitudinal migration ability of HUVECs compared with untreated melanoma cell supernatants. Screening yielded the angiogenic pathways HIF-1α/VEGF, PI3K/ATK/mTOR associated with melanoma metastasis, and DHA may inhibit tumor metastasis by inhibiting these angiogenic pathways in melanoma cells to inhibit tumor metastasis. Further non-targeted metabolomics analysis revealed that DHA-treated model mice produced differential metabolites that were also associated with angiogenic pathways. DHA inhibits melanoma invasion and metastasis by mediating angiogenesis. These results have important implications for the potential use of DHA in treatment of melanoma.
Collapse
Affiliation(s)
- Zhaoxiang Li
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Qi Zhang
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Xinyuan Zhang
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Quanxin Jin
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Qi Yue
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Na Li
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Huan Liu
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of MedicineOsaka University, Laboratory of Cutaneous Immunology, Osaka UniversityImmunology Frontier Research CenterOsakaJapan
| | - Guihua Jin
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| |
Collapse
|
3
|
Yang S, Fang Y, Ma Y, Wang F, Wang Y, Jia J, Yang Y, Sun W, Zhou Q, Li Z. Angiogenesis and targeted therapy in the tumour microenvironment: From basic to clinical practice. Clin Transl Med 2025; 15:e70313. [PMID: 40268524 PMCID: PMC12017902 DOI: 10.1002/ctm2.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Angiogenesis, as a core marker of cancer survival and growth, is integral to the processes of tumour growth, invasion and metastasis. In recent years, targeted angiogenesis treatment strategies have gradually become an important direction in cancer treatment. Single-cell sequencing technology can provide new insights into targeted angiogenesis by providing a deeper understanding of the heterogeneity of tumour endothelial cells and exploring the interactions between endothelial cells and surrounding cells in the tumour microenvironment. Here, we systematically review the research progress in endothelial cell pathophysiology and its endothelial‒mesenchymal transition and illustrate the heterogeneity of endothelial cells from a single-cell perspective. Finally, we examine the contributions of different cell types within the tumour microenvironment in relation to tumour angiogenesis, as well as the latest progress and strategies in targeted angiogenesis therapy, hoping to provide useful insights into the clinical application of antiangiogenic treatment. Furthermore, a summary of the present progress in the development of potential angiogenesis inhibitors and the ongoing clinical trials for combination therapies is provided. KEY POINTS: Angiogenesis plays a key role in tumour progression, invasion and metastasis, so strategies targeting angiogenesis are gradually becoming an important direction in cancer therapy. Interactions between endothelial cells and stromal cells and immune cells in the tumour microenvironment are significant in angiogenesis. The application of antiangiogenic immunotherapy and nanotechnology in antiangiogenic therapy provides a vital strategy for prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingshuai Fang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yangcheng Ma
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fuqi Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhang Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiachi Jia
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yabing Yang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Weipeng Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhen Li
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
4
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
5
|
Parikh R, Parikh S, Berzin D, Vaknine H, Ovadia S, Likonen D, Greenberger S, Scope A, Elgavish S, Nevo Y, Plaschkes I, Nizri E, Kobiler O, Maliah A, Zaremba L, Mohan V, Sagi I, Ashery-Padan R, Carmi Y, Luxenburg C, Hoheisel JD, Khaled M, Levesque MP, Levy C. Recycled melanoma-secreted melanosomes regulate tumor-associated macrophage diversification. EMBO J 2024; 43:3553-3586. [PMID: 38719996 PMCID: PMC11377571 DOI: 10.1038/s44318-024-00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 09/07/2024] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.
Collapse
Affiliation(s)
- Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- The Ragon Institute of Mass General, Massachusetts Institute of Technology (MIT), and Harvard, MA 02139, Cambridge, USA
| | - Daniella Berzin
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon, 58100, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daniela Likonen
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | | | - Alon Scope
- The Kittner Skin Cancer Screening and Research Institute, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv Universitygrid.12136.37, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Laureen Zaremba
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Chen Luxenburg
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mehdi Khaled
- INSERM 1279, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Wagistrasse 18, CH-8952, Schlieren, Switzerland
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
6
|
Chen T, Xu Y, Xu X, Wang J, Qiu Z, Yu Y, Jiang X, Shao W, Bai D, Wang M, Mei S, Cheng T, Wu L, Gao S, Che X. Comprehensive transcriptional atlas of human adenomyosis deciphered by the integration of single-cell RNA-sequencing and spatial transcriptomics. Protein Cell 2024; 15:530-546. [PMID: 38486356 PMCID: PMC11214835 DOI: 10.1093/procel/pwae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 07/02/2024] Open
Abstract
Adenomyosis is a poorly understood gynecological disorder lacking effective treatments. Controversy persists regarding "invagination" and "metaplasia" theories. The endometrial-myometrial junction (EMJ) connects the endometrium and myometrium and is important for diagnosing and classifying adenomyosis, but its in-depth study is just beginning. Using single-cell RNA sequencing and spatial profiling, we mapped transcriptional alterations across eutopic endometrium, lesions, and EMJ. Within lesions, we identified unique epithelial (LGR5+) and invasive stromal (PKIB+) subpopulations, along with WFDC1+ progenitor cells, supporting a complex interplay between "invagination" and "metaplasia" theories of pathogenesis. Further, we observed endothelial cell heterogeneity and abnormal angiogenic signaling involving vascular endothelial growth factor and angiopoietin pathways. Cell-cell communication differed markedly between ectopic and eutopic endometrium, with aberrant signaling in lesions involving pleiotrophin, TWEAK, and WNT cascades. This study reveals unique stem cell-like and invasive cell subpopulations within adenomyosis lesions identified, dysfunctional signaling, and EMJ abnormalities critical to developing precise diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Tao Chen
- Department of Obstetrics and Gynecology, Affiliated Women and Children Hospital of Jiaxing University, Jiaxing 314000, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yiliang Xu
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Xiaocui Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianzhang Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, China
| | - Zhiruo Qiu
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China
| | - Yayuan Yu
- Department of Obstetrics and Gynecology, Affiliated Women and Children Hospital of Jiaxing University, Jiaxing 314000, China
| | - Xiaohong Jiang
- Department of Obstetrics and Gynecology, Affiliated Women and Children Hospital of Jiaxing University, Jiaxing 314000, China
| | - Wanqi Shao
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dandan Bai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuyan Mei
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China
| | - Tao Cheng
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China
| | - Li Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xuan Che
- Department of Obstetrics and Gynecology, Affiliated Women and Children Hospital of Jiaxing University, Jiaxing 314000, China
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
7
|
Brouillard P, Murtomäki A, Leppänen VM, Hyytiäinen M, Mestre S, Potier L, Boon LM, Revencu N, Greene A, Anisimov A, Salo MH, Hinttala R, Eklund L, Quéré I, Alitalo K, Vikkula M. Loss-of-function mutations of the TIE1 receptor tyrosine kinase cause late-onset primary lymphedema. J Clin Invest 2024; 134:e173586. [PMID: 38820174 PMCID: PMC11245153 DOI: 10.1172/jci173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Primary lymphedema (PL), characterized by tissue swelling, fat accumulation, and fibrosis, results from defects in lymphatic vessels or valves caused by mutations in genes involved in development, maturation, and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodeling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability, and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR/Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2/TIE1 pathway in lymphatic function.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Aino Murtomäki
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandrine Mestre
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Lucas Potier
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M. Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, VASCERN-VASCA Reference Centre, Brussels, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Arin Greene
- Department of Plastic and Oral Surgery, Lymphedema Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrey Anisimov
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia H. Salo
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Isabelle Quéré
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
8
|
Cai G, Hua Z, Zhang L, Chen Y, Li X, Ma K, Xia Z, Li Z. Single-cell transcriptome analysis reveals tumoral microenvironment heterogenicity and hypervascularization in human carotid body tumor. J Cell Physiol 2024; 239:e31175. [PMID: 38214142 DOI: 10.1002/jcp.31175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/07/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Carotid body tumor (CBT) is a rare neck tumor located at the adventitia of the common carotid artery bifurcation. The prominent pathological features of CBT are high vascularization and abnormal proliferation. However, single-cell transcriptome analysis of the microenvironment composition and molecular complexity in CBT has yet to be performed. In this study, we performed single-cell RNA sequencing (scRNA-seq) analysis on human CBT to define the cells that contribute to hypervascularization and chronic hyperplasia. Unbiased clustering analysis of transcriptional profiles identified 16 distinct cell populations including endothelial cells (ECs), smooth muscle cells (SMCs), neuron cells, macrophage cells, neutrophil cells, and T cells. Within the ECs population, we defined subsets with angiogenic capacity plus clear signs of later endothelial progenitor cells (EPCs) to normal ECs. Two populations of macrophages were detectable in CBT, macrophage1 showed enrichment in hypoxia-inducible factor-1 (HIF-1) and as well as an early EPCs cell-like population expressing CD14 and vascular endothelial growth factor. In addition to HIF-1-related transcriptional protein expression, macrophages1 also display a neovasculogenesis-promoting phenotype. SMCs included three populations showing platelet-derived growth factor receptor beta and vimentin expression, indicative of a cancer-associated fibroblast phenotype. Finally, we identified three types of neuronal cells, including chief cells and sustentacular cells, and elucidated their distinct roles in the pathogenesis of CBT and abnormal proliferation of tumors. Overall, our study provided the first comprehensive characterization of the transcriptional landscape of CBT at scRNA-seq profiles, providing novel insights into the mechanisms underlying its formation.
Collapse
Affiliation(s)
- Gaopo Cai
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Hua
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linfeng Zhang
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yutian Chen
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Shi H, Zheng F, Zheng Y, Sun X, Chen H, Gao Y. A carrier-free tri-component nanoreactor for multi-pronged synergistic cancer therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112886. [PMID: 38490055 DOI: 10.1016/j.jphotobiol.2024.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Non-invasive therapies such as photodynamic therapy (PDT) and chemodynamic therapy (CDT) have received wide attention due to their low toxicity and side effects, but their efficacy is limited by the tumor microenvironment (TME), and monotherapy cannot achieve satisfactory efficacy. In this work, a multifunctional nanoparticle co-assembled from oleanolic acid (OA), chlorin e6 (Ce6) and hemin was developed. The as-constructed nanoparticle named OCH with diameters of around 130 nm possessed good biostability, pH/GSH dual-responsive drug release properties, and remarkable cellular internalization and tumor accumulation capabilities. OCH exhibited prominent catalytic activities to generate •OH, deplete GSH, and produce O2 to overcome the hypoxia TME, thus potentiating the photodynamic and chemodynamic effect. In addition, OCH can induce the occurrence of ferroptosis in both ferroptosis-sensitive and ferroptosis-resistant cancer cells. The multi-pronged effects of OCH including hypoxia alleviation, GSH depletion, ferroptosis induction, CDT and PDT effects jointly facilitate excellent anticancer effects in vitro and in vivo. Hence, this work will advance the development of safe and effective clinically transformable nanomedicine by employing clinically-applied agents to form drug combinations for efficient multi-pronged combination cancer therapy.
Collapse
Affiliation(s)
- Huifang Shi
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fangying Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
10
|
Gong Z, Zheng Q, Li B, Wang H, Chen H, Lin S. Identification of the Expression of TIE1 and Its Mediated Immunosuppression in Gastric Cancer. J Cancer 2024; 15:2994-3009. [PMID: 38706903 PMCID: PMC11064258 DOI: 10.7150/jca.90891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/27/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Recently, various evidence has confirmed that Tyrosine Kinase with Immunoglobulin-like and EGF-like domains 1 (TIE1) promotes tumor growth in many cancers. However, the precise mechanism underlying TIE1's involvement in Gastric Cancer (GC) remains elusive. This research aimed to investigate the biological function of TIE1 in regulating GC progression. Methods: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), GEPIA2.0, Sangerbox3.0 and TIMER databases were used to analyze the TIE1 expression. Immunohistochemistry (IHC) was used to demonstrate the expression of TIE1. TCGA, GEPIA2.0 and Kaplan-Meier were utilized for survival analysis and to explore the association of TIE1 with clinicopathological features. Protein-Protein Interaction (PPI) networks were constructed using Cytoscape. The potential molecular mechanism of TIE1 was investigated by Gene Ontology (GO), Kyoto Encyclopedia of Gene Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). We studied the relationships between TIE1 and mutations, immune checkpoints (ICs), tumor mutational burden (TMB), as well as microsatellite instability (MSI) to explore the underlying mechanism of immunity in GC. Results: Compared with normal tissue, TIE1 was significantly overexpressed in GC tissues (p = 0.0072) and was associated with poor survival (P < 0.05). According to GO and KEGG enrichment analyses, TIE1 was enriched in signal pathways related to the occurrence, invasion, and migration of malignant tumors (i.e., PI3K-Akt signaling pathway, Calcium signaling pathway, etc.). Immune infiltration analysis suggested that TIE1 is positively correlated with macrophages M2 and negatively correlated with Mast cells, naive B cells and Follicular helper T cells (TFH), which may be a contributing factor to tumor progression. Furthermore, the research on the tumor microenvironment (TME) and tumor purity also proved that TIE1 may be an oncogene. Mutation analysis showed that the high expression group of TIE1 had a higher frequency of mutations in TP53 and ARID1, while the TMB score was lower. Conclusion: TIE1 might be an oncogene via regulating dysregulated immune infiltration to cause immunosuppression in GC and could be identified as a biomarker for prognosis and a therapeutic target for GC.
Collapse
Affiliation(s)
- Zhenqi Gong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Qing Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Baizhi Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hongwu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Medical College, Shantou University, Shantou, China
| | - Shaoxiong Lin
- Department of Otolaryngology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
11
|
Wu J, Liu Y, Fu Q, Cao Z, Ma X, Li X. Characterization of tumor-associated endothelial cells and the development of a prognostic model in pancreatic ductal adenocarcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130545. [PMID: 38141886 DOI: 10.1016/j.bbagen.2023.130545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a complex tumor microenvironment. Angiogenesis is of paramount importance in the proliferation and metastasis of PDAC. However, currently, there are no well-defined biomarkers available to guide the prognosis and treatment of PDAC. In this study, we investigated the interactions between tumor-associated endothelial cells (TAECs) and tumor cells in PDAC, and identified a specific subset of TAECs characterized by high expression of COL4A1. COL4A1+ endothelial cells interact with tumor cells through the COLLAGEN signaling pathway to promote tumor cell proliferation, migration, and invasion. We also observed activation of HOXD9 in COL4A1+ endothelial cells. Based on these findings, we developed a prognostic model called TaEMS, which accurately predicts patient prognosis. TaEMS identified high-risk patients enriched in cell cycle-related pathways and low-risk patients enriched in focal adhesions, smooth muscle regulation, and immune pathways. Moreover, high-risk patients displayed a reduced level of immune cell infiltration, indicating the presence of a "cold tumor" phenotype. Overall, our study uncovered an intricate crosstalk between TAECs and tumor cells in PDAC, emphasizing the role of HOXD9 and highlighting the potential of TaEMS as a prognostic biomarker for precise therapies.
Collapse
Affiliation(s)
- Jun Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443003, China; Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong; Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qi Fu
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong; Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Zhi Cao
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong Province, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong; Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China.
| | - Xun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443003, China.
| |
Collapse
|
12
|
Silk RP, Winter HR, Dkhissi-Benyahya O, Evans-Molina C, Stitt AW, Tiwari VK, Simpson DA, Beli E. Mapping the daily rhythmic transcriptome in the diabetic retina. Vision Res 2024; 214:108339. [PMID: 38039846 PMCID: PMC11330665 DOI: 10.1016/j.visres.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Retinal function changes dramatically from day to night, yet clinical diagnosis, treatments, and experimental sampling occur during the day. To begin to address this gap in our understanding of disease pathobiology, this study investigates whether diabetes affects the retina's daily rhythm of gene expression. Diabetic, Ins2Akita/J mice, and non-diabetic littermates were kept under a 12 h:12 h light/dark cycle until 4 months of age. mRNA sequencing was conducted in retinas collected every 4 h throughout the 24 hr light/dark cycle. Computational approaches were used to detect rhythmicity, predict acrophase, identify differential rhythmic patterns, analyze phase set enrichment, and predict upstream regulators. The retinal transcriptome exhibited a tightly regulated rhythmic expression with a clear 12-hr transcriptional axis. Day-peaking genes were enriched for DNA repair, RNA splicing, and ribosomal protein synthesis, night-peaking genes for metabolic processes and growth factor signaling. Although the 12-hr transcriptional axis is retained in the diabetic retina, it is phase advanced for some genes. Upstream regulator analysis for the phase-shifted genes identified oxygen-sensing mechanisms and HIF1alpha, but not the circadian clock, which remained in phase with the light/dark cycle. We propose a model in which, early in diabetes, the retina is subjected to an internal desynchrony with the circadian clock and its outputs are still light-entrained whereas metabolic pathways related to neuronal dysfunction and hypoxia are phase advanced. Further studies are now required to evaluate the chronic implications of such desynchronization on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ryan P Silk
- Wellcome Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, United Kingdom
| | - Hanagh R Winter
- Wellcome Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, United Kingdom
| | - Ouria Dkhissi-Benyahya
- Univ. Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alan W Stitt
- Wellcome Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, United Kingdom
| | - Vijay K Tiwari
- Wellcome Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, United Kingdom; Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark; Danish Institute for Advanced Study (DIAS), Odense M, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - David A Simpson
- Wellcome Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, United Kingdom
| | - Eleni Beli
- Wellcome Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
13
|
Yang J, Shu G, Chen T, Dong A, Dong C, Li W, Sun X, Zhou Y, Li D, Zhou J. ESM1 Interacts with c-Met to Promote Gastric Cancer Peritoneal Metastasis by Inducing Angiogenesis. Cancers (Basel) 2023; 16:194. [PMID: 38201620 PMCID: PMC10778290 DOI: 10.3390/cancers16010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The peritoneum is the most common metastatic site of advanced gastric cancer and is associated with extremely poor prognosis. Endothelial-specific molecule 1 (ESM1) was found to be significantly associated with gastric cancer peritoneal metastasis (GCPM); however, the biological functions and molecular mechanisms of ESM1 in regulating GCPM remain unclear. Herein, we demonstrated that ESM1 expression was significantly upregulated in gastric cancer tissues and positively correlated with platelet endothelial cell adhesion molecule-1 (CD31) levels. Moreover, clinical validation, in in vitro and in vivo experiments, confirmed that ESM1 promoted gastric cancer angiogenesis, eventually promoting gastric cancer peritoneal metastasis. Mechanistically, ESM1 promoted tumor angiogenesis by binding to c-Met on the vascular endothelial cell membrane. In addition, our results confirmed that ESM1 upregulated VEGFA, HIF1α, and MMP9 expression and induced angiogenesis by activating the MAPK/ERK pathway. In conclusion, our findings identified the role of ESM1 in gastric cancer angiogenesis and GCPM, thus providing insights into the diagnosis and treatment of advanced gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dongbao Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (J.Y.); (G.S.); (T.C.); (A.D.); (C.D.); (W.L.); (X.S.); (Y.Z.)
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (J.Y.); (G.S.); (T.C.); (A.D.); (C.D.); (W.L.); (X.S.); (Y.Z.)
| |
Collapse
|
14
|
Li J, Yao YX, Yao PS. Circulating Biomarkers and Risk of Hypertension: A Two-Sample Mendelian Randomisation Study. Heart Lung Circ 2023; 32:1434-1442. [PMID: 38042639 DOI: 10.1016/j.hlc.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE This study systematically assessed circulating proteins to identify new serum biomarkers and risk of hypertension using Mendelian randomisation. METHODS The associations between 4,782 human circulating proteins and the risk of hypertension were evaluated using two-sample Mendelian randomisation. The FinnGen study demonstrated a link between genetic predisposition and hypertension in 85,438 cases and 223,663 controls. RESULTS Inverse variance weighted and sensitivity analysis revealed nine proteins in circulation that have a causative effect on hypertension. SMOC1 and TIE1 were determined to be causative factors in the decreased likelihood of developing hypertension, with odds ratios of 0.86 (95% CI 0.81-0.91; p=1.06e-06) and 0.96 (95% CI 0.94-0.98; p=9.39e-05), respectively. NDUFB4, ETHE1, POFUT2, TRIL, ADAM23, GXYLT1, OXT, TPST2, and TMCC3 showed a possible connection to hypertension. CONCLUSIONS This two-sample Mendelian randomisation study found that SMOC1 and TIE1 are causally linked to hypertension, making them a promising target for therapy.
Collapse
Affiliation(s)
- Jin Li
- Department of Cardiovascular Medicine, Fujian Provincial Geriatric Hospital, Fuzhou, China
| | - Yue-Xian Yao
- Department of Cardiovascular Medicine, Fujian Provincial Geriatric Hospital, Fuzhou, China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
15
|
Wu H, Wu Z, Ye D, Li H, Dai Y, Wang Z, Bao J, Xu Y, He X, Wang X, Dai X. Prognostic value analysis of cholesterol and cholesterol homeostasis related genes in breast cancer by Mendelian randomization and multi-omics machine learning. Front Oncol 2023; 13:1246880. [PMID: 38023262 PMCID: PMC10661325 DOI: 10.3389/fonc.2023.1246880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The high incidence of breast cancer (BC) prompted us to explore more factors that might affect its occurrence, development, treatment, and also recurrence. Dysregulation of cholesterol metabolism has been widely observed in BC; however, the detailed role of how cholesterol metabolism affects chemo-sensitivity, and immune response, as well as the clinical outcome of BC is unknown. Methods With Mendelian randomization (MR) analysis, the potential causal relationship between genetic variants of cholesterol and BC risk was assessed first. Then we analyzed 73 cholesterol homeostasis-related genes (CHGs) in BC samples and their expression patterns in the TCGA cohort with consensus clustering analysis, aiming to figure out the relationship between cholesterol homeostasis and BC prognosis. Based on the CHG analysis, we established a CAG_score used for predicting therapeutic response and overall survival (OS) of BC patients. Furthermore, a machine learning method was adopted to accurately predict the prognosis of BC patients by comparing multi-omics differences of different risk groups. Results We observed that the alterations in plasma cholesterol appear to be correlative with the venture of BC (MR Egger, OR: 0.54, 95% CI: 0.35-0.84, p<0.006). The expression patterns of CHGs were classified into two distinct groups(C1 and C2). Notably, the C1 group exhibited a favorable prognosis characterized by a suppressed immune response and enhanced cholesterol metabolism in comparison to the C2 group. In addition, high CHG score were accompanied by high performance of tumor angiogenesis genes. Interestingly, the expression of vascular genes (CDH5, CLDN5, TIE1, JAM2, TEK) is lower in patients with high expression of CHGs, which means that these patients have poorer vascular stability. The CAG_score exhibits robust predictive capability for the immune microenvironment characteristics and prognosis of patients(AUC=0.79). It can also optimize the administration of various first-line drugs, including AKT inhibitors VIII Imatinib, Crizotinib, Saracatinib, Erlotinib, Dasatinib, Rapamycin, Roscovitine and Shikonin in BC patients. Finally, we employed machine learning techniques to construct a multi-omics prediction model(Risklight),with an area under the feature curve (AUC) of up to 0.89. Conclusion With the help of CAG_score and Risklight, we reveal the signature of cholesterol homeostasis-related genes for angiogenesis, immune responses, and the therapeutic response in breast cancer, which contributes to precision medicine and improved prognosis of BC.
Collapse
Affiliation(s)
- Haodong Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixuan Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China
| | - Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongfeng Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinwei Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziqiong Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingxia Bao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiying Xu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China
| | - Xuanxuan Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Wang Q, Shi Q, Wang Z, Lu J, Hou J. Integrating plasma proteomes with genome-wide association data for causal protein identification in multiple myeloma. BMC Med 2023; 21:377. [PMID: 37775746 PMCID: PMC10542236 DOI: 10.1186/s12916-023-03086-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a severely debilitating and fatal B-cell neoplastic disease. The discovery of disease-associated proteins with causal genetic evidence offers a chance to uncover novel therapeutic targets. METHODS First, we comprehensively investigated the causal association between 2994 proteins and MM through two-sample mendelian randomization (MR) analysis using summary-level data from public genome-wide association studies of plasma proteome (N = 3301 healthy individuals) and MM (598 cases and 180,756 controls). Sensitivity analyses were performed for these identified causal proteins. Furthermore, we pursued the exploration of enriched biological pathways, prioritized the therapeutic proteins, and evaluated their druggability using the KEGG pathway analysis, MR-Bayesian model averaging analysis, and cross-reference with current databases, respectively. RESULTS We identified 13 proteins causally associated with MM risk (false discovery rate corrected P < 0.05). Six proteins were positively associated with the risk of MM, including nicotinamide phosphoribosyl transferase (NAMPT; OR [95% CI]: 1.35 [1.18, 1.55]), tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1; 1.14 [1.06, 1.22]), neutrophil cytosol factor 2 (NCF2; 1.27 [1.12, 1.44]), carbonyl reductase 1, cAMP-specific 3',5'-cyclic phosphodiesterase 4D (PDE4D), platelet-activating factor acetylhydrolase IB subunit beta (PAFAH1B2). Seven proteins were inversely associated with MM, which referred to suppressor of cytokine signaling 3 (SOCS3; 0.90 [0.86, 0.94]), Fc-gamma receptor III-B (FCGR3B; 0.75 [0.65,0.86]), glypican-1 (GPC1; 0.69 [0.58,0.83]), follistatin-related protein 1, protein tyrosine phosphatase non-receptor type 4 (PTPN4), granzyme B, complement C1q subcomponent subunit C (C1QC). Three of the causal proteins, SOCS3, FCGR3B, and NCF2, were enriched in the osteoclast differentiation pathway in KEGG enrichment analyses while GPC1 (marginal inclusion probability (MIP):0.993; model averaged causal effects (MACE): - 0.349), NAMPT (MIP:0.433; MACE: - 0.113), and NCF2 (MIP:0.324; MACE:0.066) ranked among the top three MM-associated proteins according to MR-BMA analyses. Furthermore, therapeutics targeting four proteins are currently under evaluation, five are druggable and four are future breakthrough points. CONCLUSIONS Our analysis revealed a set of 13 novel proteins, including six risk and seven protective proteins, causally linked to MM risk. The discovery of these MM-associated proteins opens up the possibility for identifying novel therapeutic targets, further advancing the integration of genome and proteome data for drug development.
Collapse
Affiliation(s)
- Qiangsheng Wang
- Department of Hematology, Ningbo Hangzhou Bay Hospital, Ningbo, 315000, Zhejiang, China
| | - Qiqin Shi
- Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, 315000, Zhejiang, China
| | - Zhenqian Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jiawen Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
17
|
Chen Q, Wu J, Li X, Ye Z, Yang H, Mu L. Amphibian-Derived Natural Anticancer Peptides and Proteins: Mechanism of Action, Application Strategies, and Prospects. Int J Mol Sci 2023; 24:13985. [PMID: 37762285 PMCID: PMC10530844 DOI: 10.3390/ijms241813985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that seriously threaten human life. Traditional anticancer therapies have achieved remarkable efficacy but have also some unavoidable side effects. Therefore, more and more research focuses on highly effective and less-toxic anticancer substances of natural origin. Amphibian skin is rich in active substances such as biogenic amines, alkaloids, alcohols, esters, peptides, and proteins, which play a role in various aspects such as anti-inflammatory, immunomodulatory, and anticancer functions, and are one of the critical sources of anticancer substances. Currently, a range of natural anticancer substances are known from various amphibians. This paper aims to review the physicochemical properties, anticancer mechanisms, and potential applications of these peptides and proteins to advance the identification and therapeutic use of natural anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Yang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lixian Mu
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
18
|
Zhang Y, Xu S, Jiang F, Hu M, Han Y, Wang Y, Liu Z. A comprehensive insight into the role of molecular pathways affected by the Angiopoietin and Tie system involved in hematological malignancies' pathogenesis. Pathol Res Pract 2023; 248:154677. [PMID: 37467636 DOI: 10.1016/j.prp.2023.154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Angiogenesis has been recognized as a critical factor in developing solid tumors and hematological malignancies. How angiogenesis affects the molecular pathways in malignancies is still a mystery. The angiopoietin family, one of the known molecular mediators for angiogenesis, encourages angiogenesis by attaching to Tie receptors on cell surfaces. Angiopoietin, Tie, and particularly the molecular pathways they mediate have all been the subject of recent studies that have established their diagnostic, prognostic, and therapeutic potential. Here, we've reviewed the function of molecular pathways impacted by the Angiogenin and Tie system in hematological malignancies.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
19
|
Feng Y, Luo S, Fan D, Guo X, Ma S. The role of vascular endothelial cells in tumor metastasis. Acta Histochem 2023; 125:152070. [PMID: 37348328 DOI: 10.1016/j.acthis.2023.152070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Vascular endothelial cells (VECs) are an integral component of the inner lining of blood vessels, and their functions are essential for the proper functioning of the vascular system. The tight junctions formed by VECs act as a significant barrier to the intravasation and extravasation of tumor cells (TCs). In addition to that, the proliferation, activation, and migration of VECs play a vital role in the growth of new blood vessels, a process known as tumor angiogenesis, which is closely related to the malignant progression of tumors. However, during tumor progression, VECs undergo endothelial-to-mesenchymal transition (EndMT), which further promotes tumor progression. Furthermore, VECs act as the first line of defense against effector immune cells and help prevent immune cells from infiltrating into tumor tissues. VECs also secrete various cytokines that can contribute to regulating the stemness of tumor stem cells. Thus, it has been increasingly recognized that dysfunction of VECs is one of the key driving forces behind tumor metastasis, and therapeutic strategies targeting VECs have the potential to be an effective means of antitumor therapy. This review aims to present a comprehensive overview of the role and mechanisms of VECs in regulating tumor progression and metastasis, providing insights into the possibilities for the development of novel antitumor therapies that target VECs.
Collapse
Affiliation(s)
- Ying Feng
- Department of Critical Care Medicine, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shan Luo
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Dandan Fan
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xingrong Guo
- Department of Critical Care Medicine, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Shinan Ma
- Department of Critical Care Medicine, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
20
|
Zaka Khosravi S, Molaei Ramshe S, Allahbakhshian Farsani M, Moonesi M, Marofi F, Hagh MF. An overview of the molecular and clinical significance of the angiopoietin system in leukemia. J Recept Signal Transduct Res 2023:1-12. [PMID: 37186553 DOI: 10.1080/10799893.2023.2204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The angiogenesis efficacy in solid tumors and hematological malignancies has been identified for more than twenty years. Although the exact role of angiogenesis in leukemia as a common hematological malignancy has not yet been extensively studied, its effect is demonstrated on the initiation and maintenance of a favorable microenvironment for leukemia cell proliferation. The angiopoietin family is a defined molecular mediator for angiogenesis, which contributes to vascular permeability and angiogenesis initiation. They participate in the angiogenesis process by binding to tyrosine kinase receptors (Tie) on endothelial cells. Considering the role of angiogenesis in leukemia development and the crucial effects of the Ang-Tie system in angiogenesis regulation, many studies have focused on the correlation between the Ang-Tie system and leukemia diagnosis, monitoring, and treatment. In this study, we reviewed the Ang-Tie system's potential diagnostic and therapeutic effects in different types of leukemia in the gene expression level analysis approach. The angiopoietin family context-dependent manner prevents us from defining its actual function in leukemia, emphasizing the need for more comprehensive studies.
Collapse
Affiliation(s)
- Saeed Zaka Khosravi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Molaei Ramshe
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mehdi Allahbakhshian Farsani
- Department of Laboratory Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Moonesi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Metastasis prevention: How to catch metastatic seeds. Biochim Biophys Acta Rev Cancer 2023; 1878:188867. [PMID: 36842768 DOI: 10.1016/j.bbcan.2023.188867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Despite considerable advances in the evolution of anticancer therapies, metastasis still remains the main cause of cancer mortality. Therefore, current strategies for cancer cure should be redirected towards prevention of metastasis. Targeting metastatic pathways represents a promising therapeutic opportunity aimed at obstructing tumor cell dissemination and metastatic colonization. In this review, we focus on preclinical studies and clinical trials over the last five years that showed high efficacy in suppressing metastasis through targeting lymph node dissemination, tumor cell extravasation, reactive oxygen species, pre-metastatic niche, exosome machinery, and dormancy.
Collapse
|
22
|
Chen E, Huang J, Chen M, Wu J, Ouyang P, Wang X, Shi D, Liu Z, Zhu W, Sun H, Yang S, Zhang B, Deng W, Qiu H, Xie F. FLI1 regulates radiotherapy resistance in nasopharyngeal carcinoma through TIE1-mediated PI3K/AKT signaling pathway. J Transl Med 2023; 21:134. [PMID: 36814284 PMCID: PMC9945741 DOI: 10.1186/s12967-023-03986-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Radiotherapy resistance is the main cause of treatment failure in nasopharyngeal carcinoma (NPC), which leads to poor prognosis. It is urgent to elucidate the molecular mechanisms underlying radiotherapy resistance. METHODS RNA-seq analysis was applied to five paired progressive disease (PD) and complete response (CR) NPC tissues. Loss-and gain-of-function assays were used for oncogenic function of FLI1 both in vitro and in vivo. RNA-seq analysis, ChIP assays and dual luciferase reporter assays were performed to explore the interaction between FLI1 and TIE1. Gene expression with clinical information from tissue microarray of NPC were analyzed for associations between FLI1/TIE1 expression and NPC prognosis. RESULTS FLI1 is a potential radiosensitivity regulator which was dramatically overexpressed in the patients with PD to radiotherapy compared to those with CR. FLI1 induced radiotherapy resistance and enhanced the ability of DNA damage repair in vitro, and promoted radiotherapy resistance in vivo. Mechanistic investigations showed that FLI1 upregulated the transcription of TIE1 by binding to its promoter, thus activated the PI3K/AKT signaling pathway. A decrease in TIE1 expression restored radiosensitivity of NPC cells. Furthermore, NPC patients with high levels of FLI1 and TIE1 were correlated with poor prognosis. CONCLUSION Our study has revealed that FLI1 regulates radiotherapy resistance of NPC through TIE1-mediated PI3K/AKT signaling pathway, suggesting that targeting the FLI1/TIE1 signaling pathway could be a potential therapeutic strategy to enhance the efficacy of radiotherapy in NPC.
Collapse
Affiliation(s)
- Enni Chen
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Jiajia Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Miao Chen
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Jiawei Wu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Puyun Ouyang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Xiaonan Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Dingbo Shi
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Zhiqiao Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Wancui Zhu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Haohui Sun
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Shanshan Yang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Baoyu Zhang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Huijuan Qiu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Fangyun Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
23
|
Zhang J, Lu T, Lu S, Ma S, Han D, Zhang K, Xu C, Liu S, Gan L, Wu X, Yang F, Wen W, Qin W. Single-cell analysis of multiple cancer types reveals differences in endothelial cells between tumors and normal tissues. Comput Struct Biotechnol J 2022; 21:665-676. [PMID: 36659929 PMCID: PMC9826920 DOI: 10.1016/j.csbj.2022.12.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) play an important role in tumor progression. Currently, the main target of anti-angiogenic therapy is the vascular endothelial growth factor (VEGF) pathway. Some patients do benefit from anti-VEGF/VEGFR therapy; however, a large number of patients do not have response or acquire drug resistance after treatment. Moreover, anti-VEGF/VEGFR therapy may lead to nephrotoxicity and cardiovascular-related side effects due to its action on normal ECs. Therefore, it is necessary to identify targets that are specific to tumor ECs and could be applied to various cancer types. We integrated single-cell RNA sequencing data from six cancer types and constructed a multi-cancer EC atlas to decode the characteristic of tumor ECs. We found that tip-like ECs mainly exist in tumor tissues but barely exist in normal tissues. Tip-like ECs are involved in the promotion of tumor angiogenesis and inhibition on anti-tumor immune responses. Moreover, tumor cells, myeloid cells, and pericytes are the main sources of pro-angiogenic factors. High proportion of tip-like ECs is associated with poor prognosis in multiple cancer types. We also identified that prostate-specific membrane antigen (PSMA) is a specific marker for tip-like ECs in all the cancer types we studied. In summary, we demonstrate that tip-like ECs are the main differential EC subcluster between tumors and normal tissues. Tip-like ECs may promote tumor progression through promoting angiogenesis while inhibiting anti-tumor immune responses. PSMA was a specific marker for tip-like ECs, which could be used as a potential target for the diagnosis and treatment of non-prostate cancers.
Collapse
Key Words
- BRCA, Breast invasive carcinoma
- CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma
- CRC, Colorectal cancer
- ECs, Endothelial cells
- Endothelial cells
- GC, Gastric cancer
- HNSC, Head and Neck squamous cell carcinoma
- KICH, Kidney chromophobe
- KIRC, Kidney renal clear cell carcinoma
- KIRP, Kidney renal papillary cell carcinoma
- LC, Lung cancer
- LIHC, Liver hepatocellular carcinoma
- LUAD, Lung adenocarcinoma
- LUSC, Lung squamous cell carcinoma
- OV, Ovarian serous cystadenocarcinoma
- OVC, Ovarian cancer
- PAAD, Pancreatic adenocarcinoma
- PDAC, Pancreatic ductal adenocarcinoma
- PRAD, Prostate adenocarcinoma
- PSMA, Prostate-specific membrane antigen
- RCC, Renal cell carcinoma
- READ, Rectum adenocarcinoma
- STAD, Stomach adenocarcinoma
- Single-cell RNA sequencing
- TME, Tumor microenvironment
- Tumor microenvironment
- VEGF, Vascular endothelial growth factor
- scRNA-seq, Single-cell RNA sequencing
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shiqi Lu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Shuaijun Ma
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Lunbiao Gan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xinjie Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China,Correspondence to: Department of Urology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, China.
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China,Correspondence to: Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, China.
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi’an, China,Correspondence to: Department of Urology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, China.
| |
Collapse
|
24
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
25
|
Wang R, Yang M, Jiang L, Huang M. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res 2022; 182:106331. [PMID: 35772646 DOI: 10.1016/j.phrs.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic system diseases and play an important role in physiological and pathological vascular conditions. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Moua Yang
- Division of Hemostasis & Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, United States
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
26
|
Garcia-Hernandez A, Reyes-Uribe E, Arce-Salinas C, de la Cruz-Lopez KG, Manzo-Merino J, Guzman-Ortiz AL, Quezada H, Cortes-Reynosa P, Breton-Mora F, Elizalde-Acosta I, Thompson-Bonilla R, Salazar EP. Extracellular vesicles from blood of breast cancer women induce angiogenic processes in HUVECs. Tissue Cell 2022; 76:101814. [DOI: 10.1016/j.tice.2022.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
|
27
|
江 舟, 陈 建. [Anti-angiogenesis in Lung Cancer: Current Situation, Progress and Confusion]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:278-286. [PMID: 35477192 PMCID: PMC9051307 DOI: 10.3779/j.issn.1009-3419.2022.101.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/05/2022]
Abstract
Lung cancer is a highly vascular tumors, over the past ten years, anti-angiogenes is has been proved to be an effective and highly promising combinational treatment. The data of the combination of anti-angiogenesis with chemotherapy, targeted therapy, immunotherapy has been constantly updating. Advanced lung cancer patients, no matter different groups or different stages of the disease, are benefited from anti-angiogenes. In this paper, based on the clinical status and unsolved problems, combined with the latest clinical and translational research data, we reviewed the current anti-angiogenesis treatment of lung cancer.
.
Collapse
Affiliation(s)
- 舟 江
- />410006 长沙,中南大学附属肿瘤医院/湖南省肿瘤医院胸内一科Department of Thoracic Medicine, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410006, China
| | - 建华 陈
- />410006 长沙,中南大学附属肿瘤医院/湖南省肿瘤医院胸内一科Department of Thoracic Medicine, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410006, China
| |
Collapse
|
28
|
Song X, Yu Y, Leng Y, Ma L, Mu J, Wang Z, Xu Y, Zhu H, Qiu X, Li P, Li J, Wang D. Expanding tubular microvessels on stiff substrates with endothelial cells and pericytes from the same adult tissue. J Tissue Eng 2022; 13:20417314221125310. [PMID: 36171979 PMCID: PMC9511303 DOI: 10.1177/20417314221125310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022] Open
Abstract
Endothelial cells (ECs) usually form a monolayer on two-dimensional (2D) stiff substrates and a tubular structure with soft hydrogels. The coculture models using ECs and pericytes derived from different adult tissues or pluripotent stem cells cannot mimic tissue-specific microvessels due to vascular heterogeneity. Our study established a method for expanding tubular microvessels on 2D stiff substrates with ECs and pericytes from the same adult tissue. We isolated microvessels from adult rat subcutaneous soft connective tissue and cultured them in the custom-made tubular microvascular growth medium on 2D stiff substrates (TGM2D). TGM2D promoted adult microvessel growth for at least 4 weeks and maintained a tubular morphology, contrary to the EC monolayer in the commercial medium EGM2MV. Transcriptomic analysis showed that TGM2D upregulated angiogenesis and vascular morphogenesis while suppressing oxidation and lipid metabolic pathways. Our method can be applied to other organs for expanding organ-specific microvessels for tissue engineering.
Collapse
Affiliation(s)
- Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, China
| | - Zihan Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
29
|
Zhou S, Li R, Li Y, Wang Y, Feng L. A tailored and red-emissive type I photosensitizer to potentiate photodynamic immunotherapy. J Mater Chem B 2022; 10:8003-8012. [DOI: 10.1039/d2tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic immunotherapy (PDIT) emerges and shows great potentials in eradicating malignant tumors for the advantages on simultaneously damaging primary tumors, inhibiting tumors metastasis and recurrence. However, hypoxic microenvironment of tumor...
Collapse
|
30
|
You X, Sun W, Wang Y, Liu X, Wang A, Liu L, Han S, Sun Y, Zhang J, Guo L, Zhang Y. Cervical cancer-derived exosomal miR-663b promotes angiogenesis by inhibiting vinculin expression in vascular endothelial cells. Cancer Cell Int 2021; 21:684. [PMID: 34923985 PMCID: PMC8684657 DOI: 10.1186/s12935-021-02379-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Angiogenesis provides essential nutrients and oxygen for tumor growth and has become the main mechanism of tumor invasion and metastasis. Exosomes are nanoscale membrane vesicles containing proteins, lipids, mRNA and microRNA (miRNA), which mediate intercellular communication and play an important role in tumor progression. Accumulated evidence indicates that tumor-derived exosomal miRNAs participate in the tumor microenvironment and promote angiogenesis. METHODS Bioinformatic target prediction and dual luciferase reporter assays were performed to identify the binding site between miR-663b and the 3'-UTR of vinculin (VCL). VCL overexpression lentivirus and miR-663b overexpression/inhibition lentivirus were used to create a VCL overexpression model and miR-663b overexpression/inhibition model in-vitro. Immunohistochemistry (IHC) assays and western blot assays were used to detect protein expression. Exosome-cell cocultures, wound healing assays, tube formation assays and transwell assays were used to measure the migration and tube formation ability of vascular endothelial cells [human umbilical vein endothelial cells (HUVECs)]. siRNA targeted VCL was used to knockdown VCL. RESULTS In the present study, we found that miR-663b was elevated in cervical cancer tissue and exosomes. miR-663b could bind the 3'-UTR of VCL and inhibit its expression. VCL is downregulated in cervical cancer, and decreased VCL has a negative correlation with a high level of miR-663b. Further studies demonstrated that exosomes secreted by cervical cancer cells can deliver miR-663b to HUVECs and inhibit the expression of VCL, thereby promoting angiogenesis and tumor growth. CONCLUSIONS miR-663b derived from cancer cell exosomes acts as a driving factor for angiogenesis and a potential target of antiangiogenic therapy in cervical cancer. Our findings illustrated a new signaling pathway, including exosomes, miRNAs and target genes, which provides potential targets for antiangiogenic therapy.
Collapse
Affiliation(s)
- Xuewu You
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Wenxiong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, People's Republic of China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Aihong Wang
- Department of Obstetrics and Gynecology, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, 271600, Shandong, People's Republic of China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Lingyu Guo
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
31
|
Bai R, Diao B, Li K, Xu X, Yang P. Serum Tie-1 is a Valuable Marker for Predicting the Progression and Prognosis of Cervical Cancer. Pathol Oncol Res 2021; 27:1610006. [PMID: 34975347 PMCID: PMC8719584 DOI: 10.3389/pore.2021.1610006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022]
Abstract
Objective: To investigate whether serum Tie-1 (sTie-1) is a valuable marker for predicting progression and prognosis of cervical cancer. Methods: Enzyme-linked immunosorbent assay (ELISA) was used to detect serum sTie-1 concentrations in 75 cervical cancer patients, 40 cervical intraepithelial neoplasia (CIN) patients, and 55 healthy controls without cervical lesions, and sTie-1 levels were compared between the groups. Receiver operating characteristic curves was used to evaluate the diagnostic value of sTie-1. The relationship between sTie-1 concentrations in patients with cervical cancer and clinicopathological features and prognosis were analyzed, and the risk factors for postoperative recurrence were determined using univariate and multivariable Cox proportional hazards regression. Results: We found that sTie-1 concentrations gradually increased according to lesion severity (i.e., cancer vs. CIN; p < 0.05) and were significantly elevated in adenocarcinoma compared with healthy controls. sTie-1 levels strongly distinguished between cervical cancer patients and the healthy controls (area under the curve = 0.846; cut-off value = 1,882.64 pg/ml; sensitivity = 74.6%; specificity = 96.4%). Moreover, sTie-1 levels in cervical cancer patients were significantly associated with tumor size, advanced tumor stage, lymph node metastasis, and reduced 4-years progression-free survival. Cervical cancer patients with high sTie-1 concentrations had a 3.123-fold [95% confidence interval (CI): 1.087–8.971, p = 0.034] higher risk for tumor recurrence. Conclusions: Elevated sTie-1 levels in patients with cervical carcinoma were associated with tumor progression and poor prognosis, indicating that sTie-1 may be a valuable marker for predicting progression and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Rui Bai
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Bowen Diao
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Kaili Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Gynecology, Xinrui Hospital of Xinwu District, Wuxi, China
| | - Xiaohan Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Ping Yang,
| |
Collapse
|
32
|
Ding W, Tang W, Zhi J. The lymphangiogenic factor CCBE1 promotes angiogenesis and tumor growth in colorectal cancer. Curr Mol Med 2021; 22:819-825. [PMID: 34819004 DOI: 10.2174/1566524021666211124092804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/26/2021] [Accepted: 10/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Collagen and calcium-binding EGF domain-1 (CCBE1) is essential for the development of the lymphatic vasculature and colorectal cancer (CRC) lymphangiogenesis as it enhances the proteolytic process of vascular endothelial growth factor C (VEGFC) activating VEGFR3. The fully processed mature VEGFC could also activate VEGFR2, the important endothelial-specific receptor tyrosine kinase, involved in blood vascular development and tumor angiogenesis. However, the role of CCBE1 in cancer angiogenesis remains undefined. METHODS In this paper, we find that the protein expression of CCBE1 is higher in the primary CRC tissue with distant metastasis and positively correlated with blood vessel density. RESULTS The mRNA expression of CCBE1 is closely positively correlated with the vascular endothelial marker CD31 and VEGFR2 in CRC from TCGA datasets. The supernatant of the colorectal cancer cell line HCT116 with CCBE1 overexpression significantly promotes the tube formation ability of the human umbilical vein endothelial cells (HUVECs) in vitro and enhances angiogenesis and tumor growth in vivo. Knockdown of CCBE1 decreases the angiogenic ability of CRC. CONCLUSION Our results demonstrate the angiogenic role of CCBE1 in CRC.
Collapse
Affiliation(s)
- Wenjun Ding
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092. China
| | - Wenfang Tang
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092. China
| | - Jiajun Zhi
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092. China
| |
Collapse
|
33
|
O'Connor MN, Kallenberg DM, Camilli C, Pilotti C, Dritsoula A, Jackstadt R, Bowers CE, Watson HA, Alatsatianos M, Ohme J, Dowsett L, George J, Blackburn JWD, Wang X, Singhal M, Augustin HG, Ager A, Sansom OJ, Moss SE, Greenwood J. LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. MED 2021; 2:1231-1252.e10. [PMID: 35590198 PMCID: PMC7614757 DOI: 10.1016/j.medj.2021.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND A poorly functioning tumor vasculature is pro-oncogenic and may impede the delivery of therapeutics. Normalizing the vasculature, therefore, may be beneficial. We previously reported that the secreted glycoprotein leucine-rich α-2-glycoprotein 1 (LRG1) contributes to pathogenic neovascularization. Here, we investigate whether LRG1 in tumors is vasculopathic and whether its inhibition has therapeutic utility. METHODS Tumor growth and vascular structure were analyzed in subcutaneous and genetically engineered mouse models in wild-type and Lrg1 knockout mice. The effects of LRG1 antibody blockade as monotherapy, or in combination with co-therapies, on vascular function, tumor growth, and infiltrated lymphocytes were investigated. FINDINGS In mouse models of cancer, Lrg1 expression was induced in tumor endothelial cells, consistent with an increase in protein expression in human cancers. The expression of LRG1 affected tumor progression as Lrg1 gene deletion, or treatment with a LRG1 function-blocking antibody, inhibited tumor growth and improved survival. Inhibition of LRG1 increased endothelial cell pericyte coverage and improved vascular function, resulting in enhanced efficacy of cisplatin chemotherapy, adoptive T cell therapy, and immune checkpoint inhibition (anti-PD1) therapy. With immunotherapy, LRG1 inhibition led to a significant shift in the tumor microenvironment from being predominantly immune silent to immune active. CONCLUSIONS LRG1 drives vascular abnormalization, and its inhibition represents a novel and effective means of improving the efficacy of cancer therapeutics. FUNDING Wellcome Trust (206413/B/17/Z), UKRI/MRC (G1000466, MR/N006410/1, MC/PC/14118, and MR/L008742/1), BHF (PG/16/50/32182), Health and Care Research Wales (CA05), CRUK (C42412/A24416 and A17196), ERC (ColonCan 311301 and AngioMature 787181), and DFG (CRC1366).
Collapse
Affiliation(s)
- Marie N O'Connor
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - David M Kallenberg
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Carlotta Camilli
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Camilla Pilotti
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Athina Dritsoula
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Chantelle E Bowers
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - H Angharad Watson
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Markella Alatsatianos
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ohme
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Laura Dowsett
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Jestin George
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Jack W D Blackburn
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Xiaomeng Wang
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London SE5 8BN, UK.
| | - John Greenwood
- Institute of Ophthalmology, University College London, London SE5 8BN, UK.
| |
Collapse
|
34
|
Herrera-Vargas AK, García-Rodríguez E, Olea-Flores M, Mendoza-Catalán MA, Flores-Alfaro E, Navarro-Tito N. Pro-angiogenic activity and vasculogenic mimicry in the tumor microenvironment by leptin in cancer. Cytokine Growth Factor Rev 2021; 62:23-41. [PMID: 34736827 DOI: 10.1016/j.cytogfr.2021.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
The acquired ability to induce the formation of a functional vasculature is a hallmark of cancer. Blood vessels in tumors are formed through various mechanisms, among the most important in cancer biology, angiogenesis, and vasculogenic mimicry have been described. Leptin is one of the main adipokines secreted by adipocytes in normal breast tissue and the tumor microenvironment. Here, we provide information on the relationship between leptin and the development of angiogenesis and vasculogenic mimicry in different types of cancer. Here, we report that leptin activates different pathways such as JAK-STAT3, MAPK/ERK, PKC, JNK, p38, and PI3K-Akt to induce the expression of various angiogenic factors and vasculogenic mimicry. In vivo models, leptin induces blood vessel formation through the PI3K-Akt-mTOR pathway. Interestingly, the relationship between leptin and vasculogenic mimicry was more significant in breast cancer. The information obtained suggests that leptin could be playing an essential role in tumor survival and metastasis through the induction of vascular mechanisms such as angiogenesis and vasculogenic mimicry; thus, leptin-induced pathways could be suggested as a promising therapeutic target.
Collapse
Affiliation(s)
- Ana K Herrera-Vargas
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO, 39090, Mexico.
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO 39087, Mexico.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
35
|
Zhang Y, Kontos CD, Annex BH, Popel AS. A systems biology model of junctional localization and downstream signaling of the Ang-Tie signaling pathway. NPJ Syst Biol Appl 2021; 7:34. [PMID: 34417472 PMCID: PMC8379279 DOI: 10.1038/s41540-021-00194-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Ang–Tie signaling pathway is an important vascular signaling pathway regulating vascular growth and stability. Dysregulation in the pathway is associated with vascular dysfunction and numerous diseases that involve abnormal vascular permeability and endothelial cell inflammation. The understanding of the molecular mechanisms of the Ang–Tie pathway has been limited due to the complex reaction network formed by the ligands, receptors, and molecular regulatory mechanisms. In this study, we developed a mechanistic computational model of the Ang–Tie signaling pathway validated against experimental data. The model captures and reproduces the experimentally observed junctional localization and downstream signaling of the Ang–Tie signaling axis, as well as the time-dependent role of receptor Tie1. The model predicts that Tie1 modulates Tie2’s response to the context-dependent agonist Ang2 by junctional interactions. Furthermore, modulation of Tie1’s junctional localization, inhibition of Tie2 extracellular domain cleavage, and inhibition of VE-PTP are identified as potential molecular strategies for potentiating Ang2’s agonistic activity and rescuing Tie2 signaling in inflammatory endothelial cells.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Christopher D Kontos
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Brian H Annex
- Department of Medicine and the Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
36
|
Du S, Yang Z, Lu X, Yousuf S, Zhao M, Li W, Miao J, Wang X, Yu H, Zhu X, Chen H, Shi L, Xu E, Xia X, Guan W. Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through C/EBPβ-mediated PDGFB autocrine and paracrine signaling. Oncogene 2021; 40:5764-5779. [PMID: 34341514 DOI: 10.1038/s41388-021-01988-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
Anoikis is a type of programmed cell death induced by loss of anchorage to the extracellular matrix (ECM). Anoikis resistance (AR) is crucial for the survival of metastatic cancer cells in blood, lymphatic circulation and distant organs. Compared to ordinary cancer cells, anoikis resistant cancer cells undergo various cellular and molecular alterations, probably characterizing the cells with unique features not limited to anoikis resistance. However, the molecular mechanisms connecting anoikis resistance to other metastatic properties are still poorly understood. Here, the biological interaction between anoikis resistance and angiogenesis as well as their involvement into peritoneal metastasis of gastric cancer (GC) were investigated in vitro and in vivo. The prognostic value of key components involved in this interaction was evaluated in the GC cohort. Compared to ordinary GC cells, GCAR cells exhibited stronger metastatic and pro-angiogenic traits corresponding to elevated PDGFB secretion. Mechanistically, transcription factor C/EBPβ facilitated PDGFB transcription by directly binding to and interacting with PDGFB promoter elements, subsequently increasing PDGFB secretion. Secreted PDGFB promoted the survival of detached GC cells through a C/EBPβ-dependent self-feedback loop. Moreover, secreted PDGFB promoted angiogenesis in metastases via activation of the MAPK/ERK signaling pathway in vascular endothelial cells. Both C/EBPβ activation level and PDGFB expression were significantly elevated in GC and correlated with metastatic progression and poor prognosis of patients with GC. Overall, interaction between GCAR cells and vascular endothelial cells promotes angiogenesis and peritoneal metastasis of GC based on C/EBPβ-mediated PDGFB autocrine and paracrine signaling. C/EBPβ-PDGFB-PDGFRβ-MAPK axis promises to be potential prognostic biomarkers and therapeutic targets for peritoneal metastasis of GC.
Collapse
Affiliation(s)
- Shangce Du
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China.,Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Zhi Yang
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China.,Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Xiaofeng Lu
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China.,Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Suhail Yousuf
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Min Zhao
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Wenxi Li
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ji Miao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Xingzhou Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Heng Yu
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Xinya Zhu
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Hong Chen
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Linseng Shi
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - En Xu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China.
| | - Xuefeng Xia
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China.
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China. .,Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China.
| |
Collapse
|
37
|
Khan KA, Wu FTH, Cruz‐Munoz W, Kerbel RS. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol Med 2021; 13:e08253. [PMID: 34125494 PMCID: PMC8261516 DOI: 10.15252/emmm.201708253] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-angiogenic drugs targeting the VEGF pathway are most effective in advanced metastatic disease settings of certain types of cancers, whereas they have been unsuccessful as adjuvant therapies of micrometastatic disease in numerous phase III trials involving early-stage (resectable) cancers. Newer investigational anti-angiogenic drugs have been designed to inhibit the Angiopoietin (Ang)-Tie pathway. Acting through Tie2 receptors, the Ang1 ligand is a gatekeeper of endothelial quiescence. Ang2 is a dynamically expressed pro-angiogenic destabilizer of endothelium, and its upregulation is associated with poor prognosis in cancer. Besides using Ang2 blockers as inhibitors of tumor angiogenesis, little attention has been paid to their use as stabilizers of blood vessels to suppress tumor cell extravasation and metastasis. In clinical trials, Ang2 blockers have shown limited efficacy in advanced metastatic disease settings. This review summarizes preclinical evidence suggesting the potential utility of Ang2 inhibitors or Tie2 activators as neoadjuvant or adjuvant therapies in the prevention or treatment of early-stage micrometastatic disease. We further discuss the rationale and potential of combining these strategies with immunotherapy, including immune checkpoint targeting antibodies.
Collapse
Affiliation(s)
- Kabir A Khan
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Florence TH Wu
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - William Cruz‐Munoz
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Robert S Kerbel
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| |
Collapse
|
38
|
DLL1 orchestrates CD8 + T cells to induce long-term vascular normalization and tumor regression. Proc Natl Acad Sci U S A 2021; 118:2020057118. [PMID: 34035167 DOI: 10.1073/pnas.2020057118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The immunosuppressive and hypoxic tumor microenvironment (TME) remains a major obstacle to impede cancer immunotherapy. Here, we showed that elevated levels of Delta-like 1 (DLL1) in the breast and lung TME induced long-term tumor vascular normalization to alleviate tumor hypoxia and promoted the accumulation of interferon γ (IFN-γ)-expressing CD8+ T cells and the polarization of M1-like macrophages. Moreover, increased DLL1 levels in the TME sensitized anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA4) treatment in its resistant tumors, resulting in tumor regression and prolonged survival. Mechanically, in vivo depletion of CD8+ T cells or host IFN-γ deficiency reversed tumor growth inhibition and abrogated DLL1-induced tumor vascular normalization without affecting DLL1-mediated macrophage polarization. Together, these results demonstrate that elevated DLL1 levels in the TME promote durable tumor vascular normalization in a CD8+ T cell- and IFN-γ-dependent manner and potentiate anti-CTLA4 therapy. Our findings unveil DLL1 as a potential target to persistently normalize the TME to facilitate cancer immunotherapy.
Collapse
|
39
|
Abstract
Renal cell carcinoma (RCC) is increasing in incidence and one third of newly diagnosed cases already are metastatic. The metastatic spread of solid tumors renders RCC incurable by surgical resection and consequently more difficult to treat. New molecular-targeted therapies have played a pivotal role in RCC treatment. Unfortunately, tumors frequently develop resistance to these targeted therapies by activating bypass pathways in which alternative signaling or biochemical pathways are activated in response to targeted inhibition of a signaling pathway, allowing cancer cells to continue to survive. Although the advent of immunotherapy with checkpoint inhibitors has led to significant changes in the treatment landscape for advanced RCC, many issues remain to be resolved. For these reasons, there is an urgent need to develop novel therapies and new treatment paradigms for patients with RCC. Much research has been performed thus far in identifying novel targets and treatment strategies in RCC and many of these currently are under investigation and/or in clinical trials. In this article, we discuss therapeutic options in the management of RCC with a focus on the new therapeutic approaches currently investigated in research and for use in the clinic. We divide these potential novel therapies into five groups: nonbiologics, small-molecule drugs, biologics, immunomodulatory therapies, and peptide drugs. We also present some therapeutics and treatment paradigms.
Collapse
Affiliation(s)
- David C Yang
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA.
| |
Collapse
|
40
|
Cai A, Chatziantoniou C, Calmont A. Vascular Permeability: Regulation Pathways and Role in Kidney Diseases. Nephron Clin Pract 2021; 145:297-310. [PMID: 33744890 DOI: 10.1159/000514314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular permeability (VP) is a fundamental aspect of vascular biology. A growing number of studies have revealed that many signalling pathways govern VP in both physiological and pathophysiological conditions. Furthermore, emerging evidence identifies VP alteration as a pivotal pathogenic factor in acute kidney injury, chronic kidney disease, diabetic kidney disease, and other proteinuric diseases. Therefore, perceiving the connections between these pathways and the aetiology of kidney disease is an important task as such knowledge may trigger the development of novel therapeutic or preventive medical approaches. In this regard, the discussion summarizing VP-regulating pathways and associating them with kidney diseases is highly warranted. SUMMARY Major pathways of VP regulation comprise angiogenic factors including vascular endothelial growth factor/VEGFR, angiopoietin/Tie, and class 3 semaphorin/neuropilin and inflammatory factors including histamine, platelet-activating factor, and leukocyte extravasation. These pathways mainly act on vascular endothelial cadherin to modulate adherens junctions of endothelial cells (ECs), thereby augmenting VP via the paracellular pathway. Elevated VP in diverse kidney diseases involves EC apoptosis, imbalanced regulatory factors, and many other pathophysiological events, which in turn exacerbates renal structural and functional disorders. Measures improving VP effectively ameliorate the diseased kidney in terms of tissue injury, endothelial dysfunction, kidney function, and long-term prognosis. Key Messages: (1) Angiogenic factors, inflammatory factors, and adhesion molecules represent major pathways that regulate VP. (2) Vascular hyperpermeability links various pathophysiological processes and plays detrimental roles in multiple kidney diseases.
Collapse
Affiliation(s)
- Anxiang Cai
- Unité mixte Inserm - Sorbonne Université, UMR_S1155, Tenon Hospital, Paris, France,
| | | | - Amélie Calmont
- Unité mixte Inserm - Sorbonne Université, UMR_S1155, Tenon Hospital, Paris, France
| |
Collapse
|
41
|
Remodeling of Metastatic Vasculature Reduces Lung Colonization and Sensitizes Overt Metastases to Immunotherapy. Cell Rep 2021; 30:714-724.e5. [PMID: 31968248 DOI: 10.1016/j.celrep.2019.12.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/28/2019] [Accepted: 12/04/2019] [Indexed: 01/26/2023] Open
Abstract
Due to limited current therapies, metastases are the primary cause of mortality in cancer patients. Here, we employ a fusion compound of the cytokine LIGHT and a vascular targeting peptide (LIGHT-VTP) that homes to angiogenic blood vessels in primary tumors. We show in primary mouse lung cancer that normalization of tumor vasculature by LIGHT-VTP prevents cancer cell intravasation. Further, LIGHT-VTP efficiently targets pathological blood vessels in the pre-metastatic niche, reducing vascular hyper-permeability and extracellular matrix (ECM) deposition, thus blocking metastatic lung colonization. Moreover, we demonstrate that mouse and human metastatic melanoma deposits are targetable by VTP. In overt melanoma metastases, LIGHT-VTP normalizes intra-metastatic blood vessels and increases GrzB+ effector T cells. Successful treatment induces high endothelial venules (HEVs) and lymphocyte clusters, which sensitize refractory lung metastases to anti-PD-1 checkpoint inhibitors. These findings demonstrate an important application for LIGHT-VTP therapy in preventing metastatic development as well as exerting anti-tumor effects in established metastases.
Collapse
|
42
|
Angiogenesis in the Normal Adrenal Fetal Cortex and Adrenocortical Tumors. Cancers (Basel) 2021; 13:cancers13051030. [PMID: 33804534 PMCID: PMC7957756 DOI: 10.3390/cancers13051030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis plays an important role in several physiological and pathological processes. Pharmacological angiogenesis modulation has been robustly demonstrated to achieve clinical benefits in several cancers. Adrenocortical carcinomas (ACC) are rare tumors that often have a poor prognosis. In addition, therapeutic options for ACC are limited. Understanding the mechanisms that regulate adrenocortical angiogenesis along the embryonic development and in ACC could provide important clues on how these processes could be pharmacologically modulated for ACC treatment. In this report, we performed an integrative review on adrenal cortex angiogenesis regulation in physiological conditions and ACC. During embryonic development, adrenal angiogenesis is regulated by both VEGF and Ang-Tie signaling pathways. In ACC, early research efforts were focused on VEGF signaling and this pathway was identified as a good prognostic factor and thus a promising therapeutic target. However, every clinical trial so far conducted in ACC using VEGF pathway- targeting drugs, alone or in combination, yielded disappointing results. In contrast, although the Ang-Tie pathway has been pointed out as an important regulator of fetal adrenocortical angiogenesis, its role is yet to be explored in ACC. In the future, further research on the role and efficacy of modulating both Ang-Tie and VEGF pathways in ACC is needed.
Collapse
|
43
|
Liu T, Zhou H, Lu H, Luo C, Wang Q, Peng Y, Yang W, Xin Y. MiR-4729 regulates TIE1 mRNA m6A modification and angiogenesis in hemorrhoids by targeting METTL14. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:232. [PMID: 33708859 PMCID: PMC7940907 DOI: 10.21037/atm-20-3399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Hemorrhoids are a frequently-occurring disease of the anorectal system that is often accompanied by vascular hyperplasia and edema. A METTL14-mediated RNA N-6 methyladenosine (m6A) modification can improve mRNA stability and increase its transcriptional and translational activities, closely related to the occurrence of many diseases. Methods Western blot, qPCR, and immunofluorescence staining were used to detect the levels of gene and protein expression. Haematoxylin and eosin staining was used for histopathological examination. RNA immunoprecipitation-PCR and RNA dot blotting were used to detect mRNA m6A modification. Results Obvious signs of angiogenesis (CD31+/vWF+) were identified in the hemorrhoids. High levels of METTL14 expression on vascular endothelial cells (CD31+) suggested that angiogenesis was accompanied by differential modification of m6A RNA. It was subsequently found that the level of miR-4729 expression was significantly decreased in hemorrhoid tissues. The luciferase reporter enzyme assay results suggested that miR-4729 silenced its expression by targeting the 3'UTR of METTL14 mRNA. MiR-4729 overexpression in human umbilical vein endothelial cells (HUVECs) inhibited the proliferation and migration of HUVECs in vitro and vascular structure formation in the outer matrix. MiR-4729 overexpression significantly inhibited endogenous METTL14 expression in HUVECs and reduced the entire m6A RNA modification, especially the level of m6A methylation at the specific site of the 3' UTR of TIE1 mRNA. Moreover, miR-4729 overexpression significantly inhibited the molecular loop of the TIE1/VEGFA signaling pathway in HUVECs. Conclusions Our findings confirmed that the down-regulation of miR-4729 in hemorrhoid vascular endothelial cells was one of the main reasons for vascular proliferation. The overexpression of miR-4729 in vascular endothelial cells decreased the global mRNA methylation and TIE1 mRNA 3'UTR-specific site methylation by silencing METTL14 expression, reducing TIE1 mRNA stability, down-regulating the TIE1/VEGFA signal molecular loop expression, and weakening angiogenesis ability.
Collapse
Affiliation(s)
- Te Liu
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Haikun Zhou
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Lu
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunsheng Luo
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingming Wang
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhua Peng
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yang
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaojie Xin
- Department of Otolaryngology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Esteves M, Monteiro MP, Duarte JA. The effects of vascularization on tumor development: A systematic review and meta-analysis of pre-clinical studies. Crit Rev Oncol Hematol 2021; 159:103245. [PMID: 33508446 DOI: 10.1016/j.critrevonc.2021.103245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE This review aimed to systematize and quantify the existing evidence about the effect of tumor vascularization on its growth, in preclinical studies. METHODOLOGY A computerized research on databases PubMed, Scopus and EBSCO was performed to identify studies that evaluate both the vascularization parameters and the development of the tumors in animal models and the mean differences were calculated through a random effects model. RESULTS Thirteen studies met the inclusion criteria and were included in the systematic review, of which, 6 studies were included in the meta-analysis. Besides tumor vascular density that all studies evaluated, 3 studies analysed the tumor perfusion, 2 studies the tumor hypoxia and 3 studies assessed the grade of vessel maturation. Most of the studies (11) related decreased tumor vascularization and a concomitant inhibition of tumor growth or metastasis development. Quantitatively, the decrease in tumor vascularization contributed to a significant decrease in the tumor growing rate of 5.23 (-9.20, -1.26). CONCLUSION A reduced level of tumor vascularization seems to be able to inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Mário Esteves
- Department of Physical Medicine and Rehabilitation, Hospital-Escola, Fernando Pessoa University, Avenida Fernando Pessoa 150, 4420-096 Gondomar, Portugal; Laboratory of Biochemistry and Experimental Morphology, CIAFEL, R. Dr. Plácido Costa 91, 4200-450 Porto, Portugal.
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - José Alberto Duarte
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido Costa 91, 4200-450 Porto, Portugal; Instituto Universitário de Ciências da Saúde, R. Central da Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
45
|
Li C, Yang N, Chen Z, Xia N, Shan Q, Wang Z, Lu J, Shang M, Wang Z. Hypoxia-induced Tie1 drives stemness and cisplatin resistance in non-small cell lung carcinoma cells. Cancer Cell Int 2021; 21:57. [PMID: 33461544 PMCID: PMC7814430 DOI: 10.1186/s12935-020-01729-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background Drug resistance and metastasis involving hypoxic tumor environments and persistent stem cell populations are detrimental to the survival of patients with non-small cell lung carcinoma (NSCLC). Tie1 is upregulated in hypoxia and is believed to counteract the effectiveness of platinum agents by promoting the stemness properties in cells. We have investigated the association of Tie1 with HIF-1α and cisplatin resistance in NSCLC cell lines. Methods The expression of Tie1 in a pulmonary microvascular endothelial cell line (HPMEC) and NSCLC cell lines was detected using qRT-PCR and western blotting. The effect of Tie1 on cell stemness and migration was examined by sphere-forming and transwell assays in NSCLC cells with Tie1 silenced. The regulation of Tie1 by HIF-1α was evaluated by a dual-luciferase reporter assay and chromatin immunoprecipitation. Results We found that hypoxia could induce stemness and cisplatin resistance in vitro. Tie1 was expressed at low levels in NSCLC cells when compared with human pulmonary microvascular endothelial cells, however, its expression was increased by hypoxia. Additionally, Tie1 knockdown could reduce stemness properties and increase sensitivity to cisplatin in vitro and in a xenograft mouse model. The promoter of Tie1 contains two predicted hypoxia-response elements (HREs). We mutated both HRE sites and conducted chromatin immune-precipitation and promoter luciferase reporter assays and were able to conclude that the induction of Tie1 by hypoxia was HIF-1α-dependent. Conclusions Our findings indicated that Tie1 is upregulated in a hypoxic environment by HIF-1α and contributes to tumorigenesis and cisplatin resistance through the promotion of stemness in NSCLC cells.
Collapse
Affiliation(s)
- Chaojie Li
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149 Chongqing South Road, Shanghai, 200025, China
| | - Nannan Yang
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149 Chongqing South Road, Shanghai, 200025, China
| | - Zhijin Chen
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149 Chongqing South Road, Shanghai, 200025, China
| | - Ning Xia
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149 Chongqing South Road, Shanghai, 200025, China
| | - Qungang Shan
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149 Chongqing South Road, Shanghai, 200025, China
| | - Ziyin Wang
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149 Chongqing South Road, Shanghai, 200025, China
| | - Jian Lu
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149 Chongqing South Road, Shanghai, 200025, China
| | - Mingyi Shang
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149 Chongqing South Road, Shanghai, 200025, China. .,Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200000, China.
| |
Collapse
|
46
|
Lu L, Sun Y, Wan C, Hu Y, Lo PC, Lovell JF, Yang K, Jin H. Role of intravital imaging in nanomedicine-assisted anti-cancer therapy. Curr Opin Biotechnol 2021; 69:153-161. [PMID: 33476937 DOI: 10.1016/j.copbio.2020.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Although nanomedicines have provided promising anti-tumor effects in cancer animal models, their clinical success remains limited. One of the most significant barriers in the clinical translation of nanomedicines is that they consist of multiple components, each of which may have different toxicities and therapeutic effects. Intravital imaging provides high spatial and temporal resolution for visualizing nanomedicine-mediated interactions between immune cells and tumor cells in real-time. Intravital imaging can facilitate the in vivo evaluation of the properties and effects of nanomedicines, such as their ability to cross the tumor vasculature, specifically eliminate the cancer cells, and modulate the immune cells found in the tumor microenvironment (TME). Thus, intravital imaging can provide direct evidence of nanomedicine's intravital behavior to better understand mechanism and accelerate clinical translation. In this review, we summarize several applications and latest advances in intravital imaging in nanomedicine-assisted anti-cancer therapy and discuss future perspectives in the field.
Collapse
Affiliation(s)
- Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
47
|
Daum S, Hagen H, Naismith E, Wolf D, Pircher A. The Role of Anti-angiogenesis in the Treatment Landscape of Non-small Cell Lung Cancer - New Combinational Approaches and Strategies of Neovessel Inhibition. Front Cell Dev Biol 2021; 8:610903. [PMID: 33469537 PMCID: PMC7813779 DOI: 10.3389/fcell.2020.610903] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor progression depends primarily on vascular supply, which is facilitated by angiogenic activity within the malignant tissue. Non-small cell lung cancer (NSCLC) is a highly vascularized tumor, and inhibition of angiogenesis was projected to be a promising therapeutic approach. Over a decade ago, the first anti-angiogenic agents were approved for advanced stage NSCLC patients, however, they only produced a marginal clinical benefit. Explanations why anti-angiogenic therapies only show modest effects include the highly adaptive tumor microenvironment (TME) as well as the less understood characteristics of the tumor vasculature. Today, advanced methods of in-depth characterization of the NSCLC TME by single cell RNA sequencing (scRNA-Seq) and preclinical observations enable a detailed characterization of individual cancer landscapes, allowing new aspects for a more individualized inhibition of angiogenesis to be identified. Furthermore, the tumor vasculature itself is composed of several cellular subtypes, which closely interact with other cellular components of the TME, and show distinct biological functions such as immune regulation, proliferation, and organization of the extracellular matrix. With these new insights, combinational approaches including chemotherapy, anti- angiogenic and immunotherapy can be developed to yield a more target-oriented anti-tumor treatment in NSCLC. Recently, anti-angiogenic agents were also shown to induce the formation of high endothelial venules (HEVs), which are essential for the formation of tertiary lymphoid structures, and key components in triggering anti-tumor immunity. In this review, we will summarize the current knowledge of tumor-angiogenesis and corresponding anti-angiogenic therapies, as well as new aspects concerning characterization of tumor-associated vessels and the resulting new strategies for anti-angiogenic therapies and vessel inhibition in NSCLC. We will further discuss why anti-angiogenic therapies form an interesting backbone strategy for combinational therapies and how anti-angiogenic approaches could be further developed in a more personalized tumor-oriented fashion with focus on NSCLC.
Collapse
Affiliation(s)
- Sophia Daum
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Hannes Hagen
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Erin Naismith
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
- Medical Clinic 3, Department of Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn (UKB), Bonn, Germany
| | - Andreas Pircher
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Abstract
Tumor progression and metastasis are multistep processes that are critically dependent on the interaction of metastasizing tumor cells with other cells of the local microenvironment. Mimicking the single steps of the metastatic cascade in vitro is therefore challenging when investigating not only tumor cell behavior alone but also cellular crosstalk between different cell populations. In particular, the crosstalk of tumor cells with pericytes and endothelial cells when accessing the bloodstream is of great importance for successful intravasation and metastatic dissemination. To examine metastatic intravasation and analyze the interaction of tumor cells with pericytes, which reside within the basement membrane and endothelial cells, aligning the vessel wall, we have designed a 3D in vitro transwell assay mimicking tumor cell intravasation into a vessel. Modifying the Boyden chamber transwell assay by seeding first an endothelial cell layer onto the transwell membrane and covering it with pericytes before adding the tumor cells allows us to investigate the role of pericytes and endothelial cells on tumor cell intravasation and at the same time to study their crosstalk at the molecular level and how this interaction influences tumor cell behavior. It further allows the manipulation of the system for proof-of-principle experimentation.
Collapse
Affiliation(s)
- Courtney König
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany.
| | - Anja Runge
- Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
49
|
Hilfenhaus G, Mompeón A, Freshman J, Prajapati DP, Hernandez G, Freitas VM, Ma F, Langenbacher AD, Mirkov S, Song D, Cho BK, Goo YA, Pellegrini M, Chen JN, Damoiseaux R, Iruela-Arispe ML. A High-Content Screen Identifies Drugs That Restrict Tumor Cell Extravasation across the Endothelial Barrier. Cancer Res 2020; 81:619-633. [PMID: 33218969 DOI: 10.1158/0008-5472.can-19-3911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Metastases largely rely on hematogenous dissemination of tumor cells via the vascular system and significantly limit prognosis of patients with solid tumors. To colonize distant sites, circulating tumor cells must destabilize the endothelial barrier and transmigrate across the vessel wall. Here we performed a high-content screen to identify drugs that block tumor cell extravasation by testing 3,520 compounds on a transendothelial invasion coculture assay. Hits were further characterized and validated using a series of in vitro assays, a zebrafish model enabling three-dimensional (3D) visualization of tumor cell extravasation, and mouse models of lung metastasis. The initial screen advanced 38 compounds as potential hits, of which, four compounds enhanced endothelial barrier stability while concurrently suppressing tumor cell motility. Two compounds niclosamide and forskolin significantly reduced tumor cell extravasation in zebrafish, and niclosamide drastically impaired metastasis in mice. Because niclosamide had not previously been linked with effects on barrier function, single-cell RNA sequencing uncovered mechanistic effects of the drug on both tumor and endothelial cells. Importantly, niclosamide affected homotypic and heterotypic signaling critical to intercellular junctions, cell-matrix interactions, and cytoskeletal regulation. Proteomic analysis indicated that niclosamide-treated mice also showed reduced levels of kininogen, the precursor to the permeability mediator bradykinin. Our findings designate niclosamide as an effective drug that restricts tumor cell extravasation through modulation of signaling pathways, chemokines, and tumor-endothelial cell interactions. SIGNIFICANCE: A high-content screen identified niclosamide as an effective drug that restricts tumor cell extravasation by enhancing endothelial barrier stability through modulation of molecular signaling, chemokines, and tumor-endothelial cell interactions. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/3/619/F1.large.jpg.
Collapse
Affiliation(s)
- Georg Hilfenhaus
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Ana Mompeón
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jonathan Freshman
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Divya P Prajapati
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Gloria Hernandez
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Adam D Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Snezana Mirkov
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dana Song
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Byoung-Kyu Cho
- Proteomics Center of Excellence, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Young Ah Goo
- Proteomics Center of Excellence, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California.
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
50
|
Leong A, Kim M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Int J Mol Sci 2020; 21:ijms21228689. [PMID: 33217955 PMCID: PMC7698611 DOI: 10.3390/ijms21228689] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite significant advances made in cancer treatment, the development of therapeutic resistance to anticancer drugs represents a major clinical problem that limits treatment efficacy for cancer patients. Herein, we focus on the response and resistance to current antiangiogenic drugs and immunotherapies and describe potential strategies for improved treatment outcomes. Antiangiogenic treatments that mainly target vascular endothelial growth factor (VEGF) signaling have shown efficacy in many types of cancer. However, drug resistance, characterized by disease recurrence, has limited therapeutic success and thus increased our urgency to better understand the mechanism of resistance to inhibitors of VEGF signaling. Moreover, cancer immunotherapies including immune checkpoint inhibitors (ICIs), which stimulate antitumor immunity, have also demonstrated a remarkable clinical benefit in the treatment of many aggressive malignancies. Nevertheless, the emergence of resistance to immunotherapies associated with an immunosuppressive tumor microenvironment has restricted therapeutic response, necessitating the development of better therapeutic strategies to increase treatment efficacy in patients. Angiopoietin-2 (ANG2), which binds to the receptor tyrosine kinase TIE2 in endothelial cells, is a cooperative driver of angiogenesis and vascular destabilization along with VEGF. It has been suggested in multiple preclinical studies that ANG2-mediated vascular changes contribute to the development and persistence of resistance to anti-VEGF therapy. Further, emerging evidence suggests a fundamental link between vascular abnormalities and tumor immune evasion, supporting the rationale for combination strategies of immunotherapy with antiangiogenic drugs. In this review, we discuss the recent mechanistic and clinical advances in targeting angiopoietin signaling, focusing on ANG2 inhibition, to enhance therapeutic efficacy of antiangiogenic and ICI therapies. In short, we propose that a better mechanistic understanding of ANG2-mediated vascular changes will provide insight into the significance of ANG2 in treatment response and resistance to current antiangiogenic and ICI therapies. These advances will ultimately improve therapeutic modalities for cancer treatment.
Collapse
|