1
|
Campbell DE, Mehr S, Moscatelli OG, Anderson RP, Tye-Din JA. Immune therapies in coeliac disease and food allergies: Advances, challenges, and opportunities. Semin Immunol 2025; 78:101960. [PMID: 40273881 DOI: 10.1016/j.smim.2025.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Coeliac disease and food allergy management primarily relies on the strict avoidance of dietary antigens. This approach is challenging to maintain in real-world settings and in food allergy carries the risk of life-threatening anaphylaxis. Despite their distinct pathogenesis, both disorders are driven by maladaptive responses to dietary proteins, creating opportunities for shared treatment strategies. In food allergy, desensitisation therapies such as oral, sublingual, and epicutaneous immunotherapy are well-established, complemented by biologics like omalizumab and dupilumab. However, the induction of sustained tolerance remains challenging. In contrast, therapeutic advancements for coeliac disease are still in their early stages. Current efforts focus on gluten detoxification or modification, immune blockade or modulation, tolerogenic approaches, and barrier restoration. Emerging therapies, including JAK and BTK inhibitors and microbiome-targeted interventions, support further targeted treatment options for both conditions. Biomarkers tracking gluten-specific T cells have emerged as valuable tools for immunomonitoring and symptom assessment in coeliac disease, although standardisation of patient-reported outcome measures and gluten challenge protocols is still needed. Food allergy trials are reliant on double-blind placebo-controlled food challenges to measure allergen reactivity, but these are time-consuming, carry risks, and underscore the need for surrogate biomarkers. The successful development of immune-targeted therapies will require building an immune toolset to optimally assess systemic responses to antigens in both conditions. Clinically, this could lead to better outcomes for patients who might otherwise remain undiagnosed or untreated due to the absence of significant enteropathy or allergen-specific symptoms.
Collapse
Affiliation(s)
- Dianne E Campbell
- Children's Hospital at Westmead, Sydney, New South Wales, Australia; University of Sydney, Sydney, New South Wales, Australia; National Allergy Centre of Excellence, Murdoch Children's Research Institute, Parkville, Victora, Australia
| | - Sam Mehr
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Olivia G Moscatelli
- Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Robert P Anderson
- Gastroenterology Service, Mackay Base Hospital, West Mackay, Queensland, Australia
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; Department of Gastroenterology, the Royal Melbourne Hospital, Parkville, Victoria, Australia; The Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Porret R, Alcaraz-Serna A, Peter B, Bernier-Latmani J, Cecchin R, Alfageme-Abello O, Ermellino L, Hafezi M, Pace E, du Pré MF, Lana E, Golshayan D, Velin D, Eyquem J, Tang Q, Petrova TV, Coukos G, Irving M, Pot C, Pantaleo G, Sollid LM, Muller YD. T cell receptor precision editing of regulatory T cells for celiac disease. Sci Transl Med 2025; 17:eadr8941. [PMID: 40106579 DOI: 10.1126/scitranslmed.adr8941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Celiac disease, a gluten-sensitive enteropathy, demonstrates a strong human leukocyte antigen (HLA) association, with more than 90% of patients carrying the HLA-DQ2.5 allotype. No therapy is available for the condition except for a lifelong gluten-free diet. To address this gap, we explored the therapeutic potential of regulatory T cells (Tregs). By orthotopic replacement of T cell receptors (TCRs) through homology-directed repair, we generated gluten-reactive HLA-DQ2.5-restricted CD4+ engineered (e) T effector cells (Teffs) and eTregs and performed in vivo experiments in HLA-DQ2.5 transgenic mice. Of five validated TCRs, TCRs specific for two immunodominant and deamidated gluten epitopes (DQ2.5-glia-α1a and DQ2.5-glia-α2) were selected for further evaluation. CD4+ eTeffs exposed to deamidated gluten through oral gavage colocalized with dendritic and B cells in the Peyer's patches and gut-draining lymph nodes and specifically migrated to the intestine. The suppressive function of human eTregs correlated with high TCR functional activity. eTregs specific for one epitope suppressed the proliferation and gut migration of CD4+ eTeffs specific for the same and the other gluten epitope, demonstrating bystander suppression. The suppression requires an antigen-specific activation of eTregs given that polyclonal Tregs failed to suppress CD4+ eTeffs. These findings highlight the potential of gluten-reactive eTregs as a therapeutic for celiac disease.
Collapse
Affiliation(s)
- Raphaël Porret
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ana Alcaraz-Serna
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Rebecca Cecchin
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Oscar Alfageme-Abello
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Laura Ermellino
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Morteza Hafezi
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Eleonora Pace
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - M Fleur du Pré
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Erica Lana
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dela Golshayan
- Transplantation Center, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Justin Eyquem
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tatiana V Petrova
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Yannick D Muller
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
- Centre for Human Immunology Lausanne, Lausanne CH-1005, Switzerland
| |
Collapse
|
3
|
Stoumpos A, Heine G, Saggau C, Scheffold A. The role of allergen-specific regulatory T cells in the control of allergic disease. Curr Opin Immunol 2025; 92:102509. [PMID: 39642798 DOI: 10.1016/j.coi.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Allergies result from an antigen-specific loss of tolerance against innocuous foreign substances. Allergen immunotherapy (AIT) aims to reverse the pathogenic response and to re-establish physiological tolerance. However, the tolerogenic mechanisms that prevent allergy in healthy and act during AIT are still obscure. Foxp3 expressing 'regulatory' CD4 T cells (Tregs) are essential mediators of tolerance against allergens. It remains controversial which antigen specificity of Tregs is required to prevent allergy and the role of allergen-specific Tregs during AIT. Recent work provided precise insight into physiological T cell responses against environmental and food compounds. This identified Treg responses mainly against peptides and proteins not involved in immune pathology, revealing an unexpected role of Treg antigen specificity for tolerance. This review will focus on antigen-specific Treg responses against food and airborne allergens, and the impact of the technological approach utilized for antigen-specific Treg characterization is discussed, with critical points to be addressed in future research.
Collapse
Affiliation(s)
- Athanasios Stoumpos
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Guido Heine
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany.
| |
Collapse
|
4
|
Champagne J, Nielsen MM, Feng X, Montenegro Navarro J, Pataskar A, Voogd R, Giebel L, Nagel R, Berenst N, Fumagalli A, Kochavi A, Lovecchio D, Valcanover L, Malka Y, Yang W, Laos M, Li Y, Proost N, van de Ven M, van Tellingen O, Bleijerveld OB, Haanen JBAG, Olweus J, Agami R. Adoptive T cell therapy targeting an inducible and broadly shared product of aberrant mRNA translation. Immunity 2025; 58:247-262.e9. [PMID: 39755122 DOI: 10.1016/j.immuni.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A∗24:02 allele. We identified a T cell receptor (TCRTMBIM6W>F.1) possessing high affinity and specificity toward TMBIM6W>F/HLA-A∗24:02, the inducible W>F neoepitope with the broadest expression across cancer cell lines. TCRTMBIM6W>F.1 T cells are activated by tryptophan-depleted cancer cells but not by non-cancer cells. Finally, we provide in vivo proof of concept for clinical application, whereby TCRMART1 T cells promote cancer cell killing by TCRTMBIM6W>F.1 T cells through the generation of W>F neoepitopes. Thus, neoepitopes arising from W>F substitution present shared and highly expressed immunogenic targets with the potential to overcome current limitations in adoptive T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Animals
- Mice
- Protein Biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Cell Line, Tumor
- Tryptophan/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- RNA, Messenger/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Interferon-gamma/metabolism
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Morten M Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lisanne Giebel
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nadine Berenst
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Amos Fumagalli
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Adva Kochavi
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lorenzo Valcanover
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Yingqian Li
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics facility, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| | - Reuven Agami
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Cubero-Leon E, Madsen CB, Scherf KA, Colgrave ML, Nørgaard JV, Anthoni M, Rizou K, Walker MJ, Sollid LM. Barley based gluten free beer - A blessing or an uncontrollable risk? Food Chem Toxicol 2024; 193:115019. [PMID: 39307344 PMCID: PMC11581983 DOI: 10.1016/j.fct.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Recent reports have highlighted that beer labelled "gluten-free", crafted with enzymatic treatments to remove gluten, may contain polypeptides that could be immunotoxic to individuals with coeliac disease. As strict adherence to a gluten-free diet is the only way to manage this condition, accurate labelling is crucial to those with coeliac disease. This paper aims to discuss the presence, levels and immunogenicity of gluten peptides found in gluten-reduced barley beers. While advances have been made in the detection and quantification of gluten peptides in beer, there are still challenges to the interpretation of gluten measurements as well as to assess whether peptides are immunotoxic in vivo. To make progress, future efforts should involve a combination of in vivo toxicity assessment of the degraded proteins, development of standardised gluten-free production strategies to minimise variability in gluten fragment presence, guidance on how to control the outcome as well as to develop appropriate reference materials and calibrators.
Collapse
Affiliation(s)
| | - Charlotte B Madsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Katharina A Scherf
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany; Technical University of Munich, TUM School of Life Sciences, Professorship of Food Biopolymer Systems, Freising, Germany
| | | | | | - Minna Anthoni
- Finnish Food Authority, Mustialankatu 3, 00790, Helsinki, Finland
| | - Katerina Rizou
- General Chemical State Laboratory (GCSL), Athens, Greece
| | - Michael J Walker
- Institute for Global Food Security, The Queen's University of Belfast, Belfast, BT9 5HN, Northern Ireland, UK
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Norway and Department of Immunology, Oslo, University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
6
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Xiong H, Shen Z. Tissue-resident memory T cells in immunotherapy and immune-related adverse events by immune checkpoint inhibitor. Int J Cancer 2024; 155:193-202. [PMID: 38554117 DOI: 10.1002/ijc.34940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of T cells that reside in tissues and provide long-term protective immunity against pathogens that enter the body through that specific tissue. TRM cells have specific phenotype and reside preferentially in barrier tissues. Recent studies have revealed that TRM cells are the main target of immune checkpoint inhibitor immunotherapy since their role in cancer immunosurveillance. Furthermore, TRM cells also play a crucial part in pathogenesis of immune-related adverse events (irAEs). Here, we provide a concise review of biological characteristics of TRM cells, and the major advances and recent findings regarding their involvement in immune checkpoint inhibitor immunotherapy and the corresponding irAEs.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Risnes LF, Reims HM, Doyle RM, Qiao SW, Sollid LM, Lundin KEA, Christophersen A. Gluten-Free Diet Induces Rapid Changes in Phenotype and Survival Properties of Gluten-Specific T Cells in Celiac Disease. Gastroenterology 2024; 167:250-263. [PMID: 38552723 DOI: 10.1053/j.gastro.2024.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND & AIMS The treatment of celiac disease (CeD) with gluten-free diet (GFD) normalizes gut inflammation and disease-specific antibodies. CeD patients have HLA-restricted, gluten-specific T cells persisting in the blood and gut even after decades of GFD, which are reactivated and disease driving upon gluten exposure. Our aim was to examine the transition of activated gluten-specific T cells into a pool of persisting memory T cells concurrent with normalization of clinically relevant biomarkers during the first year of treatment. METHODS We followed 17 CeD patients during their initial GFD year, leading to disease remission. We assessed activation and frequency of gluten-specific CD4+ blood and gut T cells with HLA-DQ2.5:gluten tetramers and flow cytometry, disease-specific serology, histology, and symptom scores. We assessed gluten-specific blood T cells within the first 3 weeks of GFD in 6 patients and serology in an additional 9 patients. RESULTS Gluten-specific CD4+ T cells peaked in blood at day 14 while up-regulating Bcl-2 and down-regulating Ki-67 and then decreased in frequency within 10 weeks of GFD. CD38, ICOS, HLA-DR, and Ki-67 decreased in gluten-specific cells within 3 days. PD-1, CD39, and OX40 expression persisted even after 12 months. IgA-transglutaminase 2 decreased significantly within 4 weeks. CONCLUSIONS GFD induces rapid changes in the phenotype and number of gluten-specific CD4+ blood T cells, including a peak of nonproliferating, nonapoptotic cells at day 14. Subsequent alterations in T-cell phenotype associate with the quiescent but chronic nature of treated CeD. The rapid changes affecting gluten-specific T cells and disease-specific antibodies offer opportunities for clinical trials aiming at developing nondietary treatments for patients with newly diagnosed CeD.
Collapse
Affiliation(s)
- Louise F Risnes
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Henrik M Reims
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ronan M Doyle
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Shuo-Wang Qiao
- Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Knut E A Lundin
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Asbjørn Christophersen
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
10
|
Silvester JA, Elli L, Khosla C, Tye-Din JA. Past, Present, and Future of Noninvasive Tests to Assess Gluten Exposure, Celiac Disease Activity, and End-Organ Damage. Gastroenterology 2024; 167:159-171. [PMID: 38670279 PMCID: PMC11235091 DOI: 10.1053/j.gastro.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 04/28/2024]
Abstract
Although many biomarkers have been proposed, and several are in widespread clinical use, there is no single readout or combination of readouts that correlates tightly with gluten exposure, disease activity, or end-organ damage in treated patients with celiac disease. Challenges to developing and evaluating better biomarkers include significant interindividual variability-related to immune amplification of gluten exposure and how effects of immune activation are manifest. Furthermore, the current "gold standard" for assessment of end-organ damage, small intestinal biopsy, is itself highly imperfect, such that a marker that is a better reflection of the "ground truth" may indeed appear to perform poorly. The goal of this review was to analyze past and present efforts to establish robust noninvasive tools for monitoring treated patients with celiac disease and to highlight emerging tools that may prove to be useful in clinical practice.
Collapse
Affiliation(s)
- Jocelyn A Silvester
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Celiac Disease Research Program, Harvard Medical School, Boston, Massachusetts.
| | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chaitan Khosla
- Sarafan ChEM-H, Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Adams DW, Moleski S, Jossen J, Tye-Din JA. Clinical Presentation and Spectrum of Gluten Symptomatology in Celiac Disease. Gastroenterology 2024; 167:51-63. [PMID: 38636679 DOI: 10.1053/j.gastro.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 04/20/2024]
Abstract
Views on the clinical presentation and symptomatology of celiac disease have evolved alongside advances in disease detection and understanding of disease pathogenesis. Although historically regarded as a pediatric illness characterized by malabsorption, it is now better viewed as an immune illness of gluten-specific T cells with systemic manifestations affecting all ages. Its broad presentation, including frequent extraintestinal manifestations and asymptomatic disease, contributes to suboptimal disease detection. Adverse symptoms greatly impact patient quality of life and can result from chronic gluten exposure in untreated disease or those poorly responsive to the gluten-free diet. They can also present as acute symptoms after episodic gluten exposure. Functional gastrointestinal disease is a common comorbidity. Biomarkers like interleukin-2 that are highly sensitive and specific for celiac disease highlight a role for gluten-specific T cells in acute gluten symptomatology. A mechanistic understanding of symptoms will inform approaches to better measure and treat them effectively.
Collapse
Affiliation(s)
- Dawn W Adams
- Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephanie Moleski
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Jacqueline Jossen
- Departments of Medicine and Pediatrics, The Celiac Disease Center at Columbia University, New York, New York
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
du Pre MF, Iversen R, Sollid LM. Coeliac disease: the paradox of diagnosing a food hypersensitivity disorder with autoantibodies. Gut 2024; 73:844-853. [PMID: 38378252 DOI: 10.1136/gutjnl-2023-331595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Serum antibodies to the autoantigen transglutaminase 2 (TG2) are increasingly harnessed to diagnose coeliac disease. Diagnostic guidelines for children give recommendation for a no-biopsy-based diagnosis through detection of high amounts of IgA anti-TG2 antibodies in serum with confirmation of positivity in a separate blood sample by characteristic autoantibody-staining of tissue. While measurement of IgA anti-TG2 also is important in the diagnostic workup of adults, the adult guidelines still mandate examination of gut biopsies. This requirement might well change in the future, as might the necessity for confirming autoantibody positivity by tissue staining. The key role of autoantibody serology for diagnosis of coeliac disease is paradoxical. Coeliac disease was considered, and still can be considered, a food intolerance disorder where autoantibodies at face value are out of place. The immunological mechanisms underlying the formation of autoantibodies in response to gluten exposure have been dissected. This review presents the current insights demonstrating that the autoantibodies in coeliac disease are intimately integrated in the maladapted immune response to gluten.
Collapse
Affiliation(s)
- M Fleur du Pre
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hosptial - Rikshospitalet, Oslo, Norway
| | - Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hosptial - Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hosptial - Rikshospitalet, Oslo, Norway
| |
Collapse
|
13
|
Lee LW, Shafiani S, Crossley B, Emerson RO, Williamson D, Bunin A, Vargas J, Han AS, Kaplan IM, Green PHR, Kirsch I, Bhagat G. Characterisation of T cell receptor repertoires in coeliac disease. J Clin Pathol 2024; 77:116-124. [PMID: 36522177 PMCID: PMC10850686 DOI: 10.1136/jcp-2022-208541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022]
Abstract
AIMS Characterise T-cell receptor gene (TR) repertoires of small intestinal T cells of patients with newly diagnosed (active) coeliac disease (ACD), refractory CD type I (RCD I) and patients with CD on a gluten-free diet (GFD). METHODS Next-generation sequencing of complementarity-determining region 3 (CDR3) of rearranged T cell receptor β (TRB) and γ (TRG) genes was performed using DNA extracted from intraepithelial cell (IEC) and lamina propria cell (LPC) fractions and a small subset of peripheral blood mononuclear cell (PBMC) samples obtained from CD and non-CD (control) patients. Several parameters were assessed, including relative abundance and enrichment. RESULTS TRB and TRG repertoires of CD IEC and LPC samples demonstrated lower clonality but higher frequency of rearranged TRs compared with controls. No CD-related differences were detected in the limited number of PBMC samples. Previously published LP gliadin-specific TRB sequences were more frequently detected in LPC samples from patients with CD compared with non-CD controls. TRG repertoires of IECs from both ACD and GFD patients demonstrated increased abundance of certain CDR3 amino acid (AA) motifs compared with controls, which were encoded by multiple nucleotide variants, including one motif that was enriched in duodenal IECs versus the PBMCs of CD patients. CONCLUSIONS Small intestinal TRB and TRG repertoires of patients with CD are more diverse than individuals without CD, likely due to mucosal recruitment and accumulation of T cells because of protracted inflammation. Enrichment of the unique TRG CDR3 AA sequence in the mucosa of patients with CD may suggest disease-associated changes in the TCRγδ IE lymphocyte (IEL) landscape.
Collapse
Affiliation(s)
- Lik Wee Lee
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Shahin Shafiani
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Beryl Crossley
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Ryan O Emerson
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - David Williamson
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Anna Bunin
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Justin Vargas
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Arnold S Han
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ian M Kaplan
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Peter H R Green
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ilan Kirsch
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology and Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
14
|
Gong C, Saborit C, Long X, Wang A, Zheng B, Chung H, Lewis SK, Krishnareddy S, Bhagat G, Green PH, Kong XF. Serological Investigation of Persistent Villous Atrophy in Celiac Disease. Clin Transl Gastroenterol 2023; 14:e00639. [PMID: 37753949 PMCID: PMC10749705 DOI: 10.14309/ctg.0000000000000639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
INTRODUCTION Persistent villous atrophy (VA) is not uncommon in celiac disease (CeD) while patients take a gluten-free diet (GFD). METHODS We conducted a retrospective study with 122 serum samples collected from controls and patients with CeD either at the initial diagnosis or at the follow-up during endoscopy. These samples were assigned to 3 groups: nonceliac control, non-VA CeD (Marsh score 0-2), and VA CeD (Marsh score 3a-3c). We established an in-house multiplex assay to identify potential serological biomarkers for VA. We assessed autoantibodies reported to affect the small intestine, including IgA and IgG antibodies against tissue transglutaminase (tTG), interferons, villin, actin, autoimmune enteropathy-related 75 kDa antigen (AIE-75), and tryptophan hydroxylase (TPH)-1, as well as 27 cytokines. The apolipoproteins quantified included apo A1, apo B-100, and apo A4, which were produced predominantly by the intestinal epithelium or expressed specifically in villi. RESULTS Autoantibody levels were high only for tTG antibodies, which performed well in initial CeD diagnosis, but suboptimally for VA prediction during follow-up, because 14.6% of the follow-up patients with VA had low tTG-IgA. Increasing dilution improved tTG-IgA quantification, particularly when the antibody levels were extremely high but did not significantly improve VA detection. Among those with low tTG-IgA and persistent VA, high proinflammatory cytokines were observed in 2 patients. Median low-density lipoprotein cholesterol levels were significantly lower in the VA CeD group ( P = 0.03). Apolipoprotein levels were similar in patients with and without VA but diverged between those on a GFD or not. DISCUSSION tTG-IgA as a biomarker is suboptimal for VA prediction while on a GFD. Persistent VA is associated with low low-density lipoprotein cholesterol levels and partially related to persistent high proinflammatory cytokines.
Collapse
Affiliation(s)
- Changlin Gong
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Claudia Saborit
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Long
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ao Wang
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Beishi Zheng
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Howard Chung
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne K. Lewis
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Suneeta Krishnareddy
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Govind Bhagat
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
- Department of Pathology and Cell Biology, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Peter H.R. Green
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Xiao-Fei Kong
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Fowler A, FitzPatrick M, Shanmugarasa A, Ibrahim ASF, Kockelbergh H, Yang HC, Williams-Walker A, Luu Hoang KN, Evans S, Provine N, Klenerman P, Soilleux EJ. An Interpretable Classification Model Using Gluten-Specific TCR Sequences Shows Diagnostic Potential in Coeliac Disease. Biomolecules 2023; 13:1707. [PMID: 38136579 PMCID: PMC10742135 DOI: 10.3390/biom13121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Coeliac disease (CeD) is a T-cell mediated enteropathy triggered by dietary gluten which remains substantially under-diagnosed around the world. The diagnostic gold-standard requires histological assessment of intestinal biopsies taken at endoscopy while consuming a gluten-containing diet. However, there is a lack of concordance between pathologists in histological assessment, and both endoscopy and gluten challenge are burdensome and unpleasant for patients. Identification of gluten-specific T-cell receptors (TCRs) in the TCR repertoire could provide a less subjective diagnostic test, and potentially remove the need to consume gluten. We review published gluten-specific TCR sequences, and develop an interpretable machine learning model to investigate their diagnostic potential. To investigate this, we sequenced the TCR repertoires of mucosal CD4+ T cells from 20 patients with and without CeD. These data were used as a training dataset to develop the model, then an independently published dataset of 20 patients was used as the testing dataset. We determined that this model has a training accuracy of 100% and testing accuracy of 80% for the diagnosis of CeD, including in patients on a gluten-free diet (GFD). We identified 20 CD4+ TCR sequences with the highest diagnostic potential for CeD. The sequences identified here have the potential to provide an objective diagnostic test for CeD, which does not require the consumption of gluten.
Collapse
Affiliation(s)
- Anna Fowler
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Michael FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
| | | | - Amro Sayed Fadel Ibrahim
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Hannah Kockelbergh
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Han-Chieh Yang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Amelia Williams-Walker
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Kim Ngan Luu Hoang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Shelley Evans
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Nicholas Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Elizabeth J. Soilleux
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| |
Collapse
|
16
|
Seitz V, Gennermann K, Elezkurtaj S, Groth D, Schaper S, Dröge A, Lachmann N, Berg E, Lenze D, Kühl AA, Husemann C, Kleo K, Horst D, Lennerz V, Hennig S, Hummel M, Schumann M. Specific T-cell receptor beta-rearrangements of gluten-triggered CD8 + T-cells are enriched in celiac disease patients' duodenal mucosa. Clin Immunol 2023; 256:109795. [PMID: 37769786 DOI: 10.1016/j.clim.2023.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder affecting the small intestine with gluten as disease trigger. Infections including Influenza A, increase the CeD risk. While gluten-specific CD4+ T-cells, recognizing HLA-DQ2/DQ8 presented gluten-peptides, initiate and sustain the celiac immune response, CD8+ α/β intraepithelial T-cells elicit mucosal damage. Here, we subjected TCRs from a cohort of 56 CeD patients and 22 controls to an analysis employing 749 published CeD-related TCRβ-rearrangements derived from gluten-specific CD4+ T-cells and gluten-triggered peripheral blood CD8+ T-cells. We show, that in addition to TCRs from gluten-specific CD4+ T-cells, TCRs of gluten-triggered CD8+ T-cells are significantly enriched in CeD duodenal tissue samples. TCRβ-rearrangements of gluten-triggered CD8+ T-cells were even more expanded in patients than TCRs from gluten-specific CD4+ T-cells (p < 0.0002) and highest in refractory CeD. Sequence alignments with TCR-antigen databases suggest that a subgroup of these most likely indirectly gluten-triggered TCRs recognize microbial, viral, and autoantigens.
Collapse
Affiliation(s)
- V Seitz
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Groth
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | - N Lachmann
- Centre for Tumor Medicine, Histocompatibility & Immunogenetics Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - E Berg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Lenze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A A Kühl
- iPATH.Berlin - Core Unit of the Charité Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - C Husemann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Kleo
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schumann
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
18
|
Das S, Stamnaes J, Kemppainen E, Hervonen K, Lundin KEA, Parmar N, Jahnsen FL, Jahnsen J, Lindfors K, Salmi T, Iversen R, Sollid LM. Separate Gut Plasma Cell Populations Produce Auto-Antibodies against Transglutaminase 2 and Transglutaminase 3 in Dermatitis Herpetiformis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300401. [PMID: 37424036 PMCID: PMC10477854 DOI: 10.1002/advs.202300401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Dermatitis herpetiformis (DH) is an inflammatory skin disorder often considered as an extra intestinal manifestation of celiac disease (CeD). Hallmarks of CeD and DH are auto-antibodies to transglutaminase 2 (TG2) and transglutaminase 3 (TG3), respectively. DH patients have auto-antibodies reactive with both transglutaminase enzymes. Here it is reported that in DH both gut plasma cells and serum auto-antibodies are specific for either TG2 or TG3 with no TG2-TG3 cross reactivity. By generating monoclonal antibodies from TG3-specific duodenal plasma cells of DH patients, three conformational epitope groups are defined. Both TG2-specific and TG3-specific gut plasma cells have few immunoglobulin (Ig) mutations, and the two transglutaminase-reactive populations show distinct selection of certain heavy and light chain V-genes. Mass spectrometry analysis of TG3-specific serum IgA corroborates preferential usage of IGHV2-5 in combination with IGKV4-1. Collectively, these results demonstrate parallel induction of anti-TG2 and anti-TG3 auto-antibody responses involving separate B-cell populations in DH patients.
Collapse
Affiliation(s)
- Saykat Das
- Department of ImmunologyOslo University Hospital‐RikshospitaletOslo0372Norway
- KG Jebsen Coeliac Disease Research CentreInstitute of Clinical MedicineUniversity of OsloOslo0372Norway
| | - Jorunn Stamnaes
- Department of ImmunologyOslo University Hospital‐RikshospitaletOslo0372Norway
- KG Jebsen Coeliac Disease Research CentreInstitute of Clinical MedicineUniversity of OsloOslo0372Norway
| | - Esko Kemppainen
- Celiac Disease Research CentreFaculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Kaisa Hervonen
- Celiac Disease Research CentreFaculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Department of DermatologyTampere University HospitalTampere33520Finland
| | - Knut E. A. Lundin
- KG Jebsen Coeliac Disease Research CentreInstitute of Clinical MedicineUniversity of OsloOslo0372Norway
- Department of GastroenterologyOslo University Hospital‐RikshospitaletOslo0372Norway
| | - Naveen Parmar
- Department of PathologyUniversity of Oslo and Institute of Clinical MedicineOslo University Hospital‐RikshospitaletOslo0372Norway
| | - Frode L. Jahnsen
- Department of PathologyUniversity of Oslo and Institute of Clinical MedicineOslo University Hospital‐RikshospitaletOslo0372Norway
| | - Jørgen Jahnsen
- Department of GastroenterologyAkershus University HospitalLørenskog1478Norway
| | - Katri Lindfors
- Celiac Disease Research CentreFaculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Teea Salmi
- Celiac Disease Research CentreFaculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Rasmus Iversen
- Department of ImmunologyOslo University Hospital‐RikshospitaletOslo0372Norway
- KG Jebsen Coeliac Disease Research CentreInstitute of Clinical MedicineUniversity of OsloOslo0372Norway
| | - Ludvig M. Sollid
- Department of ImmunologyOslo University Hospital‐RikshospitaletOslo0372Norway
- KG Jebsen Coeliac Disease Research CentreInstitute of Clinical MedicineUniversity of OsloOslo0372Norway
| |
Collapse
|
19
|
Chen S, Liu X, Wang Z, Zheng D, Wang Y, Yan Y, Peng X, Ye Q, Chen Y. Transcriptome profile and immune infiltrated landscape revealed a novel role of γδT cells in mediating pyroptosis in celiac disease. J Transl Med 2023; 21:497. [PMID: 37488584 PMCID: PMC10364383 DOI: 10.1186/s12967-023-04359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Celiac disease (CeD) is a primary malabsorption syndrome with no specific therapy, which greatly affects the quality of life. Since the pathogenesis of CeD remains riddled, based on multiple transcriptome profiles, this study aimed to establish an immune interaction network and elucidated new mechanisms involved in the pathogenesis of CeD, providing potentially new evidence for the diagnosis and treatment of CeD. METHODS Three microarray and three RNA sequencing datasets of human duodenal tissue with or without CeD were included in Gene Expression Omnibus and respectively merged into derivation and validation cohorts. Differential expression gene and functional enrichment analysis were developed, then pyroptosis enrichment score (PES) model was established to quantify pyroptosis levels. Immune infiltration and co-expression network were constructed based on Xcell database. Protein-protein interaction and weighted gene co-expression network analysis were determined to identify pyroptosis relative hub genes, whose predictive efficiency were tested using a least absolute shrinkage and selection operator (LASSO) regression model. CeD animal and in vitro cell line models were established to verify the occurrence of pyroptosis and molecules expression employing immunofluorescence, western blotting, cell counting kit-8 assay and enzyme-linked immunosorbent assay. Analysis of single-cell RNAseq (scRNAseq) was performed using "Seurat" R package. RESULTS Differentially expressed genes (DEGs) (137) were identified in derivation cohort whose function was mainly enriched in interferon response and suppression of metabolism. Since an enrichment of pyroptosis pathway in CeD was unexpectedly discovered, a PES model with high efficiency was constructed and verified with two external databases, which confirmed that pyroptosis was significantly upregulated in CeD epithelia. γδT cells exhibited high expression of IFN-γ were the most relevant cells associated with pyroptosis and occupied a greater weight in the LASSO predictive model of CeD. An accumulation of GSDMD expressed in epithelia was identified using scRNAseq, while animal model and in vitro experiments confirmed that epithelium cells were induced to become "pre-pyroptotic" status via IFN-γ/IRF1/GSDMD axis. Furthermore, gluten intake triggered pyroptosis via caspase-1/GSDMD/IL-1β pathway. CONCLUSION Our study demonstrated that pyroptosis was involved in the pathogenesis of CeD, and elucidated the novel role of γδT cells in mediating epithelial cell pyroptosis.
Collapse
Affiliation(s)
- Shuze Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiuying Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhi Wang
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dekai Zheng
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yiling Yan
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaojie Peng
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiujuan Ye
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
20
|
Popp A, Laurikka P, Czika D, Kurppa K. The role of gluten challenge in the diagnosis of celiac disease: a review. Expert Rev Gastroenterol Hepatol 2023; 17:691-700. [PMID: 37243608 DOI: 10.1080/17474124.2023.2219893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Duodenal biopsy is the gold standard in the diagnosis of celiac disease, with increasing utilization of serology. A gluten challenge may be required, for example, when dietary gluten reduction precedes appropriate diagnostic evaluations. Evidence on the best challenge protocol is currently sparse. Pharmaceutical trials in recent years may have provided new insights into the challenge and advanced the development of novel sensitive histological and immunological methods. AREAS COVERED This review outlines the current perspectives on the use of gluten challenge in the diagnosis of celiac disease and explores future directions in this area. EXPERT OPINION Comprehensive elimination of celiac disease before dietary gluten restriction is essential to avoid diagnostic uncertainties. Gluten challenge continues to have an important role in certain clinical scenarios, although it is important to understand its limitations in the diagnostic evaluation. The evidence so far permits no unequivocal recommendation considering the timing, duration, and amount of gluten used in the challenge. Thus, these decisions should be made on a case-by-case basis. Further studies with more standardized protocols and outcome measures are called for. In the future novel immunological methods may help to shorten or even avoid gluten challenge.
Collapse
Affiliation(s)
- Alina Popp
- Department of Pediatrics, University of Medicine and Pharmacy Carol Davila and National Institute for Mother and Child Health, Bucharest, Romania
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pilvi Laurikka
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Diana Czika
- Department of Pediatrics, University of Medicine and Pharmacy Carol Davila and National Institute for Mother and Child Health, Bucharest, Romania
| | - Kalle Kurppa
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
- The University Consortium of Seinäjoki, Seinäjoki, Finland
| |
Collapse
|
21
|
Amundsen SF, Stamnaes J, Lundin KEA, Sollid LM. Expression of transglutaminase 2 in human gut epithelial cells: Implications for coeliac disease. PLoS One 2023; 18:e0287662. [PMID: 37368893 PMCID: PMC10298751 DOI: 10.1371/journal.pone.0287662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Formation of complexes between transglutaminase 2 (TG2) and gluten can mechanistically explain why TG2 serves both as B-cell autoantigen and as an enzyme that creates deamidated gluten epitopes in coeliac disease (CeD). A model has been proposed where TG2 released from shed epithelial cells encounters high concentrations of dietary gluten peptides to form these TG2:gluten complexes. In this work we have characterised TG2 protein expression in gut epithelial cells in humans. METHODS Western blot analysis, immunofluorescence staining and mass spectrometry in combination with laser capture microdissection to gain spatial resolution were used to characterise TG2 expression in the epithelial cell layer of healthy and coeliac disease affected duodenum. FINDINGS TG2 is expressed in human duodenal epithelial cells, including cells in the apical region that are shed into the gut lumen. In untreated CeD the apical expression of TG2 is doubled. Enzymatically active TG2 is readily released from isolated human intestinal epithelial cells. CONCLUSION Shed epithelial cells are a plausible source of pathogenic TG2 enzyme in CeD. Increased epithelial TG2 expression and increased epithelial shedding in active CeD may reinforce action of luminal TG2 in this condition.
Collapse
Affiliation(s)
- Sunniva F. Amundsen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital—Rikshospitalet, Oslo, Norway
| | - Jorunn Stamnaes
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital—Rikshospitalet, Oslo, Norway
| | - Knut E. A. Lundin
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital—Rikshospitalet, Oslo, Norway
| | - Ludvig M. Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital—Rikshospitalet, Oslo, Norway
| |
Collapse
|
22
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
23
|
Identification of proteinase 3 autoreactive CD4 +T cells and their T-cell receptor repertoires in antineutrophil cytoplasmic antibody-associated vasculitis. Kidney Int 2023; 103:973-985. [PMID: 36804380 DOI: 10.1016/j.kint.2023.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023]
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is an autoimmune disease involving autoreactivity to proteinase 3 (PR3) as demonstrated by presence of ANCAs. While autoantibodies are screened for diagnosis, autoreactive T cells and their features are less well-studied. Here, we investigated PR3-specific CD4+T cell responses and features of autoreactive T cells in patients with PR3-AAV, using a cohort of 72 patients with either active or inactive disease. Autoreactive PR3-specific CD4+T cells producing interferon γ in response to protein stimulation were found to express the G-protein coupled receptor 56 (GPR56), a cell surface marker that distinguishes T cells with cytotoxic capacity. GPR56+CD4+T cells were significantly more prominent in the blood of patients with inactive as compared to active disease, suggesting that these cells were affected by immunosuppression and/or that they migrated from the circulation to sites of organ involvement. Indeed, GPR56+CD4+T cells were identified in T-cell infiltrates of affected kidneys and an association with immunosuppressive therapy was found. Moreover, distinct TCR gene segment usage and shared (public) T cell clones were found for the PR3-reactive TCRs. Shared T cell clones were found in different patients with AAV carrying the disease-associated HLA-DP allele, demonstrating convergence of the autoreactive T cell repertoire. Thus, we identified a CD4+T cell signature in blood and in affected kidneys that display PR3 autoreactivity and associates with T cell cytotoxicity. Our data provide a basis for novel rationales for both immune monitoring and future therapeutic intervention in PR3-AAV.
Collapse
|
24
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
25
|
Nagafuchi Y, Ota M, Hatano H, Inoue M, Kobayashi S, Okubo M, Sugimori Y, Nakano M, Yamada S, Yoshida R, Tsuchida Y, Iwasaki Y, Shoda H, Okada Y, Yamamoto K, Ishigaki K, Okamura T, Fujio K. Control of naive and effector CD4 T cell receptor repertoires by rheumatoid-arthritis-risk HLA alleles. J Autoimmun 2022; 133:102907. [PMID: 36126366 DOI: 10.1016/j.jaut.2022.102907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Human Leukocyte Antigen (HLA) alleles regulate susceptibility to rheumatoid arthritis (RA) and immune-mediated diseases. This study aims to elucidate the impact of HLA alleles to T cell subsets. METHODS We performed genome-wide and HLA allele association analysis for T cell receptor (TCR) beta chain repertoire in 13 purified T cell subsets from the ImmuNexUT database, consisting of 407 donors with ten immune-mediated diseases and healthy controls. RESULTS HLA class II alleles were associated with TRBV gene usage and the public clones of CD4 T cells, while HLA class I alleles were associated with CD8 T cells. RA-risk and immune-mediated diseases-risk HLA alleles were associated with TRBV gene usage of naive and effector CD4 T cell subsets and public clones accumulating in Th17. Clonal diversity was independent of HLA alleles and was correlated with transcriptome changes that reflect TCR signaling. CONCLUSION This study revealed in vivo evidence that both HLA alleles and environmental factors shape naive and effector TCR repertoires in RA and immune-mediated diseases patients.
Collapse
Affiliation(s)
- Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satomi Kobayashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mai Okubo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sugimori
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Nakano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryochi Yoshida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
26
|
Maladaptive consequences of inflammatory events shape individual immune identity. Nat Immunol 2022; 23:1675-1686. [PMID: 36411382 DOI: 10.1038/s41590-022-01342-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate immune system develops in layers, as modes of immunity have evolved on top of each other through time with the expansion of organismal complexity. The maturation timing of immune cell subsets, such as innate immune cells, innate-like cells and adaptive cells, corresponds to their physiological roles in protective immunity. While various cell subsets have specialized roles, they also complement each other to clear pathogens, resolve inflammation and maintain homeostasis, especially at barrier sites with high microbial density. Immune cells adapt to inflammatory insults through mechanisms including epigenetic and metabolic reprogramming, clonal expansion and enhanced communication with the surrounding tissue environment. Over time, these adaptations shape an individual immune identity, reflective of the overlay between the genetic predisposition and the antigenic and environmental exposures of each individual. While some aspects of this immune shaping are natural consequences of immune maturation over time, others are maladaptive and predispose to irreversible pathology. In this Perspective, we provide a framework for categorizing the shaping events of the immune response, in terms of mechanisms, contexts and functional outcomes. We aim to clarify how these terms can be appropriately applied to future findings that impact immune function.
Collapse
|
27
|
Atlasy N, Bujko A, Bækkevold ES, Brazda P, Janssen-Megens E, Lundin KEA, Jahnsen J, Jahnsen FL, Stunnenberg HG. Single cell transcriptomic analysis of the immune cell compartment in the human small intestine and in Celiac disease. Nat Commun 2022; 13:4920. [PMID: 35995787 PMCID: PMC9395525 DOI: 10.1038/s41467-022-32691-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/10/2022] [Indexed: 12/14/2022] Open
Abstract
Celiac disease is an autoimmune disorder in which ingestion of dietary gluten triggers an immune reaction in the small intestine leading to destruction of the lining epithelium. Current treatment focusses on lifelong adherence to a gluten-free diet. Gluten-specific CD4+ T cells and cytotoxic intraepithelial CD8+ T cells have been proposed to be central in disease pathogenesis. Here we use unbiased single-cell RNA-sequencing and explore the heterogeneity of CD45+ immune cells in the human small intestine. We show altered myeloid cell transcriptomes present in active celiac lesions. CD4+ and CD8+ T cells transcriptomes show extensive changes and we define a natural intraepithelial lymphocyte population that is reduced in celiac disease. We show that the immune landscape in Celiac patients on a gluten-free diet is only partially restored compared to control samples. Altogether, we provide a single cell transcriptomic resource that can inform the immune landscape of the small intestine during Celiac disease. Celiac disease is linked to responsiveness to dietary gluten, which manifests itself as immune cell activation and the immunopathology including destruction of the epithelium of the small intestine. Here the authors apply single cell transcriptomics to characterise the immune cell compartment of the human small intestine during active Celiac disease.
Collapse
Affiliation(s)
- Nader Atlasy
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Anna Bujko
- Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.,VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Espen S Bækkevold
- Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Peter Brazda
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Eva Janssen-Megens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,NimaGen B.V., 6500 AB, Nijmegen, The Netherlands
| | - Knut E A Lundin
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, 0450, Norway.,Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, 0372, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands. .,Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Levescot A, Malamut G, Cerf-Bensussan N. Immunopathogenesis and environmental triggers in coeliac disease. Gut 2022; 71:gutjnl-2021-326257. [PMID: 35879049 PMCID: PMC9554150 DOI: 10.1136/gutjnl-2021-326257] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022]
Abstract
Coeliac disease (CD) is a frequent immune enteropathy induced by gluten in genetically predisposed individuals. Its pathogenesis has been extensively studied and CD has emerged as a model disease to decipher how the interplay between environmental and genetic factors can predispose to autoimmunity and promote lymphomagenesis. The keystone event is the activation of a gluten-specific immune response that is driven by molecular interactions between gluten, the indispensable environmental factor, HLA-DQ2/8, the main predisposing genetic factor and transglutaminase 2, the CD-specific autoantigen. The antigluten response is however not sufficient to induce epithelial damage which requires the activation of cytotoxic CD8+ intraepithelial lymphocytes (IEL). In a plausible scenario, cooperation between cytokines released by gluten-specific CD4+ T cells and interleukin-15 produced in excess in the coeliac gut, licenses the autoimmune-like attack of the gut epithelium, likely via sustained activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway in IEL. Demonstration that lymphomas complicating CD arise from IEL that have acquired gain-of-function JAK1 or STAT3 mutations stresses the key role of this pathway and explains how gluten-driven chronic inflammation may promote this rare but most severe complication. If our understanding of CD pathogenesis has considerably progressed, several questions and challenges remain. One unsolved question concerns the considerable variability in disease penetrance, severity and presentation, pointing to the role of additional genetic and environmental factors that remain however uneasy to untangle and hierarchize. A current challenge is to transfer the considerable mechanistic insight gained into CD pathogenesis into benefits for the patients, notably to alleviate the gluten-free diet, a burden for many patients.
Collapse
Affiliation(s)
- Anais Levescot
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| | - Georgia Malamut
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
- Université Paris Cité, APHP Centre, Gastroenterology Department, Hôpital Cochin, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| |
Collapse
|
29
|
Roy P, Sidney J, Lindestam Arlehamn CS, Phillips E, Mallal S, Suthahar SSA, Billitti M, Rubiro P, Marrama D, Drago F, Vallejo J, Suryawanshi V, Orecchioni M, Makings J, Kim PJ, McNamara CA, Peters B, Sette A, Ley K. Immunodominant MHC-II (Major Histocompatibility Complex II) Restricted Epitopes in Human Apolipoprotein B. Circ Res 2022; 131:258-276. [PMID: 35766025 PMCID: PMC9536649 DOI: 10.1161/circresaha.122.321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD (cluster of differentiation) 4+ T-cell responses to APOB (apolipoprotein B) are well characterized in atherosclerotic mice and detectable in humans. CD4+ T cells recognize antigenic peptides displayed on highly polymorphic HLA (human leukocyte antigen)-II. Immunogenicity of individual APOB peptides is largely unknown in humans. Only 1 HLA-II-restricted epitope was validated using the DRB1*07:01-APOB3036-3050 tetramer. We hypothesized that human APOB may contain discrete immunodominant CD4+ T-cell epitopes that trigger atherosclerosis-related autoimmune responses in donors with diverse HLA alleles. METHODS We selected 20 APOB-derived peptides (APOB20) from an in silico screen and experimentally validated binding to the most commonly occurring human HLA-II alleles. We optimized a restimulation-based workflow to evaluate antigenicity of multiple candidate peptides in HLA-typed donors. This included activation-induced marker assay, intracellular cytokine staining, IFNγ (interferon gamma) enzyme-linked immunospot and cytometric bead array. High-throughput sequencing revealed TCR (T-cell receptor) clonalities of APOB-reactive CD4+ T cells. RESULTS Using stringent positive, negative, and crossover stimulation controls, we confirmed specificity of expansion-based protocols to detect CD4+ T cytokine responses to the APOB20 pool. Ex vivo assessment of AIM+CD4+ T cells revealed a statistically significant autoimmune response to APOB20 but not to a ubiquitously expressed negative control protein, actin. Resolution of CD4+ T responses to the level of individual peptides using IFNγ enzyme-linked immunospot led to the discovery of 6 immunodominant epitopes (APOB6) that triggered robust CD4+ T activation in most donors. APOB6-specific responding CD4+ T cells were enriched in unique expanded TCR clonotypes and preferentially expressed memory markers. Cytometric bead array analysis detected APOB6-induced secretion of both proinflammatory and regulatory cytokines. In clinical samples from patients with angiographically verified coronary artery disease, APOB6 stimulation induced higher activation and memory phenotypes and augmented secretion of proinflammatory cytokines TNF (tumor necrosis factor) and IFNγ, compared with patients with low coronary artery disease. CONCLUSIONS Using 3 cohorts, each with ≈20 donors, we discovered and validated 6 immunodominant, HLA-II-restricted APOB epitopes. The immune response to these APOB epitopes correlated with coronary artery disease severity.
Collapse
Affiliation(s)
- Payel Roy
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Elizabeth Phillips
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Sujit Silas Armstrong Suthahar
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Monica Billitti
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Fabrizio Drago
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Jenifer Vallejo
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Vasantika Suryawanshi
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Marco Orecchioni
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Jeffrey Makings
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Paul J. Kim
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Klaus Ley
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
30
|
Anderson RP. Review article: Diagnosis of coeliac disease: a perspective on current and future approaches. Aliment Pharmacol Ther 2022; 56 Suppl 1:S18-S37. [PMID: 35815826 DOI: 10.1111/apt.16840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/09/2022]
Abstract
Diagnostics will play a central role in addressing the ongoing dramatic rise in global prevalence of coeliac disease, and in deploying new non-dietary therapeutics. Clearer understanding of the immunopathogenesis of coeliac disease and the utility of serology has led to partial acceptance of non-biopsy diagnosis in selected cases. Non-biopsy diagnosis may expand further because research methods for measuring gluten-specific CD4+ T cells and the acute recall response to gluten ingestion in patients is now relatively straightforward. This perspective on diagnosis in the context of the immunopathogenesis of coeliac disease sets out to highlight current consensus, limitations of current practices, gluten food challenge for diagnosis and the potential for diagnostics that measure the underlying cause for coeliac disease, gluten-specific immunity.
Collapse
|
31
|
Abstract
In this review, we summarize and discuss recent advances in understanding the characteristics of tissue-resident memory T cells (TRMs) in the context of solid organ transplantation (SOT). We first introduce the traditionally understood noncirculating features of TRMs and the key phenotypic markers that define this population, then provide a detailed discussion of emerging concepts on the recirculation and plasticity of TRM in mice and humans. We comment on the potential heterogeneity of transient, temporary resident, and permanent resident T cells and potential interchangeable phenotypes between TRM and effector T cells in nonlymphoid tissues. We review the literature on the distribution of TRM in human nonlymphoid organs and association of clinical outcomes in different types of SOT, including intestine, lung, liver, kidney, and heart. We focus on both tissue-specific and organ-shared features of donor- and recipient-derived TRMs after transplantation whenever applicable. Studies with comprehensive sample collection, including longitudinal and cross-sectional controls, and applied advanced techniques such as multicolor flow cytometry to distinguish donor and recipient TRMs, bulk, and single-cell T-cell receptor sequencing to track clonotypes and define transcriptome profiles, and functional readouts to define alloreactivity and proinflammatory/anti-inflammatory activities are emphasized. We also discuss important findings on the tissue-resident features of regulatory αβ T cells and unconventional γδ T cells after transplantation. Understanding of TRM in SOT is a rapidly growing field that urges future studies to address unresolved questions regarding their heterogeneity, plasticity, longevity, alloreactivity, and roles in rejection and tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
- Department of Surgery, Columbia University, New York, United States
- Department of Microbiology & Immunology, Columbia University, New York, United States
| |
Collapse
|
32
|
Christophersen A, Dahal‐Koirala S, Chlubnová M, Jahnsen J, Lundin KEA, Sollid LM. Phenotype-Based Isolation of Antigen-Specific CD4 + T Cells in Autoimmunity: A Study of Celiac Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104766. [PMID: 35119226 PMCID: PMC8981484 DOI: 10.1002/advs.202104766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/08/2022] [Indexed: 05/15/2023]
Abstract
The pathogenic immune response in celiac disease (CeD) is orchestrated by phenotypically distinct CD4+ T cells that recognize gluten epitopes in the context of disease-associated HLA-DQ allotypes. Cells with the same distinct phenotype, but with elusive specificities, are increased across multiple autoimmune conditions. Here, whether sorting of T cells based on their distinct phenotype (Tphe cells) yields gluten-reactive cells in CeD is tested. The method's efficiency is benchmarked by parallel isolation of gluten-reactive T cells (Ttet cells), using HLA-DQ:gluten peptide tetramers. From gut biopsies of 12 untreated HLA-DQ2.5+ CeD patients, Ttet+ /Tphe+ , Ttet- /Tphe+ , and Ttet- /Tphe- cells are sorted for single-cell T-cell receptor (TCR)-sequencing (n = 8) and T-cell clone (TCC)-generation (n = 5). The generated TCCs are TCR sequenced and tested for their reactivity against deamidated gluten. Gluten-reactivity is observed in 91.2% of Ttet+ /Tphe+ TCCs, 65.3% of Ttet- /Tphe+ TCCs and 0% of Ttet- /Tphe- TCCs. TCR sequencing reveals clonal expansion and sequence sharing across patients, features reflecting antigen-driven responses. The feasibility to isolate antigen-specific CD4+ T cells by the sole use of phenotypic markers in CeD outlines a potential avenue for characterizing disease-driving CD4+ T cells in autoimmune conditions.
Collapse
Affiliation(s)
- Asbjørn Christophersen
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of RheumatologyDermatology and Infectious DiseasesOslo University HospitalOslo0372Norway
| | - Shiva Dahal‐Koirala
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Markéta Chlubnová
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Jørgen Jahnsen
- Department of GastroenterologyAkershus University HospitalLørenskog1478Norway
| | - Knut E. A. Lundin
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of GastroenterologyOslo University Hospital RikshospitaletOslo0372Norway
| | - Ludvig M. Sollid
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of ImmunologyOslo University HospitalOslo0372Norway
| |
Collapse
|
33
|
Dahal-Koirala S, Balaban G, Neumann RS, Scheffer L, Lundin KEA, Greiff V, Sollid LM, Qiao SW, Sandve GK. TCRpower: quantifying the detection power of T-cell receptor sequencing with a novel computational pipeline calibrated by spike-in sequences. Brief Bioinform 2022; 23:bbab566. [PMID: 35062022 PMCID: PMC8921636 DOI: 10.1093/bib/bbab566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023] Open
Abstract
T-cell receptor (TCR) sequencing has enabled the development of innovative diagnostic tests for cancers, autoimmune diseases and other applications. However, the rarity of many T-cell clonotypes presents a detection challenge, which may lead to misdiagnosis if diagnostically relevant TCRs remain undetected. To address this issue, we developed TCRpower, a novel computational pipeline for quantifying the statistical detection power of TCR sequencing methods. TCRpower calculates the probability of detecting a TCR sequence as a function of several key parameters: in-vivo TCR frequency, T-cell sample count, read sequencing depth and read cutoff. To calibrate TCRpower, we selected unique TCRs of 45 T-cell clones (TCCs) as spike-in TCRs. We sequenced the spike-in TCRs from TCCs, together with TCRs from peripheral blood, using a 5' RACE protocol. The 45 spike-in TCRs covered a wide range of sample frequencies, ranging from 5 per 100 to 1 per 1 million. The resulting spike-in TCR read counts and ground truth frequencies allowed us to calibrate TCRpower. In our TCR sequencing data, we observed a consistent linear relationship between sample and sequencing read frequencies. We were also able to reliably detect spike-in TCRs with frequencies as low as one per million. By implementing an optimized read cutoff, we eliminated most of the falsely detected sequences in our data (TCR α-chain 99.0% and TCR β-chain 92.4%), thereby improving diagnostic specificity. TCRpower is publicly available and can be used to optimize future TCR sequencing experiments, and thereby enable reliable detection of disease-relevant TCRs for diagnostic applications.
Collapse
Affiliation(s)
- Shiva Dahal-Koirala
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, 0372, Norway
| | - Gabriel Balaban
- Biomedical Informatics, Department of Informatics, University of Oslo, 0373, Oslo, Norway
- Department of Computational Physiology, Simula Research Laboratory, 1364, Fornebu, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0373, Oslo, Norway
| | - Ralf Stefan Neumann
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
| | - Lonneke Scheffer
- Biomedical Informatics, Department of Informatics, University of Oslo, 0373, Oslo, Norway
| | - Knut Erik Aslaksen Lundin
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
- Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, 0372, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, 0372, Norway
| | - Ludvig Magne Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, 0372, Norway
| | - Shuo-Wang Qiao
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, 0372, Norway
| | - Geir Kjetil Sandve
- Biomedical Informatics, Department of Informatics, University of Oslo, 0373, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0373, Oslo, Norway
| |
Collapse
|
34
|
Yoosuf S, Therrien A, Leffler DA. Non-dietary therapies for celiac disease. COELIAC DISEASE AND GLUTEN-RELATED DISORDERS 2022:111-160. [DOI: 10.1016/b978-0-12-821571-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
|
36
|
Lindeman I, Sollid LM. Single-cell approaches to dissect adaptive immune responses involved in autoimmunity: the case of celiac disease. Mucosal Immunol 2022; 15:51-63. [PMID: 34531547 DOI: 10.1038/s41385-021-00452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023]
Abstract
Single-cell analysis is a powerful technology that has found widespread use in recent years. For diseases with involvement of adaptive immunity, single-cell analysis of antigen-specific T cells and B cells is particularly informative. In autoimmune diseases, the adaptive immune system is obviously at play, yet the ability to identify the culprit T and B cells recognizing disease-relevant antigen can be difficult. Celiac disease, a widespread disorder with autoimmune components, is unique in that disease-relevant antigens for both T cells and B cells are well defined. Furthermore, the celiac disease gut lesion is readily accessible allowing for sampling of tissue-resident cells. Thus, disease-relevant T cells and B cells from the gut and blood can be studied at the level of single cells. Here we review single-cell studies providing information on such adaptive immune cells and outline some future perspectives in the area of single-cell analysis in autoimmune diseases.
Collapse
Affiliation(s)
- Ida Lindeman
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
37
|
Sharma RK, Boddul SV, Yoosuf N, Turcinov S, Dubnovitsky A, Kozhukh G, Wermeling F, Kwok WW, Klareskog L, Malmström V. Biased TCR gene usage in citrullinated Tenascin C specific T-cells in rheumatoid arthritis. Sci Rep 2021; 11:24512. [PMID: 34972837 PMCID: PMC8720095 DOI: 10.1038/s41598-021-04291-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
We aimed to search for common features in the autoreactive T cell receptor (TCR) repertoire in patients with rheumatoid arthritis (RA), focusing on the newly identified candidate antigen citrullinated Tenascin C (cit-TNC). Mononuclear cells from peripheral blood or synovial fluid of eight RA-patients positive for the RA-associated HLA-DRB1*04:01 allele were in-vitro cultured with recently identified citrullinated peptides from Tenascin C. Antigen-specific T cells were isolated using peptide-HLA tetramer staining and subsequently single-cell sequenced for paired alpha/beta TCR analyses by bioinformatic tools. TCRs were re-expressed for further studies of antigen-specificity and T cell responses. Autoreactive T cell lines could be grown out from both peripheral blood and synovial fluid. We demonstrate the feasibility of retrieving true autoreactive TCR sequences by validating antigen-specificity in T cell lines with re-expressed TCRs. One of the Tenascin C peptides, cit-TNC22, gave the most robust T cell responses including biased TCR gene usage patterns. The shared TCR-beta chain signature among the cit-TNC22-specific TCRs was evident in blood and synovial fluid of different patients. The identification of common elements in the autoreactive TCR repertoire gives promise to the possibility of both immune monitoring of the autoimmune components in RA and of future antigen- or TCR-targeted specific intervention in subsets of patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Arthritis, Rheumatoid/etiology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Autoimmunity
- Biomarkers
- Child
- Conserved Sequence
- Disease Susceptibility/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Expression Regulation
- Humans
- Male
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/physiology
- Tenascin/immunology
- Young Adult
Collapse
Affiliation(s)
- Ravi K Sharma
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Sanjay V Boddul
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Niyaz Yoosuf
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Sara Turcinov
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Anatoly Dubnovitsky
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Genadiy Kozhukh
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - William W Kwok
- The Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
38
|
Amoriello R, Mariottini A, Ballerini C. Immunosenescence and Autoimmunity: Exploiting the T-Cell Receptor Repertoire to Investigate the Impact of Aging on Multiple Sclerosis. Front Immunol 2021; 12:799380. [PMID: 34925384 PMCID: PMC8673061 DOI: 10.3389/fimmu.2021.799380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
T-cell receptor (TCR) repertoire diversity is a determining factor for the immune system capability in fighting infections and preventing autoimmunity. During life, the TCR repertoire diversity progressively declines as a physiological aging progress. The investigation of TCR repertoire dynamics over life represents a powerful tool unraveling the impact of immunosenescence in health and disease. Multiple Sclerosis (MS) is a demyelinating, inflammatory, T-cell mediated autoimmune disease of the Central Nervous System in which age is crucial: it is the most widespread neurological disease among young adults and, furthermore, patients age may impact on MS progression and treatments outcome. Crossing knowledge on the TCR repertoire dynamics over MS patients' life is fundamental to investigate disease mechanisms, and the advent of high- throughput sequencing (HTS) has significantly increased our knowledge on the topic. Here we report an overview of current literature about the impact of immunosenescence and age-related TCR dynamics variation in autoimmunity, including MS.
Collapse
Affiliation(s)
- Roberta Amoriello
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Florence, Italy
| | - Alice Mariottini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Sollid LM. Gut tissue-resident memory T cells in coeliac disease. Scand J Immunol 2021; 95:e13120. [PMID: 34796982 DOI: 10.1111/sji.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
This mini-review describes observations of the 1990ies with culturing of gluten-specific and astrovirus-specific CD4+ T cells from duodenal biopsies from subjects who presumably had a long time between the exposure to gluten or astrovirus antigens and the sampling of the biopsy. In these studies, it was also observed that antigen-specific CD4+ T cells migrated out of the gut biopsies during overnight culture. The findings are suggestive of memory T cells in tissue which are resident, but which also can be mobilised on antigen stimulation. Of note, these findings were made years before the term tissue-resident memory T cells was invoked. Since that time, many observations have accumulated on these gut T cells, particularly the gluten-specific T cells, and we have insight into the turnover of CD4+ T cells in the gut lamina propria. These data make it evident that human antigen-specific CD4+ T cells that can be cultured from gut biopsies indeed are bone fide tissue-resident memory T cells.
Collapse
Affiliation(s)
- Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
40
|
Nakayama M, Michels AW. Using the T Cell Receptor as a Biomarker in Type 1 Diabetes. Front Immunol 2021; 12:777788. [PMID: 34868047 PMCID: PMC8635517 DOI: 10.3389/fimmu.2021.777788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
T cell receptors (TCRs) are unique markers that define antigen specificity for a given T cell. With the evolution of sequencing and computational analysis technologies, TCRs are now prime candidates for the development of next-generation non-cell based T cell biomarkers, which provide a surrogate measure to assess the presence of antigen-specific T cells. Type 1 diabetes (T1D), the immune-mediated form of diabetes, is a prototypical organ specific autoimmune disease in which T cells play a pivotal role in targeting pancreatic insulin-producing beta cells. While the disease is now predictable by measuring autoantibodies in the peripheral blood directed to beta cell proteins, there is an urgent need to develop T cell markers that recapitulate T cell activity in the pancreas and can be a measure of disease activity. This review focuses on the potential and challenges of developing TCR biomarkers for T1D. We summarize current knowledge about TCR repertoires and clonotypes specific for T1D and discuss challenges that are unique for autoimmune diabetes. Ultimately, the integration of large TCR datasets produced from individuals with and without T1D along with computational 'big data' analysis will facilitate the development of TCRs as potentially powerful biomarkers in the development of T1D.
Collapse
MESH Headings
- Alleles
- Animals
- Biomarkers
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Disease Susceptibility
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Genetic Predisposition to Disease
- Genetic Variation
- Histocompatibility Antigens/genetics
- Histocompatibility Antigens/immunology
- Humans
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
41
|
Anderson RP. Emergence of an adaptive immune paradigm to explain celiac disease: a perspective on new evidence and implications for future interventions and diagnosis. Expert Rev Clin Immunol 2021; 18:75-91. [PMID: 34767744 DOI: 10.1080/1744666x.2021.2006636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Recent patient studies have shown that gluten-free diet is less effective in treating celiac disease than previously believed, and additionally patients remain vulnerable to gluten-induced acute symptoms and systemic cytokine release. Safe and effective pharmacological adjuncts to gluten-free diet are in preclinical and clinical development. Clear understanding of the pathogenesis of celiac disease is critical for drug target identification, establishing efficacy endpoints and to develop non-invasive biomarkers suitable to monitor and potentially diagnose celiac disease. AREAS COVERED The role and clinical effects of CD4+ T cells directed against deamidated gluten in the context of an "adaptive immune paradigm" are reviewed. Alternative hypotheses of gluten toxicity are discussed and contrasted. In the context of recent patient studies, implications of the adaptive immune paradigm for future strategies to prevent, diagnose, and treat celiac disease are outlined. EXPERT OPINION Effective therapeutics for celiac disease are likely to be approved and necessitate a variety of new clinical instruments and tests to stratify patient need, monitor remission, and confirm diagnosis in uncertain cases. Sensitive assessments of CD4+ T cells specific for deamidated gluten are likely to play a central role in clinical management, and to facilitate research and pharmaceutical development.
Collapse
|
42
|
Christophersen A, Zühlke S, Lund EG, Snir O, Dahal‐Koirala S, Risnes LF, Jahnsen J, Lundin KEA, Sollid LM. Pathogenic T Cells in Celiac Disease Change Phenotype on Gluten Challenge: Implications for T-Cell-Directed Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102778. [PMID: 34495570 PMCID: PMC8564461 DOI: 10.1002/advs.202102778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 05/05/2023]
Abstract
Gluten-specific CD4+ T cells being drivers of celiac disease (CeD) are obvious targets for immunotherapy. Little is known about how cell markers harnessed for T-cell-directed therapy can change with time and upon activation in CeD and other autoimmune conditions. In-depth characterization of gluten-specific CD4+ T cells and CeD-associated (CD38+ and CD103+ ) CD8+ and γδ+ T cells in blood of treated CeD patients undergoing a 3 day gluten challenge is reported. The phenotypic profile of gluten-specific cells changes profoundly with gluten exposure and the cells adopt the profile of gluten-specific cells in untreated disease (CD147+ , CD70+ , programmed cell death protein 1 (PD-1)+ , inducible T-cell costimulator (ICOS)+ , CD28+ , CD95+ , CD38+ , and CD161+ ), yet with some markers being unique for day 6 cells (C-X-C chemokine receptor type 6 (CXCR6), CD132, and CD147) and with integrin α4β7, C-C motif chemokine receptor 9 (CCR9), and CXCR3 being expressed stably at baseline and day 6. Among gluten-specific CD4+ T cells, 52% are CXCR5+ at baseline, perhaps indicative of germinal-center reactions, while on day 6 all are CXCR5- . Strikingly, the phenotypic profile of gluten-specific CD4+ T cells on day 6 largely overlaps with that of CeD-associated (CD38+ and CD103+ ) CD8+ and γδ+ T cells. The antigen-induced shift in phenotype of CD4+ T cells being shared with other disease-associated T cells is relevant for development of T-cell-directed therapies.
Collapse
Affiliation(s)
- Asbjørn Christophersen
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of RheumatologyDermatology and Infectious DiseasesOslo University HospitalOslo0372Norway
| | - Stephanie Zühlke
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Eivind G. Lund
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Omri Snir
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Shiva Dahal‐Koirala
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Louise Fremgaard Risnes
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Department of ImmunologyOslo University HospitalOslo0372Norway
| | - Jørgen Jahnsen
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of GastroenterologyAkershus University HospitalLørenskog1478Norway
| | - Knut E. A. Lundin
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of GastroenterologyOslo University Hospital RikshospitaletOslo0372Norway
| | - Ludvig M. Sollid
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of ImmunologyOslo University HospitalOslo0372Norway
| |
Collapse
|
43
|
Stamnaes J. Insights from tissue "omics" analysis on intestinal remodeling in celiac disease. Proteomics 2021; 21:e2100057. [PMID: 34633755 DOI: 10.1002/pmic.202100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
Celiac disease (CeD) is a prevalent intestinal disorder that only develops in genetically susceptible individuals when they mount a harmful CD4+ T-cell response towards gluten peptides. Intake of gluten leads to inflammation and remodeling of the small intestine with symptoms such as nausea and diarrhea. The only current treatment is a lifelong gluten free diet. The immunological basis for CeD is well characterized but the mechanisms that drive intestinal remodeling are still poorly understood. Transcriptome or proteome analysis of intestinal biopsies gives a global snapshot of all processes that occur in the tissue, including alterations in the epithelial cell layer. This paper will introduce concepts of intestinal remodeling, recapitulate the current understanding of CeD pathogenesis and discuss findings from relevant tissue "omics" studies. On the basis of this review, I give perspectives on what tissue "omics" studies can tell us about disease pathogenesis with a particular focus on the gluten induced intestinal remodeling.
Collapse
Affiliation(s)
- Jorunn Stamnaes
- Department of Immunology, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Yao Y, Wyrozżemski Ł, Lundin KEA, Sandve GK, Qiao SW. Differential expression profile of gluten-specific T cells identified by single-cell RNA-seq. PLoS One 2021; 16:e0258029. [PMID: 34618841 PMCID: PMC8496852 DOI: 10.1371/journal.pone.0258029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Gluten-specific CD4+ T cells drive the pathogenesis of celiac disease and circulating gluten-specific T cells can be identified by staining with HLA-DQ:gluten tetramers. In this first single-cell RNA-seq study of tetramer-sorted T cells from untreated celiac disease patients blood, we found that gluten-specific T cells showed distinct transcriptomic profiles consistent with activated effector memory T cells that shared features with Th1 and follicular helper T cells. Compared to non-specific cells, gluten-specific T cells showed differential expression of several genes involved in T-cell receptor signaling, translational processes, apoptosis, fatty acid transport, and redox potentials. Many of the gluten-specific T cells studied shared T-cell receptor with each other, indicating that circulating gluten-specific T cells belong to a limited number of clones. Moreover, the transcriptional profiles of cells that shared the same clonal origin were transcriptionally more similar compared with between clonally unrelated gluten-specific cells.
Collapse
Affiliation(s)
- Ying Yao
- Department of Immunology, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Łukasz Wyrozżemski
- Department of Immunology, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Knut E. A. Lundin
- Department of Immunology, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Geir Kjetil Sandve
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
45
|
Frick R, Høydahl LS, Petersen J, du Pré MF, Kumari S, Berntsen G, Dewan AE, Jeliazkov JR, Gunnarsen KS, Frigstad T, Vik ES, Llerena C, Lundin KEA, Yaqub S, Jahnsen J, Gray JJ, Rossjohn J, Sollid LM, Sandlie I, Løset GÅ. A high-affinity human TCR-like antibody detects celiac disease gluten peptide-MHC complexes and inhibits T cell activation. Sci Immunol 2021; 6:6/62/eabg4925. [PMID: 34417258 DOI: 10.1126/sciimmunol.abg4925] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Antibodies specific for peptides bound to human leukocyte antigen (HLA) molecules are valuable tools for studies of antigen presentation and may have therapeutic potential. Here, we generated human T cell receptor (TCR)-like antibodies toward the immunodominant signature gluten epitope DQ2.5-glia-α2 in celiac disease (CeD). Phage display selection combined with secondary targeted engineering was used to obtain highly specific antibodies with picomolar affinity. The crystal structure of a Fab fragment of the lead antibody 3.C11 in complex with HLA-DQ2.5:DQ2.5-glia-α2 revealed a binding geometry and interaction mode highly similar to prototypic TCRs specific for the same complex. Assessment of CeD biopsy material confirmed disease specificity and reinforced the notion that abundant plasma cells present antigen in the inflamed CeD gut. Furthermore, 3.C11 specifically inhibited activation and proliferation of gluten-specific CD4+ T cells in vitro and in HLA-DQ2.5 humanized mice, suggesting a potential for targeted intervention without compromising systemic immunity.
Collapse
Affiliation(s)
- Rahel Frick
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lene S Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Jan Petersen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - M Fleur du Pré
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | | | | | - Alisa E Dewan
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | | | - Kristin S Gunnarsen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Carmen Llerena
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Knut E A Lundin
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Sheraz Yaqub
- Department of Gastrointestinal Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering and Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | - Geir Åge Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway. .,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway.,Nextera AS, Oslo, Norway
| |
Collapse
|
46
|
Barreto de Albuquerque J, Mueller C, Gungor B. Tissue-Resident T Cells in Chronic Relapsing-Remitting Intestinal Disorders. Cells 2021; 10:1882. [PMID: 34440651 PMCID: PMC8393248 DOI: 10.3390/cells10081882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Tissue-resident memory T (TRM) cells critically contribute to the rapid immunoprotection and efficient immunosurveillance against pathogens, particularly in barrier tissues, but also during anti-tumor responses. However, the involvement of TRM cells also in the induction and exacerbation of immunopathologies, notably in chronically relapsing auto-inflammatory disorders, is becoming increasingly recognized as a critical factor. Thus, TRM cells may also represent an attractive target in the management of chronic (auto-) inflammatory disorders, including multiple sclerosis, rheumatoid arthritis, celiac disease and inflammatory bowel diseases. In this review, we focus on current concepts of TRM cell biology, particularly in the intestine, and discuss recent findings on their involvement in chronic relapsing-remitting inflammatory disorders. Potential therapeutic strategies to interfere with these TRM cell-mediated immunopathologies are discussed.
Collapse
Affiliation(s)
| | | | - Bilgi Gungor
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland;
| |
Collapse
|
47
|
Circulating CD103 + γδ and CD8 + T cells are clonally shared with tissue-resident intraepithelial lymphocytes in celiac disease. Mucosal Immunol 2021; 14:842-851. [PMID: 33654213 DOI: 10.1038/s41385-021-00385-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
Gut intraepithelial γδ and CD8+ αβ T lymphocytes have been connected to celiac disease (CeD) pathogenesis. Based on the previous observation that activated (CD38+), gut-homing (CD103+) γδ and CD8+ αβ T cells increase in blood upon oral gluten challenge, we wanted to shed light on the pathogenic involvement of these T cells by examining the clonal relationship between cells of blood and gut during gluten exposure. Of 20 gluten-challenged CeD patients, 8 and 10 had increase in (CD38+CD103+) γδ and CD8+ αβ T cells, respectively, while 16 had increase in gluten-specific CD4+ T cells. We obtained γδ and αβ TCR sequences of >2500 single cells from blood and gut of 5 patients, before and during challenge. We observed extensive sharing between blood and gut γδ and CD8+ αβ T-cell clonotypes even prior to gluten challenge. In subjects with challenge-induced surge of γδ and/or CD8+ αβ T cells, as larger populations of cells analyzed, we observed more expanded clonotypes and clonal sharing, yet no discernible TCR similarities between expanded and/or shared clonotypes. Thus, CD4+ T cells appear to drive expansion of clonally diverse γδ or CD8+ αβ T-cell clonotypes that may not be specific for the gluten antigen.
Collapse
|
48
|
T-cell responses to hybrid insulin peptides prior to type 1 diabetes development. Proc Natl Acad Sci U S A 2021; 118:2019129118. [PMID: 33542101 DOI: 10.1073/pnas.2019129118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
T-cell responses to posttranslationally modified self-antigens are associated with many autoimmune disorders. In type 1 diabetes, hybrid insulin peptides (HIPs) are implicated in the T-cell-mediated destruction of insulin-producing β-cells within pancreatic islets. The natural history of the disease is such that it allows for the study of T-cell reactivity prior to the onset of clinical symptoms. We hypothesized that CD4 T-cell responses to posttranslationally modified islet peptides precedes diabetes onset. In a cohort of genetically at-risk individuals, we measured longitudinal T-cell responses to native insulin and hybrid insulin peptides. Both proinflammatory (interferon-γ) and antiinflammatory (interluekin-10) cytokine responses to HIPs were more robust than those to native peptides, and the ratio of such responses oscillated between pro- and antiinflammatory over time. However, individuals who developed islet autoantibodies or progressed to clinical type 1 diabetes had predominantly inflammatory T-cell responses to HIPs. Additionally, several HIP T-cell responses correlated to worsening measurements of blood glucose, highlighting the relevance of T-cell responses to posttranslationally modified peptides prior to autoimmune disease development.
Collapse
|
49
|
Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol 2021; 12:642166. [PMID: 34163468 PMCID: PMC8215716 DOI: 10.3389/fimmu.2021.642166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the pediatric population. Recent research indicates the crucial role of interactions between the altered intestinal microbiome and the immune system in the pathogenesis of several chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD). Here, we review recent knowledge concerning the pathogenic mechanisms underlying these disorders, and summarize the facts suggesting that the initiation and progression of IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of composition and abundance of the gut microbiota. The standard available therapies for chronic inflammatory disorders in children largely aim to treat symptoms. Although constant efforts are being made to maximize the quality of life for children in the long-term, sustained improvements are still difficult to achieve. Additional challenges are the changing physiology associated with growth and development of children, a population that is particularly susceptible to medication-related adverse effects. In this review, we explore new promising therapeutic approaches aimed at modulation of either gut microbiota or the activity of the immune system to induce a long-lasting remission of chronic inflammatory disorders. Recent preclinical studies and clinical trials have evaluated new approaches, for instance the adoptive transfer of immune cells, with genetically engineered regulatory T cells expressing antigen-specific chimeric antigen receptors. These approaches have revolutionized cancer treatments and have the potential for the protection of high-risk children from developing autoimmune diseases and effective management of inflammatory disorders. The review also focuses on the findings of studies that indicate that the responses to a variety of immunotherapies can be enhanced by strategic manipulation of gut microbiota, thus emphasizing on the importance of proper interaction between the gut microbiota and immune system for sustained health benefits and improvement of the quality of life of pediatric patients.
Collapse
Affiliation(s)
- Anna Torun
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Hupalowska
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beata Pyrzynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Nowak-Wegrzyn A, Berin MC, Mehr S. Food Protein-Induced Enterocolitis Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:24-35. [PMID: 31950904 DOI: 10.1016/j.jaip.2019.08.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
Food protein-induced enterocolitis syndrome (FPIES) is a non-IgE-mediated food allergy that manifests with projectile, repetitive emesis that can be followed by diarrhea and may be accompanied by lethargy, hypotonia, hypothermia, hypotension, and metabolic derangements. FPIES usually starts in infancy although onset at older ages is being increasingly recognized. FPIES is not rare, with the cumulative incidence of FPIES in infants estimated to be 0.015% to 0.7%, whereas the population prevalence in the US infants was 0.51%. FPIES diagnosis is challenging and might be missed because of later (1-4 hours) onset of symptoms after food ingestion, lack of typical allergic skin and respiratory symptoms, and food triggers that are perceived to be hypoallergenic. Diagnosis is based on the recognition of symptoms because there are no biomarkers of FPIES. The pathophysiology remains obscure although activation of the innate immune compartment has been detected. Management relies of avoidance of food triggers, treatment of accidental exposures, and periodic re-evaluations with supervised oral food challenges to monitor for resolution. There are no strategies to accelerate development of tolerance in FPIES. Here we review the most important current concepts in epidemiology, pathophysiology, diagnosis, and management of FPIES.
Collapse
Affiliation(s)
- Anna Nowak-Wegrzyn
- Department of Pediatrics, New York University Langone Health, New York, NY; Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland.
| | - M Cecilia Berin
- Precision Immunology Institute, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sam Mehr
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|