1
|
Bruxel EM, Rovaris DL, Belangero SI, Chavarría-Soley G, Cuellar-Barboza AB, Martínez-Magaña JJ, Nagamatsu ST, Nievergelt CM, Núñez-Ríos DL, Ota VK, Peterson RE, Sloofman LG, Adams AM, Albino E, Alvarado AT, Andrade-Brito D, Arguello-Pascualli PY, Bandeira CE, Bau CHD, Bulik CM, Buxbaum JD, Cappi C, Corral-Frias NS, Corrales A, Corsi-Zuelli F, Crowley JJ, Cupertino RB, da Silva BS, De Almeida SS, De la Hoz JF, Forero DA, Fries GR, Gelernter J, González-Giraldo Y, Grevet EH, Grice DE, Hernández-Garayua A, Hettema JM, Ibáñez A, Ionita-Laza I, Lattig MC, Lima YC, Lin YS, López-León S, Loureiro CM, Martínez-Cerdeño V, Martínez-Levy GA, Melin K, Moreno-De-Luca D, Muniz Carvalho C, Olivares AM, Oliveira VF, Ormond R, Palmer AA, Panzenhagen AC, Passos-Bueno MR, Peng Q, Pérez-Palma E, Prieto ML, Roussos P, Sanchez-Roige S, Santamaría-García H, Shansis FM, Sharp RR, Storch EA, Tavares MEA, Tietz GE, Torres-Hernández BA, Tovo-Rodrigues L, Trelles P, Trujillo-ChiVacuan EM, Velásquez MM, Vera-Urbina F, Voloudakis G, Wegman-Ostrosky T, Zhen-Duan J, Zhou H, Santoro ML, Nicolini H, Atkinson EG, Giusti-Rodríguez P, Montalvo-Ortiz JL. Psychiatric genetics in the diverse landscape of Latin American populations. Nat Genet 2025:10.1038/s41588-025-02127-z. [PMID: 40175716 DOI: 10.1038/s41588-025-02127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025]
Abstract
Psychiatric disorders are highly heritable and polygenic, influenced by environmental factors and often comorbid. Large-scale genome-wide association studies (GWASs) through consortium efforts have identified genetic risk loci and revealed the underlying biology of psychiatric disorders and traits. However, over 85% of psychiatric GWAS participants are of European ancestry, limiting the applicability of these findings to non-European populations. Latin America and the Caribbean, regions marked by diverse genetic admixture, distinct environments and healthcare disparities, remain critically understudied in psychiatric genomics. This threatens access to precision psychiatry, where diversity is crucial for innovation and equity. This Review evaluates the current state and advancements in psychiatric genomics within Latin America and the Caribbean, discusses the prevalence and burden of psychiatric disorders, explores contributions to psychiatric GWASs from these regions and highlights methods that account for genetic diversity. We also identify existing gaps and challenges and propose recommendations to promote equity in psychiatric genomics.
Collapse
Affiliation(s)
- Estela M Bruxel
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diego L Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sintia I Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Chavarría-Soley
- Escuela de Biología y Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry, School of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - José J Martínez-Magaña
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Sheila T Nagamatsu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diana L Núñez-Ríos
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Vanessa K Ota
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roseann E Peterson
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy M Adams
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Elinette Albino
- School of Health Professions, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Angel T Alvarado
- Research Unit in Molecular Pharmacology and Genomic Medicine, VRI, San Ignacio de Loyola University, La Molina, Perú
| | | | - Paola Y Arguello-Pascualli
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cibele E Bandeira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claiton H D Bau
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alejo Corrales
- Departamento de Psiquiatría, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Fabiana Corsi-Zuelli
- Department of Neuroscience, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bruna S da Silva
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Suzannah S De Almeida
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan F De la Hoz
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Gabriel R Fries
- Faillace Department of Psychiatry and Behavioral Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Yeimy González-Giraldo
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Eugenio H Grevet
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana Hernández-Garayua
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - John M Hettema
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY, USA
- Department of Statistics, Lund University, Lund, Sweden
| | | | - Yago C Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Yi-Sian Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sandra López-León
- Quantitative Safety Epidemiology, Novartis Pharma, East Hanover, NJ, USA
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Rutgers University, New Brunswick, NJ, USA
| | - Camila M Loureiro
- Department of Neuroscience, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gabriela A Martínez-Levy
- Department of Genetics, Subdirectorate of Clinical Research, National Institute of Psychiatry, México City, México
- Department of Cell and Tissular Biology, Medicine Faculty, National Autonomous University of Mexico, México City, México
| | - Kyle Melin
- School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Daniel Moreno-De-Luca
- Precision Medicine in Autism Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Alberta Health Services, CASA Mental Health, Edmonton, Alberta, Canada
| | | | - Ana Maria Olivares
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Victor F Oliveira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rafaella Ormond
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alana C Panzenhagen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Laboratório de Pesquisa Translacional em Comportamento Suicida, Universidade do Vale do Taquari, Lajeado, Brazil
| | - Maria Rita Passos-Bueno
- Departmento de Genetica e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Qian Peng
- Department of Neuroscience, the Scripps Research Institute, La Jolla, CA, USA
| | - Eduardo Pérez-Palma
- Facultad de Medicina Clínica Alemana, Centro de Genética y Genómica, Universidad del Desarrollo, Santiago, Chile
| | - Miguel L Prieto
- Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile
- Department of Psychiatry, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Panos Roussos
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hernando Santamaría-García
- PhD Program of Neuroscience, Pontificia Universidad Javeriana, Hospital San Ignacio, Center for Memory and Cognition, Intellectus, Bogotá, Colombia
| | - Flávio M Shansis
- Graduate Program of Medical Sciences, Universidade do Vale do Taquari, Lajeado, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rachel R Sharp
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Maria Eduarda A Tavares
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Grace E Tietz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Pilar Trelles
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva M Trujillo-ChiVacuan
- Research Department, Comenzar de Nuevo Eating Disorders Treatment Center, Monterrey, México
- Escuela de Medicina y Ciencias de la Salud Tecnológico de Monterrey, Monterrey, México
| | - Maria M Velásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Vera-Urbina
- School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jenny Zhen-Duan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Marcos L Santoro
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Humberto Nicolini
- Laboratorio de Enfermedades Psiquiátricas, Neurodegenerativas y Adicciones, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Center, Texas Children's Hospital, Houston, TX, USA.
| | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA.
- Department of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Freeman K, Zwicker A, Fullerton JM, Hafeman DM, van Haren NEM, Merranko J, Goldstein BI, Stapp EK, de la Serna E, Moreno D, Sugranyes G, Mas S, Roberts G, Toma C, Schofield PR, Edenberg HJ, Wilcox HC, McInnis MG, Propper L, Pavlova B, Stewart SA, Denovan-Wright EM, Rouleau GA, Castro-Fornieles J, Hillegers MHJ, Birmaher B, Mitchell PB, Alda M, Nurnberger JI, Uher R. Polygenic Scores and Mood Disorder Onsets in the Context of Family History and Early Psychopathology. JAMA Netw Open 2025; 8:e255331. [PMID: 40238098 PMCID: PMC12004201 DOI: 10.1001/jamanetworkopen.2025.5331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/12/2025] [Indexed: 04/18/2025] Open
Abstract
Importance Bipolar disorder (BD) and major depressive disorder (MDD) aggregate within families, with risk often first manifesting as early psychopathology, including attention-deficit/hyperactivity disorder (ADHD) and anxiety disorders. Objective To determine whether polygenic scores (PGS) are associated with mood disorder onset independent of familial high risk for BD (FHR-BD) and early psychopathology. Design, Setting, and Participants This cohort study used data from 7 prospective cohorts enriched in FHR-BD from Australia, Canada, the Netherlands, Spain, and the US. Participants with FHR-BD, defined as having at least 1 first-degree relative with BD, were compared with participants without FHR for any mood disorder. Participants were repeatedly assessed with variable follow-up intervals from July 1992 to July 2023. Data were analyzed from August 2023 to August 2024. Exposures PGS indexed genetic liability for MDD, BD, anxiety, neuroticism, subjective well-being, ADHD, self-regulation, and addiction risk factor. Semistructured diagnostic interviews with relatives established FHR-BD. ADHD or anxiety disorder diagnoses before mood disorder onset constituted early psychopathology. Main Outcomes and Measures The outcome of interest, mood disorder onset, was defined as a consensus-confirmed new diagnosis of MDD or BD. Cox regression examined associations of PGS, FHR-BD, ADHD, and anxiety with mood disorder onset. Kaplan-Meier curves and log-rank tests evaluated the probability of onset by PGS quartile and familial risk status. Results A total of 1064 participants (546 [51.3%] female; mean [SD] age at last assessment, 21.7 [5.1] years), including 660 with FHR-BD and 404 without FHR for any mood disorder, were repeatedly assessed for mental disorders. A total of 399 mood disorder onsets occurred over a variable mean (SD) follow-up interval of 6.3 (5.7) years. Multiple PGS were associated with onset after correcting for FHR-BD and early psychopathology, including PGS for ADHD (hazard ratio [HR], 1.19; 95% CI, 1.06-1.34), self-regulation (HR, 1.19; 95% CI, 1.06-1.34), neuroticism (HR, 1.18; 95% CI, 1.06-1.32), MDD (HR, 1.17; 95% CI, 1.04-1.31), addiction risk factor (HR, 1.16; 95% CI, 1.04-1.30), anxiety (HR, 1.15; 95% CI, 1.02-1.28), BD (HR, 1.14; 95% CI, 1.02-1.28), and subjective well-being (HR, 0.89; 95% CI, 0.79-0.99). High PGS for addiction risk factor, anxiety, BD, and MDD were associated with increased probability of onset in the control group. High PGS for ADHD and self-regulation increased rates of onset among participants with FHR-BD. PGS for self-regulation, ADHD, and addiction risk factors showed stronger associations with onsets of BD than MDD. Conclusions and Relevance In this cohort study, multiple PGS were associated with mood disorder onset independent of family history of BD and premorbid diagnoses of ADHD or anxiety. The association between PGS and mood disorder risk varied depending on family history status.
Collapse
Affiliation(s)
- Kathryn Freeman
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Alyson Zwicker
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Dalhousie Medicine New Brunswick, St John, New Brunswick, Canada
| | - Janice M. Fullerton
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Danella M. Hafeman
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - John Merranko
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Benjamin I. Goldstein
- Centre for Addiction and Mental Health, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emma K. Stapp
- Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | - Elena de la Serna
- Fundacio Clínic per la Recerca Biomedica, Institut d'Investigacions Biomèdiques d'August Pi i Sunye, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Department of Child and Adolescent Psychiatry and Psychology, 2021 SGR 01319, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Dolores Moreno
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Gisela Sugranyes
- Fundacio Clínic per la Recerca Biomedica, Institut d'Investigacions Biomèdiques d'August Pi i Sunye, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Department of Child and Adolescent Psychiatry and Psychology, 2021 SGR 01319, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sergi Mas
- Fundacio Clínic per la Recerca Biomedica, Institut d'Investigacions Biomèdiques d'August Pi i Sunye, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Department of Clinical Foundations, Universitat de Barcelona, Barcelona, Spain
| | - Gloria Roberts
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Claudio Toma
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis
| | - Holly C. Wilcox
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Lukas Propper
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Barbara Pavlova
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Samuel A. Stewart
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Guy A. Rouleau
- Montreal Neurological Institute and Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Josefina Castro-Fornieles
- Fundacio Clínic per la Recerca Biomedica, Institut d'Investigacions Biomèdiques d'August Pi i Sunye, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Department of Child and Adolescent Psychiatry and Psychology, 2021 SGR 01319, Hospital Clinic of Barcelona, Barcelona, Spain
- Department of Medicine, Neurosciences Institute, University of Barcelona, Barcelona, Spain
| | - Manon H. J. Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Boris Birmaher
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Philip B. Mitchell
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Martin Alda
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John I. Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis
| | - Rudolf Uher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Al-Soufi L, Hindley G, Rødevand L, Shadrin AA, Jaholkowski P, Fominykh V, Icick R, Tesfaye M, Costas J, Andreassen OA. Polygenic overlap of substance use behaviors and disorders with externalizing and internalizing problems independent of genetic correlations. Psychol Med 2025; 55:e100. [PMID: 40162501 DOI: 10.1017/s0033291725000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
BACKGROUND Externalizing and internalizing pathways may lead to the development of substance use behaviors (SUBs) and substance use disorders (SUDs), which are all heritable phenotypes. Genetic correlation studies have indicated differences in the genetic susceptibility between SUBs and SUDs. We investigated whether these substance use phenotypes are differently related to externalizing and internalizing problems at a genetic level. METHODS We analyzed data from genome-wide association studies (GWAS) of four SUBs and SUDs, five externalizing traits, and five internalizing traits using the bivariate causal mixture model (MiXeR) to estimate genetic overlap beyond genetic correlation. RESULTS Two distinct patterns were found. SUBs demonstrated high genetic overlap but low genetic correlation of shared variants with internalizing traits, suggesting a pattern of mixed effect directions of shared genetic variants. Conversely, SUDs and externalizing traits exhibited considerable genetic overlap with moderate to high positive genetic correlation of shared variants, suggesting concordant effect direction of shared risk variants. CONCLUSIONS These results highlight the importance of the externalizing pathway in SUDs as well as the limited role of the internalizing pathway in SUBs. As MiXeR is not intended for the identification of specific genes, further studies are needed to reveal the underlying shared mechanisms of these traits.
Collapse
Affiliation(s)
- Laila Al-Soufi
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain. Red de Investigación en Atención Primaria de Adicciones (RIAPAd)
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Guy Hindley
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vera Fominykh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Romain Icick
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Université Paris-Cité, INSERM, Optimisation thérapeutique en neuropsychopharmacologie OPTEN U1144, 75006, Paris, France
| | - Markos Tesfaye
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Javier Costas
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain. Red de Investigación en Atención Primaria de Adicciones (RIAPAd)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Magarbeh L, Elsheikh SSM, Islam F, Marshe VS, Men X, Tavakoli E, Kronenbuerger M, Kloiber S, Frey BN, Milev R, Soares CN, Parikh SV, Placenza F, Hassel S, Taylor VH, Leri F, Blier P, Uher R, Farzan F, Lam RW, Turecki G, Foster JA, Rotzinger S, Kennedy SH, Müller DJ. Polygenic Risk Score Analysis of Antidepressant Treatment Outcomes: A CAN-BIND-1 Study Report: Analyse des résultats du traitement antidépresseur à l'aide des scores de risque polygéniques : Rapport sur l'étude CAN-BIND-1. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025:7067437251329073. [PMID: 40156272 PMCID: PMC11955985 DOI: 10.1177/07067437251329073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
ObjectiveThe genetic architecture of antidepressant response is poorly understood. This study investigated whether polygenic risk scores (PRSs) for major psychiatric disorders and a personality trait (neuroticism) are associated with antidepressant treatment outcomes.MethodsWe analysed 148 participants with major depressive disorder (MDD) from the Canadian Biomarker Integration Network for Depression-1 (CAN-BIND-1) cohort. Participants initially received escitalopram (ESC) monotherapy for 8 weeks. Nonresponders at week 8 received augmentation with aripiprazole (ARI), while responders continued ESC until week 16. Primary outcomes were remission status and symptom improvement measured at weeks 8 and 16. At week 16, post-hoc stratified analyses were performed by treatment arm (ESC-only vs. ESC + ARI). Eleven PRSs derived from genome-wide association studies of psychiatric disorders (e.g., MDD and post-traumatic stress syndrome (PTSD)) and neuroticism, were analysed for associations with these outcomes using logistic and linear regression models.ResultsAt week 8, a higher PRS for PTSD was nominally associated with a lower probability of remission (odds ratio (OR) = 0.08 [0.014-0.42], empirical p-value = 0.017) and reduced symptom improvement (beta (standard error) = -29.15 (9.76), empirical p-value = 0.019). Similarly, a higher PRS for MDD was nominally associated with decreased remission probability (OR = 0.38 [0.18-0.78], empirical p-value = 0.044). However, none of the results survived multiple testing corrections. At week 16, the stratified analysis for the ESC-only group revealed that a higher PRS for MDD was associated with increased remission probability (empirical p-value = 0.034) and greater symptom improvement (empirical p-value = 0.02). In contrast, higher PRSs for schizophrenia (empirical p-value = 0.013) and attention-deficit hyperactivity disorder (empirical p-value = 0.032) were associated with lower symptom improvement. No significant associations were observed in the ESC + ARI group.ConclusionsThese findings suggest that PRSs may influence treatment outcomes, particularly in ESC monotherapy. Replication in larger studies is needed to validate these observations.
Collapse
Affiliation(s)
- Leen Magarbeh
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Samar S. M. Elsheikh
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Farhana Islam
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Victoria S. Marshe
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, USA
| | - Xiaoyu Men
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Emytis Tavakoli
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Martin Kronenbuerger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Roumen Milev
- Department of Psychiatry, Queen's University, Providence Care, Kingston, ON, Canada
| | - Claudio N. Soares
- Department of Psychiatry, Queen's University, Providence Care, Kingston, ON, Canada
| | - Sagar V. Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Franca Placenza
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Valerie H. Taylor
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Pierre Blier
- The Royal Institute of Mental Health Research, Ottawa, ON, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Faranak Farzan
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, Canada
| | - Raymond W. Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Jane A. Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Susan Rotzinger
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Sidney H. Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Department of Psychiatry, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Daniel J. Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry, Ontario Shores Centre for Mental Health Sciences, Whitby, ON, Canada
| |
Collapse
|
5
|
Lee PH, Jung JY, Sanzo BT, Duan R, Ge T, Waldman I, Smoller JW, Schwaba T, Tucker-Drob EM, Grotzinger AD. Transdiagnostic Polygenic Risk Models for Psychopathology and Comorbidity: Cross-Ancestry Analysis in the All of Us Research Program. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.26.25324720. [PMID: 40196240 PMCID: PMC11974969 DOI: 10.1101/2025.03.26.25324720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Psychiatric disorders exhibit substantial genetic overlap, raising questions about the utility of transdiagnostic genetic risk models. Using data from the All of Us Research Program (N=102,091), we evaluated common psychiatric genetic (CPG) factor-based polygenic risk scores (PRSs) compared to standard disorder-specific PRSs. The CPG PRS consistently outperformed disorder-specific scores in predicting individual disorder risk, explaining 1.07 to 24.6 times more phenotypic variance across 11 psychiatric conditions. Meanwhile, many disorder-specific PRSs retained independent but smaller contributions, highlighting the complementary nature of shared and disorder-specific genetic risk. While alternative multi-factor models improved model fit, the CPG PRS provided comparable or superior predictive performance across most disorders, including overall comorbidity burden. Cross-ancestry analyses however revealed notable limitations of European-centric GWAS datasets for other populations due to ancestral differences in genetic architecture. These findings underscore the potential value of transdiagnostic PRSs for psychiatric genetics while highlighting the need for more equitable genetic risk models.
Collapse
Affiliation(s)
- Phil H. Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae-Yoon Jung
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brandon T. Sanzo
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
| | - Rui Duan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Irwin Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ted Schwaba
- Department of Psychology, Michigan State University, MI, USA
| | | | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado at Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado at Boulder, CO, USA
| |
Collapse
|
6
|
Tabrizi F, Rosén J, Grönvall H, William-Olsson VR, Arner E, Magnusson PK, Palm C, Larsson H, Viktorin A, Bernhardsson J, Björkdahl J, Jansson B, Sundin Ö, Zhou X, Speed D, Åhs F. Heritability and polygenic load for comorbid anxiety and depression. Transl Psychiatry 2025; 15:98. [PMID: 40140358 PMCID: PMC11947153 DOI: 10.1038/s41398-025-03325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Anxiety and depression commonly occur together resulting in worse health outcomes than when they occur in isolation. We aimed to determine whether the genetic liability for comorbid anxiety and depression was greater than when anxiety or depression occurred alone. Data from 12,792 genotyped twins (ages 38-85) were analysed, including 1,986 complete monozygotic and 1,594 complete dizygotic pairs. Outcomes were prescription of antidepressant and anxiolytic drugs, as defined by the World Health Organization Anatomical Therapeutic Chemical Classification System (ATC) convention, for comorbid anxiety and depression (n = 1028), anxiety only (n = 718), and depression only (n = 484). Heritability of each outcome was estimated using twin modelling, and the influence of common genetic variation was assessed from polygenic scores (PGS) for depressive symptoms, anxiety, and 40 other traits. Heritability of comorbid anxiety and depression was 79% compared with 41% for anxiety and 50% for depression alone. The PGS for depressive symptoms likewise predicted more variation in comorbid anxiety and depression (adjusted odds ratio per SD PGS = 1.53, 95% CI = 1.43-1.63; ΔR2 = 0.031, ΔAUC = 0.044) than the other outcomes, with nearly identical results when comorbid anxiety and depression was defined by International Classification of Diseases (ICD) diagnoses (adjusted odds ratio per SD PGS = 1.70, 95% CI = 1.53-1.90; ΔR2 = 0.036, ΔAUC = 0.051). Individuals in the highest decile of PGS for depressive symptoms had over 5 times higher odds of being prescribed medication for comorbid anxiety and depression compared to those in the lowest decile. While results on a predominant role of depressive symptoms may have been biased by the size and heterogeneity of available data bases, they are consistent with the conclusion that genetic factors explain substantially more variation in comorbid anxiety and depression than anxiety or depression alone.
Collapse
Affiliation(s)
- Fara Tabrizi
- Department of Psychology and Social Work, Mid Sweden University, Ostersund, Sweden.
| | - Jörgen Rosén
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Hampus Grönvall
- Department of Psychology and Social Work, Mid Sweden University, Ostersund, Sweden
| | | | - Erik Arner
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Patrik Ke Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Camilla Palm
- Swedish Twin Registry, Karolinska Institute, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - Jens Bernhardsson
- Department of Psychology and Social Work, Mid Sweden University, Ostersund, Sweden
| | - Johanna Björkdahl
- Department of Psychology and Social Work, Mid Sweden University, Ostersund, Sweden
| | - Billy Jansson
- Department of Psychology and Social Work, Mid Sweden University, Ostersund, Sweden
| | - Örjan Sundin
- Department of Psychology and Social Work, Mid Sweden University, Ostersund, Sweden
| | - Xuan Zhou
- Centre for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Doug Speed
- Centre for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Fredrik Åhs
- Department of Psychology and Social Work, Mid Sweden University, Ostersund, Sweden
| |
Collapse
|
7
|
Fox-Gaffney KA, Singh PK. Genetic and Environmental Influences on Anxiety Disorders: A Systematic Review of Their Onset and Development. Cureus 2025; 17:e80157. [PMID: 40190844 PMCID: PMC11972031 DOI: 10.7759/cureus.80157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Fear is an emotion most humans feel throughout their lifetime, often without knowing its exact cause. Fear is considered a behavioural act to escape a potentially threatening situation, whereas anxiety is distinguished by the lack of actual stimuli and, more so, the threat of potential stimuli. Fear and anxiety are two distinct emotions which warrant separate classifications. Understanding both the genetic and environmental influences which contribute to anxiety disorder onset and development can aid in prevention, diagnosis and management; it may also play a role in helping patients further understand their diagnosis and guide future research. This review examines genetic and environmental contributions to the onset and development of anxiety disorders and explores their implications for treatments and further research. An extensive search of databases, including PubMed, Web of Science and Google Scholar, using specific search terms led to the collection of a large number of studies prior to further screening. The inclusion criteria were: studies written in English, full-text available, human studies, and studies conducted within the last 10 years (at the time of writing). The exclusion criteria were: animal studies, studies with a focus on neurological anatomy rather than anxiety disorders, and studies including depressive or other psychological disorders. Using a cross-sectional approach allowed for the strengths to be summarised whilst considering the limitations of the research. The studies were screened for limitations and some of these were stated within the research, whilst others had to be interpreted using a subset of pre-formulated questions to ensure reproducibility. Variables such as the main outcomes, conclusions and limitations were tabulated to guide the interpretation of these studies. Genetic predispositions were linked to specific gene polymorphisms or familial abnormalities in neurological anatomy and often correlated with the likelihood of the onset of anxiety disorders or contributed to the severity of symptoms. Environmental influences were found to affect the functioning of the brain and some studies established the impacts that therapies have on brain function. The majority of studies have implicated that a combination of genetics and environment have an effect on anxiety disorders, with one study suggesting that a single traumatic event can lead to alterations in the function of specific genes related to anxiety disorders. Both genetic and environmental factors contribute to the onset, development and severity of anxiety disorders, with environmental triggers often influencing the phenotypic expression of these disorders. Further research would benefit from determining specific processes which lead to the onset of anxiety disorders to facilitate their detection and intervention before resulting in life-long and generational consequences. Studies including larger sample sizes and varied subjects would be advantageous in the future.
Collapse
Affiliation(s)
| | - Pankaj K Singh
- Geriatrics, Surrey and Sussex NHS Healthcare Trust, Redhill, GBR
| |
Collapse
|
8
|
Kwon Y, Blazyte A, Jeon Y, Kim YJ, An K, Jeon S, Ryu H, Shin DH, Ahn J, Um H, Kang Y, Bak H, Kim BC, Lee S, Jung HT, Shin ES, Bhak J. Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation. Clin Epigenetics 2025; 17:24. [PMID: 39962544 PMCID: PMC11831770 DOI: 10.1186/s13148-025-01819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The changes in DNA methylation patterns may reflect both physical and mental well-being, the latter being a relatively unexplored avenue in terms of clinical utility for psychiatric disorders. In this study, our objective was to identify the methylation-based biomarkers for anxiety disorders and subsequently validate their reliability. METHODS A comparative differential methylation analysis was performed on whole blood samples from 94 anxiety disorder patients and 296 control samples using targeted bisulfite sequencing. Subsequent validation of identified biomarkers employed an artificial intelligence-based risk prediction models: a linear calculation-based methylation risk score model and two tree-based machine learning models: Random Forest and XGBoost. RESULTS Seventeen novel epigenetic methylation biomarkers were identified to be associated with anxiety disorders. These biomarkers were predominantly localized near CpG islands, and they were associated with two distinct biological processes: 1) cell apoptosis and mitochondrial dysfunction and 2) the regulation of neurosignaling. We further developed a robust diagnostic risk prediction system to classify anxiety disorders from healthy controls using the 17 biomarkers. Machine learning validation confirmed the robustness of our biomarker set, with XGBoost as the best-performing algorithm, an area under the curve of 0.876. CONCLUSION Our findings support the potential of blood liquid biopsy in enhancing the clinical utility of anxiety disorder diagnostics. This unique set of epigenetic biomarkers holds the potential for early diagnosis, prediction of treatment efficacy, continuous monitoring, health screening, and the delivery of personalized therapeutic interventions for individuals affected by anxiety disorders.
Collapse
Grants
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425156792 Ministry of SMEs and Startups
- 1425156792 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
Collapse
Affiliation(s)
- Yoonsung Kwon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Yeonsu Jeon
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Yeo Jin Kim
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Kyungwhan An
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sungwon Jeon
- Clinomics Inc, Osong, 66819, Republic of Korea
- AgingLab, Ulsan 44919, Republic of Korea
- Geromics Inc., Suwon 16226, Republic of Korea
| | - Hyojung Ryu
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Dong-Hyun Shin
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihye Ahn
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Hyojin Um
- Clinomics Inc, Osong, 66819, Republic of Korea
| | | | - Hyebin Bak
- Clinomics Inc, Osong, 66819, Republic of Korea
| | | | - Semin Lee
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyung-Tae Jung
- Department of Psychiatry, Ulsan Medical Center, Ulsan, 44686, Republic of Korea.
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea.
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Clinomics Inc, Osong, 66819, Republic of Korea.
- AgingLab, Ulsan 44919, Republic of Korea.
| |
Collapse
|
9
|
Davis CN, Khan Y, Toikumo S, Jinwala Z, Boomsma DI, Levey DF, Gelernter J, Kember RL, Kranzler HR. Integrating HiTOP and RDoC Frameworks Part I: Genetic Architecture of Externalizing and Internalizing Psychopathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.04.06.24305166. [PMID: 38645045 PMCID: PMC11030494 DOI: 10.1101/2024.04.06.24305166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background There is considerable comorbidity between externalizing (EXT) and internalizing (INT) psychopathology. Understanding the shared genetic underpinnings of these spectra is crucial for advancing knowledge of their biological bases and informing empirical models like the Research Domain Criteria (RDoC) and Hierarchical Taxonomy of Psychopathology (HiTOP). Methods We applied genomic structural equation modeling to summary statistics from 16 EXT and INT traits in European-ancestry individuals (n = 16,400 to 1,074,629). Traits included clinical (e.g., major depressive disorder, alcohol use disorder) and subclinical measures (e.g., risk tolerance, irritability). We tested five confirmatory factor models to identify the best fitting and most parsimonious genetic architecture and then conducted multivariate genome-wide association studies (GWAS) of the resulting latent factors. Results A two-factor correlated model, representing EXT and INT spectra, provided the best fit to the data. There was a moderate genetic correlation between EXT and INT (r = 0.37, SE = 0.02), with bivariate causal mixture models showing extensive overlap in causal variants across the two spectra (94.64%, SE = 3.27). Multivariate GWAS identified 409 lead genetic variants for EXT, 85 for INT, and 256 for the shared traits. Conclusions The shared genetic liabilities for EXT and INT identified here help to characterize the genetic architecture underlying these frequently comorbid forms of psychopathology. The findings provide a framework for future research aimed at understanding the shared and distinct biological mechanisms underlying psychopathology, which will help to refine psychiatric classification systems and potentially inform treatment approaches.
Collapse
Affiliation(s)
- Christal N. Davis
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yousef Khan
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zeal Jinwala
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Dorret I. Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands and Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Daniel F. Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Departments of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Vattathil SM, Gerasimov ES, Canon SM, Lori A, Tan SSM, Kim PJ, Liu Y, Lai EC, Bennett DA, Wingo TS, Wingo AP. Mapping the microRNA landscape in the older adult brain and its genetic contribution to neuropsychiatric conditions. NATURE AGING 2025; 5:306-319. [PMID: 39643657 PMCID: PMC11839474 DOI: 10.1038/s43587-024-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
MicroRNAs (miRNAs) play a crucial role in regulating gene expression and influence many biological processes. Despite their importance, understanding of how genetic variation affects miRNA expression in the brain and how this relates to brain disorders remains limited. Here we investigated these questions by identifying microRNA expression quantitative trait loci (miR-QTLs), or genetic variants associated with brain miRNA levels, using genome-wide small RNA sequencing profiles from dorsolateral prefrontal cortex samples of 604 older adult donors of European ancestry. Here we show that nearly half (224 of 470) of the analyzed miRNAs have associated miR-QTLs, many of which fall in regulatory regions such as brain promoters and enhancers. We also demonstrate that intragenic miRNAs often have genetic regulation independent from their host genes. Furthermore, by integrating our findings with 16 genome-wide association studies of psychiatric and neurodegenerative disorders, we identified miRNAs that likely contribute to bipolar disorder, depression, schizophrenia and Parkinson's disease. These findings advance understanding of the genetic regulation of miRNAs and their role in brain health and disease.
Collapse
Affiliation(s)
- Selina M Vattathil
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Se Min Canon
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Sze Min Tan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Kim
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yue Liu
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.
- Alzheimer's Disease Research Center, University of California, Davis, Sacramento, CA, USA.
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA.
- Veterans Affairs Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
11
|
Yan Y, Cao L, Gu L, Xu C, Lu J, Lv D, Tian J, Yin X, Pu J, Zhang B, Zhao G. Analysis of Common Genetic Variation of Anxiety Disorders in Essential Tremor. J Mol Neurosci 2025; 75:14. [PMID: 39890685 DOI: 10.1007/s12031-024-02226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 02/03/2025]
Abstract
The objective of this study is to explore the association of common genetic variation of anxiety disorders and essential tremor (ET). We genotyped 25 anxiety-specific risk variants in a cohort of 478 unrelated ET patients and 504 age and gender-matched healthy controls from eastern China using a MassARRAY system. The association between candidate variants and ET patients was evaluated using gene-based analysis. A total of 159 patients (33.3%) had anxiety. In genotypic analysis, rs708012 (in an intergenic region) in the dominant models was found to be significantly associated with ET (P < 0.001, OR = 0.605). In allelic analysis, the carriers of the C allele of NTRK2 rs1187280 (P = 0.027, OR = 0.626), T allele of TMEM106B rs3807866 (P = 0.030, OR = 1.287), and T allele of rs708012 (P < 0.001, OR = 0.679) occupy a larger proportion of ET patients compared with healthy controls. Anxiety-specific risk SNPs of TMEM106B rs3807866 increase the risk for ET, while two SNPs of NTRK2 rs1187280 and rs708012 show a protective role.
Collapse
Affiliation(s)
- Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Avenue, Yiwu, 322000, Zhejiang, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Congying Xu
- Department of Neurology, Jiaxing Second Hospital, Jiaxing, China
| | - Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Avenue, Yiwu, 322000, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Avenue, Yiwu, 322000, Zhejiang, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Guohua Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Avenue, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
12
|
Weyn S, Lionetti F, Klein DN, Aron E, Aron A, Hayden EP, Dougherty LR, Singh S, Waszczuk M, Kotov R, Docherty A, Shabalin A, Pluess M. Observer-rated environmental sensitivity and its characterization at behavioral, genetic, and physiological levels. Dev Psychopathol 2025:1-15. [PMID: 39773816 DOI: 10.1017/s0954579424001883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study investigated the psychometric properties of the Highly Sensitive Child-Rating System (HSC-RS), the existence of sensitivity groups, and the characterization of sensitivity at behavioral, genetic, and physiological levels in 541 preschoolers (M(SD)age = 3.56(0.27); 45%male; 87%Caucasian). Temperament, genetic, cortisol, and electroencephalography asymmetry data were collected in subsamples (n = 94-476). Results showed a reliable observational measure of sensitivity. Confirmatory factor and latent class analysis supported a one-factor solution and three sensitivity groups, that are a low (23.3%), medium (54.2%), and a high (22.5%) sensitivity group. Hierarchical regression analyses showed moderate associations between HSC-RS and observed temperament traits (i.e., behavioral level). In addition, a small negative association between HSC-RS and a genome-wide association study polygenic risk score (GWAS PGS) for Attention Deficit Hyperactivity Disorder was found. No relations with candidate genes, other GWAS PGS phenotypes, and physiological measures were found. Implications of our findings and possible explanations for a lack of these associations are discussed.
Collapse
Affiliation(s)
- Sofie Weyn
- Clinical Child and Adolescent Psychology, University of Bern, Bern, Switzerland
- Department of Brain & Cognition, KU Leuven, Leuven, Belgium
- Department of School Psychology and Development in Context, KU Leuven, Leuven, Belgium
| | - Francesca Lionetti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, Stony Brook, USA
| | - Elaine Aron
- Department of Psychology, Stony Brook University, Stony Brook, USA
| | - Arthur Aron
- Department of Psychology, Stony Brook University, Stony Brook, USA
| | | | | | - Shiva Singh
- Molecular Genetics Unit, Department of Biology, Western University, London, ON, Canada
| | - Monika Waszczuk
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Anna Docherty
- Department of Psychiatry, University of Utah School of Medicine, Utah University, Salt Lake City, UT, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrey Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Utah University, Salt Lake City, UT, USA
| | - Michael Pluess
- School of Psychology, University of Surrey, Surrey, UK
- Department of Biological & Experimental Psychology, Queen Mary University, London, UK
| |
Collapse
|
13
|
Pathak S, Richardson TG, Sanderson E, Åsvold BO, Bhatta L, Brumpton BM. Investigating the causal effects of childhood and adulthood adiposity on later life mental health outcome: a Mendelian randomization study. BMC Med 2025; 23:4. [PMID: 39757155 DOI: 10.1186/s12916-024-03765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/13/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Obesity particularly during childhood is considered a global public health crisis and has been linked with later life health consequences including mental health. However, there is lack of causal understanding if childhood body size has a direct effect on mental health or has an indirect effect after accounting for adulthood body size. METHODS Two-sample Mendelian randomization (MR) was performed to estimate the total effect and direct effect (accounting for adulthood body size) of childhood body size on anxiety and depression. We used summary statistics from a genome-wide association study (GWAS) of UK Biobank (n = 453,169) and large-scale consortia of anxiety (Million Veteran Program) and depression (Psychiatric Genomics Consortium) (n = 175,163 and n = 173,005, respectively). RESULTS Univariable MR did not indicate genetically predicted effects of childhood body size with later life anxiety (beta = - 0.05, 95% CI = - 0.13, 0.02) and depression (OR = 1.06, 95% CI = 0.94, 1.20). However, using multivariable MR, we observed that the higher body size in childhood reduced the risk of later life anxiety (beta = - 0.19, 95% CI = - 0.29, - 0.08) and depression (OR = 0.83, 95% CI = 0.71, 0.97) upon accounting for the effect of adulthood body size. Both univariable and multivariable MR indicated that higher body size in adulthood increased the risk of later life anxiety and depression. CONCLUSIONS Higher body size in adulthood may increase the risk of anxiety and depression, independent of childhood higher body size. In contrast, higher childhood body size does not appear to be a risk factor for later life anxiety and depression.
Collapse
Affiliation(s)
- Sweta Pathak
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Levanger, Norway
| | - Laxmi Bhatta
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ben M Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
- HUNT Research Centre, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Levanger, Norway.
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
14
|
Campos LJ, Drzewiecki CM, Fox AS. Insights into the Neurobiology of Behavioral Inhibition from Nonhuman Primate Models. Curr Top Behav Neurosci 2024. [PMID: 39739174 DOI: 10.1007/7854_2024_561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Children with extreme behavioral inhibition (BI) are at a significantly greater risk to develop anxiety disorders later in life. We and others have identified similar early-life temperamental BI in nonhuman primates (NHPs), including rhesus monkeys. NHP models of BI provide a unique opportunity to study the neurobiology of BI in a species that shares biological, developmental, and socioemotional similarities with humans. Rhesus monkey models have identified a distributed brain circuit that includes the central extended amygdala (EAc) as being critical for the genesis of BI. By leveraging multimodal neuroimaging, brain lesions, RNA-sequencing, and viral vector manipulations in rhesus monkeys, these studies have identified specific brain regions, genetic factors, and molecular mechanisms that causally contribute to BI. Here, we discuss these findings from NHPs and how they fit into a translational framework that can contribute to our understanding of the neural circuits that give rise to the risk to develop anxiety and depressive disorders.
Collapse
Affiliation(s)
- Lillian J Campos
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Carly M Drzewiecki
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA, USA.
- California National Primate Research Center, University of California, Davis, CA, USA.
| |
Collapse
|
15
|
Opsasnick LA, Zhao W, Ratliff SM, Du J, Faul JD, Schmitz LL, Zhou X, Needham BL, Smith JA. Epigenome-wide mediation analysis of the relationship between psychosocial stress and cardiometabolic risk factors in the Health and Retirement Study (HRS). Clin Epigenetics 2024; 16:180. [PMID: 39695878 DOI: 10.1186/s13148-024-01799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Exposure to psychosocial stress is linked to a variety of negative health outcomes, including cardiovascular disease and its cardiometabolic risk factors. DNA methylation has been associated with both psychosocial stress and cardiometabolic disease; however, little is known about the mediating role of DNA methylation on the association between stress and cardiometabolic risk. Thus, using the high-dimensional mediation testing method, we conducted an epigenome-wide mediation analysis of the relationship between psychosocial stress and ten cardiometabolic risk factors in a multi-racial/ethnic population of older adults (n = 2668) from the Health and Retirement Study (mean age = 70.4 years). RESULTS A total of 50, 46, 7, and 12 CpG sites across the epigenome mediated the total effects of stress on body mass index, waist circumference, high-density lipoprotein cholesterol, and C-reactive protein, respectively. When reducing the dimensionality of the CpG mediators to their top 10 uncorrelated principal components (PC), the cumulative effect of the PCs explained between 35.8 and 46.3% of these associations. CONCLUSIONS A subset of the mediating CpG sites were associated with the expression of genes enriched in pathways related to cytokine binding and receptor activity, as well as neuron development. Findings from this study help to elucidate the underlying mechanisms through which DNA methylation partially mediates the relationship between psychosocial stress and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jiacong Du
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lauren L Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Tesfaye M, Jaholkowski P, Shadrin AA, van der Meer D, Hindley GF, Holen B, Parker N, Parekh P, Birkenæs V, Rahman Z, Bahrami S, Kutrolli G, Frei O, Djurovic S, Dale AM, Smeland OB, O'Connell KS, Andreassen OA. Identification of novel genomic loci for anxiety symptoms and extensive genetic overlap with psychiatric disorders. Psychiatry Clin Neurosci 2024; 78:783-791. [PMID: 39301620 PMCID: PMC11612548 DOI: 10.1111/pcn.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
AIMS Anxiety disorders are prevalent and anxiety symptoms (ANX) co-occur with many psychiatric disorders. We aimed to identify genomic loci associated with ANX, characterize its genetic architecture, and genetic overlap with psychiatric disorders. METHODS We included a genome-wide association study of ANX (meta-analysis of UK Biobank and Million Veterans Program, n = 301,732), schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), and validated the findings in the Norwegian Mother, Father, and Child Cohort (n = 95,841). We employed the bivariate causal mixture model and local analysis of covariant association to characterize the genetic architecture including overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of loci associated with anxiety and shared with psychiatric disorders. RESULTS Anxiety was polygenic with 12.9k genetic variants and overlapped extensively with psychiatric disorders (4.1k-11.4k variants) with predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 119 novel loci for anxiety by conditioning on the psychiatric disorders, and loci shared between anxiety and MDn = 47 , BIPn = 33 , SCZn = 71 , ADHDn = 20 , and ASDn = 5 . Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways including cell adhesion and neurofibrillary tangle compared with genes annotated to the shared loci. CONCLUSIONS Anxiety is highly polygenic phenotype with extensive genetic overlap with psychiatric disorders, and we identified novel loci for anxiety implicating new molecular pathways. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified molecular underpinnings may lead to potential drug targets.
Collapse
Affiliation(s)
- Markos Tesfaye
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Alexey A. Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Guy F.L. Hindley
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Børge Holen
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Pravesh Parekh
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Viktoria Birkenæs
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Zillur Rahman
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Shahram Bahrami
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Gleda Kutrolli
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Oleksandr Frei
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- Center for Bioinformatics, Department of InformaticsUniversity of OsloOsloNorway
| | - Srdjan Djurovic
- Department of Clinical ScienceUniversity of BergenBergenNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of Oslo and Oslo University HospitalOsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
| | - Anders M. Dale
- Department of RadiologyUniversity of California, San DiegoLa JollaCaliforniaUSA
- Multimodal Imaging LaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Olav B. Smeland
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Kevin S. O'Connell
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of Oslo and Oslo University HospitalOsloNorway
| |
Collapse
|
17
|
Kamboj S, Carlson EL, Ander BP, Hanson KL, Murray KD, Fudge JL, Bauman MD, Schumann CM, Fox AS. Translational Insights From Cell Type Variation Across Amygdala Subnuclei in Rhesus Monkeys and Humans. Am J Psychiatry 2024; 181:1086-1102. [PMID: 39473267 DOI: 10.1176/appi.ajp.20230602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Theories of amygdala function are central to our understanding of psychiatric and neurodevelopmental disorders. However, limited knowledge of the molecular and cellular composition of the amygdala impedes translational research aimed at developing new treatments and interventions. The aim of this study was to characterize and compare the composition of amygdala cells to help bridge the gap between preclinical models and human psychiatric and neurodevelopmental disorders. METHODS Tissue was dissected from multiple amygdala subnuclei in both humans (N=3, male) and rhesus macaques (N=3, male). Single-nucleus RNA sequencing was performed to characterize the transcriptomes of individual nuclei. RESULTS The results reveal substantial heterogeneity between regions, even when restricted to inhibitory or excitatory neurons. Consistent with previous work, the data highlight the complexities of individual marker genes for uniquely targeting specific cell types. Cross-species analyses suggest that the rhesus monkey model is well-suited to understanding the human amygdala, but also identify limitations. For example, a cell cluster in the ventral lateral nucleus of the amygdala (vLa) is enriched in humans relative to rhesus macaques. Additionally, the data describe specific cell clusters with relative enrichment of disorder-related genes. These analyses point to the human-enriched vLa cell cluster as relevant to autism spectrum disorder, potentially highlighting a vulnerability to neurodevelopmental disorders that has emerged in recent primate evolution. Further, a cluster of cells expressing markers for intercalated cells is enriched for genes reported in human genome-wide association studies of neuroticism, anxiety disorders, and depressive disorders. CONCLUSIONS Together, these findings shed light on the composition of the amygdala and identify specific cell types that can be prioritized in basic science research to better understand human psychopathology and guide the development of potential treatments.
Collapse
Affiliation(s)
- Shawn Kamboj
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Erin L Carlson
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Bradley P Ander
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Kari L Hanson
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Karl D Murray
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Julie L Fudge
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Melissa D Bauman
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Cynthia M Schumann
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| | - Andrew S Fox
- Department of Psychology (Kamboj, Fox), California National Primate Research Center (Kamboj, Bauman, Fox), and MIND Institute (Carlson, Ander, Hanson, Bauman, Schumann), University of California, Davis; Department of Psychiatry and Behavioral Sciences (Carlson, Hanson, Schumann), Department of Neurology (Ander), and Department of Physiology and Membrane Biology (Murray, Bauman), School of Medicine, University of California, Davis; Department of Neuroscience and Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY (Fudge)
| |
Collapse
|
18
|
Coombes BJ, Sanchez-Ruiz JA, Fennessy B, Pazdernik VK, Adekkanattu P, Nuñez NA, Lepow L, Melhuish Beaupre LM, Ryu E, Talati A, Mann JJ, Weissman MM, Olfson M, Pathak J, Charney AW, Biernacka JM. Clinical associations with treatment resistance in depression: An electronic health record study. Psychiatry Res 2024; 342:116203. [PMID: 39321638 PMCID: PMC11617277 DOI: 10.1016/j.psychres.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Treatment resistance is common in major depressive disorder (MDD), yet clinical risk factors are not well understood. Using a discovery-replication design, we conducted phenome-wide association studies (PheWASs) of MDD treatment resistance in two electronic health record (EHR)-linked biobanks. The PheWAS included participants with an MDD diagnosis in the EHR and at least one antidepressant (AD) prescription. Participant lifetime diagnoses were mapped to phecodes. PheWASs were conducted for three treatment resistance outcomes based on AD prescription data: number of unique ADs prescribed, ≥1 and ≥2 CE switches. Of the 180 phecodes significantly associated with these outcomes in the discovery cohort (n = 12,558), 71 replicated (n = 8,206). In addition to identifying known clinical factors for treatment resistance in MDD, the total unique AD prescriptions was associated with additional clinical variables including irritable bowel syndrome, gastroesophageal reflux disease, symptomatic menopause, and spondylosis. We calculated polygenic risk of specific-associated conditions and tested their association with AD outcomes revealing that genetic risk for many of these conditions is also associated with the total unique AD prescriptions. The number of unique ADs prescribed, which is easily assessed in EHRs, provides a more nuanced measure of treatment resistance, and may facilitate future research and clinical application in this area.
Collapse
Affiliation(s)
- Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| | | | - Brian Fennessy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Prakash Adekkanattu
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA; Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, USA
| | - Nicolas A Nuñez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Lauren Lepow
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Euijung Ryu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ardesheer Talati
- Department of Psychiatry, Vagelos College of Physicians and Surgeons Columbia University & NY State Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Department of Psychiatry, Vagelos College of Physicians and Surgeons Columbia University & NY State Psychiatric Institute, New York, NY, USA
| | - Myrna M Weissman
- Department of Psychiatry, Vagelos College of Physicians and Surgeons Columbia University & NY State Psychiatric Institute, New York, NY, USA
| | - Mark Olfson
- Department of Psychiatry, Vagelos College of Physicians and Surgeons Columbia University & NY State Psychiatric Institute, New York, NY, USA
| | - Jyotishman Pathak
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Alexander W Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Hartwell EE, Jinwala Z, Milone J, Ramirez S, Gelernter J, Kranzler HR, Kember RL. Application of polygenic scores to a deeply phenotyped sample enriched for substance use disorders reveals extensive pleiotropy with psychiatric and somatic traits. Neuropsychopharmacology 2024; 49:1958-1967. [PMID: 39043921 PMCID: PMC11480112 DOI: 10.1038/s41386-024-01922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Co-occurring psychiatric, medical, and substance use disorders (SUDs) are common, but the complex pathways leading to such comorbidities are poorly understood. A greater understanding of genetic influences on this phenomenon could inform precision medicine efforts. We used the Yale-Penn dataset, a cross-sectional sample enriched for individuals with SUDs, to examine pleiotropic effects of genetic liability for psychiatric and somatic traits. Participants completed an in-depth interview that provides information on demographics, environment, medical illnesses, and psychiatric and SUDs. Polygenic scores (PGS) for psychiatric disorders and somatic traits were calculated in European-ancestry (EUR; n = 5691) participants and, when discovery datasets were available, for African-ancestry (AFR; n = 4918) participants. Phenome-wide association studies (PheWAS) were then conducted. In AFR participants, the only PGS with significant associations was bipolar disorder (BD), all of which were with substance use phenotypes. In EUR participants, PGS for major depressive disorder (MDD), generalized anxiety disorder (GAD), post-traumatic stress disorder (PTSD), schizophrenia (SCZ), body mass index (BMI), coronary artery disease (CAD), and type 2 diabetes (T2D) all showed significant associations, the majority of which were with phenotypes in the substance use categories. For instance, PGSMDD was associated with over 200 phenotypes, 15 of which were depression-related (e.g., depression criterion count), 55 of which were other psychiatric phenotypes, and 126 of which were substance use phenotypes; and PGSBMI was associated with 138 phenotypes, 105 of which were substance related. Genetic liability for psychiatric and somatic traits is associated with numerous phenotypes across multiple categories, indicative of the broad genetic liability of these traits.
Collapse
Affiliation(s)
- Emily E Hartwell
- Crescenz VA Medical Center, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Zeal Jinwala
- Crescenz VA Medical Center, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Joel Gelernter
- West Haven VA Medical Center, West Haven, CT, USA
- Yale University, New Haven, CT, USA
| | - Henry R Kranzler
- Crescenz VA Medical Center, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel L Kember
- Crescenz VA Medical Center, Philadelphia, PA, USA.
- University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Tesfaye M, Shadrin A, Parker N, Jaholkowski P, Parekh P, Kutrolli G, Birkenæs V, Bakken NR, Ask H, Frei O, Djurovic S, Dale AM, Smeland OB, O’Connell KS, Andreassen OA. Comorbidity alters the genetic relationship between anxiety disorders and major depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.19.24317523. [PMID: 39606413 PMCID: PMC11601679 DOI: 10.1101/2024.11.19.24317523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Importance- There is extensive comorbidity between anxiety disorders (ANX) and major depression (MD). Most studies on the genetics of ANX do not exclude comorbid cases of MD, and vice versa, therefore confounding genetic association analyses. Disorder-specific analysis of genomic data may reveal more precise biological pathways and causal relationships. Objective- To investigate the genetic relationship between disorder-specific ANX and MD compared to samples with comorbidity, including their causal relationship. Design Setting and Participants- Data from UK Biobank was used to perform genome-wide association studies (GWAS) of ANX-only and MD-only, and generate disorder-specific polygenic risk scores (PRS). The Norwegian Mother, Father, and Child Cohort (MoBa) was used to test the associations of PRS with diagnosis and symptoms. MD and ANX GWAS data including comorbidities (MD-co and ANX-co) were used as comparators. Genetic correlation was assessed using LDSC, and Mendelian randomization was employed to infer causal relationships. Main Outcomes and Measures GWAS of ICD-10 diagnoses of ANX, MD, or both. Genetic correlations between pairs of ANX and MD phenotypes. PRS associations with diagnoses of ANX, MD, and their comorbid states, and anxiety or depressive symptoms. Results- The GWAS of ANX-only (9,980 cases and 179,442 controls) and MD-only (15,301 cases and 179,038 controls) showed a lower genetic correlation (0.53) than the one between ANX-co and MD-co (0.90). ANX-only showed a causal relationship with MD-only (PFDR=1.5e-02), but not vice versa, while comorbid cases showed a significant bidirectional causal relationship (PFDR=2.9e-12, PFDR =9.3e-06). The PRS-MD-only were differentially associated with MD-only compared to ANX-only cases (β= -0.08; 95%CI: -0.11, -0.03); however, this differential association was not observed for the PRS-MD-co. A similar pattern of differential association with anxiety and depressive symptoms was observed for PRS-ANX-only, but not for PRS-MD-co. Conclusions and Relevance- The genetics and underlying biology of ANX and MD are more distinct when comorbid cases are excluded from analyses and reveals that ANX may be causal for MD. This confounding of genetic relationships as a result of comorbidity is likely to apply to other psychiatric disorders. Disorder-specific genetic studies may help uncover more relevant biological mechanisms and guide more targeted clinical interventions.
Collapse
Affiliation(s)
- Markos Tesfaye
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Alexey Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pravesh Parekh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gleda Kutrolli
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Viktoria Birkenæs
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nora R. Bakken
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Olav B. Smeland
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S. O’Connell
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Friligkou E, Koller D, Pathak GA, Miller EJ, Lampert R, Stein MB, Polimanti R. Integrating genome-wide information and wearable device data to explore the link of anxiety and antidepressants with pulse rate variability. Mol Psychiatry 2024:10.1038/s41380-024-02836-7. [PMID: 39558002 DOI: 10.1038/s41380-024-02836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
This study explores the genetic and epidemiologic correlates of long-term photoplethysmography-derived pulse rate variability (PRV) measurements with anxiety disorders. Individuals with whole-genome sequencing, Fitbit, and electronic health record data (N = 920; 61,333 data points) were selected from the All of Us Research Program. Anxiety polygenic risk scores (PRS) were derived with PRS-CS after meta-analyzing anxiety genome-wide association studies from three major cohorts- UK Biobank, FinnGen, and the Million Veterans Program (NTotal =364,550). PRV was estimated as the standard deviation of average five-minute pulse wave intervals over full 24-hour pulse rate measurements (SDANN). Antidepressant exposure was defined as an active antidepressant prescription at the time of the PRV measurement in the EHR. Anxiety PRS and antidepressant use were tested for association with daily SDANN. The potential causal effect of anxiety on PRV was assessed with one-sample Mendelian randomization (MR). Anxiety PRS was independently associated with reduced SDANN (beta = -0.08; p = 0.003). Of the eight antidepressant medications and four classes tested, venlafaxine (beta = -0.12, p = 0.002) and bupropion (beta = -0.071, p = 0.01), tricyclic antidepressants (beta = -0.177, p = 0.0008), selective serotonin reuptake inhibitors (beta = -0.069; p = 0.0008) and serotonin and norepinephrine reuptake inhibitors (beta = -0.16; p = 2×10-6) were associated with decreased SDANN. One-sample MR indicated an inverse effect of anxiety on SDANN (beta = -2.22, p = 0.03). Anxiety and antidepressants are independently associated with decreased PRV, and anxiety appears to exert a causal effect on reduced PRV. Those observational findings provide insights into the impact of anxiety on PRV.
Collapse
Affiliation(s)
- Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel Lampert
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Murray B Stein
- VA San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Bas-Hoogendam JM. Genetic Vulnerability to Social Anxiety Disorder. Curr Top Behav Neurosci 2024. [PMID: 39543021 DOI: 10.1007/7854_2024_544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Most anxiety disorders 'run within families': people suffering from an anxiety disorder often have family members who are highly anxious as well. In this chapter, we explore recent work devoted to unraveling the complex interplay between genes and environment in the development of anxiety. We review studies focusing on the genetic vulnerability to develop social anxiety disorder (SAD), as SAD is one of the most prevalent anxiety disorders, with an early onset, a chronic course, and associated with significant life-long impairments. More insight into the development of SAD is thus of uttermost importance.First, we will discuss family studies, twin studies, and large-sized population-based registry studies and explain what these studies can reveal about the genetic vulnerability to develop anxiety. Next, we describe the endophenotype approach; in this context, we will summarize results from the Leiden Family Lab study on Social Anxiety Disorder. Subsequently, we review the relationship between the heritable trait 'behavioral inhibition' and the development of SAD, and highlight the relevance of this work for the development and improvement of preventative and therapeutic interventions for socially anxious youth.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Leiden University, Leiden, The Netherlands.
- Leiden University Medical Center, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
23
|
Teng F, Wang M, Lu Z, Zhang C, Xiao L, Chen Z, Huang M, Xie L, Chen Z, Wang W. Causal relationship between cortical structural changes and onset of anxiety disorder: evidence from Mendelian randomization. Cereb Cortex 2024; 34:bhae440. [PMID: 39503246 DOI: 10.1093/cercor/bhae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Previous studies have reported a correlation between anxiety disorders and changes in brain structure, yet the specific alterations in brain region volumes remain unclear. This study aimed to infer the causal relationship between anxiety disorders and changes in brain structure volume through Mendelian Randomization analysis. We selected 63 cortical structure volumes from the GWAS database as exposure data and anxiety disorder data from the FinnGen and UK Biobank databases as outcomes. We found a significant correlation between atrophy in the Left precentral volume area (Odds Ratio [OR] = 0.935, 95% Confidence intervals [CI]: 0.891-0.981, P value, P = 0.007) and an increased risk of anxiety disorders. Additionally, changes identified in specific brain regions, such as atrophy in the Right rostral anterior cingulate area (OR = 0.993, 95% CI: 0.987-0.999, P = 0.025) and increased volume in the Left superior parietal area (OR = 1.001, 95% CI: 1.000-1.001, P = 0.028), may correlate with an increased risk of anxiety disorders. Furthermore, both phenotypes demonstrated directional consistency in their respective and overall meta-analyzed OR values pre- and post-merger, enhancing the reliability of the results. This study elucidates the causal relationship between anxiety disorders and specific brain structures, providing new insights for further research into psychiatric disorders.
Collapse
Affiliation(s)
- Fei Teng
- Department of Liver Surgery, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Zhangyu Lu
- West China School of Medicine, Sichuan University, No. 17 South Renming Road, Chengdu 610094, China
| | - Chunyu Zhang
- Emergency Surgery Department of Changji Hui Autonomous Prefecture People's Hospital, Yan'an North Avenue, Changji City 831100, Xinjiang Province, China
| | - Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - ZhaoMing Chen
- Clinical Laboratory Diagnosis, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Avenue, Wenjiang District, Chengdu 610041, China
| | - Mengshuang Huang
- Clinical Laboratory Diagnosis, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Avenue, Wenjiang District, Chengdu 610041, China
| | - Linglin Xie
- Department of Nursing, Ziyang College of Dental Technology, No. 1666, West Section 3, Outer Ring Road, Yanjiang District, Ziyang City 641300, China
| | - Zheyu Chen
- Department of Liver Surgery, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
24
|
Gupta P, Galimberti M, Liu Y, Beck S, Wingo A, Wingo T, Adhikari K, Kranzler HR, Stein MB, Gelernter J, Levey DF. A genome-wide investigation into the underlying genetic architecture of personality traits and overlap with psychopathology. Nat Hum Behav 2024; 8:2235-2249. [PMID: 39134740 PMCID: PMC11576509 DOI: 10.1038/s41562-024-01951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Personality is influenced by both genetic and environmental factors and is associated with other psychiatric traits such as anxiety and depression. The 'big five' personality traits, which include neuroticism, extraversion, agreeableness, conscientiousness and openness, are a widely accepted and influential framework for understanding and describing human personality. Of the big five personality traits, neuroticism has most often been the focus of genetic studies and is linked to various mental illnesses, including depression, anxiety and schizophrenia. Our knowledge of the genetic architecture of the other four personality traits is more limited. Here, utilizing the Million Veteran Program cohort, we conducted a genome-wide association study in individuals of European and African ancestry. Adding other published data, we performed genome-wide association study meta-analysis for each of the five personality traits with sample sizes ranging from 237,390 to 682,688. We identified 208, 14, 3, 2 and 7 independent genome-wide significant loci associated with neuroticism, extraversion, agreeableness, conscientiousness and openness, respectively. These findings represent 62 novel loci for neuroticism, as well as the first genome-wide significant loci discovered for agreeableness. Gene-based association testing revealed 254 genes showing significant association with at least one of the five personality traits. Transcriptome-wide and proteome-wide analysis identified altered expression of genes and proteins such as CRHR1, SLC12A5, MAPT and STX4. Pathway enrichment and drug perturbation analyses identified complex biology underlying human personality traits. We also studied the inter-relationship of personality traits with 1,437 other traits in a phenome-wide genetic correlation analysis, identifying new associations. Mendelian randomization showed positive bidirectional effects between neuroticism and depression and anxiety, while a negative bidirectional effect was observed for agreeableness and these psychiatric traits. This study improves our comprehensive understanding of the genetic architecture underlying personality traits and their relationship to other complex human traits.
Collapse
Affiliation(s)
- Priya Gupta
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Marco Galimberti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Yue Liu
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Beck
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Aliza Wingo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Thomas Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Keyrun Adhikari
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Henry R Kranzler
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry, School of Medicine, and Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
25
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2024; 273:39-61. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
26
|
Woolway GE, Legge SE, Lynham AJ, Smart SE, Hubbard L, Daniel ER, Pardiñas AF, Escott-Price V, O'Donovan MC, Owen MJ, Jones IR, Walters JTR. Assessing the validity of a self-reported clinical diagnosis of schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:99. [PMID: 39477999 PMCID: PMC11526013 DOI: 10.1038/s41537-024-00526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
The increasing availability of biobanks is changing the way individuals are identified for genomic research. This study assesses the validity of a self-reported clinical diagnosis of schizophrenia. The study included 1744 clinically-ascertained participants with schizophrenia or schizoaffective disorder depressed-type (SA-D) diagnosed by self-report and/or research interview and 1453 UK Biobank participants with self-reported and/or medical record diagnosis of schizophrenia or SA-D. Unaffected controls included a total of 501,837 participants. We assessed the positive predictive values (PPV) of self-reported clinical diagnoses against research interview and medical record diagnoses. Polygenic risk scores (PRS) and phenotypes relating to demographics, education and employment were compared across diagnostic groups. The variance explained (r2) in schizophrenia PRS for each diagnostic group was compared to samples in the Psychiatric Genomics Consortium (PGC). In the clinically-ascertained participants, the PPV of self-reported schizophrenia for a research diagnosis of schizophrenia was 0.70, which increased to 0.81 after expanding the research diagnosis to schizophrenia or SA-D. In UK Biobank, the PPV of self-reported schizophrenia for a medical record diagnosis was 0.74. Compared to participants who self-reported, participants with a clinically-ascertained research diagnosis were younger and more likely to have a high school qualification. Participants with a medical record diagnosis in UK Biobank were less likely to be employed or have a high school qualification than those who self-reported. Schizophrenia PRS did not differ between participants that had a diagnosis from self-report, research diagnosis or medical records. Polygenic liability r2, for all diagnosis definitions, fell within the distribution of PGC schizophrenia cohorts. Self-reported measures of schizophrenia are justified in genomic research to maximise sample size and reduce the burden of in-depth interviews on participants, although within sample validation of diagnoses is recommended.
Collapse
Affiliation(s)
- Grace E Woolway
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| | - Amy J Lynham
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Smart
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Leon Hubbard
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Ellie R Daniel
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Ian R Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
27
|
Friligkou E, Løkhammer S, Cabrera-Mendoza B, Shen J, He J, Deiana G, Zanoaga MD, Asgel Z, Pilcher A, Di Lascio L, Makharashvili A, Koller D, Tylee DS, Pathak GA, Polimanti R. Gene discovery and biological insights into anxiety disorders from a large-scale multi-ancestry genome-wide association study. Nat Genet 2024; 56:2036-2045. [PMID: 39294497 DOI: 10.1038/s41588-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024]
Abstract
We leveraged information from more than 1.2 million participants, including 97,383 cases, to investigate the genetics of anxiety disorders across five continental groups. Through ancestry-specific and cross-ancestry genome-wide association studies, we identified 51 anxiety-associated loci, 39 of which were novel. In addition, polygenic risk scores derived from individuals of European descent were associated with anxiety in African, admixed American and East Asian groups. The heritability of anxiety was enriched for genes expressed in the limbic system, cerebral cortex, cerebellum, metencephalon, entorhinal cortex and brain stem. Transcriptome-wide and proteome-wide analyses highlighted 115 genes associated with anxiety through brain-specific and cross-tissue regulation. Anxiety also showed global and local genetic correlations with depression, schizophrenia and bipolar disorder and widespread pleiotropy with several physical health domains. Overall, this study expands our knowledge regarding the genetic risk and pathogenesis of anxiety disorders, highlighting the importance of investigating diverse populations and integrating multi-omics information.
Collapse
Affiliation(s)
- Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Solveig Løkhammer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jie Shen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun He
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Giovanni Deiana
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience, Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Mihaela Diana Zanoaga
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Zeynep Asgel
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York Metropolitan Area, New York, NY, USA
| | - Abigail Pilcher
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Luciana Di Lascio
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy; Humanitas University, Pieve Emanuele, Milan, Italy
| | - Ana Makharashvili
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA.
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Tavakoli Z, Jahandar H, Shahpasand K, Zaeifi D, Mousavi SE. Targeting cis-p-tau and neuro-related gene expression in traumatic brain injury: therapeutic insights from TC-DAPK6 treatment in mice. Mol Biol Rep 2024; 51:1010. [PMID: 39320385 DOI: 10.1007/s11033-024-09945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant global health concern and is characterized by brain dysfunction resulting from external physical forces, leading to brain pathology and neuropsychiatric disorders such as anxiety. This study investigates the effects of TC-DAPK6 on tau hyper-phosphorylation, gene expression, anxiety, and behavior impairment in the TBI mice model. METHODS AND RESULTS A weight drop model induced the TBI and the anxiety levels were evaluated using an elevated plus maze (EPM) test. TC-DAPK6 was intraperitoneally administered one-month post-TBI and continued for two months. The total cis-p-tau ratio in the brain was assessed using western blot and immunofluorescence staining. Molecular analysis was conducted on Aff2, Zkscan16, Kcna1, Pcdhac2, and Pcdhga8 to investigate the function and pathogenic role of TC-DAPK6 in neurological diseases in the cerebral cortex tissues of TBI-model mice, and the results were compared with TC-DAPK6 TBI-treatment group. The anxiety level and phosphorylation of tau protein in the TBI group were significantly increased compared to the sham groups and decreased substantially in the TBI-treatment group after TC-DAPK6 administration; the TBI group mostly spent their time with open arms. TC-DAPK6 decreased the expression level of genes as much as the sham group. Meanwhile, KCNA1 showed the highest fold of changes in the TBI and TBI-treatment groups. CONCLUSIONS The study demonstrates a clear association between cis-p-tau and neuro-related gene expression levels in TBI-induced mice. Targeting these pathways with DAPK1 inhibitors, shows promise for therapeutic interventions in TBI and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hoda Jahandar
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Davood Zaeifi
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, 16th Azar St., Enghelab Sq, P.O. Box: 1417466191, Tehran, Iran.
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145784, Tehran, Iran.
| |
Collapse
|
29
|
Vattathil SM, Gerasimov ES, Canon SM, Lori A, Tan SSM, Kim PJ, Liu Y, Lai EC, Bennett DA, Wingo TS, Wingo AP. Genetic regulation of microRNAs in the older adult brain and their contribution to neuropsychiatric conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.610174. [PMID: 39314369 PMCID: PMC11419020 DOI: 10.1101/2024.09.10.610174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
MicroRNAs are essential post-transcriptional regulators of gene expression and involved in many biological processes; however, our understanding of their genetic regulation and role in brain illnesses is limited. Here, we mapped brain microRNA expression quantitative trait loci (miR-QTLs) using genome-wide small RNA sequencing profiles from dorsolateral prefrontal cortex (dlPFC) samples of 604 older adult donors of European ancestry. miR-QTLs were identified for 224 miRNAs (48% of 470 tested miRNAs) at false discovery rate < 1%. We found that miR-QTLs were enriched in brain promoters and enhancers, and that intragenic miRNAs often did not share QTLs with their host gene. Additionally, we integrated the brain miR-QTLs with results from 16 GWAS of psychiatric and neurodegenerative diseases using multiple independent integration approaches and identified four miRNAs that contribute to the pathogenesis of bipolar disorder, major depression, post-traumatic stress disorder, schizophrenia, and Parkinson's disease. This study provides novel insights into the contribution of miRNAs to the complex biological networks that link genetic variation to disease.
Collapse
Affiliation(s)
- Selina M Vattathil
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Se Min Canon
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Sze Min Tan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Kim
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yue Liu
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
- Alzheimer's Disease Research Center, University of California, Davis, Sacramento, CA, USA
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA
- Veterans Affairs Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
30
|
Banerjee P, Chau K, Kotla S, Davis EL, Turcios EB, Li S, Pengzhi Z, Wang G, Kolluru GK, Jain A, Cooke JP, Abe J, Le NT. A Potential Role for MAGI-1 in the Bi-Directional Relationship Between Major Depressive Disorder and Cardiovascular Disease. Curr Atheroscler Rep 2024; 26:463-483. [PMID: 38958925 DOI: 10.1007/s11883-024-01223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Major Depressive Disorder (MDD) is characterized by persistent symptoms such as fatigue, loss of interest in activities, feelings of sadness and worthlessness. MDD often coexist with cardiovascular disease (CVD), yet the precise link between these conditions remains unclear. This review explores factors underlying the development of MDD and CVD, including genetic, epigenetic, platelet activation, inflammation, hypothalamic-pituitary-adrenal (HPA) axis activation, endothelial cell (EC) dysfunction, and blood-brain barrier (BBB) disruption. RECENT FINDINGS Single nucleotide polymorphisms (SNPs) in the membrane-associated guanylate kinase WW and PDZ domain-containing protein 1 (MAGI-1) are associated with neuroticism and psychiatric disorders including MDD. SNPs in MAGI-1 are also linked to chronic inflammatory disorders such as spontaneous glomerulosclerosis, celiac disease, ulcerative colitis, and Crohn's disease. Increased MAGI-1 expression has been observed in colonic epithelial samples from Crohn's disease and ulcerative colitis patients. MAGI-1 also plays a role in regulating EC activation and atherogenesis in mice and is essential for Influenza A virus (IAV) infection, endoplasmic reticulum stress-induced EC apoptosis, and thrombin-induced EC permeability. Despite being understudied in human disease; evidence suggests that MAGI-1 may play a role in linking CVD and MDD. Therefore, further investigation of MAG-1 could be warranted to elucidate its potential involvement in these conditions.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eleanor L Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Estefani Berrios Turcios
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Shengyu Li
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Zhang Pengzhi
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Abhishek Jain
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
31
|
Ramos-Prats A, Matulewicz P, Edenhofer ML, Wang KY, Yeh CW, Fajardo-Serrano A, Kress M, Kummer K, Lien CC, Ferraguti F. Loss of mGlu 5 receptors in somatostatin-expressing neurons alters negative emotional states. Mol Psychiatry 2024; 29:2774-2786. [PMID: 38575807 PMCID: PMC11420089 DOI: 10.1038/s41380-024-02541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.
Collapse
Affiliation(s)
- Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kai-Yi Wang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wei Yeh
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ana Fajardo-Serrano
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
32
|
Grogans SE, Hur J, Barstead MG, Anderson AS, Islam S, Kim HC, Kuhn M, Tillman RM, Fox AS, Smith JF, DeYoung KA, Shackman AJ. Neuroticism/Negative Emotionality Is Associated with Increased Reactivity to Uncertain Threat in the Bed Nucleus of the Stria Terminalis, Not the Amygdala. J Neurosci 2024; 44:e1868232024. [PMID: 39009438 PMCID: PMC11308352 DOI: 10.1523/jneurosci.1868-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Neuroticism/negative emotionality (N/NE)-the tendency to experience anxiety, fear, and other negative emotions-is a fundamental dimension of temperament with profound consequences for health, wealth, and well-being. Elevated N/NE is associated with a panoply of adverse outcomes, from reduced socioeconomic attainment to psychiatric illness. Animal research suggests that N/NE reflects heightened reactivity to uncertain threat in the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce), but the relevance of these discoveries to humans has remained unclear. Here we used a novel combination of psychometric, psychophysiological, and neuroimaging approaches to test this hypothesis in an ethnoracially diverse, sex-balanced sample of 220 emerging adults selectively recruited to encompass a broad spectrum of N/NE. Cross-validated robust-regression analyses demonstrated that N/NE is preferentially associated with heightened BST activation during the uncertain anticipation of a genuinely distressing threat (aversive multimodal stimulation), whereas N/NE was unrelated to BST activation during certain-threat anticipation, Ce activation during either type of threat anticipation, or BST/Ce reactivity to threat-related faces. It is often assumed that different threat paradigms are interchangeable assays of individual differences in brain function, yet this has rarely been tested. Our results revealed negligible associations between BST/Ce reactivity to the anticipation of threat and the presentation of threat-related faces, indicating that the two tasks are nonfungible. These observations provide a framework for conceptualizing emotional traits and disorders; for guiding the design and interpretation of biobank and other neuroimaging studies of psychiatric risk, disease, and treatment; and for refining mechanistic research.
Collapse
Affiliation(s)
- Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Allegra S Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee 37240
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478
| | | | - Andrew S Fox
- Department of Psychology, University of California, Davis, California 95616
- California National Primate Research Center, University of California, Davis, California 95616
| | - Jason F Smith
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Kathryn A DeYoung
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
33
|
Kranzler HR, Davis CN, Feinn R, Jinwala Z, Khan Y, Oikonomou A, Silva-Lopez D, Burton I, Dixon M, Milone J, Ramirez S, Shifman N, Levey D, Gelernter J, Hartwell EE, Kember RL. Gene × environment effects and mediation involving adverse childhood events, mood and anxiety disorders, and substance dependence. Nat Hum Behav 2024; 8:1616-1627. [PMID: 38834750 DOI: 10.1038/s41562-024-01885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Adverse childhood events (ACEs) contribute to the development of mood and anxiety disorders and substance dependence. However, the extent to which these effects are direct or indirect and whether genetic risk moderates them is unclear. We examined associations among ACEs, mood/anxiety disorders and substance dependence in 12,668 individuals (44.9% female, 42.5% African American/Black, 42.1% European American/white). Using latent variables for each phenotype, we modelled direct and indirect associations of ACEs with substance dependence, mediated by mood/anxiety disorders (the forward or 'self-medication' model) and of ACEs with mood/anxiety disorders, mediated by substance dependence (the reverse or 'substance-induced' model). In a subsample, we tested polygenic scores for the substance dependence and mood/anxiety disorder factors as moderators in the mediation models. Although there were significant indirect paths in both directions, mediation by mood/anxiety disorders (the forward model) was greater than that by substance dependence (the reverse model). Greater genetic risk for substance use disorders was associated with a weaker direct association between ACEs and substance dependence in both ancestry groups (reflecting gene × environment interactions) and a weaker indirect association in European-ancestry individuals (reflecting moderated mediation). We found greater evidence that substance dependence reflects self-medication of mood/anxiety disorders than that mood/anxiety disorders are substance induced. Among individuals at higher genetic risk for substance dependence, ACEs were less associated with that outcome. Following exposure to ACEs, multiple pathways appear to underlie the associations between mood/anxiety disorders and substance dependence. Specification of these pathways could inform individually targeted prevention and treatment approaches.
Collapse
Affiliation(s)
- Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.
| | - Christal N Davis
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Richard Feinn
- Department of Medical Sciences, Frank H. Netter School of Medicine at Quinnipiac University, North Haven, CT, USA
| | - Zeal Jinwala
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Yousef Khan
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ariadni Oikonomou
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Damaris Silva-Lopez
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel Burton
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Morgan Dixon
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jackson Milone
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Ramirez
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naomi Shifman
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Departments of Genetics and Neurobiology, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Emily E Hartwell
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Rachel L Kember
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| |
Collapse
|
34
|
Strom NI, Verhulst B, Bacanu SA, Cheesman R, Purves KL, Gedik H, Mitchell BL, Kwong AS, Faucon AB, Singh K, Medland S, Colodro-Conde L, Krebs K, Hoffmann P, Herms S, Gehlen J, Ripke S, Awasthi S, Palviainen T, Tasanko EM, Peterson RE, Adkins DE, Shabalin AA, Adams MJ, Iveson MH, Campbell A, Thomas LF, Winsvold BS, Drange OK, Børte S, Ter Kuile AR, Nguyen TH, Meier SM, Corfield EC, Hannigan L, Levey DF, Czamara D, Weber H, Choi KW, Pistis G, Couvy-Duchesne B, Van der Auwera S, Teumer A, Karlsson R, Garcia-Argibay M, Lee D, Wang R, Bjerkeset O, Stordal E, Bäckmann J, Salum GA, Zai CC, Kennedy JL, Zai G, Tiwari AK, Heilmann-Heimbach S, Schmidt B, Kaprio J, Kennedy MM, Boden J, Havdahl A, Middeldorp CM, Lopes FL, Akula N, McMahon FJ, Binder EB, Fehm L, Ströhle A, Castelao E, Tiemeier H, Stein DJ, Whiteman D, Olsen C, Fuller Z, Wang X, Wray NR, Byrne EM, Lewis G, Timpson NJ, Davis LK, Hickie IB, Gillespie NA, Milani L, Schumacher J, Woldbye DP, Forstner AJ, Nöthen MM, Hovatta I, Horwood J, Copeland WE, Maes HH, McIntosh AM, Andreassen OA, Zwart JA, Mors O, Børglum AD, Mortensen PB, Ask H, Reichborn-Kjennerud T, Najman JM, et alStrom NI, Verhulst B, Bacanu SA, Cheesman R, Purves KL, Gedik H, Mitchell BL, Kwong AS, Faucon AB, Singh K, Medland S, Colodro-Conde L, Krebs K, Hoffmann P, Herms S, Gehlen J, Ripke S, Awasthi S, Palviainen T, Tasanko EM, Peterson RE, Adkins DE, Shabalin AA, Adams MJ, Iveson MH, Campbell A, Thomas LF, Winsvold BS, Drange OK, Børte S, Ter Kuile AR, Nguyen TH, Meier SM, Corfield EC, Hannigan L, Levey DF, Czamara D, Weber H, Choi KW, Pistis G, Couvy-Duchesne B, Van der Auwera S, Teumer A, Karlsson R, Garcia-Argibay M, Lee D, Wang R, Bjerkeset O, Stordal E, Bäckmann J, Salum GA, Zai CC, Kennedy JL, Zai G, Tiwari AK, Heilmann-Heimbach S, Schmidt B, Kaprio J, Kennedy MM, Boden J, Havdahl A, Middeldorp CM, Lopes FL, Akula N, McMahon FJ, Binder EB, Fehm L, Ströhle A, Castelao E, Tiemeier H, Stein DJ, Whiteman D, Olsen C, Fuller Z, Wang X, Wray NR, Byrne EM, Lewis G, Timpson NJ, Davis LK, Hickie IB, Gillespie NA, Milani L, Schumacher J, Woldbye DP, Forstner AJ, Nöthen MM, Hovatta I, Horwood J, Copeland WE, Maes HH, McIntosh AM, Andreassen OA, Zwart JA, Mors O, Børglum AD, Mortensen PB, Ask H, Reichborn-Kjennerud T, Najman JM, Stein MB, Gelernter J, Milaneschi Y, Penninx BW, Boomsma DI, Maron E, Erhardt-Lehmann A, Rück C, Kircher TT, Melzig CA, Alpers GW, Arolt V, Domschke K, Smoller JW, Preisig M, Martin NG, Lupton MK, Luik AI, Reif A, Grabe HJ, Larsson H, Magnusson PK, Oldehinkel AJ, Hartman CA, Breen G, Docherty AR, Coon H, Conrad R, Lehto K, Deckert J, Eley TC, Mattheisen M, Hettema JM. Genome-wide association study of major anxiety disorders in 122,341 European-ancestry cases identifies 58 loci and highlights GABAergic signaling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309466. [PMID: 39006447 PMCID: PMC11245051 DOI: 10.1101/2024.07.03.24309466] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The major anxiety disorders (ANX; including generalized anxiety disorder, panic disorder, and phobias) are highly prevalent, often onset early, persist throughout life, and cause substantial global disability. Although distinct in their clinical presentations, they likely represent differential expressions of a dysregulated threat-response system. Here we present a genome-wide association meta-analysis comprising 122,341 European ancestry ANX cases and 729,881 controls. We identified 58 independent genome-wide significant ANX risk variants and 66 genes with robust biological support. In an independent sample of 1,175,012 self-report ANX cases and 1,956,379 controls, 51 of the 58 associated variants were replicated. As predicted by twin studies, we found substantial genetic correlation between ANX and depression, neuroticism, and other internalizing phenotypes. Follow-up analyses demonstrated enrichment in all major brain regions and highlighted GABAergic signaling as one potential mechanism underlying ANX genetic risk. These results advance our understanding of the genetic architecture of ANX and prioritize genes for functional follow-up studies.
Collapse
Affiliation(s)
- Nora I Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Brad Verhulst
- Psychiatry and Behavioral Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Rosa Cheesman
- PROMENTA Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kirstin L Purves
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hüseyin Gedik
- Institute for Genomics in Health, Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Life Sciences, Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, USA
- Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brittany L Mitchell
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, Queensland University , Brisbane, Queensland, Australia
| | - Alex S Kwong
- Bristol Medical School, Population Health Sciences, MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Annika B Faucon
- Division of Medicine, Human Genetics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kritika Singh
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah Medland
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lucia Colodro-Conde
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, Human Genomics Research Group, University of Basel; University Hospital Basel, Basel, Switzerland
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Medical Genetics and Pathology, Medical Faculty, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Human Genomics Research Group, University of Basel; University Hospital Basel, Basel, Switzerland
| | - Jan Gehlen
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - Stephan Ripke
- Dept. of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swapnil Awasthi
- Dept. of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Teemu Palviainen
- Helsinki Institute of Life Science, Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Elisa M Tasanko
- Faculty of Medicine, Department of Psychology and Logopedics, SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - Roseann E Peterson
- Institute for Genomics in Health, Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Daniel E Adkins
- School of Medicine, Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Andrey A Shabalin
- School of Medicine, Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Mark J Adams
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew H Iveson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- College of Medicine and Veterinary Medicine, Institute of Genetics and Cancer; Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bendik S Winsvold
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Mental Health, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- Centre of Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Psychiatry, Sørlandet Hospital, Kristiansand, Norway
| | - Sigrid Børte
- Division of Clinical Neuroscience, Department of Research and Innovation; Musculoskeletal Health, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Abigail R Ter Kuile
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Tan-Hoang Nguyen
- Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sandra M Meier
- Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth C Corfield
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute , Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Laurie Hannigan
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Daniel F Levey
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Psychiatry, Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Darina Czamara
- Department of Genes and Environment, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Karmel W Choi
- Psychiatry, Center for Precision Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Psychiatry, Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Giorgio Pistis
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Baptiste Couvy-Duchesne
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- ARAMIS laboratory, Paris Brain Institute, Paris, France
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Miguel Garcia-Argibay
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Donghyung Lee
- Department of Statistics, Miami University, Oxford, Ohio, USA
| | - Rujia Wang
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ottar Bjerkeset
- Faculty of Nursing and Health Science, Nord University, Levanger, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eystein Stordal
- Department of Psychiatry, Hospital Namsos, Nord-Trøndelag Health Trustt, Namsos, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia Bäckmann
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Giovanni A Salum
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Child Psychiatry, National Institute of Developmental Psychiatry, São Paulo, Brazil
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Sciences Department, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Division of Neurosciences and Clinical Translation, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Sciences Department, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Division of Neurosciences and Clinical Translation, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gwyneth Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Sciences Department, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Division of Neurosciences and Clinical Translation, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Sciences Department, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Division of Neurosciences and Clinical Translation, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jaakko Kaprio
- Helsinki Institute of Life Science, Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Martin M Kennedy
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Joseph Boden
- Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PROMENTA Centre, Department of Psychology, University of Oslo, Oslo, Norway
- Bristol Medical School, Population Health Sciences, MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Christel M Middeldorp
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia
| | - Fabiana L Lopes
- National Institute of Mental Health, Human Genetics Branch, National Institutes of Health, Bethesda, Maryland, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Nirmala Akula
- National Institute of Mental Health, Genetic Basis of Mood and Anxiety Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis J McMahon
- National Institute of Mental Health, Genetic Basis of Mood and Anxiety Disorders, National Institutes of Health, Bethesda, Maryland, USA
- Psychiatry & Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elisabeth B Binder
- Department of Genes and Environment, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Lydia Fehm
- Department of Psychology, Zentrum für Psychotherapie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Enrique Castelao
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Henning Tiemeier
- Social and Behavioral Science, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - David Whiteman
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Catherine Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Enda M Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Glyn Lewis
- UCL Division of Psychiatry, University College London, London, UK
| | - Nicholas J Timpson
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | | | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - David P Woldbye
- Department of Neuroscience, Laboratory of Neural Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Iiris Hovatta
- Faculty of Medicine, Department of Psychology and Logopedics and SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - John Horwood
- Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - William E Copeland
- UVM Medical Center, Department of Psychiatry, University of Vermont, Burlington, Vermont, USA
| | - Hermine H Maes
- Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Andrew M McIntosh
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- Centre of Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - John-Anker Zwart
- Division of Clinical Neuroscience, Department of Research and Innovation; Musculoskeletal Health, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Mors
- Department of Psychiatry, Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalised Medicine, Aarhus University, Aarhus, Denmark
| | - Preben B Mortensen
- The National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Helga Ask
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
| | - Jackob M Najman
- Faculty of Medicine, School of Public Health, University of Queensland, Herston, Queensland, Australia
| | - Murray B Stein
- Psychiatry, University of California San Diego, La Jolla, CA, USA
- School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Psychiatry Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Departments of Genetics and Neuroscience, Yale University of Medicine, New Haven, Connecticut, USA
| | - Yuri Milaneschi
- Amsterdam Neuroscience; Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Brenda W Penninx
- Amsterdam Neuroscience; Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Dorret I Boomsma
- Twin Register and Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Eduard Maron
- Psychiatry, University of Tartu, Tartu, Estonia
- Department of Medicine, Centre for Neuropsychopharmacology,, Division of Brain Sciences, Imperial College London, London, UK
| | - Angelika Erhardt-Lehmann
- Department of Genes and Environment, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Tilo T Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Christiane A Melzig
- Psychology, Clinical Psychology, Experimental Psychopathology and Psychotherapy, University of Marburg, Marburg, Germany
- Psychology, Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Georg W Alpers
- School of Social Sciences, Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Volker Arolt
- Department of Mental Health, Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| | - Jordan W Smoller
- Psychiatry, Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Psychiatry, Center for Precision Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin Preisig
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Nicholas G Martin
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle K Lupton
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, Queensland University , Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of technology, Queensland, Australia
| | - Annemarie I Luik
- Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt - Goethe University, Frankfurt, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Larsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Albertine J Oldehinkel
- Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Catharina A Hartman
- Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anna R Docherty
- School of Medicine, Psychiatry, University of Utah, Salt Lake City, Utah, USA
- School of Medicine, Psychiatry; Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah, USA
- Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hilary Coon
- School of Medicine, Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Rupert Conrad
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Münster, Münster, Germany
| | - Kelli Lehto
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Thalia C Eley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Manuel Mattheisen
- Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - John M Hettema
- Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas, USA
| |
Collapse
|
35
|
Brasher MS, Grotzinger AD, Friedman NP, Smolker HR, Evans LM. Disentangling differing relationships between internalizing disorders and alcohol use. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32975. [PMID: 38375614 PMCID: PMC11147714 DOI: 10.1002/ajmg.b.32975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Both internalizing disorders and alcohol use have dramatic, wide-spread implications for global health. Previous work has established common phenotypic comorbidity among these disorders, as well as shared genetic variation underlying them both. We used genomic structural equation modeling to investigate the shared genetics of internalizing, externalizing, and alcohol use traits, as well as to explore whether specific domains of internalizing symptoms mediate the contrasting relationships with problematic alcohol use compared to alcohol consumption. We also examined patterns of genetic correlations between similar traits within additional Finnish and East Asian ancestry groups. When the shared genetic influence of externalizing psychopathology was accounted for, the genetic effect of internalizing traits on alcohol use was reduced, suggesting the important role of common genetic factors underlying multiple psychiatric disorders and their genetic influences on comorbidity of internalizing and alcohol use traits. Individual internalizing domains had contrasting effects on frequency of alcohol consumption, which demonstrate the complex system of pleiotropy that exists, even within similar disorders, and can be missed when evaluating only relationships among formal diagnoses. Future work must consider the broad effects of shared psychopathology along with the fine-scale effects of heterogeneity within disorders to more fully understand the biology underlying complex traits.
Collapse
Affiliation(s)
- Maizy S Brasher
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Harry R Smolker
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
36
|
Paul SE, Baranger DA, Johnson EC, Jackson JJ, Gorelik AJ, Miller AP, Hatoum AS, Thompson WK, Strube M, Dick DM, Kamarajan C, Kramer JR, Plawecki MH, Chan G, Anokhin AP, Chorlian DB, Kinreich S, Meyers JL, Porjesz B, Edenberg HJ, Agrawal A, Bucholz KK, Bogdan R. Alcohol milestones and internalizing, externalizing, and executive function: longitudinal and polygenic score associations. Psychol Med 2024; 54:2644-2657. [PMID: 38721768 PMCID: PMC11464200 DOI: 10.1017/s003329172400076x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Although the link between alcohol involvement and behavioral phenotypes (e.g. impulsivity, negative affect, executive function [EF]) is well-established, the directionality of these associations, specificity to stages of alcohol involvement, and extent of shared genetic liability remain unclear. We estimate longitudinal associations between transitions among alcohol milestones, behavioral phenotypes, and indices of genetic risk. METHODS Data came from the Collaborative Study on the Genetics of Alcoholism (n = 3681; ages 11-36). Alcohol transitions (first: drink, intoxication, alcohol use disorder [AUD] symptom, AUD diagnosis), internalizing, and externalizing phenotypes came from the Semi-Structured Assessment for the Genetics of Alcoholism. EF was measured with the Tower of London and Visual Span Tasks. Polygenic scores (PGS) were computed for alcohol-related and behavioral phenotypes. Cox models estimated associations among PGS, behavior, and alcohol milestones. RESULTS Externalizing phenotypes (e.g. conduct disorder symptoms) were associated with future initiation and drinking problems (hazard ratio (HR)⩾1.16). Internalizing (e.g. social anxiety) was associated with hazards for progression from first drink to severe AUD (HR⩾1.55). Initiation and AUD were associated with increased hazards for later depressive symptoms and suicidal ideation (HR⩾1.38), and initiation was associated with increased hazards for future conduct symptoms (HR = 1.60). EF was not associated with alcohol transitions. Drinks per week PGS was linked with increased hazards for alcohol transitions (HR⩾1.06). Problematic alcohol use PGS increased hazards for suicidal ideation (HR = 1.20). CONCLUSIONS Behavioral markers of addiction vulnerability precede and follow alcohol transitions, highlighting dynamic, bidirectional relationships between behavior and emerging addiction.
Collapse
Affiliation(s)
- Sarah E. Paul
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - David A.A. Baranger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua J. Jackson
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron J. Gorelik
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex P. Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S. Hatoum
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Wesley K. Thompson
- Population Neuroscience and Genetics (PNG) Center, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Michael Strube
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Danielle M. Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Rutgers Addiction Research Center, Rutgers University, Piscataway, NJ, USA
| | - Chella Kamarajan
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - John R. Kramer
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Martin H. Plawecki
- Department of Psychiatry, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Grace Chan
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Andrey P. Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David B. Chorlian
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sivan Kinreich
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jacquelyn L. Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen K. Bucholz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
37
|
Benstock SE, Weaver K, Hettema JM, Verhulst B. Using Alternative Definitions of Controls to Increase Statistical Power in GWAS. Behav Genet 2024; 54:353-366. [PMID: 38869698 PMCID: PMC11661655 DOI: 10.1007/s10519-024-10187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Genome-wide association studies (GWAS) are often underpowered due to small effect sizes of common single nucleotide polymorphisms (SNPs) on phenotypes and extreme multiple testing thresholds. The most common approach for increasing statistical power is to increase sample size. We propose an alternative strategy of redefining case-control outcomes into ordinal case-subthreshold-asymptomatic variables. While maintaining the clinical case threshold, we subdivide controls into two groups: individuals who are symptomatic but do not meet the clinical criteria for diagnosis (subthreshold) and individuals who are effectively asymptomatic. We conducted a simulation study to examine the impact of effect size, minor allele frequency, population prevalence, and the prevalence of the subthreshold group on statistical power to detect genetic associations in three scenarios: a standard case-control, an ordinal, and a case-asymptomatic control analysis. Our results suggest the ordinal model consistently provides the greatest statistical power while the case-control model the least. Power in the case-asymptomatic control model reflects the case-control or ordinal model depending on the population prevalence and size of the subthreshold category. We then analyzed a major depression phenotype from the UK Biobank to corroborate our simulation results. Overall, the ordinal model improves statistical power in GWAS consistent with increasing the sample size by approximately 10%.
Collapse
Affiliation(s)
- Sarah E Benstock
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA
| | - Katherine Weaver
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA
| | - John M Hettema
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA
| | - Brad Verhulst
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA.
| |
Collapse
|
38
|
Mu C, Dang X, Luo XJ. Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders. Nat Hum Behav 2024; 8:1417-1428. [PMID: 38724650 DOI: 10.1038/s41562-024-01879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Dysfunction of brain resting-state functional networks has been widely reported in psychiatric disorders. However, the causal relationships between brain resting-state functional networks and psychiatric disorders remain largely unclear. Here we perform bidirectional two-sample Mendelian randomization (MR) analyses to investigate the causalities between 191 resting-state functional magnetic resonance imaging (rsfMRI) phenotypes (n = 34,691 individuals) and 12 psychiatric disorders (n = 14,307 to 698,672 individuals). Forward MR identified 8 rsfMRI phenotypes causally associated with the risk of psychiatric disorders. For example, the increase in the connectivity of motor, subcortical-cerebellum and limbic network was associated with lower risk of autism spectrum disorder. In adddition, increased connectivity in the default mode and central executive network was associated with lower risk of post-traumatic stress disorder and depression. Reverse MR analysis revealed significant associations between 4 psychiatric disorders and 6 rsfMRI phenotypes. For instance, the risk of attention-deficit/hyperactivity disorder increases the connectivity of the attention, salience, motor and subcortical-cerebellum network. The risk of schizophrenia mainly increases the connectivity of the default mode and central executive network and decreases the connectivity of the attention network. In summary, our findings reveal causal relationships between brain functional networks and psychiatric disorders, providing important interventional and therapeutic targets for psychiatric disorders at the brain functional network level.
Collapse
Affiliation(s)
- Changgai Mu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xinglun Dang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xiong-Jian Luo
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
| |
Collapse
|
39
|
Gelernter J, Levey DF, Galimberti M, Harrington K, Zhou H, Adhikari K, Gupta P, Gaziano JM, Eliott D, Stein MB. Genome-wide association study of the common retinal disorder epiretinal membrane: Significant risk loci in each of three American populations. CELL GENOMICS 2024; 4:100582. [PMID: 38870908 PMCID: PMC11228954 DOI: 10.1016/j.xgen.2024.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
Epiretinal membrane (ERM) is a common retinal condition characterized by the presence of fibrocellular tissue on the retinal surface, often with visual distortion and loss of visual acuity. We studied European American (EUR), African American (AFR), and Latino (admixed American, AMR) ERM participants in the Million Veteran Program (MVP) for genome-wide association analysis-a total of 38,232 case individuals and 557,988 control individuals. We completed a genome-wide association study (GWAS) in each population separately, and then results were meta-analyzed. Genome-wide significant (GWS) associations were observed in all three populations studied: 31 risk loci in EUR subjects, 3 in AFR, and 2 in AMR, with 48 in trans-ancestry meta-analysis. Many results replicated in the FinnGen sample. Several GWS variants associate to alterations in gene expression in the macula. ERM showed significant genetic correlation to multiple traits. Pathway enrichment analyses implicated collagen and collagen-adjacent mechanisms, among others. This well-powered ERM GWAS identified novel genetic associations that point to biological mechanisms for ERM.
Collapse
Affiliation(s)
- Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT, USA; Departments of Genetics and Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Marco Galimberti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Kelly Harrington
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Keyrun Adhikari
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Priya Gupta
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - J Michael Gaziano
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Medicine, Divisions of Aging and Preventative Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dean Eliott
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Murray B Stein
- University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
40
|
Kowalec K, Harder A, Dolovich C, Fitzgerald KC, Salter A, Lu Y, Bernstein CN, Bolton JM, Cutter G, Fisk JD, Gelernter J, Graff LA, Hägg S, Hitchon CA, Levey DF, Lublin FD, McKay KA, Patten S, Patki A, Stein MB, Tiwari HK, Wolinsky JS, Marrie RA. Polygenic liability for anxiety in association with comorbid anxiety in multiple sclerosis. Ann Clin Transl Neurol 2024; 11:1393-1404. [PMID: 38715244 PMCID: PMC11187942 DOI: 10.1002/acn3.52025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/03/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Comorbid anxiety occurs often in MS and is associated with disability progression. Polygenic scores offer a possible means of anxiety risk prediction but often have not been validated outside the original discovery population. We aimed to investigate the association between the Generalized Anxiety Disorder 2-item scale polygenic score with anxiety in MS. METHODS Using a case-control design, participants from Canadian, UK Biobank, and United States cohorts were grouped into cases (MS/comorbid anxiety) or controls (MS/no anxiety, anxiety/no immune disease or healthy). We used multiple anxiety measures: current symptoms, lifetime interview-diagnosed, and lifetime self-report physician-diagnosed. The polygenic score was computed for current anxiety symptoms using summary statistics from a previous genome-wide association study and was tested using regression. RESULTS A total of 71,343 individuals of European genetic ancestry were used: Canada (n = 334; 212 MS), UK Biobank (n = 70,431; 1,390 MS), and the USA (n = 578 MS). Meta-analyses identified that in MS, each 1-SD increase in the polygenic score was associated with ~50% increased odds of comorbid moderate anxious symptoms compared to those with less than moderate anxious symptoms (OR: 1.47, 95% CI: 1.09-1.99). We found a similar direction of effects in the other measures. MS had a similar anxiety genetic burden compared to people with anxiety as the index disease. INTERPRETATION Higher genetic burden for anxiety was associated with significantly increased odds of moderate anxious symptoms in MS of European genetic ancestry which did not differ from those with anxiety and no comorbid immune disease. This study suggests a genetic basis for anxiety in MS.
Collapse
Affiliation(s)
- Kaarina Kowalec
- Rady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetSolnaSweden
| | - Arvid Harder
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetSolnaSweden
| | - Casandra Dolovich
- Department of Internal MedicineMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
| | | | - Amber Salter
- Department of NeurologyUT SouthwesternDallasTexasUSA
| | - Yi Lu
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetSolnaSweden
| | - Charles N. Bernstein
- Department of Internal MedicineMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
| | - James M. Bolton
- Department of PsychiatryMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
| | - Gary Cutter
- Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John D. Fisk
- Nova Scotia Health and Departments of Psychiatry, Psychology & Neuroscience, and MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| | - Joel Gelernter
- Department of PsychiatryYale University, School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryVA Connecticut Healthcare SystemNew HavenConnecticutUSA
| | - Lesley A. Graff
- Department of Clinical Health PsychologyMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
| | - Sara Hägg
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetSolnaSweden
| | - Carol A. Hitchon
- Department of RheumatologyMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
| | - Daniel F. Levey
- Department of PsychiatryYale University, School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryVA Connecticut Healthcare SystemNew HavenConnecticutUSA
| | - Fred D. Lublin
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kyla A. McKay
- Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
| | - Scott Patten
- Department of Community Health SciencesCumming School of Medicine, University of CalgaryCalgaryCanada
| | - Amit Patki
- Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Murray B. Stein
- Department of PsychiatryMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hemant K. Tiwari
- Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jerry S. Wolinsky
- Department of NeurologyMcGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth)HoustonTexasUSA
| | - Ruth A. Marrie
- Department of Internal MedicineMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
- Department of Community Health SciencesMax Rady College of Medicine, Rady Faculty of Health Sciences, University of ManitobaWinnipegCanada
| |
Collapse
|
41
|
Thapaliya B, Ray B, Farahdel B, Suresh P, Sapkota R, Holla B, Mahadevan J, Chen J, Vaidya N, Perrone-Bizzozero NI, Benegal V, Schumann G, Calhoun VD, Liu J. Cross-continental environmental and genome-wide association study on children and adolescent anxiety and depression. Front Psychiatry 2024; 15:1384298. [PMID: 38827440 PMCID: PMC11141390 DOI: 10.3389/fpsyt.2024.1384298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024] Open
Abstract
Anxiety and depression in children and adolescents warrant special attention as a public health concern given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study aimed to understand how environmental factors and genomics affect children and adolescents anxiety and depression across three cohorts: Adolescent Brain and Cognitive Development Study (US, age of 9-10; N=11,875), Consortium on Vulnerability to Externalizing Disorders and Addictions (INDIA, age of 6-17; N=4,326) and IMAGEN (EUROPE, age of 14; N=1888). We performed data harmonization and identified the environmental impact on anxiety/depression using a linear mixed-effect model, recursive feature elimination regression, and the LASSO regression model. Subsequently, genome-wide association analyses with consideration of significant environmental factors were performed for all three cohorts by mega-analysis and meta-analysis, followed by functional annotations. The results showed that multiple environmental factors contributed to the risk of anxiety and depression during development, where early life stress and school support index had the most significant and consistent impact across all three cohorts. In both meta, and mega-analysis, SNP rs79878474 in chr11p15 emerged as a particularly promising candidate associated with anxiety and depression, despite not reaching genomic significance. Gene set analysis on the common genes mapped from top promising SNPs of both meta and mega analyses found significant enrichment in regions of chr11p15 and chr3q26, in the function of potassium channels and insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by the KCNC1, KCNJ11, and ABCCC8 genes respectively, in chr11p15. Tissue enrichment analysis showed significant enrichment in the small intestine, and a trend of enrichment in the cerebellum. Our findings provide evidences of consistent environmental impact from early life stress and school support index on anxiety and depression during development and also highlight the genetic association between mutations in potassium channels, which support the stress-depression connection via hypothalamic-pituitary-adrenal axis, along with the potential modulating role of potassium channels.
Collapse
Affiliation(s)
- Bishal Thapaliya
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Bhaskar Ray
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Britny Farahdel
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Pranav Suresh
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Ram Sapkota
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Bharath Holla
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jayant Mahadevan
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Nilakshi Vaidya
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Vivek Benegal
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
42
|
Khan Y, Davis CN, Jinwala Z, Feuer KL, Toikumo S, Hartwell EE, Sanchez-Roige S, Peterson RE, Hatoum AS, Kranzler HR, Kember RL. Combining Transdiagnostic and Disorder-Level GWAS Enhances Precision of Psychiatric Genetic Risk Profiles in a Multi-Ancestry Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307111. [PMID: 38766259 PMCID: PMC11100926 DOI: 10.1101/2024.05.09.24307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The etiology of substance use disorders (SUDs) and psychiatric disorders reflects a combination of both transdiagnostic (i.e., common) and disorder-level (i.e., independent) genetic risk factors. We applied genomic structural equation modeling to examine these genetic factors across SUDs, psychotic, mood, and anxiety disorders using genome-wide association studies (GWAS) of European- (EUR) and African-ancestry (AFR) individuals. In EUR individuals, transdiagnostic genetic factors represented SUDs (143 lead single nucleotide polymorphisms [SNPs]), psychotic (162 lead SNPs), and mood/anxiety disorders (112 lead SNPs). We identified two novel SNPs for mood/anxiety disorders that have probable regulatory roles on FOXP1, NECTIN3, and BTLA genes. In AFR individuals, genetic factors represented SUDs (1 lead SNP) and psychiatric disorders (no significant SNPs). The SUD factor lead SNP, although previously significant in EUR- and cross-ancestry GWAS, is a novel finding in AFR individuals. Shared genetic variance accounted for overlap between SUDs and their psychiatric comorbidities, with second-order GWAS identifying up to 12 SNPs not significantly associated with either first-order factor in EUR individuals. Finally, common and independent genetic effects showed different associations with psychiatric, sociodemographic, and medical phenotypes. For example, the independent components of schizophrenia and bipolar disorder had distinct associations with affective and risk-taking behaviors, and phenome-wide association studies identified medical conditions associated with tobacco use disorder independent of the broader SUDs factor. Thus, combining transdiagnostic and disorder-level genetic approaches can improve our understanding of co-occurring conditions and increase the specificity of genetic discovery, which is critical for psychiatric disorders that demonstrate considerable symptom and etiological overlap.
Collapse
Affiliation(s)
- Yousef Khan
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christal N. Davis
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kyra L. Feuer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Sylvanus Toikumo
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Emily E. Hartwell
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, United States
- Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roseann E. Peterson
- Institute for Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Alexander S. Hatoum
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Rachel L. Kember
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| |
Collapse
|
43
|
Cabrera-Mendoza B, Wendt FR, Pathak GA, Yengo L, Polimanti R. The impact of assortative mating, participation bias and socioeconomic status on the polygenic risk of behavioural and psychiatric traits. Nat Hum Behav 2024; 8:976-987. [PMID: 38366106 PMCID: PMC11161911 DOI: 10.1038/s41562-024-01828-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/15/2024] [Indexed: 02/18/2024]
Abstract
To investigate assortative mating (AM), participation bias and socioeconomic status (SES) with respect to the genetics of behavioural and psychiatric traits, we estimated AM signatures using gametic phase disequilibrium and within-spouses and within-siblings polygenic risk score correlation analyses, also performing a SES conditional analysis. The cross-method meta-analysis identified AM genetic signatures for multiple alcohol-related phenotypes, bipolar disorder, major depressive disorder, schizophrenia and Tourette syndrome. Here, after SES conditioning, we observed changes in the AM genetic signatures for maximum habitual alcohol intake, frequency of drinking alcohol and Tourette syndrome. We also observed significant gametic phase disequilibrium differences between UK Biobank mental health questionnaire responders versus non-responders for major depressive disorder and alcohol use disorder. These results highlight the impact of AM, participation bias and SES on the polygenic risk of behavioural and psychiatric traits, particularly in alcohol-related traits.
Collapse
Affiliation(s)
- Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA CT Healthcare System, West Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
44
|
Clair KS, Bean-Mayberry B, Schweizer CA, Chanfreau C, Jackson L, Than CT, Finley EP, Hamilton A, Farmer MM. Factors Associated with Delayed Care Among Women Veterans Actively Engaged in Primary Care. J Womens Health (Larchmt) 2024; 33:604-612. [PMID: 38386795 DOI: 10.1089/jwh.2023.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background: Delaying needed medical care contributes to greater health risks and higher long-term medical costs. Women Veterans with complex medical and mental health needs face increased barriers to timely care access. Objectives: In a sample of women Veterans with recent engagement in Veterans Administration (VA) primary care, we aimed to compare characteristics of women Veterans who delayed care in the past 6 months with those who did not and examine factors associated with self-reported delayed care. Our study aims to inform interventions focused on eliminating health care access disparities among women Veterans. Materials and Methods: An innovation to improve women Veterans' engagement and retention in evidence-based health care for cardiovascular (CV) risk reduction (CV Toolkit) was implemented across five primary care sites within the VA. Women Veterans who were exposed to at least one CV Toolkit component participated in a mailed survey (n = 253). We used multivariate logistic regression to model factors associated with delaying care, including trust in VA providers, positive mental health screening (i.e., positive screen for either depression or anxiety), traumatic experience, self-rated health, and age. Results: Women with any mental health symptoms (odds ratio [OR] 2.42, 95% confidence interval [CI]: 1.23-4.74) and women who had experienced a traumatic event (OR 2.61, 95%CI: 1.11-6.14) were significantly more likely to report delaying care. Conclusions: Our study identified high rates of delayed care-over one-third of respondents-among women Veterans with recent primary care engagement. Mental health symptoms were the most common reported reason for delay among those who delayed care. Clinical Trial registration: NCT02991534.
Collapse
Affiliation(s)
- Kimberly S Clair
- VA Health Service Research and Development, Center for the Study of Healthcare Innovation, Implementation, and Policy (CSHIIP), VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Bevanne Bean-Mayberry
- VA Health Service Research and Development, Center for the Study of Healthcare Innovation, Implementation, and Policy (CSHIIP), VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - C Amanda Schweizer
- VA Health Service Research and Development, Center for the Study of Healthcare Innovation, Implementation, and Policy (CSHIIP), VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Catherine Chanfreau
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - LaShawnta Jackson
- VA Health Service Research and Development, Center for the Study of Healthcare Innovation, Implementation, and Policy (CSHIIP), VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Claire T Than
- VA Health Service Research and Development, Center for the Study of Healthcare Innovation, Implementation, and Policy (CSHIIP), VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Erin P Finley
- VA Health Service Research and Development, Center for the Study of Healthcare Innovation, Implementation, and Policy (CSHIIP), VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Alison Hamilton
- VA Health Service Research and Development, Center for the Study of Healthcare Innovation, Implementation, and Policy (CSHIIP), VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, USA
| | - Melissa M Farmer
- VA Health Service Research and Development, Center for the Study of Healthcare Innovation, Implementation, and Policy (CSHIIP), VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
45
|
Kocevska D, Trajanoska K, Mulder RH, Koopman-Verhoeff ME, Luik AI, Tiemeier H, van Someren EJW. Are some children genetically predisposed to poor sleep? A polygenic risk study in the general population. J Child Psychol Psychiatry 2024; 65:710-719. [PMID: 37936537 DOI: 10.1111/jcpp.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Twin studies show moderate heritability of sleep traits: 40% for insomnia symptoms and 46% for sleep duration. Genome-wide association studies (GWAS) have identified genetic variants involved in insomnia and sleep duration in adults, but it is unknown whether these variants affect sleep during early development. We assessed whether polygenic risk scores for insomnia (PRS-I) and sleep duration (PRS-SD) affect sleep throughout early childhood to adolescence. METHODS We included 2,458 children of European ancestry (51% girls). Insomnia-related items of the Child Behavior Checklist were reported by mothers at child's age 1.5, 3, and 6 years. At 10-15 years, the Sleep Disturbance Scale for Children and actigraphy were assessed in a subsample (N = 975). Standardized PRS-I and PRS-SD (higher scores indicate genetic susceptibility for insomnia and longer sleep duration, respectively) were computed at multiple p-value thresholds based on largest GWAS to date. RESULTS Children with higher PRS-I had more insomnia-related sleep problems between 1.5 and 15 years (BPRS-I < 0.001 = .09, 95% CI: 0.05; 0.14). PRS-SD was not associated with mother-reported sleep problems. A higher PRS-SD was in turn associated with longer actigraphically estimated sleep duration (BPRS-SD < 5e08 = .05, 95% CI: 0.001; 0.09) and more wake after sleep onset (BPRS-SD < 0.005 = .25, 95% CI: 0.04; 0.47) at 10-15 years, but these associations did not survive multiple testing correction. CONCLUSIONS Children who are genetically predisposed to insomnia have more insomnia-like sleep problems, whereas those who are genetically predisposed to longer sleep have longer sleep duration, but are also more awake during the night in adolescence. This indicates that polygenic risk for sleep traits, based on GWAS in adults, affects sleep already in children.
Collapse
Affiliation(s)
- Desana Kocevska
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Generation R Study, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Generation R Study, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Elisabeth Koopman-Verhoeff
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Generation R Study, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annemarie I Luik
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- The Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Eus J W van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Asgel Z, Kouakou MR, Koller D, Pathak GA, Cabrera-Mendoza B, Polimanti R. Unraveling COVID-19 relationship with anxiety disorders and symptoms using genome-wide data. J Affect Disord 2024; 352:333-341. [PMID: 38382819 PMCID: PMC10939738 DOI: 10.1016/j.jad.2024.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND There is still a limited understanding of the dynamics contributing to the comorbidity of COVID-19 and anxiety outcomes. METHODS To dissect the pleiotropic mechanisms contributing to COVID-19/anxiety comorbidity, we used genome-wide data from UK Biobank (up to 420,531 participants), FinnGen Project (up to 329,077 participants), Million Veteran Program (175,163 participants), and COVID-19 Host Genetics Initiative (up to 122,616 cases and 2,475,240 controls). Specifically, we assessed global and local genetic correlation and genetically inferred effects linking COVID-19 outcomes (infection, hospitalization, and severe respiratory symptoms) to anxiety disorders and symptoms. RESULTS We observed a strong genetic correlation of anxiety disorder with COVID-19 positive status (rg = 0.35, p = 2×10-4) and COVID-19 hospitalization (rg = 0.31, p = 7.2×10-4). Among anxiety symptoms, "Tense, sore, or aching muscles during worst period of anxiety" was genetically correlated with COVID-19 positive status (rg = 0.33, p = 0.001), while "Frequent trouble falling or staying asleep during worst period of anxiety" was genetically correlated with COVID-19 hospitalization (rg = 0.24, p = 0.004). Through a latent causal variable analysis, we observed that COVID-19 outcomes have statistically significant genetic causality proportion (gcp) on anxiety symptoms (e.g., COVID-19 positive status→"Recent easy annoyance or irritability" │gcp│ = 0.18, p = 6.72×10-17). Conversely, anxiety disorders appear to have a possible causal effect on COVID-19 (│gcp│ = 0.38, p = 3.17×10-9). Additionally, we also identified multiple loci with evidence of local genetic correlation between anxiety and COVID-19. These appear to be related to genetic effects shared with lung function, brain morphology, alcohol and tobacco use, and hematologic parameters. CONCLUSIONS This study provided insights into the pleiotropic mechanisms linking COVID-19 and anxiety outcomes, suggesting differences between dynamics related to anxiety disorders and those related to anxiety symptoms.
Collapse
Affiliation(s)
- Zeynep Asgel
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Manuela R Kouakou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Dora Koller
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
47
|
Zanoaga MD, Friligkou E, He J, Pathak GA, Koller D, Cabrera-Mendoza B, Stein MB, Polimanti R. Brainwide Mendelian Randomization Study of Anxiety Disorders and Symptoms. Biol Psychiatry 2024; 95:810-817. [PMID: 37967698 PMCID: PMC10978301 DOI: 10.1016/j.biopsych.2023.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND To gain insights into the role of brain structure and function on anxiety (ANX), we conducted a genetically informed investigation leveraging information from ANX genome-wide association studies available from the UK Biobank (n = 380,379), the FinnGen Program (n = 290,361), and the Million Veteran Program (n = 175,163) together with UK Biobank genome-wide data (n = 33,224) related to 3935 brain imaging-derived phenotypes (IDPs). METHODS A genetic correlation analysis between ANX and brain IDPs was performed using linkage disequilibrium score regression. To investigate ANX-brain associations, a 2-sample Mendelian randomization was performed considering multiple methods and sensitivity analyses. A subsequent multivariable Mendelian randomization was conducted to distinguish between direct and indirect effects. Finally, a generalized linear model was used to explore the associations of brain IDPs with ANX symptoms. RESULTS After false discovery rate correction (q < .05), we identified 41 brain IDPs genetically correlated with ANX without heterogeneity among the datasets investigated (i.e., UK Biobank, FinnGen, and Million Veteran Program). Six of these IDPs showed genetically inferred causal effects on ANX. In the subsequent multivariable Mendelian randomization analysis, reduced area of the right posterior middle cingulate gyrus (β = -0.09, p = 8.01 × 10-4) and reduced gray matter volume of the right anterior superior temporal gyrus (β = -0.09, p = 1.55 × 10-3) had direct effects on ANX. In the ANX symptom-level analysis, the right posterior middle cingulate gyrus was negatively associated with "tense, sore, or aching muscles during the worst period of anxiety" (β = -0.13, p = 8.26 × 10-6). CONCLUSIONS This study identified genetically inferred effects that are generalizable across large cohorts, thereby contributing to our understanding of how changes in brain structure and function can lead to ANX.
Collapse
Affiliation(s)
- Mihaela-Diana Zanoaga
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Eleni Friligkou
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jun He
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Dora Koller
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, California; Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California; Veteran Affairs San Diego Healthcare System, San Diego, California
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
48
|
Tesfaye M, Jaholkowski P, Shadrin AA, van der Meer D, Hindley GF, Holen B, Parker N, Parekh P, Birkenæs V, Rahman Z, Bahrami S, Kutrolli G, Frei O, Djurovic S, Dale AM, Smeland OB, O’Connell KS, Andreassen OA. Identification of Novel Genomic Loci for Anxiety and Extensive Genetic Overlap with Psychiatric Disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.01.23294920. [PMID: 37693403 PMCID: PMC10491354 DOI: 10.1101/2023.09.01.23294920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Anxiety disorders are prevalent and anxiety symptoms co-occur with many psychiatric disorders. We aimed to identify genomic risk loci associated with anxiety, characterize its genetic architecture, and genetic overlap with psychiatric disorders. Methods We used the GWAS of anxiety symptoms, schizophrenia, bipolar disorder, major depression, and attention deficit hyperactivity disorder (ADHD). We employed MiXeR and LAVA to characterize the genetic architecture and genetic overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of genomic loci associated with anxiety and those shared with psychiatric disorders. Gene annotation and gene set analyses were conducted using OpenTargets and FUMA, respectively. Results Anxiety was polygenic with 12.9k estimated genetic risk variants and overlapped extensively with psychiatric disorders (4.1-11.4k variants). MiXeR and LAVA revealed predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 114 novel loci for anxiety by conditioning on the psychiatric disorders. We also identified loci shared between anxiety and major depression (n = 47), bipolar disorder (n = 33), schizophrenia (n = 71), and ADHD (n = 20). Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways and differential tissue expression in more diverse tissues than those annotated to the shared loci. Conclusions Anxiety is a highly polygenic phenotype with extensive genetic overlap with psychiatric disorders. These genetic overlaps enabled the identification of novel loci for anxiety. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified genetic loci implicate molecular pathways that may lead to potential drug targets.
Collapse
Affiliation(s)
- Markos Tesfaye
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A. Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F.L. Hindley
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Børge Holen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pravesh Parekh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Viktoria Birkenæs
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Zillur Rahman
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gleda Kutrolli
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Clinical Science, University of Bergen, Bergen, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Olav B. Smeland
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S. O’Connell
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
49
|
Davis C, Khan Y, Toikumo S, Jinwala Z, Boomsma D, Levey D, Gelernter J, Kember R, Kranzler H. A Multivariate Genome-Wide Association Study Reveals Neural Correlates and Common Biological Mechanisms of Psychopathology Spectra. RESEARCH SQUARE 2024:rs.3.rs-4228593. [PMID: 38659902 PMCID: PMC11042423 DOI: 10.21203/rs.3.rs-4228593/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
There is considerable comorbidity across externalizing and internalizing behavior dimensions of psychopathology. We applied genomic structural equation modeling (gSEM) to genome-wide association study (GWAS) summary statistics to evaluate the factor structure of externalizing and internalizing psychopathology across 16 traits and disorders among European-ancestry individuals (n's = 16,400 to 1,074,629). We conducted GWAS on factors derived from well-fitting models. Downstream analyses served to identify biological mechanisms, explore drug repurposing targets, estimate genetic overlap between the externalizing and internalizing spectra, and evaluate causal effects of psychopathology liability on physical health. Both a correlated factors model, comprising two factors of externalizing and internalizing risk, and a higher-order single-factor model of genetic effects contributing to both spectra demonstrated acceptable t. GWAS identified 409 lead single nucleotide polymorphisms (SNPs) associated with externalizing and 85 lead SNPs associated with internalizing, while the second-order GWAS identified 256 lead SNPs contributing to broad psychopathology risk. In bivariate causal mixture models, nearly all externalizing and internalizing causal variants overlapped, despite a genetic correlation of only 0.37 (SE = 0.02) between them. Externalizing genes showed cell-type specific expression in GABAergic, cortical, and hippocampal neurons, and internalizing genes were associated with reduced subcallosal cortical volume, providing insight into the neurobiological underpinnings of psychopathology. Genetic liability for externalizing, internalizing, and broad psychopathology exerted causal effects on pain, general health, cardiovascular diseases, and chronic illnesses. These findings underscore the complex genetic architecture of psychopathology, identify potential biological pathways for the externalizing and internalizing spectra, and highlight the physical health burden of psychiatric comorbidity.
Collapse
Affiliation(s)
| | - Yousef Khan
- University of Pennsylvania Perelman School of Medicine
| | | | - Zeal Jinwala
- University of Pennsylvania Perelman School of Medicine
| | - D Boomsma
- Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Tissink EP, Shadrin AA, van der Meer D, Parker N, Hindley G, Roelfs D, Frei O, Fan CC, Nagel M, Nærland T, Budisteanu M, Djurovic S, Westlye LT, van den Heuvel MP, Posthuma D, Kaufmann T, Dale AM, Andreassen OA. Abundant pleiotropy across neuroimaging modalities identified through a multivariate genome-wide association study. Nat Commun 2024; 15:2655. [PMID: 38531894 DOI: 10.1038/s41467-024-46817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Genetic pleiotropy is abundant across spatially distributed brain characteristics derived from one neuroimaging modality (e.g. structural, functional or diffusion magnetic resonance imaging [MRI]). A better understanding of pleiotropy across modalities could inform us on the integration of brain function, micro- and macrostructure. Here we show extensive genetic overlap across neuroimaging modalities at a locus and gene level in the UK Biobank (N = 34,029) and ABCD Study (N = 8607). When jointly analysing phenotypes derived from structural, functional and diffusion MRI in a genome-wide association study (GWAS) with the Multivariate Omnibus Statistical Test (MOSTest), we boost the discovery of loci and genes beyond previously identified effects for each modality individually. Cross-modality genes are involved in fundamental biological processes and predominantly expressed during prenatal brain development. We additionally boost prediction of psychiatric disorders by conditioning independent GWAS on our multimodal multivariate GWAS. These findings shed light on the shared genetic mechanisms underlying variation in brain morphology, functional connectivity, and tissue composition.
Collapse
Affiliation(s)
- E P Tissink
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands.
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - A A Shadrin
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - D van der Meer
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - N Parker
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - G Hindley
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, 16 De Crespigny Park, London, SE5 8AB, United Kingdom
| | - D Roelfs
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - O Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - C C Fan
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92037, USA
| | - M Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - T Nærland
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
| | - M Budisteanu
- Prof. Dr. Alex Obregia Clinical Hospital of Psychiatry, Bucharest, Romania
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - S Djurovic
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - L T Westlye
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - M P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - D Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - T Kaufmann
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - A M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - O A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway.
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway.
| |
Collapse
|