1
|
Mohamed MK, Abdelrahman MA, Abdel-Razik ARH, Elheeny AAH. Histological and radiographic assessment of the regenerative potential of sodium hexametaphosphate (SHMP) as a novel direct pulp capping material in an animal model. BMC Oral Health 2025; 25:12. [PMID: 39754103 PMCID: PMC11697941 DOI: 10.1186/s12903-024-05297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND This study aimed to assess the histological and radiographic effects of sodium hexametaphosphate (SHMP) as a direct pulp capping (DPC) agent in immature permanent dog premolars. METHODS A split-mouth design was employed with three healthy 4-month-old Mongrel dogs, each having 36 premolars. The premolars were randomly assigned to either SHMP or MTA. The specimens were stained with hematoxylin and eosin (H&E) and Masson's trichrome, and histologically examined three months after the animals were sacrificed. To assess root maturity, radiographic changes in root length (RL), root surface area (RSA), and apical foramen width (AFW) were measured at baseline and after 3 months. Quantitative data were analyzed using the paired-sample t-test, while the qualitative data based on Stanley's histological scoring system were tested using the Monte Carlo exact test. The level of significance was set at 5%. RESULTS Histological findings showed no significant differences between the two groups, except for the average thickness of the predentin and odontoblastic layers, which was significantly higher in the SHMP specimens (P < 0.0001). The frequencies of fully calcified dentin bridges and regularly arranged dentinal tubules were significantly higher in the SHMP specimens (P < 0.05). Both materials showed comparable radiographic measurements (P > 0.05), except for the change in RL, which was significantly longer in the SHMP group (P < 0.05). CONCLUSIONS There were no significant differences between SHMP and MTA in some respects. Histological evaluation showed that SHMP provided better bioinductive and biocompatible properties compared to MTA. Radiographically, both materials showed comparable root maturogenesis outcomes, except for the significant increase in RL in the SHMP group. SHMP may be a suitable alternative material for DPC in the treatment of immature permanent teeth.
Collapse
Affiliation(s)
- Mostafa Kamel Mohamed
- Paediatric and Community Dentistry, Faculty of Dentistry, Minia University, Ard Shalaby, El Minia, 61519, Egypt
| | | | | | - Ahmad Abdel Hamid Elheeny
- Paediatric and Community Dentistry, Faculty of Dentistry, Minia University, Ard Shalaby, El Minia, 61519, Egypt.
- Paediatric and Community Dentistry, Faculty of Dentistry, Sphinx University, Asyut, Egypt.
| |
Collapse
|
2
|
Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F. Comparison between hydroxyapatite and polycaprolactone in inducing osteogenic differentiation and augmenting maxillary bone regeneration in rats. PeerJ 2022; 10:e13356. [PMID: 35529494 PMCID: PMC9070322 DOI: 10.7717/peerj.13356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration. Method In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation. Results MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p < 0.05) high levels of ALP activity with prolonged osteoblast induction. Micro-CT and H&E analyses confirmed the in vitro results with bone formation were significantly (p < 0.05) greater in HA scaffold and was supported by IHC analysis which confirmed stronger expression of osteogenic markers ALP and osteocalcin. Conclusion Different scaffold materials of HA and PCL might have influenced the bone regeneration ability of MC3T3-E1. Regardless, in vitro and in vivo bone regeneration was better in the HA scaffold which indicates its great potential for application in bone regeneration.
Collapse
Affiliation(s)
- Nur Atmaliya Luchman
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostic and Bioscience, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Suess PM. Effects of Polyphosphate on Leukocyte Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:131-143. [PMID: 35697939 DOI: 10.1007/978-3-031-01237-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leukocytes are immune cells derived from hematopoietic stem cells of the bone marrow which play essential roles in inflammatory and immune responses. In contrast to anucleate platelets and erythrocytes, leukocytes are differentiated from other blood cells by the presence of a nucleus, and consist of monocytes, neutrophils, lymphocytes, basophils, and eosinophils. Factors released from platelets mediate immune responses in part by recruitment and regulation of leukocyte activity. Platelet dense granules contain the highly anionic polymer polyphosphate (polyP) with monomer chain lengths of approximately 60-100 phosphates long, which are released into the microenvironment upon platelet activation. Recent studies suggest that polyP released from platelets plays roles in leukocyte migration, recruitment, accumulation, differentiation, and activation. Furthermore, bacterial-derived polyphosphate, generally consisting of phosphate monomer lengths in the hundreds to thousands, appear to play a role in pathogenic evasion of the host immune response. This review will discuss the effects of host and pathogenic-derived polyphosphate on leukocyte function.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Wang X, Gawri R, Lei C, Lee J, Sowa G, Kandel R, Vo N. Inorganic polyphosphates stimulates matrix production in human annulus fibrosus cells. JOR Spine 2021; 4:e1143. [PMID: 34337332 PMCID: PMC8313173 DOI: 10.1002/jsp2.1143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/20/2021] [Accepted: 02/13/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Ubiquitously found in all life forms, inorganic polyphosphates (polyP) are linear polymers of repeated orthophosphate units. Present in intervertebral disc tissue, polyP was previously shown to increase extracellular matrix production in nucleus pulposus (NP) cells. However, the effects of polyP on human annulus fibrosus (hAF) cell metabolism is not known. METHODS AND RESULTS Here, hAF cells cultured in the presence of 0.5 to 1 mM polyP, chain length 22 (polyP-22), showed an increase in glycosaminoglycan content, proteoglycan and collagen synthesis, and aggrecan and collagen type 1 gene expression. Gene expression level of matrix metalloproteinases 1 was reduced while matrix metalloproteinases 3 level was increased in hAF cells treated with 1 mM polyP. Adenosine triphosphate (ATP) synthesis was also significantly increased in hAF cell culture 72 hours after the exposure to 1 mM polyP-22. CONCLUSIONS PolyP thus has both anabolic and bioenergetic effects in AF cells, similar to that observed in NP cells. Together, these results suggest polyP as a potential energy source and a metabolic regulator of disc cells.
Collapse
Affiliation(s)
- Xiangjiang Wang
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Department of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Rahul Gawri
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Pathology and Laboratory MedicineMount Sinai HospitalTorontoCanada
- Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Changbin Lei
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryAffiliated Hospital of Xiangnan UniversityChenzhouChina
- Department of Clinical Medical Research CenterAffiliated Hospital of Xiangnan UniversityChenzhouChina
| | - Joon Lee
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gwendolyn Sowa
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rita Kandel
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Pathology and Laboratory MedicineMount Sinai HospitalTorontoCanada
- Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
| | - Nam Vo
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost 2020; 18:3043-3052. [PMID: 32808449 PMCID: PMC7719587 DOI: 10.1111/jth.15066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelets secrete many pro-wound healing molecules such as growth factors and cytokines. We found that releasates from activated human platelets induced the differentiation of cultured murine and human fibroblasts into a myofibroblast phenotype. Surprisingly, most of this differentiation-inducing activity was heat-stable, suggesting it was not due to the protein component of the releasates. Inorganic polyphosphate is a major constituent of platelet-dense granules and promotes blood coagulation and inflammation. OBJECTIVES We aim to investigate the contribution of polyphosphate on myofibroblast differentiating activity of platelet releasates. METHODS Using NIH-3T3 cells and primary human fibroblasts, we examined the effect of human platelet releasates and chemically synthesized polyphosphate on fibroblast differentiation and migration. RESULTS We found that the myofibroblast-inducing activity of platelet releasates was severely attenuated after incubation with a polyphosphate-degrading enzyme, and that fibroblasts responded to platelet-sized polyphosphate by increased levels of α-smooth muscle actin, stress fibers, and collagen. Furthermore, fibroblasts were chemotactic toward polyphosphate. CONCLUSIONS These findings indicate that platelet-derived polyphosphate acts as a cell signaling molecule by inducing murine and human fibroblasts to differentiate into myofibroblasts, a cell type known to drive both wound healing and fibrosing diseases. Polyphosphate therefore not only promotes early wound responses through enhancing fibrin clot formation, but also may play roles in the later stages of wound healing, and, potentially, progression of fibrotic diseases, by recruiting fibroblasts and inducing their differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Patrick M. Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
7
|
Gibson I, Momeni A, Filiaggi M. Minocycline-loaded calcium polyphosphate glass microspheres as a potential drug-delivery agent for the treatment of periodontitis. J Appl Biomater Funct Mater 2020; 17:2280800019863637. [PMID: 31452442 DOI: 10.1177/2280800019863637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Periodontitis is an inflammatory disease with a bacterial etiology that affects the supporting structures of the teeth and is a major cause of tooth loss. The objective of this study was to investigate the drug loading and in vitro release of minocycline from novel calcium polyphosphate microspheres intended for use in treating periodontitis. Methods: Calcium polyphosphate coacervate, produced by a precipitation reaction of calcium chloride and sodium polyphosphate solutions, was loaded with minocycline and subsequently used to produce microspheres by an emulsion/solvent extraction technique. Microspheres classified by size were subjected to a 7-day elution in a Tris-buffer solution under dynamic conditions. The physicochemical characteristics of the drug-loaded microspheres were investigated using scanning electron microscopy, particle size analysis, Phosphorus-31 Nuclear Magnetic Resonance spectroscopy, and Inductively Coupled Plasma Optical Emission Spectroscopy. Drug loading and release were determined using ultraviolet -visible (UV/VIS) spectrophotometry. Results: Minocycline-loaded calcium polyphosphate microspheres of varying size were successfully produced, with small and large microspheres having volume mean diameters of 22 ± 1 µm and 193 ± 5 µm, respectively. Polyphosphate chain length and calcium to phosphorus mole ratio remained stable throughout microsphere production. Drug loading was 1.64 ± 0.16, 1.35 ± 0.55, and 0.84 ± 0.14 weight% for the coacervate and large and small microspheres, respectively, corresponding to mean encapsulation efficiencies of 81.7 ± 12.2 % and 50.9 ± 3.9 % for the large and small microspheres. Sustained drug release was observed in vitro over a clinically relevant 7-day period, with small and large microspheres exhibiting similar elution profiles. Antibiotic release generally followed microsphere degradation as measured by Ca and P ion release. Conclusions: This study demonstrated successful drug loading of calcium polyphosphate microspheres with minocycline. Furthermore, in vitro sustained release of minocycline over a 7-day period was observed, suggesting potential utility of this approach for treating periodontitis.
Collapse
Affiliation(s)
- Iain Gibson
- 1 Faculty of Dentistry, Dalhousie University, Halifax, Canada
| | - Arash Momeni
- 1 Faculty of Dentistry, Dalhousie University, Halifax, Canada
| | - Mark Filiaggi
- 1 Faculty of Dentistry, Dalhousie University, Halifax, Canada.,2 School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| |
Collapse
|
8
|
Phelipe Hatt L, Thompson K, Müller WEG, Stoddart MJ, Armiento AR. Calcium Polyphosphate Nanoparticles Act as an Effective Inorganic Phosphate Source during Osteogenic Differentiation of Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:5801. [PMID: 31752206 PMCID: PMC6887735 DOI: 10.3390/ijms20225801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
The ability of bone-marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to differentiate into osteoblasts makes them the ideal candidate for cell-based therapies targeting bone-diseases. Polyphosphate (polyP) is increasingly being studied as a potential inorganic source of phosphate for extracellular matrix mineralisation. The aim of this study is to investigate whether polyP can effectively be used as a phosphate source during the in vitro osteogenic differentiation of human BM-MSCs. Human BM-MSCs are cultivated under osteogenic conditions for 28 days with phosphate provided in the form of organic β-glycerolphosphate (BGP) or calcium-polyP nanoparticles (polyP-NP). Mineralisation is demonstrated using Alizarin red staining, cellular ATP content, and free phosphate levels are measured in both the cells and the medium. The effects of BGP or polyP-NP on alkaline phosphatase (ALP) activity and gene expression of a range of osteogenic-related markers are also assessed. PolyP-NP supplementation displays comparable effects to the classical BGP-containing osteogenic media in terms of mineralisation, ALP activity and expression of osteogenesis-associated genes. This study shows that polyP-NP act as an effective source of phosphate during mineralisation of BM-MSC. These results open new possibilities with BM-MSC-based approaches for bone repair to be achieved through doping of conventional biomaterials with polyP-NP.
Collapse
Affiliation(s)
- Luan Phelipe Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Werner E. G. Müller
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Martin James Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Angela Rita Armiento
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| |
Collapse
|
9
|
Li Y, Wang Y, Ran P, Yang P, Liu Z. IgE binding activities and in silico epitope prediction of Der f 32 in Dermatophagoides farinae. Immunol Lett 2019; 213:46-54. [PMID: 31381937 DOI: 10.1016/j.imlet.2019.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
Dermatophagoides farinae is a common indoor allergen source that produces more than 30 allergens, which induces diverse allergic diseases such as allergic rhinitis, allergic asthma and atopic dermatitis. Der f 32 is an inorganic pyrophosphatase and an important allergen from Dermatophagoides farinae. In the present study, Der f 32 was cloned, expressed and purified in order to better understand its structure and immunogenicity. Immunoblotting analysis and ELISA showed 5 of 5 positive reactions to recombinant Der f 32 using serum from house dust mite (HDM)-allergic patients. We constructed homology modeling and predicted epitopes of Der f 32 via bioinformatic tools. The sequence and structural analysis indicated that Der f 32 belonged to the pyrophosphatase family and represented a special structure of external α-helices and internal antiparallel closed β-sheets. In addition, eight B-cell epitopes and four T-cell epitopes were predicted. B-cell epitopes were 24-31, 111-121, 135-140, 168-172, 200-207, 214-220, 237-243, and 268-274 and T-cell epitopes were 47-55, 78-90, 127-135 and 143-151. The B-cell epitopes were distributed completely on the surface of Der f 32 and were located largely in random coils of secondary structures. Hydrophobic and charged amino acids comprised more than 80% of the residues of B-cell epitopes and may participate in IgE binding. The T-cell epitopes were located primarily in the interior of Der f 32 and, to a certain extent avoided degradation by proteases. The structures of T-cell epitopes were surrounded by B-cell epitopes, and this arrangement may have important biological significance for maintaining the immunogenicity of allergens.
Collapse
Affiliation(s)
- Yuwei Li
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518060, China; The Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical College, Guangzhou, 510006, China
| | - Yuwei Wang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, Guangzhou Medical College, Guangzhou, 510006, China
| | - Pingchang Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518060, China.
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518060, China; The Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China.
| |
Collapse
|
10
|
Progress and Applications of Polyphosphate in Bone and Cartilage Regeneration. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5141204. [PMID: 31346519 PMCID: PMC6620837 DOI: 10.1155/2019/5141204] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.
Collapse
|
11
|
Long-chain polyphosphate in osteoblast matrix vesicles: Enrichment and inhibition of mineralization. Biochim Biophys Acta Gen Subj 2018; 1863:199-209. [PMID: 30312769 DOI: 10.1016/j.bbagen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation. METHODS PolyP was quantified by 4',6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization. RESULTS PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation. CONCLUSION PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix. GENERAL SIGNIFICANCE PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.
Collapse
|
12
|
Bentley-DeSousa A, Downey M. From underlying chemistry to therapeutic potential: open questions in the new field of lysine polyphosphorylation. Curr Genet 2018; 65:57-64. [PMID: 29881919 DOI: 10.1007/s00294-018-0854-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Polyphosphorylation is a newly described non-enzymatic post-translational modification wherein long chains of inorganic phosphates are attached to lysine residues. The first targets of polyphosphorylation identified were S. cerevisiae proteins Nsr1 and Top1. Building on this theme, we recently exploited functional genomics tools in yeast to identify 15 new targets, including a conserved network of nucleolar proteins implicated in ribosome biogenesis. We also described the polyphosphorylation of six human proteins, suggesting that this unique post-translational modification could be conserved throughout eukaryotes. The study of polyphosphorylation seems poised to uncover novel modes of protein regulation in pathways spanning diverse biological processes. In this review, we establish a framework for future work by outlining critical questions related to the biochemistry of polyphosphorylation, its therapeutic potential, and everything in between.
Collapse
Affiliation(s)
- Amanda Bentley-DeSousa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, KIH 8M5, Canada.
| |
Collapse
|
13
|
Dhivya S, Keshav Narayan A, Logith Kumar R, Viji Chandran S, Vairamani M, Selvamurugan N. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif 2018; 51:e12408. [PMID: 29159895 PMCID: PMC6528860 DOI: 10.1111/cpr.12408] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Treatment of critical-sized bone defects with cells and biomaterials offers an efficient alternative to traditional bone grafts. Chitosan (CS) is a natural biopolymer that acts as a scaffold in bone tissue engineering (BTE). Polyphosphate (PolyP), recently identified as an inorganic polymer, acts as a potential bone morphogenetic material, whereas pigeonite (Pg) is a novel iron-containing ceramic. In this study, we prepared and characterized scaffolds containing CS, calcium polyphosphate (CaPP) and Pg particles for bone formation in vitro and in vivo. MATERIALS AND METHODS Chitosan/CaPP scaffolds and CS/CaPP scaffolds containing varied concentrations of Pg particles (0.25%, 0.5%, 0.75% and 1%) were prepared and characterized by SEM, XRD, EDAX, FT-IR, degradation, protein adsorption, mechanical strength and biomineralization studies. The cytocompatibility of these scaffolds with mouse mesenchymal stem cells (mMSCs, C3H10T1/2) was determined by MTT assay and fluorescence staining. Cell proliferation on scaffolds was assessed using MUSE™ (Merck-Millipore, Germany) cell analyser. The effect of scaffolds on osteoblast differentiation at the cellular level was evaluated by Alizarin red (AR) and alkaline phosphatase (ALP) staining. At the molecular level, the expression of osteoblast differentiation marker genes such as Runt-related transcription factor-2 (Runx2), ALP, type I collagen-1 (Col-I) and osteocalcin (OC) was determined by real-time reverse transcriptase (RT-PCR) analysis. Bone regeneration was assessed by X-ray radiographs, SEM and EDAX analyses, and histological staining such as haematoxylin and eosin staining and Masson's trichrome staining (MTS) in a rat critical-sized tibial defect model system. RESULTS The inclusion of iron-containing Pg particles at 0.25% concentration in CS/CaPP scaffolds showed enhanced bioactivity by protein adsorption and biomineralization, compared with that shown by CS/CaPP scaffolds alone. Increased proliferation of mMSCs was observed with CS/CaPP/Pg scaffolds compared with control and CS/CaPP scaffolds. Increase in cell proliferation was accompanied by G0/G1 to G2/M phase transition with increased levels of cyclin(s) A, B and C. Pg particles in CS/CaPP scaffolds enhanced osteoblast differentiation at the cellular and molecular levels, as evidenced by increased calcium deposits, ALP activity and expression of osteoblast marker genes. In vivo implantation of scaffolds in rat critical-sized tibial defects displayed accelerated bone formation after 8 weeks. CONCLUSION The current findings indicate that CS/CaPP scaffolds containing iron-containing Pg particles serve as an appropriate template to support proliferation and differentiation of MSCs to osteoblasts in vitro and bone formation in vivo and thus support their candidature for BTE applications.
Collapse
Affiliation(s)
- S. Dhivya
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - A. Keshav Narayan
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - R. Logith Kumar
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - S. Viji Chandran
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - M. Vairamani
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - N. Selvamurugan
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| |
Collapse
|
14
|
Ishikawa M, Matsuzawa A, Itohiya K, Nakamura Y. Phosphate Through the Sodium-Dependent Phosphate Cotransporters, Pit-1 and Pit-2 is the Key Factor of Periodontal Ligament Calcification. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Misao Ishikawa
- Department of Oral Anatomy, School of Dental Medicine, Tsurumi University
- Department of Orthodontics, School of Dental Medicine, Tsurumi University
| | - Ayami Matsuzawa
- Department of Oral Anatomy, School of Dental Medicine, Tsurumi University
| | - Kanako Itohiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University
| | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University
| |
Collapse
|
15
|
Bae WJ, Auh QS, Kim GT, Moon JH, Kim EC. Effects of sodium tri- and hexameta-phosphate in vitro osteoblastic differentiation in Periodontal Ligament and Osteoblasts, and in vivo bone regeneration. Differentiation 2016; 92:257-269. [DOI: 10.1016/j.diff.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/29/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023]
|
16
|
Zhou H, Hou S, Zhang M, Yang M, Deng L, Xiong X, Ni X. Deposition of calcium phosphate coatings using condensed phosphates (P 2 O 7 4− and P 3 O 10 5− ) as phosphate source through induction heating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:337-42. [DOI: 10.1016/j.msec.2016.06.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 12/23/2022]
|
17
|
Mikami Y, Tsuda H, Akiyama Y, Honda M, Shimizu N, Suzuki N, Komiyama K. Alkaline phosphatase determines polyphosphate-induced mineralization in a cell-type independent manner. J Bone Miner Metab 2016; 34:627-637. [PMID: 26475372 DOI: 10.1007/s00774-015-0719-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022]
Abstract
Polyphosphate [Poly(P)] has positive effects on osteoblast mineralization; however, the underlying mechanism remains unclear. In addition, it is unknown whether Poly(P) promotes mineralization in soft tissues. We investigated this by using various cells. Poly(P) concentrations of 1 and 0.5 mg/mL yielded high levels of mineralization in ROS17/2.8 osteoblast cells. Similarly, Poly(P) induced mineralization in cell types expressing alkaline phosphatase (ALP), namely, ATDC5 and MC3T3-E1, but not in CHO, C3H10T1/2, C2C12, and 3T3-L1 cells. Furthermore, forced expression of ALP caused Poly(P)-induced mineralization in CHO cells. These results suggest that ALP determines Poly(P)-induced mineralization in a cell-type independent manner.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yuko Akiyama
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
18
|
Lui ELH, Ao CKL, Li L, Khong ML, Tanner JA. Inorganic polyphosphate triggers upregulation of interleukin 11 in human osteoblast-like SaOS-2 cells. Biochem Biophys Res Commun 2016; 479:766-771. [PMID: 27693781 DOI: 10.1016/j.bbrc.2016.09.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023]
Abstract
Polyphosphate (polyP) is abundant in bone but its roles in signaling and control of gene expression remain unclear. Here, we investigate the effect of extracellular polyP on proliferation, migration, apoptosis, gene and protein expression in human osteoblast-like SaOS-2 cells. Extracellular polyP promoted SaOS-2 cell proliferation, increased rates of migration, inhibited apoptosis and stimulated the rapid phosphorylation of extracellular-signal-regulated kinase (ERK) directly through basic fibroblast growth factor receptor (bFGFR). cDNA microarray revealed that polyP induced significant upregulation of interleukin 11 (IL-11) at both RNA and protein levels.
Collapse
Affiliation(s)
- Eric Lik-Hang Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Carl Ka-Leong Ao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Lina Li
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Mei-Li Khong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Julian Alexander Tanner
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
19
|
Cui Y, Li Z, Wang L, Liu F, Yuan Y, Wang H, Xue L, Pan J, Chen G, Chen H, Yuan L. One-step synthesis of glycoprotein mimics in vitro: improvement of protein activity, stability and application in CPP hydrolysis. J Mater Chem B 2016; 4:5437-5445. [DOI: 10.1039/c6tb01251e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycoprotein mimics produced in vitro by one-step conjugation of glycopolymer and pyrophosphatase have improved bioactivity and stability for potential biomedical applications.
Collapse
|
20
|
Kulakovskaya TV, Lichko LP, Ryazanova LP. Diversity of phosphorus reserves in microorganisms. BIOCHEMISTRY (MOSCOW) 2015; 79:1602-14. [PMID: 25749167 DOI: 10.1134/s0006297914130100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphorus compounds are indispensable components of the Earth's biomass metabolized by all living organisms. Under excess of phosphorus compounds in the environment, microorganisms accumulate reserve phosphorus compounds that are used under phosphorus limitation. These compounds vary in their structure and also perform structural and regulatory functions in microbial cells. The most common phosphorus reserve in microorganism is inorganic polyphosphates, but in some archae and bacteria insoluble magnesium phosphate plays this role. Some yeasts produce phosphomannan as a phosphorus reserve. This review covers also other topics, i.e. accumulation of phosphorus reserves under nutrient limitation, phosphorus reserves in activated sludge, mycorrhiza, and the role of mineral phosphorus compounds in mammals.
Collapse
Affiliation(s)
- T V Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
21
|
Müller WEG, Tolba E, Schröder HC, Wang X. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration. Macromol Biosci 2015; 15:1182-1197. [DOI: 10.1002/mabi.201500100] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
- Biomaterials Department; Inorganic Chemical Industries Division; National Research Center; Doki Cairo; 11884 Egypt
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| |
Collapse
|
22
|
Ariganello MB, Omelon S, Variola F, Wazen RM, Moffatt P, Nanci A. Osteogenic cell cultures cannot utilize exogenous sources of synthetic polyphosphate for mineralization. J Cell Biochem 2015; 115:2089-102. [PMID: 25043819 DOI: 10.1002/jcb.24886] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 07/10/2014] [Indexed: 11/08/2022]
Abstract
Phosphate is critical for mineralization and deficiencies in the regulation of free phosphate lead to disease. Inorganic polyphosphates (polyPs) may represent a physiological source of phosphate because they can be hydrolyzed by biological phosphatases. To investigate whether exogenous polyP could be utilized for mineral formation, mineralization was evaluated in two osteogenic cell lines, Saos-2 and MC3T3, expressing different levels of tissue non-specific alkaline phosphatase (tnALP). The role of tnALP was further explored by lentiviral-mediated overexpression in MC3T3 cells. When cells were cultured in the presence of three different phosphate sources, there was a strong mineralization response with β-glycerophosphate (βGP) and orthophosphate (Pi) but none of the cultures sustained mineralization in the presence of polyP (neither chain length 17-Pi nor 42-Pi). Even in the presence of mineralizing levels of phosphate, low concentrations of polyP (50 μM) were sufficient to inhibit mineral formation. Energy-dispersive X-ray spectroscopy confirmed the presence of apatite-like mineral deposits in MC3T3 cultures supplemented with βGP, but not in those with polyP. While von Kossa staining was consistent with the presence or absence of mineral, an unusual Alizarin staining was obtained in polyP-treated MC3T3 cultures. This staining pattern combined with low Ca:P ratios suggests the persistence of Ca-polyP complexes, even with high residual ALP activity. In conclusion, under standard culture conditions, exogenous polyP does not promote mineral deposition. This is not due to a lack of active ALP, and unless conditions that favor significant processing of polyP are achieved, its mineral inhibitory capacity predominates.
Collapse
Affiliation(s)
- Marianne B Ariganello
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, P.O. Box 6128 Station Centre-Ville, Montréal Québec, Canada, H3C 3J7
| | | | | | | | | | | |
Collapse
|
23
|
Müller WEG, Tolba E, Feng Q, Schröder HC, Markl JS, Kokkinopoulou M, Wang X. Amorphous Ca²⁺ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells. J Cell Sci 2015; 128:2202-2207. [PMID: 25908856 DOI: 10.1242/jcs.170605] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/16/2015] [Indexed: 01/08/2023] Open
Abstract
Polyphosphate (polyP) is a physiologically occurring polyanion that is synthesized especially in bone-forming osteoblast cells and blood platelets. We used amorphous polyP nanoparticles, complexed with Ca(2+), that have a globular size of ∼100 nm. Because polyP comprises inorganic orthophosphate units that are linked together through high-energy phosphoanhydride bonds, we questioned whether the observed morphogenetic effect, elicited by polyP, is correlated with the energy-generating machinery within the cells. We show that exposure of SaOS-2 osteoblast-like cells to polyP results in a strong accumulation of mitochondria and a parallel translocation of the polyP-degrading enzyme alkaline phosphatase to the cell surface. If SaOS-2 cells are activated by the mineralization activation cocktail (comprising β-glycerophosphate, ascorbic acid and dexamethasone) and additionally incubated with polyP, a tenfold intracellular increase of the ATP level occurs. Even more, in those cells, an intensified release of ATP into the extracellular space is also seen. We propose and conclude that polyP acts as metabolic fuel after the hydrolytic cleavage of the phosphoanhydride linkages, which contributes to hydroxyapatite formation on the plasma membranes of osteoblasts.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany Biomaterials Department, Inorganic Chemical Industries Division, National Research Center, Doki 11884, Cairo, Egypt
| | - Qingling Feng
- Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Julia S Markl
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Maria Kokkinopoulou
- Department of Zoology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, D-55099 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
24
|
Bae WJ, Jue SS, Kim SY, Moon JH, Kim EC. Effects of Sodium Tri- and Hexametaphosphate on Proliferation, Differentiation, and Angiogenic Potential of Human Dental Pulp Cells. J Endod 2015; 41:896-902. [DOI: 10.1016/j.joen.2015.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/23/2023]
|
25
|
Abstract
Biomineralization is a complex process in the development of mineralized tissues such as bone and pathological calcifications such as atherosclerotic plaques, kidney stones and gout. Osteopontin (OPN), an anionic phosphoprotein, is expressed in mineralizing tissues and has previously been demonstrated to be a potent inhibitor of hydroxyapatite formation. The OPN-deficient (Opn-/-) mouse displays a hypermineralized bone phenotype starting at 12 weeks postnatally. By isolating and culturing Opn-/- and wild-type (WT) osteoblasts, we sought to determine the role of OPN and two of its functional peptides in osteoblast development and mineralization. Opn-/- osteoblasts had significantly increased mineral deposition relative to their WT counterparts, with no physiologically relevant change in gene expression of osteogenic markers. Supplementation with bovine milk OPN (mOPN) led to a dramatic reduction in mineral deposition by the Opn-/- osteoblasts. Treatment with OPN-derived peptides corresponding to phosphorylated OPN-(220-235) (P3) and non-phosphorylated OPN-(65-80) (OPAR) also rescued the hypermineralization phenotype of Opn-/- osteogenic cultures. Supplementation with mOPN or the OPN-derived peptides did not alter the expression of terminal osteogenic markers. These data suggest that OPN plays an important role in the regulation of biomineralization, but that OPN does not appear to affect osteoblast cell development in vitro.
Collapse
|
26
|
Ozeki N, Hase N, Yamaguchi H, Hiyama T, Kawai R, Kondo A, Nakata K, Mogi M. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells. Exp Cell Res 2015; 333:303-315. [PMID: 25662160 DOI: 10.1016/j.yexcr.2015.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 12/18/2022]
Abstract
Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells.
Collapse
Affiliation(s)
- Nobuaki Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Naoko Hase
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Hideyuki Yamaguchi
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Taiki Hiyama
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Rie Kawai
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Ayami Kondo
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan.
| |
Collapse
|
27
|
Wu ATH, Aoki T, Sakoda M, Ohta S, Ichimura S, Ito T, Ushida T, Furukawa KS. Enhancing Osteogenic Differentiation of MC3T3-E1 Cells by Immobilizing Inorganic Polyphosphate onto Hyaluronic Acid Hydrogel. Biomacromolecules 2014; 16:166-73. [DOI: 10.1021/bm501356c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Megumu Sakoda
- Department
of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | | | - Shigetoshi Ichimura
- Department
of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | | | | | | |
Collapse
|
28
|
Neufurth M, Wang X, Schröder HC, Feng Q, Diehl-Seifert B, Ziebart T, Steffen R, Wang S, Müller WEG. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials 2014; 35:8810-8819. [PMID: 25047630 DOI: 10.1016/j.biomaterials.2014.07.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/01/2014] [Indexed: 11/25/2022]
Abstract
Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca(2+)-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca(2+)-complex, the cells proliferate with a generation time of approximately 47-55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence of the polymer. The reduced Young's modulus for the alginate/gelatin hydrogel is approximately 13-14 kPa, and this value drops to approximately 0.5 kPa after incubation of the cell containing scaffolds for 5 d. In the presence of 100 μm polyP·Ca(2+)-complex, the reduced Young's modulus increases to about 22 kPa. The hardness of the polyP·Ca(2+)-complex containing hydrogel remains essentially constant if cells are absent in the matrix, but it drops to 3.2 kPa after a 5 d incubation period in the presence of SaOS-2 cells, indicating that polyP·Ca(2+)-complex becomes metabolized, degraded, by the cells. The alginate/gelatine-agarose system with polyP·Ca(2+)-complex cause a significant increase in the mineralization of the cells. SEM analyses revealed that the morphology of the mineral nodules formed on the surface of the cells embedded in the alginate/gelatin hydrogel do not significantly differ from the nodules on cells growing in monolayer cultures. The newly developed technique, using cells encapsulated into an alginate/gelatin hydrogel and a secondary layer containing the morphogenetically active, growth promoting polymer polyP·Ca(2+)-complex opens new possibilities for the application of 3D bioprinting in bone tissue engineering.
Collapse
Affiliation(s)
- Meik Neufurth
- ERC Advanced Investigator Grant Research Group at The Institute for Physiological Chemistry, University Medical Center of The Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at The Institute for Physiological Chemistry, University Medical Center of The Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at The Institute for Physiological Chemistry, University Medical Center of The Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Qingling Feng
- School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China
| | | | - Thomas Ziebart
- Department of Oral and Maxillifacial Surgery, University Medicine Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Renate Steffen
- ERC Advanced Investigator Grant Research Group at The Institute for Physiological Chemistry, University Medical Center of The Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at The Institute for Physiological Chemistry, University Medical Center of The Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at The Institute for Physiological Chemistry, University Medical Center of The Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
29
|
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 2014; 5:260. [PMID: 25101001 PMCID: PMC4102118 DOI: 10.3389/fphys.2014.00260] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB), its linear polymer poly-β-hydroxybutyrate (PHB), and inorganic polyphosphate (polyP) in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g., diabetic ketoacidosis in type-1 diabetes mellitus), it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-OHB dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB) is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca(2+) which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial membrane system.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| |
Collapse
|
30
|
Stähli C, Shah Mohammadi M, Waters KE, Nazhat SN. Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption. Acta Biomater 2014; 10:3317-26. [PMID: 24681371 DOI: 10.1016/j.actbio.2014.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023]
Abstract
Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions.
Collapse
|
31
|
Osteoblastic differentiation under controlled bioactive ion release by silica and titania doped sodium-free calcium phosphate-based glass. Colloids Surf B Biointerfaces 2014; 121:82-91. [PMID: 24945606 DOI: 10.1016/j.colsurfb.2014.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/30/2014] [Accepted: 05/27/2014] [Indexed: 11/23/2022]
Abstract
Sodium-free phosphate-based glasses (PGs) doped with both SiO2 and TiO2 (50P2O5-40CaO-xSiO2-(10-x)TiO2, where x=10, 7, 5, 3, and 0mol%) were developed and characterised for controlled ion release applications in bone tissue engineering. Substituting SiO2 with TiO2 directly increased PG density and glass transition temperature, indicating a cross-linking effect of Ti on the glass network which was reflected by significantly reduced degradation rates in an aqueous environment. X-ray diffraction confirmed the presence of Ti(P2O7) in crystallised TiO2-containing PGs, and nuclear magnetic resonance showed an increase in Q(1) phosphate species with increasing TiO2 content. Substitution of SiO2 with TiO2 also reduced hydrophilicity and surface energy. In biological assays, MC3T3-E1 pre-osteoblasts effectively adhered to the surface of PG discs and the incorporation of TiO2, and hence higher stability of the PG network, significantly increased cell viability and metabolic activity indicating the biocompatibility of the PGs. Addition of SiO2 increased ionic release from the PG, which stimulated alkaline phosphatase (ALP) activity in MC3T3-E1 cells upon ion exposure. The incorporation of 3mol% TiO2 was required to stabilise the PG network against unfavourable rapid degradation in aqueous environments. However, ALP activity was greatest in PGs doped with 5-7mol% SiO2 due to up-regulation of ionic concentrations. Thus, the properties of PGs can be readily controlled by modifying the extent of Si and Ti doping in order to optimise ion release and osteoblastic differentiation for bone tissue engineering applications.
Collapse
|
32
|
Osathanon T, Chuenjitkuntaworn B, Nowwarote N, Supaphol P, Sastravaha P, Subbalekha K, Pavasant P. The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0015-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
33
|
Lv W, Banerjee B, Molland KL, Seleem MN, Ghafoor A, Hamed MI, Wan B, Franzblau SG, Mesecar AD, Cushman M. Synthesis of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazines that have antibacterial activity and also inhibit inorganic pyrophosphatase. Bioorg Med Chem 2014; 22:406-18. [PMID: 24315189 PMCID: PMC3914758 DOI: 10.1016/j.bmc.2013.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/23/2013] [Accepted: 11/05/2013] [Indexed: 11/26/2022]
Abstract
Inorganic pyrophosphatases are potential targets for the development of novel antibacterial agents. A pyrophosphatase-coupled high-throughput screening assay intended to detect o-succinyl benzoic acid coenzyme A (OSB CoA) synthetase inhibitors led to the unexpected discovery of a new series of novel inorganic pyrophosphatase inhibitors. Lead optimization studies resulted in a series of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazine derivatives that were prepared by an efficient synthetic pathway. One of the tetracyclic triazine analogues 22h displayed promising antibiotic activity against a wide variety of drug-resistant Staphylococcus aureus strains, as well as activity versus Mycobacterium tuberculosis and Bacillus anthracis, at a concentration that was not cytotoxic to mammalian cells.
Collapse
Affiliation(s)
- Wei Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy and The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Biplab Banerjee
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy and The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Katrina L Molland
- Department of Biological Sciences and The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Adil Ghafoor
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Maha I Hamed
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Andrew D Mesecar
- Department of Biological Sciences and The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy and The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
34
|
Enzymatically Synthesized Inorganic Polymers as Morphogenetically Active Bone Scaffolds. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:27-77. [DOI: 10.1016/b978-0-12-800177-6.00002-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Cox RF, Morgan MP. Microcalcifications in breast cancer: Lessons from physiological mineralization. Bone 2013; 53:437-50. [PMID: 23334083 DOI: 10.1016/j.bone.2013.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/02/2023]
Abstract
Mammographic mammary microcalcifications are routinely used for the early detection of breast cancer, however the mechanisms by which they form remain unclear. Two species of mammary microcalcifications have been identified; calcium oxalate and hydroxyapatite. Calcium oxalate is mostly associated with benign lesions of the breast, whereas hydroxyapatite is associated with both benign and malignant tumors. The way in which hydroxyapatite forms within mammary tissue remains largely unexplored, however lessons can be learned from the process of physiological mineralization. Normal physiological mineralization by osteoblasts results in hydroxyapatite deposition in bone. This review brings together existing knowledge from the field of physiological mineralization and juxtaposes it with our current understanding of the genesis of mammary microcalcifications. As an increasing number of breast cancers are being detected in their non-palpable stage through mammographic microcalcifications, it is important that future studies investigate the underlying mechanisms of their formation in order to fully understand the significance of this unique early marker of breast cancer.
Collapse
Affiliation(s)
- Rachel F Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
36
|
Wang X, Schröder HC, Feng Q, Draenert F, Müller WEG. The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 2013; 11:718-746. [PMID: 23528950 PMCID: PMC3705367 DOI: 10.3390/md11030718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022] Open
Abstract
Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Dajie, 100037 Beijing, China
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
| | - Qingling Feng
- Department of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China; E-Mail:
| | - Florian Draenert
- Department and Clinic for Oral and Maxillofacial Surgery, Baldingerstraße, D-35033 Marburg, Germany; E-Mail:
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
| |
Collapse
|
37
|
Inorganic polyphosphates: biologically active biopolymers for biomedical applications. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2013; 54:261-94. [PMID: 24420717 DOI: 10.1007/978-3-642-41004-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic polyphosphate (polyP) is a widely occurring but only rarely investigated biopolymer which exists in both prokaryotic and eukaryotic organisms. Only in the last few years, this polymer has been identified to cause morphogenetic activity on cells involved in human bone formation. The calcium complex of polyP was found to display a dual effect on bone-forming osteoblasts and bone-resorbing osteoclasts. Exposure of these cells to polyP (Ca(2+) complex) elicits the expression of cytokines that promote the mineralization process by osteoblasts and suppress the differentiation of osteoclast precursor cells to the functionally active mature osteoclasts dissolving bone minerals. The effect of polyP on bone formation is associated with an increased release of the bone morphogenetic protein 2 (BMP-2), a key mediator that activates the anabolic processes leading to bone formation. In addition, polyP has been shown to act as a hemostatic regulator that displays various effects on blood coagulation and fibrinolysis and might play an important role in platelet-dependent proinflammatory and procoagulant disorders.
Collapse
|
38
|
Wang X, Schröder HC, Diehl-Seifert B, Kropf K, Schlossmacher U, Wiens M, Müller WEG. Dual effect of inorganic polymeric phosphate/polyphosphate on osteoblasts and osteoclasts in vitro. J Tissue Eng Regen Med 2012; 7:767-76. [PMID: 22411908 DOI: 10.1002/term.1465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/12/2011] [Accepted: 01/05/2012] [Indexed: 11/09/2022]
Abstract
Inorganic polymeric phosphate/polyphosphate (polyP) is a natural polymer existing in both pro- and eukaryotic systems. In the present study the effect of polyP as well as of polyP supplied in a stoichiometric ratio of 2 m polyP:1 m CaCl2 [polyP (Ca(2+) complex)] on the osteoblast-like SaOS-2 cells and the osteoclast-like RAW 264.7 cells was determined. Both polymers are non-toxic for these cells up to a concentration of 100 µm. In contrast to polyP, polyP (Ca(2+) complex) significantly induced hydroxyapatite formation at a concentration > 10 µm, as documented by alizarin red S staining and scanning electron microscopic (SEM) inspection. Furthermore, polyP (Ca(2+) complex) triggered in SaOS-2 cells transcription of BMP2 (bone morphogenetic protein 2), a cytokine involved in maturation of hydroxyapatite-forming cells. An additional activity of polyP (Ca(2+) complex) is described by showing that this polymer impairs osteoclastogenesis. At concentrations > 10 µm polyP (Ca(2+) complex) slows down the progression of RAW 264.7 cells to functional osteoclasts, as measured by the expression of TRAP (tartrate-resistant acid phosphatase). Finally, it is shown that 10-100 µm polyP (Ca(2+) complex) inhibited phosphorylation of IκBα by the respective kinase in RAW 264.7 cells. We concluded that polyP (Ca(2+) complex) displays a dual effect on bone metabolizing cells. It promotes hydroxyapatite formation in SaOS-2 cells (osteoblasts) and impairs maturation of the osteoclast-related RAW 264.7 cells.
Collapse
Affiliation(s)
- Xiaohong Wang
- National Research Centre for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, People's Republic of China; ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Kulakovskaya TV, Vagabov VM, Kulaev IS. Inorganic polyphosphate in industry, agriculture and medicine: Modern state and outlook. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Liu J, Cheng Z, Zhou D, Zhang L, Yan Z, Wang Z, Yang D, Liu Y, Chai T. Synthesis, cloning, and expression of Mycoplasma suis inorganic pyrophosphatase gene using PCR-based accurate synthesis and overlap-extension PCR, and its immunogenicity analysis. Res Vet Sci 2011; 91:e100-e102. [PMID: 21429540 DOI: 10.1016/j.rvsc.2011.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 01/09/2011] [Accepted: 02/23/2011] [Indexed: 11/21/2022]
Abstract
Mycoplasma suis (M. suis), a hemotrophic pathogen of pigs, causes economic losses in swine production throughout the world. Inorganic pyrophosphatase (ppa) is a very important gene in M. suis. The ppa gene of M. suis was synthesized by PCR-based accurate synthesis (PAS) and overlapextension PCR, inserted into vector pMD18-T, and then subcloned to the prokaryotic expression vector pET28c.The recombinant plasmid pET28c_ppa was transformed to E. coli BL21 for expression under induction of isopropyl thiogalactoside. The expressed product was identified by SDS-PAGE and Western blot, which suggested that the recombinant protein has good antigenicity. Piglets were immunised with purified recombinant protein, and specific antibodies to the recombinant protein were detected in piglet serum. The results show that the ppa gene can be efficiently expressed in E. coli and that the expressed recombinant protein can elicit a specific serum antibody response in piglets. PAS and overlap-extension PCR were first used to synthesize the ppa of M. suis. They provide simple, rapid, reliable and relatively inexpensive methods to synthesize, clone, and express genes. The experiment conducted in this paper will enable future research into the role and function of the ppa gene.
Collapse
Affiliation(s)
- Jianzhu Liu
- College of Veterinary Medicine and Animal Science, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kasuyama K, Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Morita M. Effects of topical application of inorganic polyphosphate on tissue remodeling in rat inflamed gingiva. J Periodontal Res 2011; 47:159-64. [DOI: 10.1111/j.1600-0765.2011.01414.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Liu Y, Kim YK, Dai L, Li N, Khan S, Pashley DH, Tay FR. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials 2011; 32:1291-300. [PMID: 21040969 PMCID: PMC3003335 DOI: 10.1016/j.biomaterials.2010.10.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
Abstract
Biomineralisation of collagen involves functional motifs incorporated in extracellular matrix protein molecules to accomplish the objectives of stabilising amorphous calcium phosphate into nanoprecursors and directing the nucleation and growth of apatite within collagen fibrils. Here we report the use of small inorganic polyphosphate molecules to template hierarchical intrafibrillar apatite assembly in reconstituted collagen in the presence of polyacrylic acid to sequester calcium and phosphate into transient amorphous nanophases. The use of polyphosphate without a sequestration analogue resulted only in randomly-oriented extrafibrillar precipitations along the fibrillar surface. Conversely, the use of polyacrylic acid without a templating analogue resulted only in non-hierarchical intrafibrillar mineralisation with continuous apatite strands instead of discrete crystallites. The ability of using simple non-protein molecules to recapitulate different levels of structural hierarchy in mineralised collagen signifies the ultimate simplicity in Nature's biomineralisation design principles and challenges the need for using more complex recombinant matrix proteins in bioengineering applications.
Collapse
Affiliation(s)
- Yan Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Young-Kyung Kim
- Department of Conservative Dentistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Lin Dai
- Department of Stomatology, The First Hospital of Wuhan, Wuhan, China
| | - Nan Li
- Department of Osteopedic & Traumatology, University of Traditional Chinese Medicine, Fujian, China
| | - Sara Khan
- School of Dentistry, Medical College of Georgia, Augusta, Georgia; USA
| | - David H. Pashley
- Department of Oral Biology, School of Dentistry, Medical College of Georgia, Augusta, Georgia; USA
| | - Franklin R. Tay
- Department of Oral Biology, School of Dentistry, Medical College of Georgia, Augusta, Georgia; USA
- Department of Endodontics, School of Dentistry, Medical College of Georgia, Augusta, Georgia; USA
| |
Collapse
|