1
|
Liu XH, Zhong NN, Yi JR, Lin H, Liu B, Man QW. Trends in Research of Odontogenic Keratocyst and Ameloblastoma. J Dent Res 2025; 104:347-368. [PMID: 39876078 DOI: 10.1177/00220345241282256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM. Fibroblast subsets in OKC and tumor cell subsets in AM have been analyzed, revealing mechanisms behind their biological behaviors, including OKC's osteolytic features and AM's recurrence tendencies. Spatial transcriptomics studies of AM have identified engineered fibroblasts and osteoblasts contributing to matrix remodeling gene and oncogene expression at the invasion frontier, driving AM progression. Three-dimensional culture technologies such as organoid models have refined analysis of AM subtypes; uncovered the role of AM fibroblasts in promoting tumor cell proliferation and invasion; and identified signaling pathways such as FOSL1, BRD4, EZH2, and Wnt as potential therapeutic targets. Organoid models also served as preclinical platforms for testing potential therapies. Although preclinical models for AM exist, reliable in vitro and in vivo models for OKC remain scarce. Promising mimic models, including human embryonic stem cells-derived epithelial cells, human oral keratinocytes, human immortalized oral epithelial cells, and HaCaT keratinocytes, show promise, but the advancements in 3-dimensional culture technology are expected to lead to further breakthroughs in this area. Artificial intelligence, including machine learning and deep learning, has enhanced radiomics-based diagnostic accuracy, distinguishing OKC and AM beyond clinician capability. Pathomics-based models further predict OKC prognosis and differentiate AM from ameloblastic carcinoma. Clinical studies have shown positive outcomes with targeted therapies. In a study investigating SMO-targeted treatments for nevoid basal cell carcinoma syndrome, nearly all OKC lesions resolved in 3 patients. A recent clinical trial with neoadjuvant BRAF-targeted therapy for AM demonstrated promising radiologic responses, potentially enabling organ preservation. This review highlights recent advancements and trends in OKC and AM research, aiming to inspire further exploration and progress in these fields.
Collapse
Affiliation(s)
- X-H Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - N-N Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J-R Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q-W Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Zhao Z, Xiong G, Wang C, Cao W. From pathogenesis to precision medicine: Transformative advances in research and treatment of ameloblastoma. Cancer Lett 2025; 612:217448. [PMID: 39800213 DOI: 10.1016/j.canlet.2025.217448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Odontogenic neoplasms of the jaw are dominated by ameloblastoma (AM), a locally aggressive epithelial tumor with a significant propensity for recurrence. The World Health Organization's 2022 update to the AM classification system underscores recent progress in comprehending its underlying mechanisms and refining clinical approaches. Contemporary research has yielded significant insights into the genetic underpinnings of AM, paving the way for the development of precision-based treatment strategies. Advanced genetic profiling has revealed a significant frequency of BRAF (V-raf murine sarcoma viral oncogene homolog) V600E and SMO (Smoothened) gene alterations in AM. Importantly, therapeutic interventions specifically designed to target these genetic aberrations, including BRAF and MEK pathway blockers, have shown encouraging results in terms of both effectiveness and tolerability, as documented in individual case reports and small-scale clinical investigations. This comprehensive review summarizes the recent modifications to the World Health Organization's categorization of AMs, explores progress in elucidating their underlying molecular pathways, and evaluates emerging targeted treatment modalities. Our objective is to present a thorough synthesis of contemporary scientific discoveries and therapeutic interventions, potentially paving the way for more efficacious and individualized clinical management protocols for this complex neoplasm.
Collapse
Affiliation(s)
- Zhang Zhao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Gan Xiong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Wei Cao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
3
|
Marín-Márquez C, Adisa AO, Niklander SE, Kirby J, Hunter KD. Genomic and Transcriptomic Analysis of Ameloblastoma Reveals Distinct Molecularly Aggressive Phenotypes. Mod Pathol 2025; 38:100682. [PMID: 39675431 DOI: 10.1016/j.modpat.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ameloblastoma (AM) is a benign but locally infiltrative epithelial odontogenic neoplasm of the jawbones that may reach grotesque proportions and be highly recurrent if inadequately removed. The BRAFV600E mutation has been demonstrated as a key molecular event in its development; nevertheless, there are many queries about its etiopathogenesis, which are yet to be answered. In this study, we aimed to integrate the results from whole-exome sequencing (WES) and RNA sequencing in AM samples to identify novel candidate genes that may be relevant to its pathogenesis. Thirteen-matched tumors were subjected to WES and RNA-seq, respectively, to detect gene mutations and gene expression profiles, along with the presence of gene fusions. Mutations were validated using Sanger sequencing, whereas transcriptome results were validated using qPCR. The results from both molecular techniques were merged in order to identify novel candidate genes that were biologically validated with immunohistochemistry. BRAFV600E mutation was present in 62% of the analyzed cases, and each AM presented at least 2 or 3 mutations affecting cancer-driver genes. RNA-seq showed different molecular subgroups associated with an aggressive and cancer-related phenotype (epithelial-mesenchymal transition and KRAS gene sets). No gene fusions were detected among the cases. CDH11 and TGM2, novel genes associated with epithelial-mesenchymal transition in AM, were selected and validated in tissues. Both WES and RNA-seq results showed gene alterations related to proliferation, cell differentiation, and metabolic processes. These results show that AM shares many of the hallmarks of cancer secondary to the presence of oncogenic mutations or activation of oncogenic signaling pathways.
Collapse
Affiliation(s)
- Constanza Marín-Márquez
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, UK; Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Puerto Montt, Chile.
| | - Akinyele O Adisa
- Department of Oral Pathology, Faculty of Dentistry, University of Ibadan and University College Hospital Ibadan, Ibadan, Nigeria
| | - Sven E Niklander
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| |
Collapse
|
4
|
Carvalho LDJ, Guimarães DM, Souza ATP, Balbinot KM, Kataoka MSDS, Alves Junior SDM, Nunes FD, da Silva MJCN, Pinheiro JDJV. Immunohistochemical Evaluation of p300, H2AacK5 and H3AcK27 in Odontogenic Cysts and Tumors. Oral Dis 2025; 31:555-564. [PMID: 39435631 DOI: 10.1111/odi.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The acetylation of histones H2A on lysine 5 (H2AacK5) and H3 on lysine 27 (H3AcK27) modulate several cellular mechanisms through the p300 enzyme in pathological lesions; however, their role in odontogenic lesions has not been addressed. This study aims to evaluate the immunoexpression of p300, H2AacK5, and H3AcK27 in samples of ameloblastoma (AMB) (n = 30), odontogenic keratocyst (OK) (n = 15), adenomatoid odontogenic tumor (AOT) (n = 10), odontogenic fibroma (OF) (n = 8), calcifying odontogenic cyst (COC) (n = 8), odontogenic myxoma (MIX) (n = 10), and ameloblastic fibroma (AF) (n = 06). The percentage of p300-positive cells was higher in AOT and decreased in COC, OK, AMB, AF, OF, and MIX. H2AacK5-positive cells were higher in AF and decreased in AOT, COC, OK, OF, AMB, and MIX, whereas H3acK27-positive cells were higher in AOT and decreased in COC, OK, AF, OF, AMB, and MIX. The expression of these proteins was higher in nonaggressive lesions in comparison to aggressive lesions. There was a positive correlation between p300 and H2AacK5, and H3acK27 in AMB, MIX, and OF, whereas there was a positive correlation between p300 and H2AacK5 in AOT and COC. The histone acetylation may be involved in the biological behavior of these lesions, which could be used to improve their diagnosis and treatment.
Collapse
Affiliation(s)
- Luciane De Jesus Carvalho
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém, Brazil
| | | | | | - Karolyny Martins Balbinot
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém, Brazil
| | | | - Sérgio de Melo Alves Junior
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém, Brazil
| | | | | | | |
Collapse
|
5
|
Pallavi K, Jain A, Gulati N, Juneja S, Shetty DC, Tandon A, Aggarwal D. Neuroectodermal influence in odontogenic cyst and tumor: Evidence through CD56 immunoexpression. INDIAN J PATHOL MICR 2025; 68:88-94. [PMID: 38881415 DOI: 10.4103/ijpm.ijpm_869_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AND OBJECTIVES CD56, associated with neuroectodermal differentiation of the embryonal cells, is often considered a marker of neural lineage. Odontogenic keratocysts (OKCs) are of particular interest because of their characteristic histopathologic features, high recurrence rate, and aggressive behavior. CD56 immunoreactivity in these lesions has been reported with very high frequency. The present study analyzes the immunoexpression of CD56 in ameloblastoma (AM) and OKC to infer neuroectodermal influence in the pathogenesis of odontogenic lesions and its correlation with clinicopathologic parameters. MATERIALS AND METHODS Fifty histopathologically confirmed cases of OKC and AM, 25 from tooth-bearing (TB) and molar-ramus (MR) regions each, and 5 dental follicular tissues as control were collected from the department archives and immunohistochemical analysis with CD56 was carried out. RESULTS CD56 immunopositivity was seen in 64% AM and 36% OKC cases. The majority of AM cases showed cytoplasmic expression in the peripheral cells of odontogenic islands; similarly, OKC cases showed continuous and uniform cytoplasmic expression in the basal and parabasal cells of the cystic lining. CD56 immunopositivity was found in more AM cases as compared to OKC cases in both the TB and MR regions. INTERPRETATION AND CONCLUSIONS The assessment of CD56 immunoexpression in odontogenic cyst and tumor (AM) may aid in understanding the role of neuroectodermal influence in the etiopathogenetic pathways and a possible influence of CD56 on the clinical behavior and aggressiveness of the odontogenic lesions. A correlation of CD56 expression with the clinical outcome of the disease (site, perforation, root resorption, and tooth displacement) can help envisage possible prognostic assessment for these lesions.
Collapse
Affiliation(s)
- Kriti Pallavi
- Senior Research Fellow, Division of Periodontics, CDER, AIIMS, New Delhi, India
| | - Anshi Jain
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Center for Dental Studies and Research, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Nikita Gulati
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Center for Dental Studies and Research, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Saurabh Juneja
- Department of Oral and Maxillofacial Pathology and Microbiology, Shree Bankey Bihari Dental College and Research Centre, NH-9, Masuri, Ghaziabad, Uttar Pradesh, India
| | - Devi C Shetty
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Center for Dental Studies and Research, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Ankita Tandon
- Department of Oral Pathology, Microbiology and Forensic Odontology, Dental Institute, RIMS, Ranchi, Jharkhand, India
| | - Dipanshu Aggarwal
- Department of Oral and Maxillofacial Pathology and Microbiology, I.T.S. Center for Dental Studies and Research, Muradnagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Chen Z, Hong Y, Zhao Z, Wu N, Ma X, Chen L, Zhang R. Differences in BRAF V600E mutation between the epithelium and mesenchyme in classic ameloblastoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:753-762. [PMID: 39266397 DOI: 10.1016/j.oooo.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE Laser capture microdissection (LCM) was used to pinpoint the mutated tissue in ameloblastoma and investigate whether B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutation is the main pathogenic gene in classic ameloblastoma. STUDY DESIGN A total of 24 patients with ameloblastoma scheduled to undergo surgery between 2000 and 2024 were included in the study. LCM was used to isolate tumor cells. Oxford nanopore technology (ONT) was used to analyze the collected cells. GO and KEGG enrichment analyses were then performed on the 300 most highly expressed genes in the epithelial tissue and mesenchyme. RESULTS Mandibular follicular ameloblastoma showed BRAF V600E mutations in all epithelial cells but not in the mesenchyme. The mutation rate was significantly higher in mandibular ameloblastomas compared to the maxilla (P < .05). RNA-seq showed that traditional follicular ameloblastoma epithelium was enriched in "growth factor receptor binding" and "angiogenesis regulation," while the mesenchyme was enriched in "ECM receptor interaction." KEGG enrichment analysis showed differential gene expression, mainly in MAPK and PI3K-AKT pathways. CONCLUSION Classical follicular ameloblastoma shows the presence of BRAF V600E mutation in epithelial tissue, with a higher mutation rate in the mandible than in the maxilla. The signaling pathways of MAPK and PI3K may be significantly involved in epithelial signal transduction.
Collapse
Affiliation(s)
- Zhuoxuan Chen
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China
| | - Yingying Hong
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking, P.R. China
| | - Zhenni Zhao
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China
| | - Ningxiang Wu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China
| | - Xiaokun Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Jiangsu Province, P.R. China
| | - Linlin Chen
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China
| | - Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China.
| |
Collapse
|
7
|
Salih BA, Abdullah BH. Comparative Immunohistochemical Analysis of Craniopharyngioma and Ameloblastoma: Insights into Odontogenic Differentiation. Diagnostics (Basel) 2024; 14:2315. [PMID: 39451638 PMCID: PMC11506693 DOI: 10.3390/diagnostics14202315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Histopathological similarities between craniopharyngioma (CP) and ameloblastoma (AB) have long been recognized, particularly the shared features of palisading columnar epithelium and stellate reticulum-like areas. This study aimed to investigate potential odontogenic differentiation in CP akin to AB using immunohistochemical odontogenic markers. METHODS We analyzed AMELX, ODAM, and CK19 expression in 44 cases (20 CP and 24 AB). RESULTS While AMELX and ODAM showed diffuse strong positive expression in both tumors with no significant statistical differences, CK19 expression was notably higher in CP. CONCLUSION The markers AMELX and ODAM associated with odontogenic differentiation exhibited similar profiles in both tumors due to shared similar embryological origins. Notably, CK19, a biomarker of odontogenic epithelium, showed even higher expression, suggesting distinct pathways. These findings offer insights into tumor biology and may aid in diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Ban A. Salih
- College of Dentistry, University of Baghdad, Baghdad 10071, Iraq;
| | | |
Collapse
|
8
|
Valeriano AT, Camara LS, Bernardes VDF, Pais FSM, Araújo FMG, Salim ACDM, Fernandes GDR, Stussi F, Gomes CC, de Andrade Santos PP, de Souza LB, Gomez RS, Diniz MG. MMP13 Expression and Activity Suggest Its Role in Bone Resorption in Ameloblastomas. J Oral Pathol Med 2024; 53:577-583. [PMID: 39192690 DOI: 10.1111/jop.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ameloblastoma is a locally destructive benign odontogenic tumor. While the neoplastic cells of conventional ameloblastoma can infiltrate the connective tissue and bone, in unicystic ameloblastoma the epithelium is encapsulated. The mechanisms driving ameloblastoma's bone resorption remains unclear. METHODS RNA sequencing (RNA-seq) was performed in a discovery cohort of conventional ameloblastoma, and pathway enrichment analysis was carried out. mRNA levels of MMP13, a gene associated with bone resorption, were assessed using RT-qPCR in a larger cohort of conventional ameloblastoma and in unicystic ameloblastoma. Zymogram gels and the immunoexpression profile of collagenase 3 (encoded by MMP13 gene) were evaluated as well. RESULTS Enriched pathways related to bone mineralization and upregulation of MMP13 were observed in ameloblastomas. Collagenolytic activity of collagenase 3 was detected in the tumor lysates. Collagenase 3 immunopositivity was observed in ameloblastomatous epithelium infiltrating the fibrous capsule of unicystic ameloblastoma. At the tumor-bone interface, collagenase 3 expression was detected in stromal cells, osteoblasts, and osteocytes. CONCLUSION The results indicate a potential involvement of MMP13 in ameloblastoma-related bone resorption and progression.
Collapse
Affiliation(s)
- Alline Teixeira Valeriano
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lais Santos Camara
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Vanessa de Fátima Bernardes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | | | | | | | - Fernanda Stussi
- Biological Sciences Institute, Universidade Federal de minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Lélia Batista de Souza
- Department of Oral Pathology, Universidade Federal do Rio Grande do Norte (UFRN), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG) and Medical School, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina Gonçalves Diniz
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Zhang CX, Zhang LZ, Lin H, Man QW, Liu B. BRAF V600E mutation mediates invasive and growth features in ameloblastoma. Oral Dis 2024; 30:4426-4439. [PMID: 38424736 DOI: 10.1111/odi.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES Ameloblastoma (AM), a locally aggressive tumor with extensive growth capacity, causes significant damage to the jaw and affects facial appearance. Although the high prevalence of BRAF V600E mutation in AM is known, its specific impacts on patients with AM remain unclear. Thus, the present study investigated the role of BRAF V600E mutation, thereby focusing on its impact on AM invasion and growth. MATERIALS AND METHODS Immunohistochemical analysis was used to compare BRAF V600E, MMP2, MMP9, and Ki-67 expressions in AM (n = 49), normal oral mucosa (NOM) (n = 10), and odontogenic keratocyst (OKC) (n = 15) tissues. AM was further classified according to the presence or absence of BRAF V600E. The relationship between BRAF V600E and invasion as well as growth was evaluated. In addition, correlation analysis was performed using immunohistochemistry and confirmed via double-labeling immunofluorescence. Finally, comparative analyses using mass spectrometry, immunohistochemistry, and immunofluorescence were performed to explore and identify underlying mechanisms. RESULTS AM exhibited a higher incidence of BRAF V600E mutation than NOM and OKC. BRAF V600E expression was positively correlated with the invasion-associated proteins MMP2 and MMP9 and the growth-related protein Ki-67. Proteomic data revealed that BRAF V600E primarily activates the MAPK signaling pathway in AM, particularly driving the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). CONCLUSIONS In summary, the findings suggested that the BRAF V600E mutation enhances the invasion and growth abilities of AM via the MAPK/ERK signaling pathway. Thus, targeting BRAF V600E or the MAPK/ERK pathway may be a potential AM therapy.
Collapse
Affiliation(s)
- Chen-Xi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Jeyaraman P, Anbinselvam A, Akintoye SO. Differentially expressed extracellular matrix genes functionally separate ameloblastoma from odontogenic keratocyst. BMC Oral Health 2024; 24:1084. [PMID: 39272104 PMCID: PMC11401384 DOI: 10.1186/s12903-024-04866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Ameloblastoma and odontogenic keratocyst (OKC) are odontogenic tumors that develop from remnants of odontogenic epithelium. Both display locally invasive growth characteristics and high predilection for recurrence after surgical removal. Most ameloblastomas harbor BRAFV600E mutation while OKCs are associated with PATCH1 gene mutation but distinctive indicators of ameloblastoma growth characteristics relative to OKC are still unclear. The aim of this study was to assess hub genes that underlie ameloblastoma growth characteristics using bioinformatic analysis, ameloblastoma samples and mouse xenografts of human epithelial-derived ameloblastoma cells. METHODS RNA expression profiles were extracted from GSE186489 gene expression dataset acquired from Gene Expression Ominibus (GEO) database. Galaxy and iDEP online analysis tools were used to identify differentially expressed genes that were further characterized by gene ontology (GO) and pathway analysis using ShineyGO. The protein-protein interaction (PPI) network was constructed for significantly upregulated differentially expressed genes using online database STRING. The PPI network visualization was performed using Cytoscape and hub gene identification with cytoHubba. Top ten nodes were selected using maximum neighborhood component, degree and closeness algorithms and analysis of overlap was performed to confirm the hub genes. Epithelial-derived ameloblastoma cells from conventional ameloblastoma were transplanted into immunocompromised mice to recreate ameloblastoma in vivo based on the mouse xenograft model. The top 3 hub genes FN1, COL I and IGF-1 were validated by immunostaining and quantitative analysis of staining intensities to ameloblastoma, OKC samples and mouse ameloblastoma xenografts tissues. RESULTS Seven hub genes were identified among which FN1, COL1A1/COL1A2 and IGF-1 are associated with extracellular matrix organization, collagen binding, cell adhesion and cell surface interaction. These were further validated by positive immunoreactivity within the stroma of ameloblastoma samples but both ameloblastoma xenograft and OKC displayed only FN1 and IGF-1 immunoreactivity while COL 1 was unreactive. The expression levels of both FN1 and IGF-1 were much lower in OKC relative to ameloblastoma. CONCLUSION This study further validates a differentially upregulated expression of matrix proteins FN1, COL I and IGF-1 in ameloblastoma relative to OKC. It suggests that differential stromal architecture and growth characteristics of ameloblastoma relative to OKC could be an interplay of differentially upregulated genes in ameloblastoma.
Collapse
Affiliation(s)
- Prasath Jeyaraman
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arularasan Anbinselvam
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunday O Akintoye
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Li SR, Li DW, Man QW. Proteomic profile of tissue-derived extracellular vesicles from benign odontogenic lesions. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101921. [PMID: 38795909 DOI: 10.1016/j.jormas.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Benign odontogenic lesions (BOLs) can cause severe jaw bone defects and compromise the quality of life of patients. Extracellular vesicles (EVs) are well-established and versatile players in mediating pathophysiological events. EVs in the interstitial space (tissue-derived EVs or Ti-EVs) possess higher specificity and sensitivity in disease-related biomarker discovery. However, the role of Ti-EV-loaded proteins in mediating the development of BOLs has remained untapped. Herein, we aim to explore the contribution of Ti-EV-loaded proteins to the development of BOLs. METHODS Samples were obtained from 3 with dental follicle, 3 with dentigerous cyst (DC), 7 with odontogenic keratocyst (OKC), and 3 patients with ameloblastoma (AM). Tissue-derived EVs were then extracted, purified, and validated using ultracentrifugation, transmission electron microscopy, and western blotting. Proteins from Ti-EVs were analyzed using LC-ESI tandem mass spectroscopy and differentially expressed proteins were screened, which was then validated by immunohistochemistry and immunofluorescence assays. RESULTS The protein profile of Ti-EVs in each group was mapped by LC-MS analysis. The top 10 abundant proteins in BOL-derived Ti-EVs were COL6A3, COL6A1, ALB, HIST1H4A, HBB, ACTB, HIST1H2BD, ANXA2, COL6A2 and FBN1. Additionally, unique proteins in the Ti-EVs from various lesions were identified. Moreover, focal adhesion kinase (FAK) and myeloid differentiation primary response 88 (MyD88) showed higher expressions in Ti-EVs derived from OKC and AM, which were confirmed by immunohistochemistry and immunofluorescence staining. CONCLUSIONS Ti-EVs containing FAK and MyD88 might be related to the development of OKC and AM, which can be potential therapeutic targets.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China
| | - Dong-Wen Li
- Department of Orthodontic, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi 154003, China
| | - Qi-Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China..
| |
Collapse
|
12
|
Fedato Tobias RS, Teodoro AB, Evangelista K, Leite AF, Valladares-Neto J, de Freitas Silva BS, Yamamoto-Silva FP, Almeida FT, Silva MAG. Diagnostic capability of artificial intelligence tools for detecting and classifying odontogenic cysts and tumors: a systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:414-426. [PMID: 38845306 DOI: 10.1016/j.oooo.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To evaluate the diagnostic capability of artificial intelligence (AI) for detecting and classifying odontogenic cysts and tumors, with special emphasis on odontogenic keratocyst (OKC) and ameloblastoma. STUDY DESIGN Nine electronic databases and the gray literature were examined. Human-based studies using AI algorithms to detect or classify odontogenic cysts and tumors by using panoramic radiographs or CBCT were included. Diagnostic tests were evaluated, and a meta-analysis was performed for classifying OKCs and ameloblastomas. Heterogeneity, risk of bias, and certainty of evidence were evaluated. RESULTS Twelve studies concluded that AI is a promising tool for the detection and/or classification of lesions, producing high diagnostic test values. Three articles assessed the sensitivity of convolutional neural networks in classifying similar lesions using panoramic radiographs, specifically OKC and ameloblastoma. The accuracy was 0.893 (95% CI 0.832-0.954). AI applied to cone beam computed tomography produced superior accuracy based on only 4 studies. The results revealed heterogeneity in the models used, variations in imaging examinations, and discrepancies in the presentation of metrics. CONCLUSION AI tools exhibited a relatively high level of accuracy in detecting and classifying OKC and ameloblastoma. Panoramic radiography appears to be an accurate method for AI-based classification of these lesions, albeit with a low level of certainty. The accuracy of CBCT model data appears to be high and promising, although with limited available data.
Collapse
Affiliation(s)
| | - Ana Beatriz Teodoro
- Graduate Program, School of Dentistry, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Karine Evangelista
- Department of Orthodontics, School of Dentistry, Federal University of Goias, Goiânia, Goiás, Brazil
| | - André Ferreira Leite
- Oral and Maxillofacial Radiology, Department of Dentistry, Faculty of Health Sciences, Brasília-DF, Brazil
| | - José Valladares-Neto
- Department of Orthodontics, School of Dentistry, Federal University of Goias, Goiânia, Goiás, Brazil
| | | | | | - Fabiana T Almeida
- Oral and Maxillofacial Radiology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | | |
Collapse
|
13
|
Xie J, Zhang J, Xiong G, Ouyang S, Yun B, Xu X, Wang W, Zhang M, Xie N, Chen D, Wang C. Targeting BRD4 attenuates the stemness and aggressiveness of ameloblastoma. Oral Dis 2024; 30:3212-3224. [PMID: 37798926 DOI: 10.1111/odi.14762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/19/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND BRD4, belonging to the bromodomain extra-terminal (BET) protein family, plays a unique role in tumor progression. However, the potential impact of BRD4 in ameloblastoma (AM) remains largely unknown. Herein, we aimed to assess the expression and functional role of BRD4 in AM. METHODS The expression level of BRD4 was assessed by immunohistochemistry. The proliferation, migration, invasion, and tumorigenic abilities of AM cells were assessed by a series of assays. To explore the molecular expression profile of BRD4-depleted AM cells, RNA sequencing (RNA-seq) was performed. Bioinformatic analysis was performed on AM expression matrices obtained from the Gene Expression Omnibus (GEO). The therapeutic efficacy of BET-inhibitors (BETi) was assessed with AM patient-derived organoids. RESULTS Upregulation of BRD4 was observed in conventional AMs, recurrent AMs, and ameloblastic carcinomas. Depletion of BRD4 inhibited proliferation, invasion, migration, and tumorigenesis in AM. Administration of BETi attenuated the aggressiveness of AM and the growth of AM patient-derived organoids. Bioinformatic analysis indicated that BRD4 may promote AM progression by regulating the Wnt pathway and stemness-associated pathways. CONCLUSION BRD4 increases the aggressiveness and promotes the recurrence of ameloblastoma by regulating the Wnt pathway and stemness-associated pathways. These findings highlight BRD4 as a promising therapeutic target in AM management.
Collapse
Affiliation(s)
- Jiaxiang Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jingqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Gan Xiong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shengqi Ouyang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bokai Yun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiuyun Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenjin Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ming Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Nan Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Wang J, Xiao B, Kimura E, Mongan M, Hsu WW, Medvedovic M, Puga A, Xia Y. Crosstalk of MAP3K1 and EGFR signaling mediates gene-environment interactions that block developmental tissue closure. J Biol Chem 2024; 300:107486. [PMID: 38897570 PMCID: PMC11294703 DOI: 10.1016/j.jbc.2024.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Aberrant regulation of signal transduction pathways can adversely derail biological processes for tissue development. One such process is the embryonic eyelid closure that is dependent on the mitogen-activated protein kinase kinase kinase 1 (MAP3K1). Map3k1 KO in mice results in defective eyelid closure and an autosomal recessive eye-open at birth phenotype. We have shown that in utero exposure to dioxin, a persistent environmental toxicant, induces the same eye defect in Map3k1+/- heterozygous but not WT pups. Here, we explore the mechanisms of the Map3k1 (gene) and dioxin (environment) interactions (GxE) underlying defective eyelid closure. We show that, acting through the aryl hydrocarbon receptor, dioxin activates epidermal growth factor receptor signaling, which in turn depresses MAP3K1-dependent Jun N-terminal kinase (JNK) activity. The dioxin-mediated JNK repression is moderate but is exacerbated by Map3k1 heterozygosity. Therefore, dioxin exposed Map3k1+/- embryonic eyelids have a marked reduction of JNK activity, accelerated differentiation and impeded polarization in the epithelial cells. Knocking out Ahr or Egfr in eyelid epithelium attenuates the open-eye defects in dioxin-treated Map3k1+/- pups, whereas knockout of Jnk1 and S1pr that encodes the sphigosin-1-phosphate (S1P) receptors upstream of the MAP3K1-JNK pathway potentiates the dioxin toxicity. Our novel findings show that the crosstalk of aryl hydrocarbon receptor, epidermal growth factor receptor, and S1P-MAP3K1-JNK pathways determines the outcome of dioxin exposure. Thus, gene mutations targeting these pathways are potential risk factors for the toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Bo Xiao
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Eiki Kimura
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Maureen Mongan
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Wei-Wen Hsu
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Ying Xia
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
15
|
Yoshimoto S, Okamura K. Tumor microenvironment of ameloblastoma with a focus on osteoclastogenesis, cell migration, and malignant transformation. J Oral Biosci 2024; 66:314-319. [PMID: 38734178 DOI: 10.1016/j.job.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Odontogenic tumors arise in the jawbone and originate from cells associated with tooth development. Therefore, understanding odontogenic tumors requires knowledge of all aspects of dental research, including tooth development and eruption. Ameloblastoma is the most common odontogenic tumor. HIGHLIGHT Although a benign tumor, ameloblastoma progresses with marked jawbone resorption. Because of its locally aggressive features, it can be treated surgically by resecting the surrounding bone. From a molecular pathology perspective, several genetic mutations and dysregulated signaling pathways involved in ameloblastoma tumorigenesis have been identified. Histopathologically, ameloblastomas consist of peripheral ameloblast-like cells and an inner stellate reticulum. The stromal region consists of fibrovascular connective tissue, showing a characteristic sparse myxoid histology. In general, the tumor microenvironment, including the surrounding non-tumor cells, contributes to tumorigenesis and progression. In this review, we focus on the tumor microenvironment of ameloblastomas. In addition, we present some of our recent studies on osteoclastogenesis, tubulin acetylation-induced cell migration, and hypoxia-induced epithelial-mesenchymal transition in ameloblastomas. CONCLUSION Further research on ameloblastomas can lead to the development of new treatments and improve patients' quality of life.
Collapse
Affiliation(s)
- Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| | - Kazuhiko Okamura
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
16
|
Zhang H, Wang W, Qian Y, Zhang L. Extracellular matrix of ameloblastoma-derived negatively regulates osteogenic differentiation. Oral Dis 2024; 30:2362-2372. [PMID: 37498913 DOI: 10.1111/odi.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE To investigate the effects of key pathogenic genes involved in the development of jaw ameloblastoma (AB) and its associated extracellular matrix (ECM) on osteogenic differentiation in order to provide a theoretical foundation for future research into bone aggressiveness of AB. METHODS The essential genes were identified by five AB patients for whole-exome sequencing and the microarray datasets GES38494 and GES132472. Moreover, the expression of key genes and their encoded proteins in AB tissues was explored. In addition, AB-derived the decellularized ECM (ABdECM) tissues were generated by the decellularization technique. Furthermore, the osteogenic development of periodontal ligament stem cells (PDLSCs) was mimicked by simulating the effects of the AB tumor microenvironment (TME). RESULTS The AB essential genes including COL1A2, COL4A2, FBN1, and HPSE were discovered. Among them, the expression of HPSE was down-regulated, while that of COL1A2, COL4A2, and FBN1 was noticeably upregulated in AB compared with normal gingival tissues of the jaws. In vitro osteogenic differentiation of PDLSCs was suppressed by the ABdECM. CONCLUSIONS Abnormal ECM proteins encoded by COL4A2, COL1A2, FBN1, and HPSE genes can cause disturbance in the ECM environment of AB and promote bone resorption.
Collapse
Affiliation(s)
- Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Lanlan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
17
|
Marín-Márquez C, Kirby J, Hunter KD. Molecular pathogenesis of ameloblastoma. J Oral Pathol Med 2024; 53:277-293. [PMID: 38664938 DOI: 10.1111/jop.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Ameloblastoma (AM) is a benign, although aggressive, epithelial odontogenic tumour originating from tooth-forming tissues or remnants. Its aetiopathogenesis remains unclear; however, molecular analysis techniques have allowed researchers to progress in understanding its genetic basis. The high frequency of BRAF p.V600E as a main driver mutation in AM is well established; nevertheless, it is insufficient to explain its tumourigenesis. In this review, we aimed to integrate the current knowledge about the biology of AM and to describe the main genetic alterations reported, focusing on the findings of large-scale sequencing and gene expression profiling techniques. Current evidence shows that besides BRAF mutation and activation of the MAPK pathway, alterations in Hedgehog and Wnt/β-catenin pathway-related genes are also involved in AM pathogenesis. Recently, a tumour suppressor gene, KMT2D, has been reported as mutated by different research groups. The biological impact of these mutations in the pathogenesis of AM has yet to be elucidated. Further studies are needed to clarify the impact of these findings in the identification of novel biomarkers that could be useful for diagnosing, classifying, and molecular targeting this neoplasm.
Collapse
Affiliation(s)
- Constanza Marín-Márquez
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, UK
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Puerto Montt, Chile
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Yang R, Lin X, Zhang W, Gokavarapu S, Lin C, Ren Z, Hu Y, Cao W, Ji T. Unicystic ameloblastoma: A retrospective study on recurrent factors from a single institute database. Oral Dis 2024; 30:1475-1482. [PMID: 36564985 DOI: 10.1111/odi.14477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Unicystic ameloblastomas are a variant of ameloblastoma with a definite recurrence rate because of the biological behaviours of the tumour. The risk factors associated with disease recurrence were analysed in this retrospective study. METHODS A total of 132 patients with primary unicystic ameloblastoma reported in a tertiary hospital from 2005 to 2015 were analysed to identify the clinic-pathological and radiological factors associated with recurrence using univariate and multivariate Cox regression analyses. RESULTS The mean volume was 30.54cm3 ± 12.55 cm3, and this value differed significantly according to recurrence (p < 0.001). Root resorption and bone cortex/soft tissue invasion were also significantly associated with recurrence among unicystic ameloblastoma patients (p = 0.017 vs. p < 0.001, respectively). A new stage classification system was developed to predict disease recurrence of patients. The multivariate Cox regression analysis revealed that the new stage classification system was the only predictor of disease recurrence in unicystic ameloblastoma patients (p < 0.001), regardless of root resorption, position and site characteristics. CONCLUSIONS Volume, root resorption and bone cortex/soft tissue invasion were risk factors for disease recurrence among unicystic ameloblastoma patients. The new stage classification was an independent predictor of disease recurrence in patients with unicystic ameloblastoma.
Collapse
Affiliation(s)
- Rong Yang
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaohu Lin
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenming Zhang
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Sandhya Gokavarapu
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chengzhong Lin
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yongjie Hu
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Tong Ji
- Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
19
|
Pereira T, Shetty SJ, Punjabi V, Vidhale RG, Gotmare SS, Kamath P. Immunohistochemical expression of SOX2 in OKC and ameloblastoma: A comparative study. J Oral Maxillofac Pathol 2023; 27:685-692. [PMID: 38304494 PMCID: PMC10829463 DOI: 10.4103/jomfp.jomfp_265_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/28/2023] [Accepted: 09/01/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Odontogenic, non-inflammatory maxillofacial cysts and tumours vary greatly in their ability to grow and cause local tissue destruction. Despite their common embryologic origin, the biologic mechanisms responsible for this diverse array of clinical behaviour are largely unknown. Unfortunately, even with accurate tissue diagnosis and appropriate surgical management, these tumours have relatively high recurrence rates. While this may be related to surgical technique, it may also be due to intrinsic tumour biology. SOX2 is differentially expressed in odontogenic cysts and tumours, which has an impact over patient prognosis. This could be related to their diverse cells of origin or stages of histogenesis. SOX2 is expressed in OKC and ameloblastoma, and in this study, we look forward to find altered levels and intensity of SOX2 in the above-mentioned lesions. Aim and Objectives To profile the expression of SOX2 in odontogenic keratocyst (OKC) and ameloblastomaTo compare the intensity of these lesions, analyse their intrinsic feature and predict their recurrence. Material and Methods Histopathologically diagnosed cases of OKC and ameloblastoma will be selected (n = 40). Paraffin-embedded, formalin-fixed sections of these lesions will be stained for SOX2 marker using a standard immunohistochemical technique. Positive control will be taken as oral squamous cell carcinoma and negative control will be taken as normal oral mucosa. Results A comparison between the stained cell types in odontogenic keratocyst and ameloblastoma revealed statistically significant differences. The immunoreactivity scores of SOX2 were analysed in both groups. The results indicated that 45% of OKC cases exhibited strongly positive reactivity, while 65% of ameloblastoma cases were negative. Statistical analysis demonstrated highly significant differences in the frequency of SOX2 expression between the two groups, with a higher frequency of negative expression in ameloblastoma. Conclusion Stem cell markers have been observed in these lesions, suggesting the acquisition of stem-like properties by tumour cells, which can affect patient prognosis. Specifically, the marker SOX2 shows differential expression in odontogenic cysts and tumours. High expression of SOX2 in OKC indicates the presence of stem cells with significant self-renewal and proliferative properties, potentially signifying neoplastic behaviour. In contrast, weak or absent expression of SOX2 in ameloblastoma suggests different molecular pathways involved in its neoplastic behaviour.
Collapse
Affiliation(s)
- Treville Pereira
- Department of Oral and Maxillofacial Pathology, D.Y. Patil University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Subraj J. Shetty
- Department of Oral and Maxillofacial Pathology, D.Y. Patil University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Vishal Punjabi
- Department of Oral and Maxillofacial Pathology, D.Y. Patil University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Rutuja G. Vidhale
- Department of Oral and Maxillofacial Pathology, D.Y. Patil University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Swati S. Gotmare
- Department of Oral and Maxillofacial Pathology, D.Y. Patil University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Pooja Kamath
- Department of Oral and Maxillofacial Pathology, D.Y. Patil University, School of Dentistry, Navi Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Kalogirou EM, Lekakis G, Petroulias A, Chavdoulas K, Zogopoulos VL, Michalopoulos I, Tosios KI. The Stem Cell Expression Profile of Odontogenic Tumors and Cysts: A Systematic Review and Meta-Analysis. Genes (Basel) 2023; 14:1735. [PMID: 37761874 PMCID: PMC10531260 DOI: 10.3390/genes14091735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Stem cells have been associated with self-renewing and plasticity and have been investigated in various odontogenic lesions in association with their pathogenesis and biological behavior. We aim to provide a systematic review of stem cell markers' expression in odontogenic tumors and cysts. METHODS The literature was searched through the MEDLINE/PubMed, EMBASE via OVID, Web of Science, and CINHAL via EBSCO databases for original studies evaluating stem cell markers' expression in different odontogenic tumors/cysts, or an odontogenic disease group and a control group. The studies' risk of bias (RoB) was assessed via a Joanna Briggs Institute Critical Appraisal Tool. Meta-analysis was conducted for markers evaluated in the same pair of odontogenic tumors/cysts in at least two studies. RESULTS 29 studies reported the expression of stem cell markers, e.g., SOX2, OCT4, NANOG, CD44, ALDH1, BMI1, and CD105, in various odontogenic lesions, through immunohistochemistry/immunofluorescence, polymerase chain reaction, flow cytometry, microarrays, and RNA-sequencing. Low, moderate, and high RoBs were observed in seven, nine, and thirteen studies, respectively. Meta-analysis revealed a remarkable discriminative ability of SOX2 for ameloblastic carcinomas or odontogenic keratocysts over ameloblastomas. CONCLUSION Stem cells might be linked to the pathogenesis and clinical behavior of odontogenic pathologies and represent a potential target for future individualized therapies.
Collapse
Affiliation(s)
- Eleni-Marina Kalogirou
- Faculty of Health and Rehabilitation Sciences, Metropolitan College, 10672 Athens, Greece
| | - Georgios Lekakis
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (A.P.); (K.C.); (K.I.T.)
| | - Aristodimos Petroulias
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (A.P.); (K.C.); (K.I.T.)
| | - Konstantinos Chavdoulas
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (A.P.); (K.C.); (K.I.T.)
| | - Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (I.M.)
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (I.M.)
| | - Konstantinos I. Tosios
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (A.P.); (K.C.); (K.I.T.)
| |
Collapse
|
21
|
Zhang Z, Tian T, Pan N, Wang Y, Peng M, Zhao X, Pan Z, Wan C. Microprotein Dysregulation in the Serum of Patients with Atrial Fibrillation. J Proteome Res 2023; 22:1172-1180. [PMID: 36924315 DOI: 10.1021/acs.jproteome.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The incidence rate of atrial fibrillation (AF) has stayed at a high level in recent years. Despite the intensive efforts to study the pathologic changes of AF, the molecular mechanism of disease development remains unclarified. Microproteins are ribosomally translated gene products from small open reading frames (sORFs) and are found to play crucial biological functions, while remain rare attention and indistinct in AF study. In this work, we recruited 65 AF patients and 65 healthy subjects for microproteomic profiling. By differential analysis and cross-validation between independent datasets, a total of 4 microproteins were identified as significantly different, including 3 annotated ones and 1 novel one. Additionally, we established a diagnostic model with either microproteins or global proteins by machine learning methods and found the model with microproteins achieved comparable and excellent performance as that with global proteins. Our results confirmed the abnormal expression of microproteins in AF and may provide new perspectives on the mechanism study of AF.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Tao Tian
- Department of Pharmacology, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education; State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang 150081, People's Republic of China
| | - Ni Pan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yi Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Mingbo Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Xinbo Zhao
- Department of Pharmacology, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education; State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang 150081, People's Republic of China
| | - Zhenwei Pan
- Department of Pharmacology, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education; State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang 150081, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
22
|
Hii EPW, Ramanathan A, Pandarathodiyil AK, Wong GR, Sekhar EVS, Binti Talib R, Zaini ZM, Zain RB. Homeobox Genes in Odontogenic Lesions: A Scoping Review. Head Neck Pathol 2023; 17:218-232. [PMID: 36344906 PMCID: PMC10063701 DOI: 10.1007/s12105-022-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Homeobox genes play crucial roles in tooth morphogenesis and development and thus mutations in homeobox genes cause developmental disorders such as odontogenic lesions. The aim of this scoping review is to identify and compile available data from the literatures on the topic of homeobox gene expression in odontogenic lesions. METHOD An electronic search to collate all the information on studies on homeobox gene expression in odontogenic lesions was carried out in four databases (PubMed, EBSCO host, Web of Science and Cochrane Library) with selected keywords. All papers which reported expression of homeobox genes in odontogenic lesions were considered. RESULTS A total of eleven (11) papers describing expression of homeobox genes in odontogenic lesions were identified. Methods of studies included next generation sequencing, microarray analysis, RT-PCR, Western blotting, in situ hybridization, and immunohistochemistry. The homeobox reported in odontogenic lesions includes LHX8 and DLX3 in odontoma; PITX2, MSX1, MSX2, DLX, DLX2, DLX3, DLX4, DLX5, DLX6, ISL1, OCT4 and HOX C in ameloblastoma; OCT4 in adenomatoid odontogenic tumour; PITX2 and MSX2 in primordial odontogenic tumour; PAX9 and BARX1 in odontogenic keratocyst; PITX2, ZEB1 and MEIS2 in ameloblastic carcinoma while there is absence of DLX2, DLX3 and MSX2 in clear cell odontogenic carcinoma. CONCLUSIONS This paper summarized and reviews the possible link between homeobox gene expression in odontogenic lesions. Based on the current available data, there are insufficient evidence to support any definite role of homeobox gene in odontogenic lesions.
Collapse
Affiliation(s)
- Erica Pey Wen Hii
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Gou Rean Wong
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - E V Soma Sekhar
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | | | - Zuraiza Mohamad Zaini
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| |
Collapse
|
23
|
Kumar VM, Chakravarthy A, Sathyanarayanan R, Raghu K, Reddy CD. Hybrid Ameloblastoma Arising from a Treated Odontogenic Keratocyst of the Mandible: A Case Report With Literature Review. Indian J Otolaryngol Head Neck Surg 2022; 74:6180-6188. [PMID: 36742540 PMCID: PMC9895636 DOI: 10.1007/s12070-021-02889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Odontogenic Keratocyst (OKC) is an odontogenic cyst of developmental origin arising from remnants of the dental lamina. Malignant or benign transformations though rare have been noticed from their epithelium. Ameloblastomatous transformation from an OKC is extremely rare with such lesions being referred to as combined/"hybrid" odontogenic lesions. In this article, we present an intriguing case of a 60-year-old male who was operated on for OKC of the anterior mandible 3 years before, who came back with a complaint of swelling over the same site. Incisional biopsy revealed the acanthomatous type of ameloblastoma for which segmental resection with immediate reconstruction using recon plate was done. Excision biopsy revealed a plexiform variant as well, thus exhibiting a hybrid pattern. Surgeons should be aware of this hybrid presentation of ameloblastoma arising from the epithelium of OKC as the acanthomatous subtype is known for its notorious genetic behavior leading to recurrence and aggressive nature of this tumor.
Collapse
Affiliation(s)
- V. Manoj Kumar
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Science, Sri Balaji Vidyapeeth University, Pillayyarkuppam, Pondicherry 607402 India
- Present Address: No. 50/52B Subhiksha Appartment, Kannagi Street, Anna Nedumpathai, Choolaimedu, Chennai, 600094 India
| | - Anirudh Chakravarthy
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Science, Sri Balaji Vidyapeeth University, Pillayyarkuppam, Pondicherry 607402 India
| | - R. Sathyanarayanan
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Science, Sri Balaji Vidyapeeth University, Pillayyarkuppam, Pondicherry 607402 India
| | - K. Raghu
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Science, Sri Balaji Vidyapeeth University, Pillayyarkuppam, Pondicherry 607402 India
| | - C. Deepika Reddy
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Science, Sri Balaji Vidyapeeth University, Pillayyarkuppam, Pondicherry 607402 India
| |
Collapse
|
24
|
Júnior JF, de França GM, da Silva Barros CC, Felix FA, da Silva WR, de Lucena HF, Oliveira CN, Galvão HC. Biomarkers involved in the proliferation of the odontogenic keratocyst, glandular odontogenic cyst and botryoid odontogenic cyst. Oral Maxillofac Surg 2022; 26:655-662. [PMID: 35059898 DOI: 10.1007/s10006-021-01026-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Odontogenic cysts are a heterogeneous group of lesions with varied clinical behavior. OBJECTIVE To analyze the expression of the epidermal growth factor receptor (EGFR), Cyclin D1, and transcription factor SOX2 in the odontogenic epithelium evaluating the cell cycle control and cystic expansion. METHODS This was a cross-sectional study including 40 cases, 20 odontogenic keratocysts (OKC), 10 botryoid odontogenic cysts (BOC), and 10 glandular odontogenic cysts (GOC). RESULTS All cases of OKC, BOC, and GOC were positive for EGFR in all layers of the cyst lining. The highest expression of nuclear Cyclin D1 was observed in the suprabasal layer of OKCs and in the basal and suprabasal layers of GOC and BOC (p < 0.001). In addition, SOX2 was only expressed in the suprabasal layer of OKCs. CONCLUSION The high expression of EGFR in the cyst membrane suggests that EGF stimulates epithelial proliferation in BOCs, and the high expression of SOX2 in OKCs may be related to the presence of stem cells in the lesion. Cyclin D1 is related to cell cycle disruption in G1-S contributing to stimulates epithelial proliferation of OKCs and GOCs and BOCs.
Collapse
Affiliation(s)
- Joaquim Felipe Júnior
- Dental Science Postgraduate Program, Federal University of Rio Grande Do Norte, Natal-RN, Brazil
| | - Glória Maria de França
- Dental Science Postgraduate Program, Federal University of Rio Grande Do Norte, Av. Senador Salgado Filho, 1787, Lagoa Nova Natal-RN, CEP, 59056-000, Brazil.
| | | | - Fernanda Aragão Felix
- Dental Science Postgraduate Program, Federal University of Rio Grande Do Norte, Natal-RN, Brazil
| | | | - Hévio Freitas de Lucena
- Dental Science Postgraduate Program, Federal University of Rio Grande Do Norte, Natal-RN, Brazil
| | - Cláudia Nunes Oliveira
- Department of Pathology, Health Sciences, Federal University of Rio Grande Do Norte, Natal-RN, Brazil
| | - Hébel Cavalcanti Galvão
- Dental Science Postgraduate Program, Federal University of Rio Grande Do Norte, Natal-RN, Brazil
| |
Collapse
|
25
|
Carruthers M, Edgley DE, Saxon AD, Gabagambi NP, Shechonge A, Miska EA, Durbin R, Bridle JR, Turner GF, Genner MJ. Ecological Speciation Promoted by Divergent Regulation of Functional Genes Within African Cichlid Fishes. Mol Biol Evol 2022; 39:msac251. [PMID: 36376993 PMCID: PMC10101686 DOI: 10.1093/molbev/msac251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rapid ecological speciation along depth gradients has taken place repeatedly in freshwater fishes, yet molecular mechanisms facilitating such diversification are typically unclear. In Lake Masoko, an African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow-littoral and deep-benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data, we explore two major regulatory transcriptional mechanisms, expression and splicing-QTL variants, and examine their contributions to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 5.4% were regulated by cis-regulatory expression QTLs, and 9.2% were regulated by cis-regulatory splicing QTLs. We also found strong signals of divergent selection on differentially expressed genes associated with craniofacial development. These results suggest that large-scale transcriptome modification plays an important role during early-stage speciation. We conclude that regulatory variants are important targets of selection driving ecologically relevant divergence in gene expression during adaptive diversification.
Collapse
Affiliation(s)
- Madeleine Carruthers
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Duncan E Edgley
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Andrew D Saxon
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Nestory P Gabagambi
- Tanzanian Fisheries Research Institute, Kyela Research
Centre, P.O. Box 98, Kyela, Mbeya, Tanzania
| | - Asilatu Shechonge
- Tanzanian Fisheries Research Institute, Dar es Salaam Research
Centre, P.O. Box 9750, Dar es Salaam, Tanzania
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge,
Cambridge CB2 1QN, United
Kingdom
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - George F Turner
- School of Natural Sciences, Bangor University,
Bangor, Wales LL57 2UW, United
Kingdom
| | - Martin J Genner
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| |
Collapse
|
26
|
Li S, Lee DJ, Kim HY, Kim JY, Jung YS, Jung HS. Unraveled roles of Cav1.2 in proliferation and stemness of ameloblastoma. Cell Biosci 2022; 12:145. [PMID: 36057617 PMCID: PMC9440535 DOI: 10.1186/s13578-022-00873-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Transcriptome analysis has been known as a functional tool for cancer research recently. Mounting evidence indicated that calcium signaling plays several key roles in cancer progression. Despite numerous studies examining calcium signaling in cancer, calcium signaling studies in ameloblastoma are limited. Results In the present study, comparative transcriptome profiling of two representative odontogenic lesions, ameloblastoma and odontogenic keratocyst, revealed that Cav1.2 (CACNA1C, an L-type voltage-gated calcium channel) is strongly enriched in ameloblastoma. It was confirmed that the Ca2+ influx in ameloblastoma cells is mainly mediated by Cav1.2 through L-type voltage-gated calcium channel agonist and blocking reagent treatment. Overexpression and knockdown of Cav1.2 showed that Cav1.2 is directly involved in the regulation of the nuclear translocation of nuclear factor of activated T cell 1 (NFATc1), which causes cell proliferation. Furthermore, a tumoroid study indicated that Cav1.2-dependent Ca2+ entry is also associated with the maintenance of stemness of ameloblastoma cells via the enhancement of Wnt/β-catenin signaling activity. Conclusion In conclusion, Cav1.2 regulates the NFATc1 nuclear translocation to enhance ameloblastoma cell proliferation. Furthermore, Cav1.2 dependent Ca2+ influx contributes to the Wnt/β-catenin activity for the ameloblastoma cell stemness and tumorigenicity. Our fundamental findings could have a major impact in the fields of oral maxillofacial surgery, and genetic manipulation or pharmacological approaches to Cav1.2 can be considered as new therapeutic options. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00873-9.
Collapse
|
27
|
Li S, Kim HY, Lee DJ, Park SH, Otsu K, Harada H, Jung YS, Jung HS. Inhibition of L-type voltage-gated calcium channel-mediated Ca 2+ influx suppresses the collective migration and invasion of ameloblastoma. Cell Prolif 2022; 55:e13305. [PMID: 35794842 PMCID: PMC9628225 DOI: 10.1111/cpr.13305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Objectives Ameloblastoma (AM) has been known as a benign but locally invasive tumour with high recurrence rates. Invasive behaviour of the AM results in destruction of the adjacent jawbone and the non‐detectable remnants during surgery, interrupting the complete elimination of cancer cells. Methods To explore novel targets for the tumour cell invasion, a transcriptomic analysis between AM and odontogenic keratocyst were performed through next‐generation sequencing in detail. Results Enrichment of CACNA1C gene (encoding Cav1.2) in AM, a subunit of the L‐type voltage‐gated calcium channel (VGCC) was observed for the first time. The expression and channel activity of Cav1.2 was confirmed by immunostaining and calcium imaging in the patient samples or primary cells. Verapamil, L‐type VGCC blocker revealed suppression of the Ca2+‐induced cell aggregation and collective invasion of AM cells in vitro. Furthermore, the effect of verapamil in suppressing AM invasion into the adjacent bone was confirmed through orthotopic xenograft model specifically. Conclusion Taken together, Cav1.2 maybe considered to be a therapeutic candidate to decrease the collective migration and invasion of AM.
Collapse
Affiliation(s)
- Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hyun-Yi Kim
- NGeneS Inc, Ansan-si, Gyeonggi-do, South Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Sung-Ho Park
- Department of Oral & Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, South Korea
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Young-Soo Jung
- Department of Oral & Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
28
|
SHORT COMMUNICATIONAlteration of primary cilia morphology and associated signalling in ameloblastoma. Arch Oral Biol 2022; 142:105499. [DOI: 10.1016/j.archoralbio.2022.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022]
|
29
|
Kalogirou EM, Foutadakis S, Koutsi MA, Vatsellas G, Vlachodimitropoulos D, Petsinis V, Sklavounou A, Agelopoulos M, Tosios KI. Decoding a gene expression program that accompanies the phenotype of sporadic and Basal Cell Nevus Syndrome-associated odontogenic keratocyst. J Oral Pathol Med 2022; 51:649-658. [PMID: 35665542 DOI: 10.1111/jop.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Odontogenic keratocyst (OKC) is characterized by local aggressive behavior and a high recurrence rate, as well as the potential to develop in association with the Basal Cell Nevus Syndrome (BCNS). The aim of this study was to decode the gene expression program accompanying OKC phenotype. METHODS 150-bp paired-end RNA-sequencing was applied on 6 sporadic and 6 BSCN-associated whole-tissue OKC samples in comparison to 6 dental follicles, coupled to bioinformatics and complemented by immunohistochemistry. RESULTS 2,654 and 2,427 differentially expressed genes were captured to characterize the transcriptome of sporadic and BCNS-associated OKCs, respectively. Gene ontologies (GOs) related to "epidermis/skin development" and "keratinocyte/epidermal cell differentiation" were enriched among the upregulated genes (KRT10, NCCRP1, TP63, GRHL3, SOX21), while "extracellular matrix (ECM) organization" (ITGA5, LOXL2) and "odontogenesis" (MSX1, LHX8) GOs were overrepresented among the downregulated genes in OKC. Interestingly, upregulation of various embryonic stem cells (ESCs) markers (EPHA1, SCNN1A) and genes committed in cellular reprogramming (SOX2, KLF4, OVOL1, IRF6, TACSTD2, CDH1) was found in OKC. These findings were highly shared between sporadic and BCNS-associated OKCs. Immunohistochemistry verified SOX2, KLF4, OVOL1, IRF6, TACSTD2/TROP2, CDH1/E-cadherin, and p63 expression predominantly in the OKC suprabasal epithelial layers. CONCLUSION The OKC transcriptomic profile is characterized by a prominent epidermal and dental epithelial fate, a repressed dental mesenchyme fate combined with deregulated ECM organization, and enhanced stemness gene signatures. Thus, we propose a developed epidermis-like phenotype in the OKC suprabasal epithelial cells, established in parallel to a significant upregulation of marker genes related to ESCs and cellular reprogramming. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eleni-Marina Kalogirou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros Foutadakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Marianna A Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Vassilis Petsinis
- Department of Oral and Maxillofacial Surgery, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Sklavounou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Thermos G, Piperi E, Tosios KI, Nikitakis NG. Expression of BMP4 and FOXN1 in orthokeratinized odontogenic cyst compared to odontogenic keratocyst suggests an epidermal phenotype. Biotech Histochem 2022; 97:584-592. [PMID: 35527675 DOI: 10.1080/10520295.2022.2048073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Odontogenic keratocysts (OKC) and orthokeratinized odontogenic cysts (OOC) are odontogenic cysts that share histological and immunohistochemical similarity with epidermal appendages and cutaneous cystic lesions despite exhibiting contrasting biological behavior. In epidermal appendages, BMP4 induces expression of FOXN1, which participates in terminal differentiation of keratinocytes and control of proliferation. We compared BMP4 and FOXN1 expression in OOC and OKC to investigate their role in the epithelial differentiation of these cysts. BMP4 and FOXN1 expression was assessed using immunohistochemistry in 20 primary sporadic OKC and compared to 16 OOC. BMP4 epithelial expression was detected in 81.25% OOC compared to 35% in OKC, while its expression in connective tissue was observed in 65% OKC and 75% OOC. FOXN1 was detected in 75% OOC vs. 30% OKC. The "triple positive" phenotype, i.e., BMP4 epithelial and connective tissue positivity and FOXN1 epithelial positivity, was seen in 56.25% OOC compared to 10% OKC. The greater expression of BMP4 and FOXN1 in OOC suggests greater activation of this pathway in OOC, which suggests a role in its more mature epithelium; it also resembles an epidermal phenotype.
Collapse
Affiliation(s)
- Grigorios Thermos
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Piperi
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology and Hospital Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Zhang Y, Li X, Zhang Y, Ye Y, Pan X, Hu T, Chen W, Chai H, Wang X, Yang Y. Carbon ion radiotherapy for recurrent ameloblastoma: A case report. SAGE Open Med Case Rep 2022; 10:2050313X221082416. [PMID: 35355852 PMCID: PMC8958705 DOI: 10.1177/2050313x221082416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
Ameloblastoma is a kind of benign, odontogenic tumor of epithelial origin, and surgery is mainstay treatment method; however, recurrence is common, and usually the treatment for recurrence is still surgery. We report on a patient of recurrent ameloblastoma treated with carbon ion radiation therapy and achieved a good efficacy. A 25-year-old female with relapse of an ameloblastoma was referred to the Wuwei Heavy Ion Center for carbon ion therapy. She had been initially diagnosed with ameloblastoma 8 years ago and underwent operation of right mandible ameloblastoma. After she transferred to our center, she accepted a dose of 60 GyE carbon ion radiation therapy, and the efficacy is good. Carbon ion radiation therapy can be an effective treatment option for ameloblastoma.
Collapse
Affiliation(s)
- Yihe Zhang
- Heavy Ion Radiotherapy of Wuwei Tumor Hospital, Wuwei, China
| | | | | | - Yancheng Ye
- Heavy Ion Radiotherapy of Wuwei Tumor Hospital, Wuwei, China
| | - Xin Pan
- Heavy Ion Radiotherapy of Wuwei Tumor Hospital, Wuwei, China
| | - Tingchao Hu
- Heavy Ion Radiotherapy of Wuwei Tumor Hospital, Wuwei, China
| | - Weizuo Chen
- Heavy Ion Radiotherapy of Wuwei Tumor Hospital, Wuwei, China
| | - Hongyu Chai
- Heavy Ion Radiotherapy of Wuwei Tumor Hospital, Wuwei, China
| | - Xin Wang
- Heavy Ion Radiotherapy of Wuwei Tumor Hospital, Wuwei, China
| | - Yuling Yang
- Heavy Ion Radiotherapy of Wuwei Tumor Hospital, Wuwei, China
| |
Collapse
|
32
|
da Trindade GA, da Silva LP, de Andrade Santos PP, Pinto LP, de Souza LB. Expression of a Tumor Stem Cell Marker (Aldehyde Dehydrogenase 1-ALDH1) in Benign Epithelial Odontogenic Lesions. Head Neck Pathol 2022; 16:785-791. [PMID: 35349099 PMCID: PMC9424418 DOI: 10.1007/s12105-022-01430-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022]
Abstract
The morphological diversity and different biological behaviors of human lesions has been attributed to the presence of cells with stem cell (SC) characteristics. Among SC markers, ALDH1 has been used in studies investigating different neoplasms and high expression of this marker was associated with clinicopathological features and prognosis in some groups. The aim of this study was to analyze the presence and distribution of SCs based on the expression of ALDH1 in epithelial odontogenic cysts and tumors. The sample consisted of 80 cases (20 dentigerous cysts (DCs), 20 odontogenic keratocysts (OKCs), 20 ameloblastomas (AMs), and 20 adenomatoid odontogenic tumors (AOTs). An immunoreactivity score was obtained from the percentage of positive cells and intensity of immunostaining. A level of 5% (p < 0.05) was adopted for the statistical tests. Immunoexpression of ALDH1 was observed in cytoplasm and nucleus-cytoplasm. The median scores indicated significantly higher expression in OKCs and DCs compared to AMs (p < 0.0001) and AOTs (p < 0.0001). In the tumor stroma and cystic capsule, immunoreactivity was detected in all odontogenic cysts studied and in 85% and 90% of AMs and AOTs, respectively. The expression of ALDH1 suggests the presence of SCs in the odontogenic lesions studied. Epithelial immunoexpression was higher in odontogenic cysts than in odontogenic tumors.
Collapse
Affiliation(s)
| | | | | | - Leão Pereira Pinto
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN CEP 59056-000 Brazil
| | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN CEP 59056-000 Brazil
| |
Collapse
|
33
|
Zhang Z, Peng Y, Dang J, Liu X, Zhu D, Zhang Y, Shi Y, Fan H. Identification of key biomarkers related to epithelial-mesenchymal transition and immune infiltration in ameloblastoma using integrated bioinformatics analysis. Oral Dis 2022; 29:1657-1667. [PMID: 35226761 DOI: 10.1111/odi.14173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/19/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study aimed to elucidate the underlying mechanisms of ameloblastoma (AM) through integrated bioinformatics analysis. METHODS We downloaded two microarrays of AMs from the GEO database and identified differentially expressed genes (DEGs) by integrated bioinformatics analysis. The enrichment analysis of DEGs was conducted to characterize GO and KEGG pathways. Protein-protein interaction (PPI) network and hub genes were screened via STRING and Cytoscape. CIBERSORT algorithm was utilized to analyze immune infiltration in AMs. We also verified the diagnostic and therapeutic value of hub genes. RESULTS Overall, 776 DEGs were identified in AMs through bioinformatics analysis. The function enrichment analysis shed light on pathways involved in AMs. Subsequently, we screened six hub genes via PPI network. Furthermore, we evaluated immune infiltration in AMs and found that macrophages may be participating in the progression of AMs. The upregulated expression of FN1 was related to the macrophages M2 polarization. Finally, ROC analysis indicated that six hub genes had high diagnostic value for AMs and 11 drugs interacted with upregulated hub genes were identified by screening the DGIdb database. CONCLUSION This study revealed the underlying mechanisms of pathogenesis and biological behavior of AMs and provided candidate targets for the diagnosis and treatment of AMs.
Collapse
Affiliation(s)
- Zhao Zhang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Ye Peng
- Department of Orthopaedics, Air Force Medical Center, PLA, Beijing, China
| | - Jingyi Dang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Xincheng Liu
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Dongze Zhu
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Yushen Zhang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Yubo Shi
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Hongbin Fan
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
34
|
Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cell Mol Life Sci 2022; 79:153. [PMID: 35217915 PMCID: PMC8881251 DOI: 10.1007/s00018-022-04183-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/09/2023]
Abstract
Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue’s epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF’s epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-β (TGFβ) and abrogated by TGFβ receptor inhibition, thereby reproducing TGFβ's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFβ receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.
Collapse
|
35
|
Yeung AWK. Radiolucent Lesions of the Jaws: An Attempted Demonstration of the Use of Co-Word Analysis to List Main Similar Pathologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041933. [PMID: 35206118 PMCID: PMC8872104 DOI: 10.3390/ijerph19041933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023]
Abstract
(1) Background: Many radiolucent jaw lesions exist, and they often show a radiographic resemblance, rendering diagnosis a challenging act. Closely related lesions should be frequently mentioned together in the academic literature, which might be helpful for junior practitioners in determining their differential diagnosis. The usefulness of bibliometric analysis in this respect has yet to be demonstrated. (2) Methods: This study evaluated academic publications on radiolucent jaw lesions, as indexed by the Web of Science Core Collection database. The mentions of radiolucent jaw lesions were extracted from the complete bibliographic records of the publications, and co-word analyses were conducted with the aid of VOSviewer. (3) Results: Based on 1897 papers, visualization maps were synthesized to evaluate co-occurrences of the radiolucent jaw lesions. Ameloblastoma was frequently mentioned together with odontogenic keratocyst, dentigerous cyst, and radicular cyst. Osseous dysplasia was co-mentioned with osteomyelitis, ossifying fibroma, odontoma, fibrous dysplasia, and apical periodontitis. (4) Conclusions: The co-word analysis, a form of bibliometric analysis, could demonstrate a relatedness of radiolucent jaw lesions that could be considered at differential diagnosis.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Marín C, Niklander SE, Martínez-Flores R. Genetic Profile of Adenomatoid Odontogenic Tumor and Ameloblastoma. A Systematic Review. FRONTIERS IN ORAL HEALTH 2022; 2:767474. [PMID: 35048068 PMCID: PMC8757772 DOI: 10.3389/froh.2021.767474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To perform a comprehensive and systematic critical appraisal of the genetic alterations reported to be present in adenomatoid odontogenic tumor (AOT) compared to ameloblastoma (AM), to aid in the understanding in their development and different behavior. Methods: An electronic search was conducted in PubMed, Scopus, and Web of Science during March 2021. Eligibility criteria included publications on humans which included genetic analysis of AOT or AM. Results: A total of 43 articles reporting 59 AOTs and 680 AMs were included. Different genomic techniques were used, including whole-exome sequencing, direct sequencing, targeted next-generation sequencing panels and TaqMan allele-specific qPCR. Somatic mutations affecting KRAS were identified in 75.9% of all AOTs, mainly G12V; whereas a 71% of the AMs harbored BRAF mutations, mainly V600E. Conclusions: The available genetic data reports that AOTs and AM harbor somatic mutations in well-known oncogenes, being KRAS G12V/R and BRAFV600E mutations the most common, respectively. The relatively high frequency of ameloblastoma compared to other odontogenic tumors, such as AOT, has facilitated the performance of different sequencing techniques, allowing the discovery of different mutational signatures. On the contrary, the low frequency of AOTs is an important limitation for this. The number of studies that have a assessed the genetic landscape of AOT is still very limited, not providing enough evidence to draw a conclusion regarding the relationship between the genomic alterations and its clinical behavior. Thus, the presence of other mutational signatures with clinical impact, co-occurring with background KRAS mutations or in wild-type KRAS cases, cannot be ruled out. Since BRAF and RAS are in the same MAPK pathway, it is interesting that ameloblastomas, frequently associated with BRAFV600E mutation have aggressive clinical behavior, but in contrast, AOTs, frequently associated with RAS mutations have indolent behavior. Functional studies might be required to solve this question.
Collapse
Affiliation(s)
- Constanza Marín
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile.,Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, United Kingdom
| | - Sven E Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile
| | - René Martínez-Flores
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
37
|
do Amaral-Silva GK, Morais TMDL, Wagner VP, Martins MD, Fregnani ER, Soares FA, Rocha AC, Pontes HR, Santos-Silva AR, Vargas PA. Expression of DNMTs and H3K9ac in Ameloblastoma and Ameloblastic Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:751162. [PMID: 35048062 PMCID: PMC8757744 DOI: 10.3389/froh.2021.751162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: DNA methyltransferases (DNMTs) and the histone modification H3K9ac are epigenetic markers. This study aimed to describe the immunohistochemical expression of DNMT1, DNMT3A, DNMT3B, and H3K9ac in the dental follicle (DF), ameloblastoma (AME), and ameloblastic carcinoma (AC), correlating these expressions with the recurrence and aggressive behavior in ameloblastoma. Study Design: Immunohistochemical reactions were performed in 10 human DFs, 38 ameloblastomas, and 6 AC samples. Another 59 ameloblastomas assembled in a tissue microarray were used to compare the immunoexpression with the clinical, radiographic, and histopathological characteristics and the presence of BRAFv600e mutation. Each slide was digitized as a high-resolution image and quantified by Aperio ScanScope Nuclear V9 software. All statistical analyzes were performed using GraphPad Prism statistical software. Results: DNMT3B expression was higher in ameloblastomas than in the DFs, while the AC overexpressed all proteins. The ameloblastomas with BRAFv600e mutation, vestibular/lingual, or vestibular/palatine bone cortical disruption and maxilla involvement showed DNMT1 overexpression, while recurrent cases had high DNMT3B levels. Conclusions: DNA methylation and histone modification might play a role in the development, clinical aggressiveness, and recurrence rates of ameloblastoma, such as the progression to AC. Further investigation about gene methylations in ameloblastomas is needed to better understand its relationship with aggressiveness and recurrence.
Collapse
Affiliation(s)
| | | | - Vivian Petersen Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Manoela Domingues Martins
- Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - André Caroli Rocha
- Medical School, Clinics Hospital, University of São Paulo, São Paulo, Brazil
| | - Helder Rabelo Pontes
- Service of Buccal Pathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
38
|
Bioengineering the ameloblastoma tumour to study its effect on bone nodule formation. Sci Rep 2021; 11:24088. [PMID: 34916549 PMCID: PMC8677805 DOI: 10.1038/s41598-021-03484-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone nodules of an average surface area of 0.1 mm2 and average height of 92.37 [Formula: see text] 7.96 μm over 21 days. We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing bone nodules. We have identified potential pathways for this inhibition. More critically, we present novel findings on the interaction of stromal osteoblasts with ameloblastoma.
Collapse
|
39
|
Mao C, Lai Y, Liao C, Chen J, Hong Y, Ren C, Wang C, Lu M, Chen W. Revitalizing mouse diphyodontic dentition formation by inhibiting the sonic hedgehog signaling pathway. Dev Dyn 2021; 251:759-776. [PMID: 34719835 DOI: 10.1002/dvdy.436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/24/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tooth regeneration depends on the longevity of the dental epithelial lamina. However, the exact mechanism of dental lamina regression has not yet been clarified. To explore the role of the Sonic hedgehog (Shh) signaling pathway in regression process of the rudimentary successional dental lamina (RSDL) in mice, we orally administered a single dose of a Shh signaling pathway inhibitor to pregnant mice between embryonic day 13.0 (E13.0) and E17.0. RESULTS We observed that the Shh signaling pathway inhibitor effectively inhibited the expression of Shh signaling pathway components and revitalized RSDL during E15.0-E17.0 by promoting cell proliferation. In addition, mRNA-seq, reverse transcription plus polymerase chain reaction (RT-qPCR), and immunohistochemical analyses indicated that diphyodontic dentition formation might be related to FGF signal up-regulation and the Sostdc1-Wnt negative feedback loop. CONCLUSIONS Overall, our results indicated that the Shh signaling pathway may play an initial role in preventing further development of mouse RSDL in a time-dependent manner.
Collapse
Affiliation(s)
- Chuanqing Mao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Caiyu Liao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiangping Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuhang Hong
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chengyan Ren
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chengyong Wang
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meng Lu
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, China
| |
Collapse
|
40
|
Raut MS, Bansal S, Desai RS, Raut BS. A comparative immunohistochemical analysis of cortactin in orthokeratinized odontogenic cyst (OOC), sporadic odontogenic keratocyst (OKC), and syndromic OKC. J Oral Biosci 2021; 63:444-449. [PMID: 34534694 DOI: 10.1016/j.job.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To evaluate and compare the immunohistochemical expression of cortactin in the epithelial lining of orthokeratinized odontogenic cyst (OOC), sporadic odontogenic keratocyst (OKC), and syndromic OKC. METHODS Formalin-fixed paraffin-embedded tissue blocks of histopathologically diagnosed cases of OOC, OKC, syndromic OKC, normal buccal mucosa (NBM), and oral squamous cell carcinoma (OSCC) were examined for immunohistochemical expression of cortactin. Clear brown cytoplasmic and membranous staining was considered positive. RESULTS A statistically significant difference was observed between OOC and syndromic OKC (p<0.001), as well as between sporadic OKC and syndromic OKC (p<0.001). Although not statistically significant, the expression of cortactin was slightly higher in the basal layer of NBM (mean=0.47), OOC (mean=0.27), sporadic OKC (mean=0.47) syndromic OKC (mean=1.53), and OSCC (mean=0.67) than in the parabasal layers of NBM (mean=0.27), OOC (mean=0.20), sporadic OKC (mean=0.47), syndromic OKC (mean=1.27), and OSCC (mean=0.60). CONCLUSION The expression of cortactin in the basal layer may suggest the formation of invadopodia in the basal layer where the invasion mechanism occurs. This finding is further supported by the higher localization of cortactin in areas of epithelial budding and daughter cysts in syndromic OKC, thereby reaffirming its possible association with recurrence.
Collapse
Affiliation(s)
- Mugdha S Raut
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Dr. A.L Nair Road, Mumbai Central, Mumbai-400008, India.
| | - Shivani Bansal
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Dr. A.L Nair Road, Mumbai Central, Mumbai-400008, India.
| | - Rajiv S Desai
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Dr. A.L Nair Road, Mumbai Central, Mumbai-400008, India.
| | - Bhargav S Raut
- Furness General Hospital-Morecambe Bay Hospital Trust, Dalton Lane, Barrow in Furness, Cumbria, United Kingdom.
| |
Collapse
|
41
|
Peralta S, Duhamel GE, Katt WP, Heikinheimo K, Miller AD, Ahmed F, McCleary-Wheeler AL, Grenier JK. Comparative transcriptional profiling of canine acanthomatous ameloblastoma and homology with human ameloblastoma. Sci Rep 2021; 11:17792. [PMID: 34493785 PMCID: PMC8423744 DOI: 10.1038/s41598-021-97430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Ameloblastomas are odontogenic tumors that are rare in people but have a relatively high prevalence in dogs. Because canine acanthomatous ameloblastomas (CAA) have clinicopathologic and molecular features in common with human ameloblastomas (AM), spontaneous CAA can serve as a useful translational model of disease. However, the molecular basis of CAA and how it compares to AM are incompletely understood. In this study, we compared the global genomic expression profile of CAA with AM and evaluated its dental origin by using a bulk RNA-seq approach. For these studies, healthy gingiva and canine oral squamous cell carcinoma served as controls. We found that aberrant RAS signaling, and activation of the epithelial-to-mesenchymal transition cellular program are involved in the pathogenesis of CAA, and that CAA is enriched with genes known to be upregulated in AM including those expressed during the early stages of tooth development, suggesting a high level of molecular homology. These results support the model that domestic dogs with spontaneous CAA have potential for pre-clinical assessment of targeted therapeutic modalities against AM.
Collapse
Affiliation(s)
- Santiago Peralta
- Department of Clinical Sciences, Clinical Programs Center, College of Veterinary Medicine, Cornell University, Box 31, Ithaca, NY, 14853, USA.
| | - Gerald E Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - William P Katt
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku and Turku University Hospital, Turku, Finland
| | - Andrew D Miller
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Faraz Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Angela L McCleary-Wheeler
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Jennifer K Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
42
|
Phattarataratip E, Panitkul T, Khodkaew W, Anupuntanun P, Jaroonvechatam J, Pitarangsikul S. Expression of SOX2 and OCT4 in odontogenic cysts and tumors. Head Face Med 2021; 17:29. [PMID: 34261507 PMCID: PMC8278639 DOI: 10.1186/s13005-021-00283-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aberrant expression of stem cell markers has been observed in several types of neoplasms. This trait attributes to the acquired stem-like property of tumor cells and can impact patient prognosis. The objective of this study was to comparatively analyze the expression and significance of SOX2 and OCT4 in various types of odontogenic cysts and tumors. Methods Fifty-five cases of odontogenic cysts and tumors, including 15 ameloblastomas (AM), 5 adenomatoid odontogenic tumors (AOT), 5 ameloblastic fibromas (AF), 5 calcifying odontogenic cysts (COC), 10 dentigerous cysts (DC) and 15 odontogenic keratocysts (OKC) were investigated for the expression of SOX2 and OCT4 immunohistochemically. Results Most OKCs (86.7 %) and all AFs expressed SOX2 in more than 50 % of epithelial cells. Its immunoreactivity was moderate-to-strong in all epithelial cell types in both lesions. In contrast, SOX2 expression was undetectable in AOTs and limited to the ameloblast-like cells in a minority of AM and COC cases. Most DCs showed positive staining in less than 25 % of cystic epithelium. Significantly greater SOX2 expression was noted in OKC compared with DC or AM, and in AF compared with COC or AOT. OCT4 rarely expressed in odontogenic lesions with the immunoreactivity being mild and present exclusively in OKCs. Conclusions SOX2 is differentially expressed in odontogenic cysts and tumors. This could be related to their diverse cells of origin or stages of histogenesis. The overexpression of SOX2 and OCT4 in OKC indicates the acquired stem-like property. Future studies should investigate whether the overexpression of OCT4 and SOX2 contributes to the aggressive behaviors of the tumors.
Collapse
Affiliation(s)
- Ekarat Phattarataratip
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand.
| | - Tarit Panitkul
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| | - Watunyoo Khodkaew
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| | - Pattarapong Anupuntanun
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| | - Jirapat Jaroonvechatam
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| | - Sirawit Pitarangsikul
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| |
Collapse
|
43
|
Hovorakova M, Zahradnicek O, Bartos M, Hurnik P, Stransky J, Stembirek J, Tucker AS. Reawakening of Ancestral Dental Potential as a Mechanism to Explain Dental Pathologies. Integr Comp Biol 2021; 60:619-629. [PMID: 32492167 DOI: 10.1093/icb/icaa053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During evolution, there has been a trend to reduce both the number of teeth and the location where they are found within the oral cavity. In mammals, the formation of teeth is restricted to a horseshoe band of odontogenic tissue, creating a single dental arch on the top and bottom of the jaw. Additional teeth and structures containing dental tissue, such as odontogenic tumors or cysts, can appear as pathologies. These tooth-like structures can be associated with the normal dentition, appearing within the dental arch, or in nondental areas. The etiology of these pathologies is not well elucidated. Reawakening of the potential to form teeth in different parts of the oral cavity could explain the origin of dental pathologies outside the dental arch, thus such pathologies are a consequence of our evolutionary history. In this review, we look at the changing pattern of tooth formation within the oral cavity during vertebrate evolution, the potential to form additional tooth-like structures in mammals, and discuss how this knowledge shapes our understanding of dental pathologies in humans.
Collapse
Affiliation(s)
- Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Oldrich Zahradnicek
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martin Bartos
- Department of Stomatology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Katerinska 32, 12801 Prague 2, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 128 00, Czech Republic
| | - Pavel Hurnik
- Department of Pathology, University Hospital Ostrava, 17. listopadu 1790, Ostrava-Poruba, 708 52, Czech Republic.,Department of Pathology at Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava-Zabreh, 703 00, Czech Republic
| | - Jiri Stransky
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava-Poruba, Czech Republic
| | - Jan Stembirek
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava-Poruba, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno 2, Czech Republic
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
44
|
do Amaral-Silva GK, Pereira TDSF, Rocha AC, Mariz BALA, Prado-Ribeiro AC, Fonseca FP, Gomez RS, Vargas PA. DNA methylation status of MutS genes in ameloblastoma. Oral Dis 2021; 28:1901-1906. [PMID: 33901323 DOI: 10.1111/odi.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Ameloblastoma is an odontogenic epithelial tumour with a low expression of mismatch repair system components. We aimed to investigate the methylation status of the genes MSH2, MSH3 and MSH6 (MutS group) in conventional ameloblastomas. MATERIALS AND METHODS The ameloblastoma and dental follicle samples (n = 10 each) were collected from 20 different patients. Each ameloblastoma sample was sectioned into two fragments: one was paraffin-embedded while the other one, likewise the dental follicle samples, was fixed in RNAlater and frozen at -196°C. All frozen samples were investigated for the MutS genes methylation levels, using the enzymatic restriction digestion and quantitative real-time PCR (qPCR) assay. The ameloblastoma paraffin-embedded samples were submitted to immunohistochemical reactions for MutS proteins detection and digitally quantification. Correlation analyses were performed between the immunohistochemical results and the respective gene methylation percentage. RESULTS There are no significant differences between the MutS genes methylation levels in the ameloblastoma and the dental follicle. However, a strong negative correlation was found between MSH2 and MSH6 gene methylation status and their respective proteins expressions evaluated by immunohistochemistry. CONCLUSION Our results show that the genes methylations is in part responsible for decreasing the expression of MSH2 and MSH6 genes in ameloblastoma.
Collapse
Affiliation(s)
| | | | - André Caroli Rocha
- Medical School, Clinics Hospital, University of São Paulo, São Paulo, Brazil
| | | | | | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
45
|
The immunohistochemical profile of basal cell nevus syndrome-associated and sporadic odontogenic keratocysts: a systematic review and meta-analysis. Clin Oral Investig 2021; 25:3351-3367. [PMID: 33730212 DOI: 10.1007/s00784-021-03877-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To provide a systematic review of the literature on studies comparing the immunoprofile of nevoid basal cell carcinoma syndrome (BCNS)-associated and sporadic odontogenic keratocysts (OKCs), in order to identify markers that could accurately distinguish the two OKC subtypes. MATERIALS AND METHODS We searched MEDLINE/Pubmed, Web of Science, EMBASE via OVID, and grey literature for publications until December 28th, 2019, that compared the immunohistochemical expression of the two OKC subtypes. The studies were qualitatively assessed using the Critical Appraisal Tool for Case Series (Joana Briggs Institute). Sensitivity and specificity, positive and negative likelihood ratio, diagnostic odds ratio and area under the curve, and pooled estimates were calculated, using a random-effects model. RESULTS Seventy-one studies were qualitatively analyzed; 61 markers were evaluated in one study and 32 in ≥ 2 studies. Twenty-five studies reported differential expression of 29 markers in the form of higher number of positive cells or greater staining intensity usually in BCNS-associated OKCs. Meta-analysis for bcl-2, Cyclin D1, CD56, CK18, p53, and PCNA showed that none of those markers is distinguishable between BCNS-associated and sporadic OKCs, in a 95% confidence interval. The risk of bias was high in 34 studies, moderate in 22, and low in 15. CONCLUSIONS The present systematic review and meta-analysis uncovered that, although several immunohistochemical markers might characterize the OKC phenotype, they cannot discriminate between the BCNS-associated and sporadic OKCs. CLINICAL RELEVANCE This study highlighted the requirement for additional screening for markers by immunohistochemistry, preferentially coupled to alternative diagnostic applications such as genomics technologies.
Collapse
|
46
|
Ghafouri-Fard S, Atarbashi-Moghadam S, Taheri M. Genetic factors in the pathogenesis of ameloblastoma, dentigerous cyst and odontogenic keratocyst. Gene 2020; 771:145369. [PMID: 33346102 DOI: 10.1016/j.gene.2020.145369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Ameloblastoma (AB), dentigerous cyst (DC) and Odontogenic keratocyst (OKC) are odontogenic lesions with propensity to malignant transformation or local invasion. The molecular mechanisms of development of these lesions are not fully understood. However, some researches have reported dysregulation of tumor suppressor genes or oncogenes in these lesions. Down-regulation of P53 gene has been reported in AB, DC and OKC. Moreover, several long non-coding RNAs such as ENST00000512916 and KIAA0125 have been dysregulated in AB tissues. Single nucleotide polymorphisms within a variety of genes have been associated with certain types of odontogenic lesions. In the current review, we summarize the current data about the expression pattern of genes in these lesions and the observed association between genetic polymorphisms and development of these lesions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saede Atarbashi-Moghadam
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Awadalkreem F, Abdoun O. Enucleation and surgical stent as a treatment strategy for a large unicystic ameloblastoma: Case report and review of literature. Int J Surg Case Rep 2020; 77:371-377. [PMID: 33217656 PMCID: PMC7683291 DOI: 10.1016/j.ijscr.2020.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Ameloblastoma has a locally invasive and aggressive nature and high recurrence rate. A conservative approach and a radical resection approach have been suggested. Radical resection may lead to esthetic, functional, and psychological sequelae. First use of surgical stent with conservative management for ameloblastoma.
Introduction Ameloblastoma is a benign neoplasm of odontogenic origin with local invasive characteristics and a high recurrence rate. It compromised 1% of the jaw's cysts and tumors with only 10–15% in children. Presentation of case A 14-year-old boy sought treatment for a painless swelling involving the right side of the face started one year ago. The intra-oral examination displayed a firm mass associated with 46, 47 teeth, and the angle of the mandible. The radiographic examination revealed a large well-defined homogeneous radiolucency extending from the 46 region to involve the angle and extending towards the coronoid and condylar processes. An incisional biopsy confirmed the diagnosis of unicystic ameloblastoma. Treatment was planned according to the patient’s age: Phase I: Surgical enucleation. Phase II: Construction and insertion of a surgical stent. Phase III: Construction of a transitional acrylic Kennedy class II partial denture. Phase IV: the patient is scheduled for a definitive implant-supported prosthesis at 18 years old. Discussion The management of ameloblastoma is influenced by the age of the patient, the extension, duration, and position of the lesion, and the histopathological variants. Several authors recommended enucleation as a conservative treatment approach to eliminate the esthetical, functional, and psychological squeals associated with the radical approach. The use of a surgical stent protects the enucleated cavity and promote tissue healing. Conclusion Enucleation and subsequent surgical stent not only eliminates the disease, but also preserves the bone structure, prevents the facial disfigurement, and significantly improve the patient’s esthetic, mastication, oral health, and quality of life.
Collapse
Affiliation(s)
- Fadia Awadalkreem
- Department of Oral Rehabilitation, Prosthodontics Division, Faculty of Dentistry, University of Khartoum, Sudan.
| | - Omer Abdoun
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, University of Khartoum, Sudan.
| |
Collapse
|
48
|
Siozopoulou V, Vanhoenacker FM. World Health Organization Classification of Odontogenic Tumors and Imaging Approach of Jaw Lesions. Semin Musculoskelet Radiol 2020; 24:535-548. [PMID: 33036041 DOI: 10.1055/s-0040-1710357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumors of the jaws represent a heterogeneous group of lesions that are classified histologically in the World Health Organization Classification of Odontogenic Tumors (2017). This article provides an update of the current nomenclature. The main role of imaging is to describe the precise location and extent of these lesions. Although characterization of imaging is often difficult due to overlapping characteristics, imaging is helpful to define which lesions should be referred for histologic examination and subsequent treatment planning. Location and density are the cardinal criteria for potential characterization on imaging. Radiologically, lesions may be radiolucent, radiopaque, or of mixed density. Additional criteria include lesion demarcation, morphology, cortical breakthrough, periosteal reaction, and adjacent soft tissue changes. Final lesion characterization is only definitive after interdisciplinary discussion and radiopathologic correlation. Correct diagnosis is obtained by a combination of the patient's age, lesion location, and clinical and radiologic presentation. It is important that all physicians use a uniform nomenclature.
Collapse
Affiliation(s)
- Vasiliki Siozopoulou
- Department of Pathology, Antwerp University Hospital and Antwerp University, Edegem, Belgium.,Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Filip M Vanhoenacker
- Department of Radiology, Antwerp University Hospital and Antwerp University, Edegem, Belgium.,Department of Radiology, AZ Sint-Maarten, Mechelen, Belgium.,Department of Radiology and Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
49
|
Diniz MG, Duarte-Andrade FF, Stussi F, Vitório JG, Fonseca FP, Ramos Domingues R, Paes Leme AF, Gomes CC, Gomez RS. Deregulation of desmosomal proteins and extracellular matrix proteases in odontogenic keratocyst. Oral Dis 2020; 27:952-961. [PMID: 32772410 DOI: 10.1111/odi.13598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Odontogenic keratocyst (OKC) is a benign lesion that tends to recur after surgical treatment. In an attempt to clarify the molecular basis underlining the OKC pathobiology, we aimed to analyze its proteomic profile. MATERIALS AND METHODS We compared the proteomic profiles of five OKC and matched normal oral mucosa by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Then, we performed enrichment analysis and a literature search for the immunoexpression of the proteomics targets. RESULTS We identified 1,150 proteins and 72 differently expressed proteins (log2 fold change ≥ 1.5; p < .05). Twenty-seven peptides were exclusively detected in the OKC samples. We found 35 enriched pathways related to cell differentiation and tissue architecture, including keratinocyte differentiation, keratinization, desmosome, and extracellular matrix (ECM) organization and degradation. The immunoexpression information of 11 out of 50 proteins identified in the enriched pathways was obtained. We found the downregulation of four desmosomal proteins (JUP, PKP1, PKP3, and PPL) and upregulation of ECM proteases (MMP-2, MMP-9, and cathepsins). CONCLUSIONS Proteomic analysis strengthened the notion that OKC cells have a similar proteomic profile to oral keratinocytes. Contextual investigation of the differentially expressed proteins revealed the deregulation of desmosome proteins and ECM degradation as important alterations in OKC pathobiology.
Collapse
Affiliation(s)
- Marina Gonçalves Diniz
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fernanda Stussi
- Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Oral Pathology and Oral Biology, School of Dentistry, University of Pretoria, Pretoria, South Africa
| | - Romênia Ramos Domingues
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Adriana F Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
50
|
Chacham M, Almoznino G, Zlotogorski-Hurvitz A, Buchner A, Vered M. Expression of stem cell markers in stroma of odontogenic cysts and tumors. J Oral Pathol Med 2020; 49:1068-1077. [PMID: 32840915 DOI: 10.1111/jop.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The stroma of odontogenic cysts/tumors may confer them differential biological behavior. We aimed to investigate the immunoexpression of stem cell markers (Nanog, SOX2, Oct4, and CD34) in the stroma of odontogenic cysts and tumors. CD34 was investigated exclusively as a marker for stromal fibroblast/fibrocyte cells (CD34 + SFCs). CD34 + SFCs were also investigated ultrastructurally. METHODS Ten cases each of primary odontogenic keratocyst (OKC), recurrent OKC, dentigerous cyst, ameloblastoma, unicystic ameloblastoma, odontogenic myxoma, and 7 syndromic OKC were included. Results were represented as the mean score (%) of positive cells/field for each marker for each study group. For CD34 + SFCs, results are presented as the mean number of cells/field for each type of lesion. Kruskal-Wallis and Spearman's correlation statistical tests were used; significance was set at P < .05. RESULTS All markers except Oct4 were expressed by stromal cells in all lesions. Expression of SOX2 was significantly higher in tumors than in cysts (P < .05). CD34 + SFCs were more frequent in cysts than in tumors. Ultrastructurally, CD34 + SFCs were identified for the first time in odontogenic lesions and showed characteristic bipolar/dendritic morphology. CONCLUSION Among examined stromal stem cell markers, only SOX2 distinguished tumors from cysts. CD34 + SFCs may also contribute to the biological behavior of odontogenic lesions.
Collapse
Affiliation(s)
- Moran Chacham
- Department of Oral & Maxillofacial Surgery, Soroka Medical Center, Beer Sheva, Israel
| | - Galit Almoznino
- Big Biomedical Data Research Laboratory, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel.,Department of Oral Medicine, Sedation & Maxillofacial Imaging, Hebrew University, Hadassah School of Dentistry, Jerusalem, Israel
| | - Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oral & Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Amos Buchner
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|