1
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
2
|
Girgis J, Yang D, Chakroun I, Liu Y, Blais A. Six1 promotes skeletal muscle thyroid hormone response through regulation of the MCT10 transporter. Skelet Muscle 2021; 11:26. [PMID: 34809717 PMCID: PMC8607597 DOI: 10.1186/s13395-021-00281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Six1 transcription factor is implicated in controlling the development of several tissue types, notably skeletal muscle. Six1 also contributes to muscle metabolism and its activity is associated with the fast-twitch, glycolytic phenotype. Six1 regulates the expression of certain genes of the fast muscle program by directly stimulating their transcription or indirectly acting through a long non-coding RNA. We hypothesized that additional mechanisms of action of Six1 might be at play. METHODS A combined analysis of gene expression profiling and genome-wide location analysis data was performed. Results were validated using in vivo RNA interference loss-of-function assays followed by measurement of gene expression by RT-PCR and transcriptional reporter assays. RESULTS The Slc16a10 gene, encoding the thyroid hormone transmembrane transporter MCT10, was identified as a gene with a transcriptional enhancer directly bound by Six1 and requiring Six1 activity for full expression in adult mouse tibialis anterior, a predominantly fast-twitch muscle. Of the various thyroid hormone transporters, MCT10 mRNA was found to be the most abundant in skeletal muscle, and to have a stronger expression in fast-twitch compared to slow-twitch muscle groups. Loss-of-function of MCT10 in the tibialis anterior recapitulated the effect of Six1 on the expression of fast-twitch muscle genes and led to lower activity of a thyroid hormone receptor-dependent reporter gene. CONCLUSIONS These results shed light on the molecular mechanisms controlling the tissue expression profile of MCT10 and identify modulation of the thyroid hormone signaling pathway as an additional mechanism by which Six1 influences skeletal muscle metabolism.
Collapse
Affiliation(s)
- John Girgis
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dabo Yang
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Imane Chakroun
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Yubing Liu
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada. .,University of Ottawa Centre for Inflammation, Immunity and Infection (CI3), Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Bloise FF, Cordeiro A, Ortiga-Carvalho TM. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol 2018; 236:R57-R68. [PMID: 29051191 DOI: 10.1530/joe-16-0611] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (TH) are crucial for development, growth, differentiation, metabolism and thermogenesis. Skeletal muscle (SM) contractile function, myogenesis and bioenergetic metabolism are influenced by TH. These effects depend on the presence of the TH transporters MCT8 and MCT10 in the plasma membrane, the expression of TH receptors (THRA or THRB) and hormone availability, which is determined either by the activation of thyroxine (T4) into triiodothyronine (T3) by type 2 iodothyronine deiodinases (D2) or by the inactivation of T4 into reverse T3 by deiodinases type 3 (D3). SM relaxation and contraction rates depend on T3 regulation of myosin expression and energy supplied by substrate oxidation in the mitochondria. The balance between D2 and D3 expression determines TH intracellular levels and thus influences the proliferation and differentiation of satellite cells, indicating an important role of TH in muscle repair and myogenesis. During critical illness, changes in TH levels and in THR and deiodinase expression negatively affect SM function and repair. This review will discuss the influence of TH action on SM contraction, bioenergetics metabolism, myogenesis and repair in health and illness conditions.
Collapse
Affiliation(s)
- Flavia F Bloise
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Aline Cordeiro
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Stuelsatz P, Keire P, Yablonka-Reuveni Z. Isolation, Culture, and Immunostaining of Skeletal Muscle Myofibers from Wildtype and Nestin-GFP Mice as a Means to Analyze Satellite Cell. Methods Mol Biol 2017; 1556:51-102. [PMID: 28247345 DOI: 10.1007/978-1-4939-6771-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multinucleated myofibers, the functional contractile units of adult skeletal muscle, harbor mononuclear Pax7+ myogenic progenitors on their surface between the myofiber basal lamina and plasmalemma. These progenitors, known as satellite cells, are the primary myogenic stem cells in adult muscle. This chapter describes our laboratory protocols for isolating, culturing, and immunostaining intact myofibers from mouse skeletal muscle as a means for studying satellite cell dynamics. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. These short myofibers are plated in dishes coated with PureCol collagen (formerly known as Vitrogen) and maintained in a mitogen-poor medium (± supplemental growth factors). Employing such conditions, satellite cells remain at the surface of the parent myofiber while synchronously undergoing a limited number of proliferative cycles and rapidly differentiate. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL) muscle. These EDL myofibers are routinely plated individually as adherent myofibers in wells coated with Matrigel and maintained in a mitogen-rich medium, conditions in which satellite cells migrate away from the parent myofiber, proliferate extensively, and generate numerous differentiating progeny. Alternatively, these EDL myofibers can be plated as non-adherent myofibers in uncoated wells and maintained in a mitogen-poor medium (± supplemental growth factors), conditions that retain satellite cell progeny at the myofiber niche similar to the FDB myofiber cultures. However, the adherent myofiber format is our preferred choice for monitoring satellite cells in freshly isolated (Time 0) myofibers. We conclude this chapter by promoting the Nestin-GFP transgenic mouse as an efficient tool for direct analysis of satellite cells in isolated myofibers. While satellite cells have been often detected by their expression of the Pax7 protein or the Myf5nLacZ knockin reporter (approaches that are also detailed herein), the Nestin-GFP reporter distinctively permits quantification of satellite cells in live myofibers, which enables linking initial Time 0 numbers and subsequent performance upon culturing. We additionally point out to the implementation of the Nestin-GFP transgene for monitoring other selective cell lineages as illustrated by GFP expression in capillaries, endothelial tubes and neuronal cells. Myofibers from other types of muscles, such as diaphragm, masseter, and extraocular, can also be isolated and analyzed using protocols described herein. Collectively, this chapter provides essential tools for studying satellite cells in their native position and their interplay with the parent myofiber.
Collapse
MESH Headings
- Animals
- Biomarkers
- Cell Culture Techniques
- Cell Differentiation
- Cell Separation/methods
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunophenotyping/methods
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Nestin/genetics
- Nestin/metabolism
- Phenotype
- Primary Cell Culture
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/ultrastructure
Collapse
Affiliation(s)
- Pascal Stuelsatz
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA
| | - Paul Keire
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Hepatocyte Growth Factor and Satellite Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:1-25. [PMID: 27003394 DOI: 10.1007/978-3-319-27511-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satellite cells are the "currency" for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.
Collapse
|
6
|
Moncayo R, Moncayo H. The WOMED model of benign thyroid disease: Acquired magnesium deficiency due to physical and psychological stressors relates to dysfunction of oxidative phosphorylation. BBA CLINICAL 2014; 3:44-64. [PMID: 26675817 PMCID: PMC4661500 DOI: 10.1016/j.bbacli.2014.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/15/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aim of this study was to discern whether a relation between biochemical parameters, sonography and musculoskeletal data exists in cases of hyperthyroidism and whether they are modifiable through supplementation with selenomethionine and magnesium citrate as well as by acupuncture and manual medicine methods. RESULTS A direct correlation between whole blood selenium and serum magnesium was found in subjects without thyroid disease and in menopausal women while it was reversed in cases of thyroid diseases as well as in patients with depression, infection, and in infertile women. Vascularization indices were elevated in cases of newly diagnosed benign thyroid diseases. Musculoskeletal changes i.e. lateral tension and idiopathic moving toes, as well as situations of physical and psychological stress and minor trauma and infection led to an increase of vascularization. Magnesium levels correlated negatively with these two conditions. The supplementation brought a reduction of the vascularization indices and reduced the incidence of idiopathic moving toes. Treatment of lateral tension required manual medicine methods and acupuncture (gastrocnemius). A small subgroup of patients showed a further reduction of hyper-vascularization after receiving coenzyme Q10. CONCLUSIONS We interpret the elevated thyroid vascularization and low magnesium levels as signs of an inflammatory process related to the musculoskeletal changes. Improvement of thyroid function and morphology can be achieved after correcting the influence of stressors together with the supplementation regime. We hypothesize that the central biochemical event in thyroid disease is that of an acquired, altered mitochondrial function due to deficiency of magnesium, selenium, and coenzyme Q10.
Collapse
Affiliation(s)
- Roy Moncayo
- WOMED, Karl-Kapferer-Strasse 5, AT-6020 Innsbruck, Austria
| | - Helga Moncayo
- WOMED, Karl-Kapferer-Strasse 5, AT-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Speck K, Schneider BSP, Deashinta N. A Rodent Model to Advance the Field Treatment of Crush Muscle Injury During Earthquakes and Other Natural Disasters. Biol Res Nurs 2011; 15:17-25. [DOI: 10.1177/1099800411414698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Approximately 170 earthquakes of 6.0 or higher magnitude occur annually worldwide. Victims often suffer crush muscle injuries involving impaired blood flow to the affected muscle and damage to the muscle fiber membrane. Current rescue efforts are directed toward preventing acute kidney injury (AKI), which develops upon extrication and muscle reperfusion. But field-usable, muscle-specific interventions may promote muscle regeneration and prevent or minimize the pathologic changes of reperfusion. Although current rodent crush injury models involve reperfusion upon removal of the crush stimulus, an analysis of their methodological aspects is needed to ensure adequate simulation of the earthquake-related crush injury. The objectives of this systematic review are to (a) describe rodent crush muscle injury models, (b) discuss the benefits and limitations of these models, and (c) offer a recommendation for animal models that would increase our understanding of muscle recovery processes after an earthquake-induced crush muscle injury. The most commonly used rodent model uses a clamping or pressing crush stimulus directly applied to murine hindlimb muscle. This model has increased our understanding of muscle regeneration but its open approach does not adequately represent the earthquake-related crush injury. The model we recommend for developing field-usable, muscle-specific interventions is a closed approach that involves a nonclamping crush stimulus. Findings from studies employing this recommended model may have greater relevance for developing interventions that lessen the earthquake’s devastating impact on individual and community health and quality of life, especially in developing countries.
Collapse
Affiliation(s)
- Kirsten Speck
- School of Nursing, University of Nevada, Las Vegas, NV, USA
| | | | | |
Collapse
|
8
|
Ramadan W, Marsili A, Larsen PR, Zavacki AM, Silva JE. Type-2 iodothyronine 5'deiodinase (D2) in skeletal muscle of C57Bl/6 mice. II. Evidence for a role of D2 in the hypermetabolism of thyroid hormone receptor alpha-deficient mice. Endocrinology 2011; 152:3093-102. [PMID: 21652727 PMCID: PMC3138235 DOI: 10.1210/en.2011-0139] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/06/2011] [Indexed: 01/29/2023]
Abstract
Mice with ablation of the Thra gene have cold intolerance due to an as yet undefined defect in the activation of brown adipose tissue (BAT) uncoupling protein (UCP). They develop an alternate form of facultative thermogenesis, activated at temperatures below thermoneutrality and associated with hypermetabolism and reduced sensitivity to diet-induced obesity. A consistent finding in Thra-0/0 mice is increased type-2 iodothyronine deiodinase (D2) mRNA in skeletal muscle and other tissues. With an improved assay to measure D2 activity, we show here that this enzyme activity is increased in proportion to the mRNA and as a function of the ambient cold. The activation is mediated by the sympathetic nervous system in Thra-0/0, as it is in wild-type genotype mice, but the sympathetic nervous system effect is greater in Thra-0/0 mice. Using D2-ablated mice (Dio2-/-), we reported elsewhere and show here that, in spite of sharing a severe deficiency in BAT thermogenesis with Thra-0/0 and UCP1-knockout mice, they do not have an increase in oxygen consumption, and they gain more weight than wild-type controls when fed a high-fat diet. UCP3 mRNA is highly responsive to thyroid hormone, and it is increased in Thra-0/0 mice, particularly when fed high-fat diets. We show here that muscle UCP3 mRNA in hypothyroid Thra-0/0 mice is responsive to small dose-short regimens of T(4), indicating a role for locally, D2-generated T(3). Lastly, we show that bile acids stimulate not only BAT but also muscle D2 activity, and this is associated with stimulation of muscle UCP3 mRNA expression provided T(4) is present. These observations strongly support the concept that enhanced D2 activity in Thra-0/0 plays a critical role in their alternate form of facultative thermogenesis, stimulating increased fat oxidation by increasing local T(3) generation in skeletal muscle.
Collapse
Affiliation(s)
- W Ramadan
- Baystate Medical Center, Tufts University School of Medicine, Springfield, Massachusetts 01199, USA
| | | | | | | | | |
Collapse
|
9
|
Bouchard F, Paquin J. Skeletal and cardiac myogenesis accompany adipogenesis in P19 embryonal stem cells. Stem Cells Dev 2009; 18:1023-32. [PMID: 19012474 DOI: 10.1089/scd.2008.0288] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
P19 embryonic carcinoma cells resemble normal embryonic stem (ES) cells. They generate cardiac and skeletal myocytes in response to retinoic acid (RA) or oxytocin (OT). RA treatment followed by exposure to triiodothyronine (T3) and insulin induces ES cells differentiation into adipocytes and skeletomyocytes. On the other hand, OT (10(-7) M) was reported to inhibit 3T3 preadipocyte maturation. The present work was undertaken to determine whether P19 cells have an adipogenic potential that could be affected by OT. Cells were treated with RA (10(-6) M)/T3+insulin (adipogenic protocol) or 10(-7) M OT (cardiomyogenic protocol), and analyzed by polymerase chain reaction, immunotechniques, and cytochemistry. Oil-Red-O staining and expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and aP2 indicated the generation of adipocytes in cultures submitted to the adipogenic protocol. Contracting cells were also generated. Cells positive for sarcomeric actinin and negative for cardiac troponin inhibitor (cTpnI) indicated generation of skeletomyocytes, and cTpnI positive cells revealed generation of cardiomyocytes. Levels of cTpnI and of the skeletal marker MyoD were almost similar in both protocols, whereas no Oil-Red-O staining was associated with the cardiomyogenic protocol. Addition of 10(-7) M OT to the adipogenic protocol did not affect Oil-Red-O staining and PPARgamma expression. Interestingly, Oct3/4 pluripotency marker disappeared in the adipogenic protocol but remained expressed in the cardiomyogenic one. P19 cells thus have an adipogenic potential non affected by 10(-7) M OT. RA/T3+insulin combination generates a larger spectrum of mesodermal cell derivatives and is a more potent morphogenic treatment than OT. P19 cells could help investigating mechanisms of cell fate decision during development.
Collapse
Affiliation(s)
- Frédéric Bouchard
- Département de Chimie-Biochimie and Centre BioMed, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | | |
Collapse
|
10
|
Ameis K, Kanaan YM, Das JR, George M, Sobrian S. Effect of Manual Acupuncture-Induced Injury on Rat Skeletal Muscle. Med Acupunct 2008. [DOI: 10.1089/acu.2008.0641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kamal Ameis
- Howard University College of Medicine, Washington, DC
| | | | | | | | - Sonya Sobrian
- Howard University College of Medicine, Washington, DC
| |
Collapse
|
11
|
McCarthy JJ, Esser KA, Andrade FH. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 2007; 293:C451-7. [PMID: 17459947 DOI: 10.1152/ajpcell.00077.2007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MicroRNAs are highly conserved, noncoding RNAs involved in posttranscriptional gene silencing. MicroRNAs have been shown to be involved in a range of biological processes, including myogenesis and muscle regeneration. The objective of this study was to test the hypothesis that microRNA expression is altered in dystrophic muscle, with the greatest change occurring, of the muscles examined, in the diaphragm. The expression of the muscle-enriched microRNAs was determined in the soleus, plantaris, and diaphragm muscles of control and dystrophin-deficient ( mdx) mice by semiquantitative PCR. In the soleus and plantaris, expression of the mature microRNA 133a (miR-133a) and miR-206, respectively, was decreased by ∼25%, whereas in the diaphragm, miR-206 expression increased by 4.5-fold relative to control. The increased expression of miR-206 in the mdx diaphragm was paralleled by a 4.4-fold increase in primary miRNA-206 (pri-miRNA-206) transcript level. Expression of Myod1 was elevated 2.7-fold only in the mdx diaphragm, consistent with an earlier finding demonstrating Myod1 can activate pri-miRNA-206 transcription. Transcript levels of Drosha and Dicer, major components of microRNA biogenesis pathway, were unchanged in mdx muscle, suggesting the pathway is not altered under dystrophic conditions. Previous in vitro analysis found miR-206 was capable of repressing utrophin expression; however, under dystrophic conditions, both utrophin transcript and protein levels were significantly increased by 69% and 3.9-fold, respectively, a finding inconsistent with microRNA regulation. These results are the first to report alterations in expression of muscle-enriched microRNAs in skeletal muscle of the mdx mouse, suggesting microRNAs may have a role in the pathophysiology of muscular dystrophy.
Collapse
Affiliation(s)
- John J McCarthy
- Dept. of Physiology, University of Kentucky Medical Center, 800 Rose St., Lexington, KY 40536-0298, USA.
| | | | | |
Collapse
|
12
|
Yablonka-Reuveni Z, Anderson JE. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn 2006; 235:203-12. [PMID: 16258933 DOI: 10.1002/dvdy.20602] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the dystrophic (mdx) mouse, skeletal muscle undergoes cycles of degeneration and regeneration, and myogenic progenitors (satellite cells) show ongoing proliferation and differentiation at a time when counterpart cells in normal healthy muscle enter quiescence. However, it remains unclear whether this enhanced satellite cell activity is triggered solely by the muscle environment or is also governed by factors inherent in satellite cells. To obtain a better picture of myogenesis in dystrophic muscle, a direct cell-by-cell analysis was performed to compare satellite cell dynamics from mdx and normal (C57Bl/10) mice in two cell culture models. In one model, the kinetics of satellite cell differentiation was quantified in primary cell cultures from diaphragm and limb muscles by immunodetection of MyoD, myogenin, and MEF2. In mdx cell cultures, myogenin protein was expressed earlier than normal and was followed more rapidly by dual myogenin/MEF2A expression and myotube formation. In the second model, the dynamics of satellite cell myogenesis were investigated in cultured myofibers isolated from flexor digitorum brevis (FDB) muscle, which retain satellite cells in the native position. Consistent with primary cultures, satellite cells in mdx myofibers displayed earlier myogenin expression, as well as an enhanced number of myogenin-expressing satellite cells per myofiber compared to normal. The addition of fibroblast growth factor 2 (FGF2) led to an increase in the number of satellite cells expressing myogenin in normal and mdx myofibers. However, the extent of the FGF effect was more robust in mdx myofibers. Notably, many myonuclei in mdx myofibers were centralized, evidence of segmental regeneration; all central nuclei and many peripheral nuclei in mdx myofibers were positive for MEF2A. Results indicated that myogenic cells in dystrophic muscle display accelerated differentiation. Furthermore, the study demonstrated that FDB myofibers are an excellent model of the in vivo state of muscle, as they accurately represented the dystrophic phenotype.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
13
|
Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE. Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve 2005; 31:283-300. [PMID: 15627266 DOI: 10.1002/mus.20263] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Activation of skeletal muscle satellite cells, defined as entry to the cell cycle from a quiescent state, is essential for normal growth and for regeneration of tissue damaged by injury or disease. This review focuses on early events of activation by signaling through nitric oxide and hepatocyte growth factor, and by mechanical stimuli. The impact of various model systems used to study activation and the regulation of satellite-cell quiescence are placed in the context of activation events in other tissues, concluding with a speculative model of alternate pathways signaling satellite-cell activation.
Collapse
Affiliation(s)
- Ashley C Wozniak
- Department of Human Anatomy and Cell Science, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba R3E 0W2, Canada
| | | | | | | | | |
Collapse
|
14
|
Ozawa J, Kawamata S, Kurosaki T, Iwamizu Y, Matsuura N, Abiko S, Kai S. Ischemic injury and repair process after transection in hypothyroid rat muscles. Muscle Nerve 2003; 27:595-603. [PMID: 12707980 DOI: 10.1002/mus.10364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hindlimb ischemia for 4 h, followed by reperfusion, resulted in necrosis of most soleus muscle in euthyroid rats, whereas only slight damage occurred in hypothyroid rats. Muscle repair after transection of the tibialis anterior muscle of hypothyroid rats showed delayed debris removal, initial retardation of myotube formation, and a higher incidence of aberrant sarcomeres in newly formed muscle fibers by electron microscopy. The protective mechanism against ischemia in hypothyroid muscles can probably be attributed to decreased degradation of high-energy phosphates, reduced formation of substrates for xanthine oxidase during ischemia, and attenuated generation of harmful oxygen free radicals during reperfusion. Initial delay of myotube formation seems to reflect retarded proliferation of muscle precursor cells. Prolonged occurrence of aberrant sarcomeres in hypothyroidism is perhaps due to a delay or imbalance in the synthesis of proteins that assemble sarcomeres. These findings demonstrate the significant roles of thyroid hormones in ischemic injury and muscle repair.
Collapse
Affiliation(s)
- Junya Ozawa
- Institute of Health Sciences, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Grounds MD, White JD, Rosenthal N, Bogoyevitch MA. The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 2002; 50:589-610. [PMID: 11967271 DOI: 10.1177/002215540205000501] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In postnatal muscle, skeletal muscle precursors (myoblasts) can be derived from satellite cells (reserve cells located on the surface of mature myofibers) or from cells lying beyond the myofiber, e.g., interstitial connective tissue or bone marrow. Both of these classes of cells may have stem cell properties. In addition, the heretical idea that post-mitotic myonuclei lying within mature myofibers might be able to re-form myoblasts or stem cells is examined and related to recent observations for similar post-mitotic cardiomyocytes. In adult hearts (which previously were not considered capable of repair), the role of replicating endogenous cardiomyocytes and the recruitment of other (stem) cells into cardiomyocytes for new cardiac muscle formation has recently attracted much attention. The relative contribution of these various sources of precursor cells in postnatal muscles and the factors that may enhance stem cell participation in the formation of new skeletal and cardiac muscle in vivo are the focus of this review. We concluded that, although many endogenous cell types can be converted to skeletal muscle, the contribution of non-myogenic cells to the formation of new postnatal skeletal muscle in vivo appears to be negligible. Whether the recruitment of such cells to the myogenic lineage can be significantly enhanced by specific inducers and the appropriate microenvironment is a current topic of intense interest. However, dermal fibroblasts appear promising as a realistic alternative source of exogenous myoblasts for transplantation purposes. For heart muscle, experiments showing the participation of bone marrow-derived stem cells and endothelial cells in the repair of damaged cardiac muscle are encouraging.
Collapse
Affiliation(s)
- Miranda D Grounds
- Department of Anatomy & Human Biology, The University of Western Australia, Crawley, Western Australia.
| | | | | | | |
Collapse
|
16
|
Lynch GS, Hinkle RT, Chamberlain JS, Brooks SV, Faulkner JA. Force and power output of fast and slow skeletal muscles from mdx mice 6-28 months old. J Physiol 2001; 535:591-600. [PMID: 11533147 PMCID: PMC2278782 DOI: 10.1111/j.1469-7793.2001.00591.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Differences in the effect of age on structure-function relationships of limb muscles of mdx (dystrophin null) and control mice have not been resolved. We tested the hypotheses that, compared with limb muscles from age-matched control mice, limb muscles of 6- to 17-month-old mdx mice are larger but weaker, with lower normalised force and power, whereas those from 24- to 28-month-old mdx mice are smaller and weaker. 2. The maximum isometric tetanic force (P(o)) and power output of limb muscles from 6-, 17-, 24- and 28-month-old mdx and control mice were measured in vitro at 25 degrees C and normalised with respect to cross-sectional area and muscle mass, respectively. 3. Body mass at 6 and 28 months was not significantly different in mdx and control mice, but that of control mice increased 16 % by 17 months and then declined 32 % by 28 months. The body masses of mdx mice declined linearly with age with a decrease of 25 % by 28 months. From 6 to 28 months of age, the range in the decline in the masses of EDL and soleus muscles of mdx and control mice was from 16 to 28 %. The muscle masses of mdx mice ranged from 9 % to 42 % greater than those of control mice at each of the four ages and, even at 28 months, the masses of EDL and soleus muscles of mdx mice were 17 % and 22 % greater than control values. 4. For mdx mice of all ages, muscle hypertrophy was highly effective in the maintenance of control values for absolute force for both EDL and soleus muscles and for absolute power of soleus muscles. Throughout their lifespan, muscles of mdx mice displayed significant weakness with values for specific P(o) and normalised power approximately 20 % lower than values for control mice at each age. For muscles of both strains, normalised force and power decreased approximately 28 % with age, and consequently weakness was more severe in muscles of old mdx than in those of old control mice.
Collapse
Affiliation(s)
- G S Lynch
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2007, USA
| | | | | | | | | |
Collapse
|
17
|
Launay T, Armand AS, Charbonnier F, Mira JC, Donsez E, Gallien CL, Chanoine C. Expression and neural control of myogenic regulatory factor genes during regeneration of mouse soleus. J Histochem Cytochem 2001; 49:887-99. [PMID: 11410613 DOI: 10.1177/002215540104900709] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Given the importance of the myogenic regulatory factors (MRFs) for myoblast differentiation during development, the aims of this work were to clarify the spatial and temporal expression pattern of the four MRF mRNAs during soleus regeneration in mouse after cardiotoxin injury, using in situ hybridization, and to investigate the influence of innervation on the expression of each MRF during a complete degeneration/regeneration process. For this, we performed cardiotoxin injury-induced regeneration experiments on denervated soleus muscle. Myf-5, MyoD, and MRF4 mRNAs were detected in satellite cell-derived myoblasts in the first stages of muscle regeneration analyzed (2--3 days P-I). The Myf-5 transcript level dramatically decreased in young multinucleated myotubes, whereas MyoD and MRF4 transcripts were expressed persistently throughout the regeneration process. Myogenin mRNA was transiently expressed in forming myotubes. These results are discussed with regard to the potential relationships between MyoD and MRF4 in the satellite cell differentiation pathway. Muscle denervation precociously (at 8 days P-I) upregulated both the Myf-5 and the MRF4 mRNA levels, whereas the increase of both MyoD and myogenin mRNA levels was observed later, in the late stages of regeneration (30 days P-I). This significant accumulation of each differentially upregulated MRF during soleus regeneration after denervation suggests that each myogenic factor might have a distinct role in the regulatory control of muscle gene expression. This role is discussed in relation to the expression of the nerve-regulated genes, such as the nAChR subunit gene family. (J Histochem Cytochem 49:887-899, 2001)
Collapse
Affiliation(s)
- T Launay
- Laboratoire de Biologie du Développement et de la Différenciation Musculaire (EA 2507), Centre Universitaire des Saints-Pères, Université René Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Yablonka-Reuveni Z, Paterson BM. MyoD and myogenin expression patterns in cultures of fetal and adult chicken myoblasts. J Histochem Cytochem 2001; 49:455-62. [PMID: 11259448 DOI: 10.1177/002215540104900405] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Isolated chicken myoblasts had previously been utilized in many studies aiming at understanding the emergence and regulation of the adult myogenic precursors (satellite cells). However, in recent years only a small number of chicken satellite cell studies have been published compared to the increasing number of studies with rodent satellite cells. In large part this is due to the lack of markers for tracing avian myogenic cells before they become terminally differentiated and express muscle-specific structural proteins. We previously demonstrated that myoblasts isolated from fetal and adult chicken muscle display distinct schedules of myosin heavy-chain isoform expression in culture. We further showed that myoblasts isolated from newly hatched and young chickens already possess the adult myoblast phenotype. In this article, we report on the use of polyclonal antibodies against the chicken myogenic regulatory factor proteins MyoD and myogenin for monitoring fetal and adult chicken myoblasts as they progress from proliferation to differentiation in culture. Fetal-type myoblasts were isolated from 11-day-old embryos and adult-type myoblasts were isolated from 3-week-old chickens. We conclude that fetal myoblasts express both MyoD and myogenin within the first day in culture and rapidly transit into the differentiated myosin-expressing state. In contrast, adult myoblasts are essentially negative for MyoD and myogenin by culture Day 1 and subsequently express first MyoD and then myogenin before expressing sarcomeric myosin. The delayed MyoD-to-myogenin transition in adult myoblasts is accompanied by a lag in the fusion into myotubes, compared to fetal myoblasts. We also report on the use of a commercial antibody against the myocyte enhancer factor 2A (MEF2A) to detect terminally differentiated chicken myoblasts by their MEF2+ nuclei. Collectively, the results support the hypothesis that fetal and adult myoblasts represent different phenotypic populations. The fetal myoblasts may already be destined for terminal differentiation at the time of their isolation, and the adult myoblasts may represent progenitors that reside in an earlier compartment of the myogenic lineage.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
19
|
Freeman BC, Felts SJ, Toft DO, Yamamoto KR. The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes Dev 2000. [DOI: 10.1101/gad.14.4.422] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Multiple molecular chaperones, including Hsp90 and p23, interact with members of the intracellular receptor (IR) family. To investigate p23 function, we compared the effects of three p23 proteins on IR activities, yeast p23 (sba1p) and the two human p23 homologs, p23 and tsp23. We found that Sba1p was indistinguishable from human p23 in assays of seven IR activities in both animal cells and in yeast; in contrast, certain effects of tsp23 were specific to that homolog. Transcriptional activation by two IRs was increased by expression of any of the p23 species, whereas activation by five other IRs was decreased by Sba1p or p23, and unaffected by tsp23. p23 was expressed in all tissues examined except striated and cardiac muscle, whereas tsp23 accumulated in a complementary pattern; hence, p23 proteins might contribute to tissue-specific differences in IR activities. Unlike Hsp90, which acts on IR aporeceptors to stimulate ligand potency (i.e., hormone-binding affinity), p23 proteins acted on IR holoreceptors to alter ligand efficiencies (i.e., transcriptional activation activity). Moreover, the p23 effects developed slowly, requiring prolonged exposure to hormone. In vitro, p23 interacted preferentially with hormone–receptor–response element ternary complexes, and stimulated receptor–DNA dissociation. The dissociation was reversed by addition of a fragment of the GRIP1 coactivator, suggesting that the two reactions may be in competition in vivo. Our findings suggest that p23 functions at one or more late steps in IR-mediated signal transduction, perhaps including receptor recycling and/or reversal of the response.
Collapse
|
20
|
Moor AN, Rector ES, Anderson JE. Cell cycle behavior and MyoD expression in response to T3 differ in normal and mdx dystrophic primary muscle cell cultures. Microsc Res Tech 2000; 48:204-12. [PMID: 10679967 DOI: 10.1002/(sici)1097-0029(20000201/15)48:3/4<204::aid-jemt8>3.0.co;2-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since mdx limb muscle regeneration in vivo is accompanied by rapid myoblast proliferation and differentiation compared to normal, we tested the possibility that proliferation and differentiation were differentially regulated in normal and mdx dystrophic muscle cells. Cell cycle behavior, MyoD expression, and the effects of thyroid hormone (T3) treatment were examined in primary cultures. Using a 4-hour pulse time for bromodeoxyuridine (BrdU) incorporation during S-phase, the phases of the cell cycle (early S, late S, G(2)/M, and G(0)/G(1)) were separated by 2-colour fluorescence (BrdU/PI) analysis using flow cytometry. The G(0)/G(1)-early S and the late S-G(2)/M transitions were examined under the influence of T3 in cycling normal and mdx muscle cell cultures over a 20-hour time period. Myogenesis and differentiation were assessed morphologically and by immunostaining for MyoD protein. Mdx cultures had fewer cells in G(0)/G(1) at 20 hours and more cells in early and late S-phase compared to normal cultures. T3 significantly increased the proportion of normal cells in early S-phase by 20 hours, and reduced the proportions in G(2)/M phase. Over the same time interval in parallel cultures, the proportion of MyoD+ normal cells decreased significantly. In the absence of T3, mdx cell cultures showed greater proportions of cells in S-phase than normal cultures, and similar increases in S-phase and loss of MyoD expression over time. However, mdx cultures had no change in the proportion that were MyoD+ during T3 treatment. The results confirm that T3 in primary cultures increased proliferation and prevented the de-differentiation of mdx cells to a greater degree than was typical of normal cells. The different susceptibilities to T3-related shifts between proliferation and differentiation observed in vitro support the idea that committed mdx myoblasts may be more activated and proliferative than normal myoblasts during regeneration in vivo.
Collapse
Affiliation(s)
- A N Moor
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada, R3E 0W3
| | | | | |
Collapse
|
21
|
Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 1999; 210:440-55. [PMID: 10357902 PMCID: PMC5027208 DOI: 10.1006/dbio.1999.9284] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Satellite cells from adult rat muscle coexpress proliferating cell nuclear antigen and MyoD upon entry into the cell cycle, suggesting that MyoD plays a role during the recruitment of satellite cells. Moreover, the finding that muscle regeneration is compromised in MyoD-/- mice, has provided evidence for the role of MyoD during myogenesis in adult muscle. In order to gain further insight into the role of MyoD during myogenesis in the adult, we compared satellite cells from MyoD-/- and wildtype mice as they progress through myogenesis in single-myofiber cultures and in tissue-dissociated cell cultures (primary cultures). Satellite cells undergoing proliferation and differentiation were traced immunohistochemically using antibodies against various regulatory proteins. In addition, an antibody against the mitogen-activated protein kinases ERK1 and ERK2 was used to localize the cytoplasm of the fiber-associated satellite cells regardless of their ability to express specific myogenic regulatory factor proteins. We show that during the initial days in culture the myofibers isolated from both the MyoD-/- and the wildtype mice contain the same number of proliferating, ERK+ satellite cells. However, the MyoD-/- satellite cells continue to proliferate and only a very small number of cells transit into the myogenin+ state, whereas the wildtype cells exit the proliferative compartment and enter the myogenin+ stage. Analyzing tissue-dissociated cultures of MyoD-/- satellite cells, we identified numerous cells whose nuclei were positive for the Myf5 protein. In contrast, quantification of Myf5+ cells in the wildtype cultures was difficult due to the low level of Myf5 protein present. The Myf5+ cells in the MyoD-/- cultures were often positive for desmin, similar to the MyoD+ cells in the wildtype cultures. Myogenin+ cells were identified in the MyoD-/- primary cultures, but their appearance was delayed compared to the wildtype cells. These "delayed" myogenin+ cells can express other differentiation markers such as MEF2A and cyclin D3 and fuse into myotubes. Taken together, our studies suggest that the presence of MyoD is critical for the normal progression of satellite cells into the myogenin+, differentiative state. It is further proposed that the Myf5+/MyoD- phenotype may represent the myogenic stem cell compartment which is capable of maintaining the myogenic precursor pool in the adult muscle.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington 98195
| | - Michael A. Rudnicki
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Anthony J. Rivera
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington 98195
| | - Michael Primig
- Department of Molecular Biology, Pasteur Institute, 75724 Paris Cédex 15, France
| | - Judy E. Anderson
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington 98195
| | - Priscilla Natanson
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
22
|
Yablonka-Reuveni Z, Seger R, Rivera AJ. Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 1999; 47:23-42. [PMID: 9857210 DOI: 10.1177/002215549904700104] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although the role of satellite cells in muscle growth and repair is well recognized, understanding of the molecular events that accompany their activation and proliferation is limited. In this study, we used the single myofiber culture model for comparing the proliferative dynamics of satellite cells from growing (3-week-old), young adult (8- to 10-week-old), and old (9- to 11-month-old) rats. In these fiber cultures, the satellite cells are maintained in their in situ position underneath the fiber basement membrane. We first demonstrate that the cytoplasm of fiber-associated satellite cells can be monitored with an antibody against the extracellular signal regulated kinases 1 and 2 (ERK1 and ERK2), which belong to the mitogen-activated protein kinase (MAPK) superfamily. With this immunocytological marker, we show that the satellite cells from all three age groups first proliferate and express PCNA and MyoD, and subsequently, about 24 hr later, exit the PCNA+/MyoD+ state and become positive for myogenin. For all three age groups, fibroblast growth factor 2 (FGF2) enhances by about twofold the number of satellite cells that are capable of proliferation, as determined by monitoring the number of cells that transit from the MAPK+ phenotype to the PCNA+/MAPK+ or MyoD+/MAPK+ phenotype. Furthermore, contrary to the commonly accepted convention, we show that in the fiber cultures FGF2 does not suppress the subsequent transition of the proliferating cells into the myogenin+ compartment. Although myogenesis of satellite cells from growing, young adult, and old rats follows a similar program, two distinctive features were identified for satellite cells in fiber cultures from the old rats. First, a large number of MAPK+ cells do not appear to enter the MyoD-myogenin expression program. Second, the maximal number of proliferating satellite cells is attained a day later than in cultures from the young adults. This apparent "lag" in proliferation was not affected by hepatocyte growth factor (HGF), which has been implicated in accelerating the first round of satellite cell proliferation. HGF and FGF2 were equally efficient in promoting proliferation of satellite cells in fibers from old rats. Collectively, the investigation suggests that FGF plays a critical role in the recruitment of satellite cells into proliferation.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle,
| | | | | |
Collapse
|
23
|
Abstract
In order to determine why the diaphragm is more severely affected by progressive dystrophy than limb muscles in the mdx mouse, we examined how regional variations in diaphragm dystrophy, the measures of disease and repair, proliferation by committed myogenic cells, and the expression of mitogenic basic fibroblast growth factor (bFGF) could contribute to muscle-specific disease phenotypes. There were regional variations in new myotube formation in the diaphragm, with disease more severe in crural than costal leaflets. New repair increased in hyperthyroidism without changes in accumulated repair, probably due to fiber loss. General proliferation was nearly twofold higher in limb than diaphragm mononuclear cells. Since only 2.5-8.4% of committed muscle precursors were proliferating, the higher proliferation by myf5+ myogenic cells in diaphragm did not account for muscle-specific differences. Proliferation by bFGF+ mononuclear cells and an immunogold labeling index for bFGF protein in diaphragm myoblasts were lower in diaphragm than limb muscle. In culture, mixed limb myoblast and fibroblasts contained more S phase cells than diaphragm cells, although myoblasts cycled similarly between muscles. Therefore while muscle architecture and the formation and number of new myotubes certainly affect disease phenotype, the differential outcome of regeneration in mdx diaphragm and limb muscle appears to be contributed by both nonmyogenic and myogenic cells.
Collapse
Affiliation(s)
- J E Anderson
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|