1
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
2
|
Ferrante M, Inglese M, Brusaferri L, Whitehead AC, Maccioni L, Turkheimer FE, Nettis MA, Mondelli V, Howes O, Loggia ML, Veronese M, Toschi N. Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 256:108375. [PMID: 39180914 DOI: 10.1016/j.cmpb.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION We propose a novel approach for the non-invasive quantification of dynamic PET imaging data, focusing on the arterial input function (AIF) without the need for invasive arterial cannulation. METHODS Our method utilizes a combination of three-dimensional depth-wise separable convolutional layers and a physically informed deep neural network to incorporatea priori knowledge about the AIF's functional form and shape, enabling precise predictions of the concentrations of [11C]PBR28 in whole blood and the free tracer in metabolite-corrected plasma. RESULTS We found a robust linear correlation between our model's predicted AIF curves and those obtained through traditional, invasive measurements. We achieved an average cross-validated Pearson correlation of 0.86 for whole blood and 0.89 for parent plasma curves. Moreover, our method's ability to estimate the volumes of distribution across several key brain regions - without significant differences between the use of predicted versus actual AIFs in a two-tissue compartmental model - successfully captures the intrinsic variability related to sex, the binding affinity of the translocator protein (18 kDa), and age. CONCLUSIONS These results not only validate our method's accuracy and reliability but also establish a foundation for a streamlined, non-invasive approach to dynamic PET data quantification. By offering a precise and less invasive alternative to traditional quantification methods, our technique holds significant promise for expanding the applicability of PET imaging across a wider range of tracers, thereby enhancing its utility in both clinical research and diagnostic settings.
Collapse
Affiliation(s)
- Matteo Ferrante
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Rome, Italy.
| | - Marianna Inglese
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Rome, Italy.
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center For Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, USA; Department of Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | | | - Lucia Maccioni
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico E Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
| | - Maria A Nettis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Howes
- Psychosis Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marco L Loggia
- Athinoula A. Martinos Center For Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Rome, Italy; Athinoula A. Martinos Center For Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Mantovani DBA, Pitombeira MS, Schuck PN, de Araújo AS, Buchpiguel CA, de Paula Faria D, M da Silva AM. Evaluation of Non-Invasive Methods for (R)-[ 11C]PK11195 PET Image Quantification in Multiple Sclerosis. J Imaging 2024; 10:39. [PMID: 38392087 PMCID: PMC10889702 DOI: 10.3390/jimaging10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.
Collapse
Affiliation(s)
| | - Milena S Pitombeira
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | | | - Adriel S de Araújo
- Graduate Program in Computer Science, Pontificia Universidade Catolica do Rio Grande do Sul PUCRS, Porto Alegre 90619-900, Brazil
| | - Carlos Alberto Buchpiguel
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Daniele de Paula Faria
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Ana Maria M da Silva
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| |
Collapse
|
4
|
Cousins O, Schubert JJ, Chandra A, Veronese M, Valkimadi P, Creese B, Khan Z, Arathimos R, Hampshire A, Rosenzweig I, Ballard C, Corbett A, Aasland D, Velayudhan L, O'Neill M, Collier D, Awais R, Sander K, Årstad E, Howes O, Turkheimer F, Hodges A. Microglial activation, tau and amyloid deposition in TREM2 p.R47H carriers and mild cognitive impairment patients: a multi-modal/multi-tracer PET/MRI imaging study with influenza vaccine immune challenge. J Neuroinflammation 2023; 20:272. [PMID: 37990275 PMCID: PMC10664604 DOI: 10.1186/s12974-023-02945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Microglia are increasingly understood to play an important role in the pathogenesis of Alzheimer's disease. The rs75932628 (p.R47H) TREM2 variant is a well-established risk factor for Alzheimer's disease. TREM2 is a microglial cell surface receptor. In this multi-modal/multi-tracer PET/MRI study we investigated the effect of TREM2 p.R47H carrier status on microglial activation, tau and amyloid deposition, brain structure and cognitive profile. METHODS We compared TREM2 p.R47H carriers (n = 8; median age = 62.3) and participants with mild cognitive impairment (n = 8; median age = 70.7). Participants underwent two [18F]DPA-714 PET/MRI scans to assess TSPO signal, indicative of microglial activation, before and after receiving the seasonal influenza vaccination, which was used as an immune stimulant. Participants also underwent [18F]florbetapir and [18F]AV1451 PET scans to assess amyloid and tau burden, respectively. Regional tau and TSPO signal were calculated for regions of interest linked to Braak stage. An additional comparison imaging healthy control group (n = 8; median age = 45.5) had a single [18F]DPA-714 PET/MRI. An expanded group of participants underwent neuropsychological testing, to determine if TREM2 status influenced clinical phenotype. RESULTS Compared to participants with mild cognitive impairment, TREM2 carriers had lower TSPO signal in Braak II (P = 0.04) and Braak III (P = 0.046) regions, despite having a similar burden of tau and amyloid. There were trends to suggest reduced microglial activation following influenza vaccine in TREM2 carriers. Tau deposition in the Braak VI region was higher in TREM2 carriers (P = 0.04). Furthermore, compared to healthy controls TREM2 carriers had smaller caudate (P = 0.02), total brain (P = 0.049) and white matter volumes (P = 0.02); and neuropsychological assessment revealed worse ADAS-Cog13 (P = 0.03) and Delayed Matching to Sample (P = 0.007) scores. CONCLUSIONS TREM2 p.R47H carriers had reduced levels of microglial activation in brain regions affected early in the Alzheimer's disease course and differences in brain structure and cognition. Changes in microglial response may underlie the increased Alzheimer's disease risk in TREM2 p.R47H carriers. Future therapeutic agents in Alzheimer's disease should aim to enhance protective microglial actions.
Collapse
Affiliation(s)
- Oliver Cousins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Julia J Schubert
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Avinash Chandra
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
- Department of Information Engineering, University of Padua, 35131, Padua, Italy
| | - Polena Valkimadi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Byron Creese
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
- Division of Psychology, Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Zunera Khan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Ryan Arathimos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Adam Hampshire
- Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Ivana Rosenzweig
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
| | - Anne Corbett
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
| | - Dag Aasland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | | | | | - Ramla Awais
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Kerstin Sander
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Federico Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK.
| |
Collapse
|
5
|
De Picker LJ, Morrens M, Branchi I, Haarman BCM, Terada T, Kang MS, Boche D, Tremblay ME, Leroy C, Bottlaender M, Ottoy J. TSPO PET brain inflammation imaging: A transdiagnostic systematic review and meta-analysis of 156 case-control studies. Brain Behav Immun 2023; 113:415-431. [PMID: 37543251 DOI: 10.1016/j.bbi.2023.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION The 18-kDa translocator protein (TSPO) is increasingly recognized as a molecular target for PET imaging of inflammatory responses in various central nervous system (CNS) disorders. However, the reported sensitivity and specificity of TSPO PET to identify brain inflammatory processes appears to vary greatly across disorders, disease stages, and applied quantification methods. To advance TSPO PET as a potential biomarker to evaluate brain inflammation and anti-inflammatory therapies, a better understanding of its applicability across disorders is needed. We conducted a transdiagnostic systematic review and meta-analysis of all in vivo human TSPO PET imaging case-control studies in the CNS. Specifically, we investigated the direction, strength, and heterogeneity associated with the TSPO PET signal across disorders in pre-specified brain regions, and explored the demographic and methodological sources of heterogeneity. METHODS We searched for English peer-reviewed articles that reported in vivo human case-control TSPO PET differences. We extracted the demographic details, TSPO PET outcomes, and technical variables of the PET procedure. A random-effects meta-analysis was applied to estimate case-control standardized mean differences (SMD) of the TSPO PET signal in the lobar/whole-brain cortical grey matter (cGM), thalamus, and cortico-limbic circuitry between different illness categories. Heterogeneity was evaluated with the I2 statistic and explored using subgroup and meta-regression analyses for radioligand generation, PET quantification method, age, sex, and publication year. Significance was set at the False Discovery Rate (FDR)-corrected P < 0.05. RESULTS 156 individual case-control studies were included in the systematic review, incorporating data for 2381 healthy controls and 2626 patients. 139 studies documented meta-analysable data and were grouped into 11 illness categories. Across all the illness categories, we observed a significantly higher TSPO PET signal in cases compared to controls for the cGM (n = 121 studies, SMD = 0.358, PFDR < 0.001, I2 = 68%), with a significant difference between the illness categories (P = 0.004). cGM increases were only significant for Alzheimer's disease (SMD = 0.693, PFDR < 0.001, I2 = 64%) and other neurodegenerative disorders (SMD = 0.929, PFDR < 0.001, I2 = 73%). Cortico-limbic increases (n = 97 studies, SMD = 0.541, P < 0.001, I2 = 67%) were most prominent for Alzheimer's disease, mild cognitive impairment, other neurodegenerative disorders, mood disorders and multiple sclerosis. Thalamic involvement (n = 79 studies, SMD = 0.393, P < 0.001, I2 = 71%) was observed for Alzheimer's disease, other neurodegenerative disorders, multiple sclerosis, and chronic pain and functional disorders (all PFDR < 0.05). Main outcomes for systemic immunological disorders, viral infections, substance use disorders, schizophrenia and traumatic brain injury were not significant. We identified multiple sources of between-study variance to the TSPO PET signal including a strong transdiagnostic effect of the quantification method (explaining 25% of between-study variance; VT-based SMD = 0.000 versus reference tissue-based studies SMD = 0.630; F = 20.49, df = 1;103, P < 0.001), patient age (9% of variance), and radioligand generation (5% of variance). CONCLUSION This study is the first overarching transdiagnostic meta-analysis of case-control TSPO PET findings in humans across several brain regions. We observed robust increases in the TSPO signal for specific types of disorders, which were widespread or focal depending on illness category. We also found a large and transdiagnostic horizontal (positive) shift of the effect estimates of reference tissue-based compared to VT-based studies. Our results can support future studies to optimize experimental design and power calculations, by taking into account the type of disorder, brain region-of-interest, radioligand, and quantification method.
Collapse
Affiliation(s)
- Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium.
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Min Su Kang
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, UK
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, BC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Claire Leroy
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay, France; Université Paris-Saclay, UNIACT, Neurospin, CEA, Gif-sur-Yvette, France
| | - Julie Ottoy
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Peyronneau MA, Kuhnast B, Nguyen DL, Jego B, Sayet G, Caillé F, Lavisse S, Gervais P, Stankoff B, Sarazin M, Remy P, Bouilleret V, Leroy C, Bottlaender M. [ 18F]DPA-714: Effect of co-medications, age, sex, BMI and TSPO polymorphism on the human plasma input function. Eur J Nucl Med Mol Imaging 2023; 50:3251-3264. [PMID: 37291448 DOI: 10.1007/s00259-023-06286-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE We aimed to assess the effect of concomitant medication, age, sex, body mass index and 18-kDa translocator protein (TSPO) binding affinity status on the metabolism and plasma pharmacokinetics of [18F]DPA-714 and their influence on the plasma input function in a large cohort of 201 subjects who underwent brain and whole-body PET imaging to investigate the role of neuroinflammation in neurological diseases. METHODS The non-metabolized fraction of [18F]DPA-714 was estimated in venous plasma of 138 patients and 63 healthy controls (HCs; including additional arterial sampling in 16 subjects) during the 90 min brain PET acquisition using a direct solid-phase extraction method. The mean fraction between 70 and 90 min post-injection ([18F]DPA-71470-90) and corresponding normalized plasma concentration (SUV70-90) were correlated with all factors using a multiple linear regression model. Differences between groups (arterial vs venous measurements; HCs vs patients; high- (HAB), mixed- (MAB) and low-affinity binders (LAB); subjects with vs without co-medications, females vs males were also assessed using the non-parametric Mann-Whitney or Kruskal-Wallis ANOVA tests. Finally, the impact of co-medications on the brain uptake of [18F]DPA-714 at equilibrium was investigated. RESULTS As no significant differences were observed between arterial and venous [18F]DPA-71470-90 and SUV70-90, venous plasma was used for correlations. [18F]DPA-71470-90 was not significantly different between patients and HCS (59.7 ± 12.3% vs 60.2 ± 12.9%) despite high interindividual variability. However, 47 subjects exhibiting a huge increase or decrease of [18F]DPA-71470-90 (up to 88% or down to 23%) and SUV70-90 values (2-threefold) were found to receive co-medications identified as inhibitors or inducers of CYP3A4, known to catalyse [18F]DPA-714 metabolism. Comparison between cortex-to-plasma ratios using individual input function (VTIND) or population-based input function derived from untreated HCs (VTPBIF) indicated that non-considering the individual metabolism rate led to a bias of about 30% in VT values. Multiple linear regression model analysis of subjects free of these co-medications suggested significant correlations between [18F]DPA-71470-90 and age, BMI and sex while TSPO polymorphism did not influence the metabolism of the radiotracer. [18F]DPA-714 metabolism fell with age and BMI and was significantly faster in females than in males. Whole-body PET/CT exhibited a high uptake of the tracer in TSPO-rich organs (heart wall, spleen, kidneys…) and those involved in metabolism and excretion pathways (liver, gallbladder) in HAB and MAB with a strong decrease in LAB (-89% and -85%) resulting in tracer accumulation in plasma (4.5 and 3.3-fold increase). CONCLUSION Any co-medication that inhibits or induces CYP3A4 as well as TSPO genetic status, age, BMI and sex mostly contribute to interindividual variations of the radiotracer metabolism and/or concentration that may affect the input function of [18F]DPA-714 and consequently its human brain and peripheral uptake. TRIAL REGISTRATION INFLAPARK, NCT02319382, registered December 18, 2014, retrospectively registered; IMABIO 3, NCT01775696, registered January 25, 2013, retrospectively registered; INFLASEP, NCT02305264, registered December 2, 2014, retrospectively registered; EPI-TEP, EudraCT 2017-003381-27, registered September 24, 2018.
Collapse
Affiliation(s)
- M A Peyronneau
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France.
| | - B Kuhnast
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - D-L Nguyen
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Jego
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - G Sayet
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - F Caillé
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - S Lavisse
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
| | - P Gervais
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Stankoff
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de La Moelle Epinière, Hôpital de La Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - M Sarazin
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurologie de La Mémoire Et du Langage, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - P Remy
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
- Centre Expert Parkinson, Neurologie, Hôpital Henri Mondor, AP-HP, F-94010, Créteil, France
- Université Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010, Créteil, France
- Département d'Etudes Cognitives, École Normale Supérieure, Université PSL, F-75005, Paris, France
| | - V Bouilleret
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurophysiologie Clinique et d'Epileptologie, Hôpital Bicêtre, AP-HP, Université Paris Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - C Leroy
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - M Bottlaender
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Université Paris Saclay, UNIACT, Neurospin, CEA, Gif-Sur-Yvette, F-91190, France
| |
Collapse
|
7
|
van der Weijden CWJ, Mossel P, Bartels AL, Dierckx RAJO, Luurtsema G, Lammertsma AA, Willemsen ATM, de Vries EFJ. Non-invasive kinetic modelling approaches for quantitative analysis of brain PET studies. Eur J Nucl Med Mol Imaging 2023; 50:1636-1650. [PMID: 36651951 PMCID: PMC10119247 DOI: 10.1007/s00259-022-06057-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Abstract
Pharmacokinetic modelling with arterial sampling is the gold standard for analysing dynamic PET data of the brain. However, the invasive character of arterial sampling prevents its widespread clinical application. Several methods have been developed to avoid arterial sampling, in particular reference region methods. Unfortunately, for some tracers or diseases, no suitable reference region can be defined. For these cases, other potentially non-invasive approaches have been proposed: (1) a population based input function (PBIF), (2) an image derived input function (IDIF), or (3) simultaneous estimation of the input function (SIME). This systematic review aims to assess the correspondence of these non-invasive methods with the gold standard. Studies comparing non-invasive pharmacokinetic modelling methods with the current gold standard methods using an input function derived from arterial blood samples were retrieved from PubMed/MEDLINE (until December 2021). Correlation measurements were extracted from the studies. The search yielded 30 studies that correlated outcome parameters (VT, DVR, or BPND for reversible tracers; Ki or CMRglu for irreversible tracers) from a potentially non-invasive method with those obtained from modelling using an arterial input function. Some studies provided similar results for PBIF, IDIF, and SIME-based methods as for modelling with an arterial input function (R2 = 0.59-1.00, R2 = 0.71-1.00, R2 = 0.56-0.96, respectively), if the non-invasive input curve was calibrated with arterial blood samples. Even when the non-invasive input curve was calibrated with venous blood samples or when no calibration was applied, moderate to good correlations were reported, especially for the IDIF and SIME (R2 = 0.71-1.00 and R2 = 0.36-0.96, respectively). Overall, this systematic review illustrates that non-invasive methods to generate an input function are still in their infancy. Yet, IDIF and SIME performed well, not only with arterial blood calibration, but also with venous or no blood calibration, especially for some tracers without plasma metabolites, which would potentially make these methods better suited for clinical application. However, these methods should still be properly validated for each individual tracer and application before implementation.
Collapse
Affiliation(s)
- Chris W J van der Weijden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.,Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Anna L Bartels
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| |
Collapse
|
8
|
Pitombeira MS, Koole M, Campanholo KR, Souza AM, Duran FLS, Solla DJF, Mendes MF, Pereira SLA, Rimkus CM, Busatto GF, Callegaro D, Buchpiguel CA, de Paula Faria D. Innate immune cells and myelin profile in multiple sclerosis: a multi-tracer PET/MR study. Eur J Nucl Med Mol Imaging 2022; 49:4551-4566. [PMID: 35838758 DOI: 10.1007/s00259-022-05899-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Neuropathological studies have demonstrated distinct profiles of microglia activation and myelin injury among different multiple sclerosis (MS) phenotypes and disability stages. PET imaging using specific tracers may uncover the in vivo molecular pathology and broaden the understanding of the disease heterogeneity. METHODS We used the 18-kDa translocator protein (TSPO) tracer (R)-[11C]PK11195 and [11C]PIB PET images acquired in a hybrid PET/MR 3 T system to characterize, respectively, the profile of innate immune cells and myelin content in 47 patients with MS compared to 18 healthy controls (HC). For the volume of interest (VOI)-based analysis of the dynamic data, (R)-[11C]PK11195 distribution volume (VT) was determined for each subject using a metabolite-corrected arterial plasma input function while [11C]PIB distribution volume ratio (DVR) was estimated using a reference region extracted by a supervised clustering algorithm. A voxel-based analysis was also performed using Statistical Parametric Mapping. Functional disability was evaluated by the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Symbol Digit Modality Test (SDMT). RESULTS In the VOI-based analysis, [11C]PIB DVR differed between patients and HC in the corpus callosum (P = 0.019) while no differences in (R)-[11C]PK11195 VT were observed in patients relative to HC. Furthermore, no correlations or associations were observed between both tracers within the VOI analyzed. In the voxel-based analysis, high (R)-[11C]PK11195 uptake was observed diffusively in the white matter (WM) when comparing the progressive phenotype and HC, and lower [11C]PIB uptake was observed in certain WM regions when comparing the relapsing-remitting phenotype and HC. None of the tracers were able to differentiate phenotypes at voxel or VOI level in our cohort. Linear regression models adjusted for age, sex, and phenotype demonstrated that higher EDSS was associated with an increased (R)-[11C]PK11195 VT and lower [11C]PIB DVR in corpus callosum (P = 0.001; P = 0.023), caudate (P = 0.015; P = 0.008), and total T2 lesion (P = 0.007; P = 0.012), while better cognitive scores in SDMT were associated with higher [11C]PIB DVR in the corpus callosum (P = 0.001), and lower (R)-[11C]PK11195 VT (P = 0.013). CONCLUSIONS Widespread innate immune cells profile and marked loss of myelin in T2 lesions and regions close to the ventricles may occur independently and are associated with disability, in both WM and GM structures.
Collapse
Affiliation(s)
- Milena Sales Pitombeira
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michel Koole
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Flanders, Belgium
| | - Kenia R Campanholo
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aline M Souza
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Davi J Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria F Mendes
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Carolina M Rimkus
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Geraldo Filho Busatto
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos A Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
10
|
Leroy C, Saba W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 2021; 49:186-200. [PMID: 34041563 DOI: 10.1007/s00259-021-05408-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse. METHODS In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis. RESULTS The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD. DISCUSSION Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes. CONCLUSION The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.
Collapse
Affiliation(s)
- Claire Leroy
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France.
| |
Collapse
|
11
|
Bouilleret V, Dedeurwaerdere S. What value can TSPO PET bring for epilepsy treatment? Eur J Nucl Med Mol Imaging 2021; 49:221-233. [PMID: 34120191 DOI: 10.1007/s00259-021-05449-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy is one of the most common neurological disorders and affects both the young and adult populations. The question we asked for this review was how positron emission tomography (PET) imaging with translocator protein (TSPO) radioligands can help inform the epilepsy clinic and the development of future treatments targeting neuroinflammatory processes.Even though the first TSPO PET scans in epilepsy patients were performed over 20 years ago, this imaging modality has not seen wide adoption in the clinic. There is vast scientific evidence from preclinical studies in rodent models of temporal lobe epilepsy which have shown increased levels of TSPO corresponding to neuroinflammatory processes in the brain. These increases peaked sub-acutely (1-2 weeks) after the epileptogenic insult (e.g. status epilepticus) and remained chronically increased, albeit at lower levels. In addition, these studies have shown a correlation between TSPO levels and seizure outcome, pharmacoresistance and behavioural morbidities. Histological assessment points to a complex interplay between different cellular components such as microglial activation, astrogliosis and cell death changing dynamically over time.In epilepsy patients, a highly sensitive biomarker of neuroinflammation would provide value for the optimization of surgical assessment (particularly for extratemporal lobe epilepsy) and support the clinical development path of anti-inflammatory treatments. Clinical studies have shown a systematic increase in asymmetry indices of TSPO PET binding. However, region-based analysis typically does not yield statistical differences and changes are often not restricted to the epileptogenic zone, limiting the ability of this imaging modality to localise pathology for surgery. In this manuscript, we discuss the biological underpinnings of these findings and review for which applications in epilepsy TSPO PET could bring added value.
Collapse
Affiliation(s)
- Viviane Bouilleret
- Unité de Neurophysiologie et d'Epileptologie (UNCE), Université Paris-Saclay APHP, 78, Rue du Général Leclerc, 94275, Le Kremlin Bicêtre, France.
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay, France.
| | - Stefanie Dedeurwaerdere
- Neurosciences Therapeutic Area, Early Solutions, UCB Pharma, Braine-l'Alleud, Belgium
- Experimental Laboratory of Haematology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
12
|
Lee SH, Denora N, Laquintana V, Mangiatordi GF, Lopedota A, Lopalco A, Cutrignelli A, Franco M, Delre P, Song IH, Kim HW, Kim SB, Park HS, Kim K, Lee SY, Youn H, Lee BC, Kim SE. Radiosynthesis and characterization of [ 18F]BS224: a next-generation TSPO PET ligand insensitive to the rs6971 polymorphism. Eur J Nucl Med Mol Imaging 2021; 49:110-124. [PMID: 34783879 PMCID: PMC8712300 DOI: 10.1007/s00259-021-05617-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) positron emission tomography (PET) is a valuable tool to detect neuroinflammed areas in a broad spectrum of neurodegenerative diseases. However, the clinical application of second-generation TSPO ligands as biomarkers is limited because of the presence of human rs6971 polymorphism that affects their binding. Here, we describe the ability of a new TSPO ligand, [18F]BS224, to identify abnormal TSPO expression in neuroinflammation independent of the rs6971 polymorphism. METHODS An in vitro competitive inhibition assay of BS224 was conducted with [3H]PK 11195 using membrane proteins isolated from 293FT cells expressing TSPO-wild type (WT) or TSPO-mutant A147T (Mut), corresponding to a high-affinity binder (HAB) and low-affinity binder (LAB), respectively. Molecular docking was performed to investigate the interaction of BS224 with the binding sites of rat TSPO-WT and TSPO-Mut. We synthesized a new 18F-labeled imidazopyridine acetamide ([18F]BS224) using boronic acid pinacol ester 6 or iodotoluene tosylate precursor 7, respectively, via aromatic 18F-fluorination. Dynamic PET scanning was performed up to 90 min after the injection of [18F]BS224 to healthy mice, and PET imaging data were obtained to estimate its absorbed doses in organs. To evaluate in vivo TSPO-specific uptake of [18F]BS224, lipopolysaccharide (LPS)-induced inflammatory and ischemic stroke rat models were used. RESULTS BS224 exhibited a high affinity (Ki = 0.51 nM) and selectivity for TSPO. The ratio of IC50 values of BS224 for LAB to that for HAB indicated that the TSPO binding affinity of BS224 has low binding sensitivity to the rs6971 polymorphism and it was comparable to that of PK 11195, which is not sensitive to the polymorphism. Docking simulations showed that the binding mode of BS224 is not affected by the A147T mutation and consequently supported the observed in vitro selectivity of [18F]BS224 regardless of polymorphisms. With optimal radiochemical yield (39 ± 6.8%, decay-corrected) and purity (> 99%), [18F]BS224 provided a clear visible image of the inflammatory lesion with a high signal-to-background ratio in both animal models (BPND = 1.43 ± 0.17 and 1.57 ± 0.37 in the LPS-induced inflammatory and ischemic stroke rat models, respectively) without skull uptake. CONCLUSION Our results suggest that [18F]BS224 may be a promising TSPO ligand to gauge neuroinflammatory disease-related areas in a broad range of patients irrespective of the common rs6971 polymorphism.
Collapse
Affiliation(s)
- Sang Hee Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nunzio Denora
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | | | - Angela Lopedota
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Massimo Franco
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
| | - Hye Won Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Su Bin Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
| | - Kyungmin Kim
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229 Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
13
|
Schubert J, Tonietto M, Turkheimer F, Zanotti-Fregonara P, Veronese M. Supervised clustering for TSPO PET imaging. Eur J Nucl Med Mol Imaging 2021; 49:257-268. [PMID: 33779770 PMCID: PMC8712290 DOI: 10.1007/s00259-021-05309-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE This technical note seeks to act as a practical guide for implementing a supervised clustering algorithm (SVCA) reference region approach and to explain the main strengths and limitations of the technique in the context of 18-kilodalton translocator protein (TSPO) positron emission tomography (PET) studies in experimental medicine. BACKGROUND TSPO PET is the most widely used imaging technique for studying neuroinflammation in vivo in humans. Quantifying neuroinflammation with PET can be a challenging and invasive procedure, especially in frail patients, because it often requires blood sampling from an arterial catheter. A widely used alternative to arterial sampling is SVCA, which identifies the voxels with minimal specific binding in the PET images, thus extracting a pseudo-reference region for non-invasive quantification. Unlike other reference region approaches, SVCA does not require specification of an anatomical reference region a priori, which alleviates the limitation of TSPO contamination in anatomically-defined reference regions in individuals with underlying inflammatory processes. Furthermore, SVCA can be applied to any TSPO PET tracer across different neurological and neuropsychiatric conditions, providing noninvasivequantification of TSPO expression. METHODS We provide an overview of the development of SVCA as well as step-by-step instructions for implementing SVCA with suggestions for specific settings. We review the literature on SVCAapplications using first- and second- generation TSPO PET tracers and discuss potential clinically relevant limitations and applications. CONCLUSIONS The correct implementation of SVCA can provide robust and reproducible estimates of brain TSPO expression. This review encourages the standardisation of SVCA methodology in TSPO PET analysis, ultimately aiming to improve replicability and comparability across study sites.
Collapse
Affiliation(s)
- Julia Schubert
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Matteo Tonietto
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
14
|
Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation 2021; 18:258. [PMID: 34742308 PMCID: PMC8571840 DOI: 10.1186/s12974-021-02309-6] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunological concepts from these studies have been applied to describe neuro-immune interactions in the absence of disease, injury, or infection. Indeed, terms such as 'microglia activation' or 'neuroinflammation' are used ubiquitously to describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunology and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in different contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurological disease.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Veronese M, Tuosto M, Marques TR, Howes O, Pascual B, Yu M, Masdeu JC, Turkheimer F, Bertoldo A, Zanotti-Fregonara P. Parametric Mapping for TSPO PET Imaging with Spectral Analysis Impulsive Response Function. Mol Imaging Biol 2021; 23:560-571. [PMID: 33475944 PMCID: PMC8277653 DOI: 10.1007/s11307-020-01575-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to investigate the use of spectral analysis (SA) for voxel-wise analysis of TSPO PET imaging studies. TSPO PET quantification is methodologically complicated by the heterogeneity of TSPO expression and its cell-dependent modulation during neuroinflammatory response. Compartmental models to account for this complexity exist, but they are unreliable at the high noise typical of voxel data. On the contrary, SA is noise-robust for parametric mapping and provides useful information about tracer kinetics with a free compartmental structure. PROCEDURES SA impulse response function (IRF) calculated at 90 min after tracer injection was used as main parameter of interest in 3 independent PET imaging studies to investigate its sensitivity to (1) a TSPO genetic polymorphism (rs6971) known to affect tracer binding in a cross-sectional analysis of healthy controls scanned with [11C]PBR28 PET; (2) TSPO density with [11C]PBR28 in a competitive blocking study with a TSPO blocker, XBD173; and (3) the higher affinity of a second radiotracer for TSPO, by using data from a head-to-head comparison between [11C]PBR28 and [11C]ER176 scans. RESULTS SA-IRF produced parametric maps of visually good quality. These were sensitive to TSPO genotype (mean relative difference between high- and mixed-affinity binders = 25 %) and TSPO availability (mean signal displacement after 90 mg oral administration of XBD173 = 39 %). Regional averages of voxel-wise IRF estimates were strongly associated with regional total distribution volume (VT) estimated with a 2-tissue compartmental model with vascular compartment (Pearson's r = 0.86 ± 0.11) but less strongly with standard 2TCM-VT (Pearson's r = 0.76 ± 0.32). Finally, SA-IRF estimates for [11C]ER176 were significantly higher than [11C]PBR28 ones, consistent with the higher amount of specific binding of the former tracer. CONCLUSIONS SA-IRF can be used for voxel-wise quantification of TSPO PET data because it generates high-quality parametric maps, it is sensitive to TSPO availability and genotype, and it accounts for the complexity of TSPO tracer kinetics with no additional assumptions.
Collapse
Affiliation(s)
- Mattia Veronese
- Department of Neuroimaging, IoPPN, King's College London, London, UK.
| | - Marcello Tuosto
- Department of Information Engineering, Padova University, Padova, Italy
| | - Tiago Reis Marques
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Belen Pascual
- Nantz National Alzheimer Center and Houston Methodist Research Neurological Institute, and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Meixiang Yu
- Nantz National Alzheimer Center and Houston Methodist Research Neurological Institute, and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center and Houston Methodist Research Neurological Institute, and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA
| | | | - Alessandra Bertoldo
- Department of Information Engineering, Padova University, Padova, Italy
- Padova Neuroscience Centre, Padova University, Padova, Italy
| | - Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center and Houston Methodist Research Neurological Institute, and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Patkar OL, Mohamed AZ, Narayanan A, Mardon K, Cowin G, Bhalla R, Stimson DHR, Kassiou M, Beecher K, Belmer A, Alvarez Cooper I, Morgan M, Hume DA, Irvine KM, Bartlett SE, Nasrallah F, Cumming P. A binge high sucrose diet provokes systemic and cerebral inflammation in rats without inducing obesity. Sci Rep 2021; 11:11252. [PMID: 34045616 PMCID: PMC8160215 DOI: 10.1038/s41598-021-90817-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
While the dire cardiometabolic consequences of the hypercaloric modern 'Western' diet are well known, there is not much information on the health impact of a high sucrose diet not inducing weight gain. Here, we tested the hypothesis that rats reared with intermittent binge access to sucrose in addition to normal chow would develop an inflammatory response in brain. To test this hypothesis, we undertook serial PET/MRI scans with the TSPO ligand [18F]DPA714 in a group of (n=9) rats at baseline and again after voluntarily consuming 5% sucrose solution three days a week for three months. Compared to a control group fed with normal chow (n=9), the sucrose rats indeed showed widespread increases in the availability of cerebral binding sites for the microglial marker, despite normal weight gain compared to the control diet group. Subsequent immunofluorescence staining of the brains confirmed the PET findings, showing a widespread 20% increase in the abundance of IBA-1-positive microglia with characteristic 'semi-activated' morphology in the binge sucrose rats, which had 23% lower density of microglial endpoints and 25% lower mean process length compared to microglia in the control rats with ordinary feeding. GFAP immunofluorescence showed no difference in astroglial coverage in the sucrose rats, except for a slight reduction in hypothalamus. The binge sucrose diet-induced neuroinflammation was associated with a significant elevation of white blood cell counts. Taking these results together, we find that long-term intake of sucrose in a binge paradigm, similar in sucrose content to the contemporary Western diet, triggered a low-grade systemic and central inflammation in non-obese rats. The molecular mechanism of this phenomenon remains to be established.
Collapse
Affiliation(s)
- Omkar L Patkar
- Macrophage Biology Group, Mater Research, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland
| | - Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ashwin Narayanan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Gary Cowin
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Damion H R Stimson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kate Beecher
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Ignatius Alvarez Cooper
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael Morgan
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - David A Hume
- Macrophage Biology Group, Mater Research, Translational Research Institute, Brisbane, QLD, Australia
| | - Katharine M Irvine
- Macrophage Biology Group, Mater Research, Translational Research Institute, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
17
|
Poirion E, Tonietto M, Lejeune FX, Ricigliano VAG, Boudot de la Motte M, Benoit C, Bera G, Kuhnast B, Bottlaender M, Bodini B, Stankoff B. Structural and Clinical Correlates of a Periventricular Gradient of Neuroinflammation in Multiple Sclerosis. Neurology 2021; 96:e1865-e1875. [PMID: 33737372 PMCID: PMC8105971 DOI: 10.1212/wnl.0000000000011700] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022] Open
Abstract
Objectives To explore in vivo innate immune cell activation as a function of the distance from ventricular CSF in patients with multiple sclerosis (MS) using [18F]-DPA714 PET and to investigate its relationship with periventricular microstructural damage, evaluated by magnetization transfer ratio (MTR), and with trajectories of disability worsening. Methods Thirty-seven patients with MS and 19 healthy controls underwent MRI and [18F]-DPA714 TSPO dynamic PET, from which individual maps of voxels characterized by innate immune cell activation (DPA+) were generated. White matter (WM) was divided in 3-mm-thick concentric rings radiating from the ventricular surface toward the cortex, and the percentage of DPA+ voxels and mean MTR were extracted from each ring. Two-year trajectories of disability worsening were collected to identify patients with and without recent disability worsening. Results The percentage of DPA+ voxels was higher in patients compared to controls in the periventricular WM (p = 6.10e-6) and declined with increasing distance from ventricular surface, with a steeper gradient in patients compared to controls (p = 0.001). This gradient was found in both periventricular lesions and normal-appearing WM. In the total WM, it correlated with a gradient of microstructural tissue damage measured by MTR (rs = −0.65, p = 1.0e-3). Compared to clinically stable patients, patients with disability worsening were characterized by a higher percentage of DPA+ voxels in the periventricular normal-appearing WM (p = 0.025). Conclusions Our results demonstrate that in MS the innate immune cell activation predominates in periventricular regions and is associated with microstructural damage and disability worsening. This could result from the diffusion of proinflammatory CSF-derived factors into surrounding tissues.
Collapse
Affiliation(s)
- Emilie Poirion
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Matteo Tonietto
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - François-Xavier Lejeune
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Vito A G Ricigliano
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Marine Boudot de la Motte
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Charline Benoit
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Géraldine Bera
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Bertrand Kuhnast
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Michel Bottlaender
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Benedetta Bodini
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Bruno Stankoff
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France.
| |
Collapse
|
18
|
Turkheimer FE, Althubaity N, Schubert J, Nettis MA, Cousins O, Dima D, Mondelli V, Bullmore ET, Pariante C, Veronese M. Increased serum peripheral C-reactive protein is associated with reduced brain barriers permeability of TSPO radioligands in healthy volunteers and depressed patients: implications for inflammation and depression. Brain Behav Immun 2021; 91:487-497. [PMID: 33160089 DOI: 10.1016/j.bbi.2020.10.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/08/2023] Open
Abstract
The relationship between peripheral and central immunity and how these ultimately may cause depressed behaviour has been the focus of a number of imaging studies conducted with Positron Emission Tomography (PET). These studies aimed at testing the immune-mediated model of depression that proposes a direct effect of peripheral cytokines and immune cells on the brain to elicit a neuroinflammatory response via a leaky blood-brain barrier and ultimately depressive behaviour. However, studies conducted so far using PET radioligands targeting the neuroinflammatory marker 18 kDa translocator protein (TSPO) in patient cohorts with depression have demonstrated mild inflammatory brain status but no correlation between central and peripheral immunity. To gain a better insight into the relationship between heightened peripheral immunity and neuroinflammation, we estimated blood-to-brain and blood-to-CSF perfusion rates for two TSPO radiotracers collected in two separate studies, one large cross-sectional study of neuroinflammation in normal and depressed cohorts (N = 51 patients and N = 25 controls) and a second study where peripheral inflammation in N = 7 healthy controls was induced via subcutaneous injection of interferon (IFN)-α. In both studies we observed a consistent negative association between peripheral inflammation, measured with c-reactive protein P (CRP), and radiotracer perfusion into and from the brain parenchyma and CSF. Importantly, there was no association of this effect with the marker of BBB leakage S100β, that was unchanged. These results suggest a different model of peripheral-to-central immunity interaction whereas peripheral inflammation may cause a reduction in BBB permeability. This effect, on the long term, is likely to disrupt brain homeostasis and induce depressive behavioural symptoms.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Noha Althubaity
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Julia Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria A Nettis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Cousins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Valeria Mondelli
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Carmine Pariante
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
19
|
Wright P, Veronese M, Mazibuko N, Turkheimer FE, Rabiner EA, Ballard CG, Williams SCR, Hari Narayanan AK, Osrah B, Williams R, Marques TR, Howes OD, Roncaroli F, O'Sullivan MJ. Patterns of Mitochondrial TSPO Binding in Cerebral Small Vessel Disease: An in vivo PET Study With Neuropathological Comparison. Front Neurol 2020; 11:541377. [PMID: 33178101 PMCID: PMC7596201 DOI: 10.3389/fneur.2020.541377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Small vessel disease (SVD) is associated with cognitive impairment in older age and be implicated in vascular dementia. Post-mortem studies show proliferation of activated microglia in the affected white matter. However, the role of inflammation in SVD pathogenesis is incompletely understood and better biomarkers are needed. We hypothesized that expression of the 18 kDa translocator protein (TSPO), a marker of microglial activation, would be higher in SVD. Positron emission tomography (PET) was performed with the second-generation TSPO ligand [11C]PBR28 in 11 participants with SVD. TSPO binding was evaluated by a two-tissue compartment model, with and without a vascular binding component, in white matter hyperintensities (WMH) and normal-appearing white matter (NAWM). In post-mortem tissue, in a separate cohort of individuals with SVD, immunohistochemistry was performed for TSPO and a pan-microglial marker Iba1. Kinetic modeling showed reduced tracer volume and blood volume fraction in WMH compared with NAWM, but a significant increase in vascular binding. Vascular [11C]PBR28 binding was also increased compared with normal-appearing white matter of healthy participants free of SVD. Immunohistochemistry showed a diffuse increase in microglial staining (with Iba1) in sampled tissue in SVD compared with control samples, but with only a subset of microglia staining positively for TSPO. Intense TSPO staining was observed in the vicinity of damaged small blood vessels, which included perivascular macrophages. The results suggest an altered phenotype of activated microglia, with reduced TSPO expression, in the areas of greatest white matter ischemia in SVD, with implications for the interpretation of TSPO PET studies in older individuals or those with vascular risk factors.
Collapse
Affiliation(s)
- Paul Wright
- Department of Neuroimaging, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ndabezinhle Mazibuko
- Department of Neuroimaging, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Eugenii A. Rabiner
- Department of Neuroimaging, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, United Kingdom
- Invicro, London, United Kingdom
| | - Clive G. Ballard
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Steven C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Avinash Kumar Hari Narayanan
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Clinical Neuroscience, Salford Royal Foundation Trust, Salford, United Kingdom
| | - Bahiya Osrah
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Clinical Neuroscience, Salford Royal Foundation Trust, Salford, United Kingdom
| | - Ricky Williams
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Clinical Neuroscience, Salford Royal Foundation Trust, Salford, United Kingdom
| | - Tiago R. Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Clinical Neuroscience, Salford Royal Foundation Trust, Salford, United Kingdom
| | - Michael J. O'Sullivan
- Department of Neuroimaging, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, United Kingdom
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
- Department of Neurology, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| |
Collapse
|
20
|
Pong S, Karmacharya R, Sofman M, Bishop JR, Lizano P. The Role of Brain Microvascular Endothelial Cell and Blood-Brain Barrier Dysfunction in Schizophrenia. Complex Psychiatry 2020; 6:30-46. [PMID: 34883503 PMCID: PMC7673590 DOI: 10.1159/000511552] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite decades of research, little clarity exists regarding pathogenic mechanisms related to schizophrenia. Investigations on the disease biology of schizophrenia have primarily focused on neuronal alterations. However, there is substantial evidence pointing to a significant role for the brain's microvasculature in mediating neuroinflammation in schizophrenia. SUMMARY Brain microvascular endothelial cells (BMEC) are a central element of the microvasculature that forms the blood-brain barrier (BBB) and shields the brain against toxins and immune cells via paracellular, transcellular, transporter, and extracellular matrix proteins. While evidence for BBB dysfunction exists in brain disorders, including schizophrenia, it is not known if BMEC themselves are functionally compromised and lead to BBB dysfunction. KEY MESSAGES Genome-wide association studies, postmortem investigations, and gene expression analyses have provided some insights into the role of the BBB in schizophrenia pathophysiology. However, there is a significant gap in our understanding of the role that BMEC play in BBB dysfunction. Recent advances differentiating human BMEC from induced pluripotent stem cells (iPSC) provide new avenues to examine the role of BMEC in BBB dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianna Sofman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jeffrey R. Bishop
- Departments of Clinical and Experimental Pharmacology and Psychiatry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
PET measurement of cyclooxygenase-2 using a novel radioligand: upregulation in primate neuroinflammation and first-in-human study. J Neuroinflammation 2020; 17:140. [PMID: 32359360 PMCID: PMC7195739 DOI: 10.1186/s12974-020-01804-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cyclooxygenase-2 (COX-2), which is rapidly upregulated by inflammation, is a key enzyme catalyzing the rate-limiting step in the synthesis of several inflammatory prostanoids. Successful positron emission tomography (PET) radioligand imaging of COX-2 in vivo could be a potentially powerful tool for assessing inflammatory response in the brain and periphery. To date, however, the development of PET radioligands for COX-2 has had limited success. Methods The novel PET tracer [11C]MC1 was used to examine COX-2 expression [1] in the brains of four rhesus macaques at baseline and after injection of the inflammogen lipopolysaccharide (LPS) into the right putamen, and [2] in the joints of two human participants with rheumatoid arthritis and two healthy individuals. In the primate study, two monkeys had one LPS injection, and two monkeys had a second injection 33 and 44 days, respectively, after the first LPS injection. As a comparator, COX-1 expression was measured using [11C]PS13. Results COX-2 binding, expressed as the ratio of specific to nondisplaceable uptake (BPND) of [11C]MC1, increased on day 1 post-LPS injection; no such increase in COX-1 expression, measured using [11C]PS13, was observed. The day after the second LPS injection, a brain lesion (~ 0.5 cm in diameter) with high COX-2 density and high BPND (1.8) was observed. Postmortem brain analysis at the gene transcript or protein level confirmed in vivo PET results. An incidental finding in an unrelated monkey found a line of COX-2 positivity along an incision in skull muscle, demonstrating that [11C]MC1 can localize inflammation peripheral to the brain. In patients with rheumatoid arthritis, [11C]MC1 successfully imaged upregulated COX-2 in the arthritic hand and shoulder and apparently in the brain. Uptake was blocked by celecoxib, a COX-2 preferential inhibitor. Conclusions Taken together, these results indicate that [11C]MC1 can image and quantify COX-2 upregulation in both monkey brain after LPS-induced neuroinflammation and in human peripheral tissue with inflammation. Trial registration ClinicalTrials.gov NCT03912428. Registered April 11, 2019.
Collapse
|
22
|
Van Camp N, Balbastre Y, Herard AS, Lavisse S, Tauber C, Wimberley C, Guillermier M, Berniard A, Gipchtein P, Jan C, Badin RA, Delzescaux T, Hantraye P, Bonvento G. Assessment of simplified methods for quantification of [ 18F]-DPA-714 using 3D whole-brain TSPO immunohistochemistry in a non-human primate. J Cereb Blood Flow Metab 2020; 40:1103-1116. [PMID: 31238764 PMCID: PMC7181080 DOI: 10.1177/0271678x19859034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 18 kDa translocator protein (TSPO) is the main molecular target to image neuroinflammation by positron emission tomography (PET). However, TSPO-PET quantification is complex and none of the kinetic modelling approaches has been validated using a voxel-by-voxel comparison of TSPO-PET data with the actual TSPO levels of expression. Here, we present a single case study of binary classification of in vivo PET data to evaluate the statistical performance of different TSPO-PET quantification methods. To that end, we induced a localized and adjustable increase of TSPO levels in a non-human primate brain through a viral-vector strategy. We then performed a voxel-wise comparison of the different TSPO-PET quantification approaches providing parametric [18F]-DPA-714 PET images, with co-registered in vitro three-dimensional TSPO immunohistochemistry (3D-IHC) data. A data matrix was extracted from each brain hemisphere, containing the TSPO-IHC and TSPO-PET data for each voxel position. Each voxel was then classified as false or true, positive or negative after comparison of the TSPO-PET measure to the reference 3D-IHC method. Finally, receiver operating characteristic curves (ROC) were calculated for each TSPO-PET quantification method. Our results show that standard uptake value ratios using cerebellum as a reference region (SUVCBL) has the most optimal ROC score amongst all non-invasive approaches.
Collapse
Affiliation(s)
- Nadja Van Camp
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Yaël Balbastre
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Anne-Sophie Herard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Sonia Lavisse
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Clovis Tauber
- UMR Inserm U 1253 - Imagerie et Cerveau (iBrain) - University of Tours, Tours, France
| | - Catriona Wimberley
- Edinburgh Imaging Facility QMRI, The University of Edinburgh, Edinburgh, UK
| | - Martine Guillermier
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Aurélie Berniard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Pauline Gipchtein
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Caroline Jan
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Romina Aron Badin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Thierry Delzescaux
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Philippe Hantraye
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
23
|
Lindgren N, Tuisku J, Vuoksimaa E, Helin S, Karrasch M, Marjamäki P, Kaprio J, Rinne JO. Association of neuroinflammation with episodic memory: a [ 11C]PBR28 PET study in cognitively discordant twin pairs. Brain Commun 2020; 2:fcaa024. [PMID: 32954285 PMCID: PMC7425350 DOI: 10.1093/braincomms/fcaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/29/2020] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is associated with chronic response of innate immune system, referred as neuroinflammation. PET radioligands binding to the 18 kDa translocator protein are potential biomarkers of neuroinflammation. Translocator protein PET studies in mild cognitive impairment and Alzheimer's disease have indicated controversial results, possibly reflecting interindividual variation and heterogeneity of study populations. We controlled for genetic and environmental effects by studying twin pairs discordant for episodic memory performance. Episodic memory impairment is a well-known cognitive hallmark of early Alzheimer's disease process. Eleven same-sex twin pairs (four monozygotic pairs, six female pairs, age 72-77 years) underwent [11C]N-acetyl-N-(2-methoxybenzyl)-2-phenoxy-5-pyridinamine ([11C]PBR28) PET imaging, structural magnetic resonance imaging and neuropsychological testing in 2014-17. Main PET outcome was the volume-weighted average standardized uptake value of cortical regions vulnerable to Alzheimer's disease pathology. Ten pairs were discordant for episodic memory performance. In the eight pairs with identical translocator protein genotype, twins with poorer episodic memory had ∼20% higher cortical [11C]PBR28 binding compared with their better-performing co-twins (mean intra-pair difference 0.21 standardized uptake value, 95% confidence interval 0.05-0.37, P = 0.017). The result remained the same when including all discordant pairs and controlling for translocator protein genotype. Increased translocator protein PET signal suggests that increased microglial activation is associated with poorer episodic memory performance. Twins with worse episodic memory performance compared with their co-twins had on average 20% higher uptake of the neuroinflammatory marker translocator protein PET tracer 11[11C]PBR28. The findings support a negative association between neuroinflammation and episodic memory and the use of translocator protein positron emission tomography as a useful indicator of Alzheimer's disease process.
Collapse
Affiliation(s)
- Noora Lindgren
- Turku PET Centre, University of Turku, Turku 20521, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku 20521, Finland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku 20521, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku 20500, Finland
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki 00014, Finland.,Department of Public Health, University of Helsinki, Helsinki 00014, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku 20521, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku 20521, Finland
| |
Collapse
|
24
|
Bodini B, Poirion E, Tonietto M, Benoit C, Palladino R, Maillart E, Portera E, Battaglini M, Bera G, Kuhnast B, Louapre C, Bottlaender M, Stankoff B. Individual Mapping of Innate Immune Cell Activation Is a Candidate Marker of Patient-Specific Trajectories of Worsening Disability in Multiple Sclerosis. J Nucl Med 2020; 61:1043-1049. [PMID: 32005777 DOI: 10.2967/jnumed.119.231340] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022] Open
Abstract
Our objective was to develop a novel approach to generate individual maps of white matter (WM) innate immune cell activation using 18F-DPA-714 translocator protein PET and to explore the relationship between these maps and individual trajectories of worsening disability in patients with multiple sclerosis (MS). Methods: Patients with MS (n = 37), whose trajectories of worsening disability over the 2 y preceding study entry were calculated, and healthy controls (n = 19) underwent MRI and 18F-DPA-714 PET. A threshold for significant activation of 18F-DPA-714 binding was calculated with a voxelwise randomized permutation-based comparison between patients and controls and used to classify each WM voxel in all subjects as characterized by a significant activation of innate immune cells (DPA+) or not. Individual maps of innate immune cell activation in the WM were used to calculate the extent of activation in WM regions of interests and to classify each WM lesion as DPA-active, DPA-inactive, or unclassified. Results: Compared with the WM of healthy controls, patients with MS had a significantly higher percentage of DPA+ voxels in the normal-appearing WM (NAWM) (NAWM in patients, 24.6% ± 1.4%; WM in controls, 14.6% ± 2.0%; P < 0.001). In patients with MS, the percentage of DPA+ voxels increased significantly from the NAWM to the perilesional areas, T2 hyperintense lesions, and T1 hypointense lesions (38.1% ± 2.6%, 45.0% ± 2.6%, 51.8% ± 2.6%, respectively; P < 0.001). Among the 1,379 T2 lesions identified, 512 were defined as DPA-active and 258 as DPA-inactive. A higher number of lesions classified as DPA-active (odds ratio, 1.13; P = 0.009), a higher percentage of DPA+ voxels in the NAWM (odds ratio, 1.16; P = 0.009), and a higher percentage of DPA+ voxels in T1 spin-echo lesions (odds ratio, 1.06; P = 0.036) were significantly associated with a retrospectively more severe clinical trajectory in patients with MS. Conclusion: A more severe trajectory of disability worsening in MS is associated with innate immune cell activation inside and around WM lesions. 18F-DPA-714 PET may provide a promising biomarker to identify patients at risk of a severe clinical trajectory.
Collapse
Affiliation(s)
- Benedetta Bodini
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France.,Assistance Publique des Hôpitaux de Paris, France
| | - Emilie Poirion
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France
| | - Matteo Tonietto
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France
| | - Charline Benoit
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France
| | - Raffaele Palladino
- School of Public Health, Imperial College of London, London, United Kingdom.,University "Federico II" of Naples, Naples, Italy
| | - Elisabeth Maillart
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France.,Assistance Publique des Hôpitaux de Paris, France
| | - Erika Portera
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France
| | - Marco Battaglini
- Department of Neurological Sciences, University of Siena, Siena, Italy; and
| | - Geraldine Bera
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France.,Assistance Publique des Hôpitaux de Paris, France
| | - Bertrand Kuhnast
- CEA, Université Paris Sud, Université Paris-Saclay, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Céline Louapre
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France.,Assistance Publique des Hôpitaux de Paris, France
| | - Michel Bottlaender
- CEA, Université Paris Sud, Université Paris-Saclay, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Bruno Stankoff
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, INSERM UMR S 1127, CNRS UMR 7225, Paris, France .,Assistance Publique des Hôpitaux de Paris, France
| |
Collapse
|
25
|
Gui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A. Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer's disease brains. Brain Pathol 2019; 30:151-164. [PMID: 31276244 PMCID: PMC6904423 DOI: 10.1111/bpa.12763] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is a widely used target for microglial PET imaging radioligands, but its expression in post-mortem normal and diseased human brain is not well described. We aimed at characterizing the TSPO expression in human control (CTRL) and Alzheimer's disease (AD) brains. Specifically, we sought to: (1) define the cell type(s) expressing TSPO; (2) compare tspo mRNA and TSPO levels between AD and CTRL brains; (3) correlate TSPO levels with quantitative neuropathological measures of reactive glia and AD neuropathological changes; and (4) investigate the effects of the TSPO rs6971 SNP on tspo mRNA and TSPO levels, glial responses and AD neuropathological changes. We performed quantitative immunohistochemistry and Western blot in post-mortem brain samples from CTRL and AD subjects, as well as analysis of publicly available mouse and human brain RNA-Seq datasets. We found that: (1) TSPO is expressed not just in microglia, but also in astrocytes, endothelial cells and vascular smooth muscle cells; (2) there is substantial overlap of tspo mRNA and TSPO levels between AD and CTRL subjects and in TSPO levels between temporal neocortex and white matter in both groups; (3) TSPO cortical burden does not correlate with the burden of activated microglia or reactive astrocytes, Aβ plaques or neurofibrillary tangles, or the cortical thickness; (4) the TSPO rs6971 SNP does not significantly impact tspo mRNA or TSPO levels, the magnitude of glial responses, the cortical thickness, or the burden of AD neuropathological changes. These results could inform ongoing efforts toward the development of reactive glia-specific PET radioligands.
Collapse
Affiliation(s)
- Yaxing Gui
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Department of Neurology, Sir Run Run Shaw Hospital of Zhejiang University, Zhejiang, China
| | - Jordan D Marks
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Kang Y, Gauthier SA. PET is necessary to make the next step forward in understanding MS pathophysiology – Commentary. Mult Scler 2019; 25:1090-1091. [DOI: 10.1177/1352458519828299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yeona Kang
- Department of Mathematics, Howard University, Washington, DC, USA/Laboratory of Neuroimaging at NIAAA, National Institutes of Health, Bethesda, MD, USA
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Weill Cornell Medicine, New York, NY, USA/Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, USA/Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
27
|
NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement 2019; 14:535-562. [PMID: 29653606 PMCID: PMC5958625 DOI: 10.1016/j.jalz.2018.02.018] [Citation(s) in RCA: 6298] [Impact Index Per Article: 1049.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
In 2011, the National Institute on Aging and Alzheimer’s Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer’s disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer’s Association to update and unify the 2011 guidelines. This unifying update is labeled a “research framework” because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer’s Association Research Framework, Alzheimer’s disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.
Collapse
|
28
|
Barletta VT, Herranz E, Treaba CA, Ouellette R, Mehndiratta A, Loggia ML, Klawiter EC, Ionete C, Jacob SA, Mainero C. Evidence of diffuse cerebellar neuroinflammation in multiple sclerosis by 11C-PBR28 MR-PET. Mult Scler 2019; 26:668-678. [PMID: 30973800 DOI: 10.1177/1352458519843048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Activated microglia, which can be detected in vivo by 11C-PBR28 positron emission tomography (PET), represent a main component of MS pathology in the brain. Their role in the cerebellum is still unexplored, although cerebellar involvement in MS is frequent and accounts for disability progression. OBJECTIVES We aimed at characterizing cerebellar neuroinflammation in MS patients compared to healthy subjects by combining 11C-PBR28 MRI-Positron Emission Tomography (MR-PET) with 7 Tesla (T) MRI and assessing its relationship with brain neuroinflammation and clinical outcome measures. METHODS Twenty-eight MS patients and 16 healthy controls underwent 11C-PBR28 MR-PET to measure microglia activation in normal appearing cerebellum and lesions segmented from 7 T scans. Patients were evaluated using the Expanded Disability Status Scale and Symbol Digit Modalities Test. 11C-PBR28 binding was assessed in regions of interest using 60-90 minutes standardized uptake values normalized by a pseudo-reference region in the brain normal appearing white matter. Multilinear regression was used to compare tracer uptake in MS and healthy controls and assess correlations with clinical scores. RESULTS In all cerebellar regions examined, MS patients showed abnormally increased tracer uptake, which correlated with cognitive and neurological disability. CONCLUSION Neuroinflammation is widespread in the cerebellum of patients with MS and related to neurological disability and cognitive impairment.
Collapse
Affiliation(s)
- Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Costantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Carolina Ionete
- Multiple Sclerosis Center, UMass Memorial Medical Center, Worcester, MA, USA
| | - Sloane A Jacob
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Zanotti-Fregonara P, Kreisl WC, Innis RB, Lyoo CH. Automatic Extraction of a Reference Region for the Noninvasive Quantification of Translocator Protein in Brain Using 11C-PBR28. J Nucl Med 2019; 60:978-984. [PMID: 30655330 DOI: 10.2967/jnumed.118.222927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
Brain inflammation is associated with various types of neurodegenerative diseases, including Alzheimer disease (AD). Quantifying inflammation with PET is a challenging and invasive procedure, especially in frail patients, because it requires blood sampling from an arterial catheter. A widely used alternative to arterial sampling is a supervised clustering algorithm (SVCA), which identifies the voxels with minimal specific binding in the PET images, thus extracting a reference region for noninvasive kinetic modeling. Methods: We tested this algorithm on a large population of subjects injected with the translocator protein radioligand 11C-PBR28 and compared the kinetic modeling results obtained with the gold standard of arterial input function (V T/f p) with those obtained by SVCA (distribution volume ratio [DVR] with Logan plot). The study comprised 57 participants (21 healthy controls, 11 mild cognitive impairment patients, and 25 AD patients). Results: We found that V T/f p was greater in AD patients than in controls in the inferior parietal, combined middle and inferior temporal, and entorhinal cortices. SVCA-DVR identified increased binding in the same regions and in an additional one, the parahippocampal region. We noticed however that the average amplitude of the reference curve obtained from subjects with genetic high-affinity binding for 11C-PBR28 was significantly larger than that from subjects with moderate affinity. This suggests that the reference curve extracted by SVCA was contaminated by specific binding. Conclusion: SVCA allows the noninvasive quantification of inflammatory biomarker translocator protein measured with 11C-PBR28 but without the need of arterial sampling. Although the reference curves were contaminated with specific binding, the decreased variance of the outcome measure, SVCA DVR, allowed for an apparent greater sensitivity to detect regional abnormalities in brains of patients with AD.
Collapse
Affiliation(s)
| | - William C Kreisl
- Taub Institute, Columbia University Medical Center, New York, New York
| | - Robert B Innis
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Chaney A, Williams SR, Boutin H. In vivo molecular imaging of neuroinflammation in Alzheimer's disease. J Neurochem 2018; 149:438-451. [PMID: 30339715 PMCID: PMC6563454 DOI: 10.1111/jnc.14615] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
It has become increasingly evident that neuroinflammation plays a critical role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased glial cell activation is consistently reported in both rodent models of AD and in AD patients. Moreover, recent genome wide association studies have revealed multiple genes associated with inflammation and immunity are significantly associated with an increased risk of AD development (e.g. TREM2). Non‐invasive in vivo detection and tracking of neuroinflammation is necessary to enhance our understanding of the contribution of neuroinflammation to the initiation and progression of AD. Importantly, accurate methods of quantifying neuroinflammation may aid early diagnosis and serve as an output for therapeutic monitoring and disease management. This review details current in vivo imaging biomarkers of neuroinflammation being explored and summarizes both pre‐clinical and clinical results from molecular imaging studies investigating the role of neuroinflammation in AD, with a focus on positron emission tomography and magnetic resonance spectroscopy (MRS). ![]()
Collapse
Affiliation(s)
- Aisling Chaney
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK.,Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Steve R Williams
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK
| | - Herve Boutin
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Betlazar C, Harrison-Brown M, Middleton RJ, Banati R, Liu GJ. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci 2018; 19:ijms19092707. [PMID: 30208620 PMCID: PMC6163555 DOI: 10.3390/ijms19092707] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
The inducible expression of the mitochondrial translocator protein 18 kDa (TSPO) by activated microglia is a prominent, regular feature of acute and chronic-progressive brain pathology. This expression is also the rationale for the continual development of new TSPO binding molecules for the diagnosis of "neuroinflammation" by molecular imaging. However, there is in the normal brain an ill-defined, low-level constitutive expression of TSPO. Taking advantage of healthy TSPO knockout mouse brain tissue to validate TSPO antibody specificity, this study uses immunohistochemistry to determine the regional distribution and cellular sources of TSPO in the normal mouse brain. Fluorescence microscopy revealed punctate TSPO immunostaining in vascular endothelial cells throughout the brain. In the olfactory nerve layers and glomeruli of the olfactory bulb, choroid plexus and ependymal layers, we confirm constitutive TSPO expression levels similar to peripheral organs, while some low TSPO expression is present in regions of known neurogenesis, as well as cerebellar Purkinje cells. The distributed-sparse expression of TSPO in endothelial mitochondria throughout the normal brain can be expected to give rise to a low baseline signal in TSPO molecular imaging studies. Finally, our study emphasises the need for valid and methodologically robust verification of the selectivity of TSPO ligands through the use of TSPO knockout tissues.
Collapse
Affiliation(s)
- Calina Betlazar
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Meredith Harrison-Brown
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| |
Collapse
|
32
|
Stankoff B, Poirion E, Tonietto M, Bodini B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28:723-734. [PMID: 30020560 PMCID: PMC8099240 DOI: 10.1111/bpa.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
The biological mechanisms driving disability worsening in multiple sclerosis (MS) are only partly understood. Monitoring changes in lesion load on MRI has a limited predictive value on the progression of clinical disability, and there is an essential need for novel imaging markers specific for the main candidate mechanisms underlying neurodegeneration which include failing myelin repair, innate immune cell activation and gray matter neuronal damage. Positron Emission Tomography (PET) is an imaging technology based on the injection of radiotracers directed against specific molecular targets, which has recently allowed the selective quantification in-vivo of the key biological mechanisms relevant to MS pathophysiology. Pilot PET studies performed in patients with all forms of MS allowed to revisit the contribution of MS lesions to disability worsening and showed that the evolution of lesions toward chronic activation, together with their remyelination profile were relevant predictors of disability worsening. PET offers the opportunity to bridge a critical gap between neuropathology and in-vivo imaging. This technique provides an original approach to disentangle some of the most relevant pathological components driving MS progression, to follow-up their temporal evolution, to investigate their clinical relevance and to evaluate novel therapeutics aimed to prevent disease progression.
Collapse
Affiliation(s)
- Bruno Stankoff
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| | - Emilie Poirion
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Matteo Tonietto
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Benedetta Bodini
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| |
Collapse
|
33
|
Wang J, Li J, Wang Q, Kong Y, Zhou F, Li Q, Li W, Sun Y, Wang Y, Guan Y, Wu M, Wen T. Dcf1 Deficiency Attenuates the Role of Activated Microglia During Neuroinflammation. Front Mol Neurosci 2018; 11:256. [PMID: 30104955 PMCID: PMC6077288 DOI: 10.3389/fnmol.2018.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Microglia serve as the principal immune cells and play crucial roles in the central nervous system, responding to neuroinflammation via migration and the execution of phagocytosis. Dendritic cell-derived factor 1 (Dcf1) is known to play an important role in neural stem cell differentiation, glioma apoptosis, dendritic spine formation, and Alzheimer’s disease (AD), nevertheless, the involvement of the Dcf1 gene in the brain immune response has not yet been reported. In the present paper, the RNA-sequencing and function enrichment analysis suggested that the majority of the down-regulated genes in Dcf1-/- (Dcf1-KO) mice are immune-related. In vivo experiments showed that Dcf1 deletion produced profound effects on microglial function, increased the expression of microglial activation markers, such as ionized calcium binding adaptor molecule 1 (Iba1), Cluster of Differentiation 68 (CD68) and translocator protein (TSPO), as well as certain proinflammatory cytokines (Cxcl1, Ccl7, and IL17D), but decreased the migratory and phagocytic abilities of microglial cells, and reduced the expression levels of some other proinflammatory cytokines (Cox-2, IL-1β, IL-6, TNF-α, and Csf1) in the mouse hippocampus. Furthermore, in vitro experiments revealed that in the absence of lipopolysaccharide (LPS), the majority of microglia were ramified and existed in a resting state, with only approximately 10% of cells exhibiting an amoeboid-like morphology, indicative of an activated state. LPS treatment dramatically increased the ratio of activated to resting cells, and Dcf1 downregulation further increased this ratio. These data indicated that Dcf1 deletion mediates neuroinflammation and induces dysfunction of activated microglia, preventing migration and the execution of phagocytosis. These findings support further investigation into the biological mechanisms underlying microglia-related neuroinflammatory diseases, and the role of Dcf1 in the immune response.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yangyang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Yihui Guan
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
34
|
Parametric mapping using spectral analysis for 11C-PBR28 PET reveals neuroinflammation in mild cognitive impairment subjects. Eur J Nucl Med Mol Imaging 2018. [PMID: 29523926 PMCID: PMC5993844 DOI: 10.1007/s00259-018-3984-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Neuroinflammation and microglial activation play an important role in amnestic mild cognitive impairment (MCI) and Alzheimer's disease. In this study, we investigated the spatial distribution of neuroinflammation in MCI subjects, using spectral analysis (SA) to generate parametric maps and quantify 11C-PBR28 PET, and compared these with compartmental and other kinetic models of quantification. METHODS Thirteen MCI and nine healthy controls were enrolled in this study. Subjects underwent 11C-PBR28 PET scans with arterial cannulation. Spectral analysis with an arterial plasma input function was used to generate 11C-PBR28 parametric maps. These maps were then compared with regional 11C-PBR28 VT (volume of distribution) using a two-tissue compartment model and Logan graphic analysis. Amyloid load was also assessed with 18F-Flutemetamol PET. RESULTS With SA, three component peaks were identified in addition to blood volume. The 11C-PBR28 impulse response function (IRF) at 90 min produced the lowest coefficient of variation. Single-subject analysis using this IRF demonstrated microglial activation in five out of seven amyloid-positive MCI subjects. IRF parametric maps of 11C-PBR28 uptake revealed a group-wise significant increase in neuroinflammation in amyloid-positive MCI subjects versus HC in multiple cortical association areas, and particularly in the temporal lobe. Interestingly, compartmental analysis detected group-wise increase in 11C-PBR28 binding in the thalamus of amyloid-positive MCI subjects, while Logan parametric maps did not perform well. CONCLUSIONS This study demonstrates for the first time that spectral analysis can be used to generate parametric maps of 11C-PBR28 uptake, and is able to detect microglial activation in amyloid-positive MCI subjects. IRF parametric maps of 11C-PBR28 uptake allow voxel-wise single-subject analysis and could be used to evaluate microglial activation in individual subjects.
Collapse
|