1
|
Maret E, Wiskott K, Shipley T, Gilardi F, Augsburger M, Thomas A, Fracasso T, Sajic T. Activity-Based Proteome Profiling of Serum Serine Hydrolases: Application in Pediatric Abusive Head Trauma. Proteomics Clin Appl 2025; 19:e202400022. [PMID: 39704561 DOI: 10.1002/prca.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Traumatic brain injury (TBI), including pediatric abusive head trauma (AHT), is the leading cause of death and disability in children and young adults worldwide. The current understanding of trauma-induced molecular changes in the brain of human subjects with intracranial hemorrhage (ICH) remains inadequate and requires further investigation to improve the outcome and management of TBI in the clinic. Calcium-mediated damage at the site of brain injury has been shown to activate several catalytic enzymes. EXPERIMENTAL DESIGN Serine hydrolases (SHs) are major catalytic enzymes involved in the biochemical pathways of blood coagulation, systemic inflammation, and neuronal signaling. Here, we investigated activity-based protein profiling (ABPP) coupled to liquid chromatography-mass spectrometry (LC-MS) by measuring the activity status of SH enzymes in the serum of infants with severe ICH as a consequence of AHT or atraumatic infants who died of sudden infant death syndrome (SIDS). RESULTS Our proof-of-principle study revealed significantly reduced physiological activity of dozens of metabolic SHs in the serum of infants with severe AHT compared to the SIDS group, with some of the enzymes being related to neurodevelopment and basic brain metabolism. CONCLUSIONS AND CLINICAL RELEVANCE To our knowledge, this is the first study to investigate the ABPP of the SHs enzyme family to detect changes in their physiological activity in blood serum in severe TBI. We used antemortem (AM) serum from infants under the age of 2 years who were victims of AHT with a severe form of ICH. The analytical approach used in the proof-of-principle study shows reduced activities of serum serine lipases in AHT cases and could be further investigated in mild forms of AHT, which currently show 30% of misdiagnosed cases in clinics.
Collapse
Affiliation(s)
- Estelle Maret
- Faculty Unit of Toxicology, University Center of Legal Medicine, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Lausanne University Hospital and Geneva University Hospital, Lausanne, Vaud, Switzerland
| | - Kim Wiskott
- Forensic Medicine Unit, University Center of Legal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Tobias Shipley
- Faculty Unit of Toxicology, University Center of Legal Medicine, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Faculty Unit of Toxicology, University Center of Legal Medicine, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Lausanne University Hospital and Geneva University Hospital, Lausanne, Vaud, Switzerland
| | - Marc Augsburger
- Lausanne University Hospital and Geneva University Hospital, Lausanne, Vaud, Switzerland
| | - Aurelien Thomas
- Faculty Unit of Toxicology, University Center of Legal Medicine, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Lausanne University Hospital and Geneva University Hospital, Lausanne, Vaud, Switzerland
| | - Tony Fracasso
- Forensic Medicine Unit, University Center of Legal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Tatjana Sajic
- Faculty Unit of Toxicology, University Center of Legal Medicine, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Lausanne University Hospital and Geneva University Hospital, Lausanne, Vaud, Switzerland
| |
Collapse
|
2
|
Mannes M, Savukoski S, Ignatius A, Halbgebauer R, Huber-Lang M. Crepuscular rays - The bright side of complement after tissue injury. Eur J Immunol 2024; 54:e2350848. [PMID: 38794857 DOI: 10.1002/eji.202350848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Susa Savukoski
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
3
|
Mercurio D, Pischiutta F, Seminara S, Tribuzio F, Lisi I, Pasetto L, Bonetto V, De Simoni MG, Schwaeble W, Yaseen S, Dudler T, Zanier ER, Fumagalli S. Inhibition of mannan-binding lectin associated serine protease (MASP)-2 reduces the cognitive deficits in a mouse model of severe traumatic brain injury. J Neuroinflammation 2024; 21:141. [PMID: 38807149 PMCID: PMC11134671 DOI: 10.1186/s12974-024-03133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
The lectin pathway (LP) of complement mediates inflammatory processes linked to tissue damage and loss of function following traumatic brain injury (TBI). LP activation triggers a cascade of proteolytic events initiated by LP specific enzymes called MASPs (for Mannan-binding lectin Associated Serine Proteases). Elevated serum and brain levels of MASP-2, the effector enzyme of the LP, were previously reported to be associated with the severity of tissue injury and poor outcomes in patients with TBI. To evaluate the therapeutic potential of LP inhibition in TBI, we first conducted a pilot study testing the effect of an inhibitory MASP-2 antibody (α-MASP-2), administered systemically at 4 and 24 h post-TBI in a mouse model of controlled cortical impact (CCI). Treatment with α-MASP-2 reduced sensorimotor and cognitive deficits for up to 5 weeks post-TBI. As previous studies by others postulated a critical role of MASP-1 in LP activation, we conducted an additional study that also assessed treatment with an inhibitory MASP-1 antibody (α-MASP-1). A total of 78 mice were treated intraperitoneally with either α-MASP-2, or α-MASP-1, or an isotype control antibody 4 h and 24 h after TBI or sham injury. An amelioration of the cognitive deficits assessed by Barnes Maze, prespecified as the primary study endpoint, was exclusively observed in the α-MASP-2-treated group. The behavioral data were paralleled by a reduction of the lesion size when evaluated histologically and by reduced systemic LP activity. Our data suggest that inhibition of the LP effector enzyme MASP-2 is a promising treatment strategy to limit neurological deficits and tissue loss following TBI. Our work has translational value because a MASP-2 antibody has already completed multiple late-stage clinical trials in other indications and we used a clinically relevant treatment protocol testing the therapeutic mechanism of MASP-2 inhibition in TBI.
Collapse
Affiliation(s)
- Domenico Mercurio
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Serena Seminara
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Tribuzio
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Lisi
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Pasetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Bonetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | | | | | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Stefano Fumagalli
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
4
|
Xian L, Cheng S, Chen W, Zhong C, Hu Z, Deng X. Systematic analysis of MASP-1 serves as a novel immune-related biomarker in sepsis and trauma followed by preliminary experimental validation. Front Med (Lausanne) 2024; 11:1320811. [PMID: 38384415 PMCID: PMC10879275 DOI: 10.3389/fmed.2024.1320811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
Background Dysregulated immune response in trauma and sepsis leads to the abnormal activation of the complement and coagulation systems. Mannose-binding lectin (MBL)-associated serine protease-1 (MASP-1) activates the lectin pathway of the complement system and mediates proinflammatory and procoagulant reactions. However, the potential effects of MASP-1 in trauma and sepsis have not yet been explored. Methods We obtained five sepsis, two trauma, and one sepsis and trauma RNA-sequencing dataset from the Gene Expression Omnibus (GEO) database and conducted a comprehensive evaluation of the expression pattern, biological functions, and diagnostic value of MASP-1 in trauma and sepsis. Additionally, we investigated the association between MASP-1 expression and clinicopathological characteristics of trauma and sepsis. Furthermore, we collected clinical specimens to preliminarily validate the expression level and diagnostic efficacy of MASP-1 as well as the correlation of MASP-1 with clinical features of trauma and sepsis. Subsequently, we conducted a correlation analysis among MASP-1, immune cell infiltration, and immune and molecular pathways. Finally, we mechanistically analyzed the relationship among MASP-1, specific immune cells, and pivotal molecular pathways. Results MASP-1 expression was significantly upregulated in the trauma/sepsis samples compared to the control samples in the GEO datasets. MASP-1 exhibited excellent diagnostic values (AUC > 0.7) in multiple datasets and at multiple time points and could efficiently distinguish trauma/sepsis samples from the control samples. Moreover, MASP-1 expression was significantly positively correlated with the severity of the disease (APACHE-II, CRP, and neutrophil levels). These results were further validated by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Functional enrichment analysis revealed that MASP-1 primarily promotes trauma and sepsis via the immune-related signaling pathway. MASP-1 was significantly correlated with the infiltration of specific immune cells (such as B cells, CD8 T cells, neutrophils, macrophages, and infiltrating lymphocytes) and immune and molecular pathways (such as checkpoint, HLA, IL6/JAK/STAT3 signaling, necrosis, T-cell co-inhibition, and T-cell co-stimulation). Finally, analysis of the transcription and single-cell data revealed that MASP-1 was specifically expressed in T cells, and further correlation analysis revealed a close correlation between MASP-1 expression, proportion of CD8 T cells, and IL6/JAK/STAT3 signaling scores. Conclusion Our results suggest that MASP-1 can serve as an immune-related biomarker for the diagnosis and disease severity of trauma and sepsis. It may activate the IL6 JAK-STAT3 signaling pathway and promote CD8 T-cell depletion to trigger traumatic sepsis.
Collapse
Affiliation(s)
- Lina Xian
- Department of Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shaowen Cheng
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Changhui Zhong
- Department of Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhihua Hu
- Department of Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaoyan Deng
- Department of Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
5
|
Chen C, Khanthiyong B, Thaweetee-Sukjai B, Charoenlappanit S, Roytrakul S, Thanoi S, Reynolds GP, Nudmamud-Thanoi S. Proteomic association with age-dependent sex differences in Wisconsin Card Sorting Test performance in healthy Thai subjects. Sci Rep 2023; 13:20238. [PMID: 37981639 PMCID: PMC10658079 DOI: 10.1038/s41598-023-46750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023] Open
Abstract
Sex differences in cognitive function exist, but they are not stable and undergo dynamic change during the lifespan. However, our understanding of how sex-related neural information transmission evolves with age is still in its infancy. This study utilized the Wisconsin Card Sorting Test (WCST) and the label-free proteomics method with bioinformatic analysis to investigate the molecular mechanisms underlying age-related sex differences in cognitive performance in 199 healthy Thai subjects (aged 20-70 years), as well as explore the sex-dependent protein complexes for predicting cognitive aging. The results showed that males outperformed females in two of the five WCST sub-scores: %Corrects and %Errors. Sex differences in these scores were related to aging, becoming noticeable in those over 60. At the molecular level, differently expressed individual proteins and protein complexes between both sexes are associated with the potential N-methyl-D-aspartate type glutamate receptor (NMDAR)-mediated excitotoxicity, with the NMDAR complex being enriched exclusively in elderly female samples. These findings provided a preliminary indication that healthy Thai females might be more susceptible to such neurotoxicity, as evidenced by their cognitive performance. NMDAR protein complex enrichment in serum could be proposed as a potential indication for predicting cognitive aging in healthy Thai females.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | | | - Sawanya Charoenlappanit
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao, Thailand.
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
6
|
Smith CA, Carpenter KLH, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow Metab 2023; 43:1237-1253. [PMID: 37132274 PMCID: PMC10369156 DOI: 10.1177/0271678x231171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The loss of cerebral autoregulation (CA) is a common and detrimental secondary injury mechanism following acute brain injury and has been associated with worse morbidity and mortality. However patient outcomes have not as yet been conclusively proven to have improved as a result of CA-directed therapy. While CA monitoring has been used to modify CPP targets, this approach cannot work if the impairment of CA is not simply related to CPP but involves other underlying mechanisms and triggers, which at present are largely unknown. Neuroinflammation, particularly inflammation affecting the cerebral vasculature, is an important cascade that occurs following acute injury. We hypothesise that disturbances to the cerebral vasculature can affect the regulation of CBF, and hence the vascular inflammatory pathways could be a putative mechanism that causes CA dysfunction. This review provides a brief overview of CA, and its impairment following brain injury. We discuss candidate vascular and endothelial markers and what is known about their link to disturbance of the CBF and autoregulation. We focus on human traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH), with supporting evidence from animal work and applicability to wider neurologic diseases.
Collapse
Affiliation(s)
- Claudia A Smith
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Wiskott K, Gilardi F, Hainard A, Sanchez JC, Thomas A, Sajic T, Fracasso T. Blood proteome of acute intracranial hemorrhage in infant victims of abusive head trauma. Proteomics 2023; 23:e2200078. [PMID: 36576318 DOI: 10.1002/pmic.202200078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Abusive head trauma (AHT) is a leading cause of mortality and morbidity in infants. While the reported incidence is close to 40 cases per 100'000 births/year, misdiagnoses are commonly observed in cases with atypical, subacute, or chronic presentation. Currently, standard clinical evaluation of inflicted intracranial hemorrhagic injury (ICH) in infants urgently requires a screening test able to identify infants who need additional investigations. Blood biomarkers characteristic of AHT may assist in detecting these infants, improving prognosis through early medical care. To date, the application of innovative omics technologies in retrospective studies of AHT in infants is rare, due also to the blood serum and cerebrospinal fluid of AHT cases being scarce and not systematically accessible. Here, we explored the circulating blood proteomes of infants with severe AHT and their atraumatic controls. We discovered 165 circulating serum proteins that display differential changes in AHT cases compared with atraumatic controls. The peripheral blood proteomes of pediatric AHT commonly reflect: (i) potentially secreted proteome from injured brain, and (ii) proteome dysregulated in the system's circulation by successive biological events following acute ICH. This study opens up a novel opportunity for research efforts in clinical screening of AHT cases.
Collapse
Affiliation(s)
- Kim Wiskott
- Forensic medicine unit, University Center of Legal Medicine, Geneva 4, Switzerland
| | - Federica Gilardi
- Faculty Unit of Toxicology, University Center of Legal Medicine, Lausanne University Hospital, Lausanne 25, Switzerland.,Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital and Geneva University Hospital, Geneva, Switzerland
| | - Alexandre Hainard
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Translational Biomarker Group, Department of Internal Medicine, University of Geneva, Geneva, Switzerland
| | - Aurelien Thomas
- Faculty Unit of Toxicology, University Center of Legal Medicine, Lausanne University Hospital, Lausanne 25, Switzerland.,Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital and Geneva University Hospital, Geneva, Switzerland
| | - Tatjana Sajic
- Faculty Unit of Toxicology, University Center of Legal Medicine, Lausanne University Hospital, Lausanne 25, Switzerland.,Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital and Geneva University Hospital, Geneva, Switzerland
| | - Tony Fracasso
- Forensic medicine unit, University Center of Legal Medicine, Geneva 4, Switzerland
| |
Collapse
|
8
|
Yang Z, Nunn MA, Le TD, Simovic MO, Edsall PR, Liu B, Barr JL, Lund BJ, Hill-Pryor CD, Pusateri AE, Cancio LC, Li Y. Immunopathology of terminal complement activation and complement C5 blockade creating a pro-survival and organ-protective phenotype in trauma. Br J Pharmacol 2023; 180:422-440. [PMID: 36251578 PMCID: PMC10100417 DOI: 10.1111/bph.15970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 09/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic haemorrhage (TH) is the leading cause of potentially preventable deaths that occur during the prehospital phase of care. No effective pharmacological therapeutics are available for critical TH patients yet. Here, we identify terminal complement activation (TCA) as a therapeutic target in combat casualties and evaluate the efficacy of a TCA inhibitor (nomacopan) on organ damage and survival in vivo. EXPERIMENTAL APPROACH Complement activation products and cytokines were analysed in plasma from 54 combat casualties. The correlations between activated complement pathway(s) and the clinical outcomes in trauma patients were assessed. Nomacopan was administered to rats subjected to lethal TH (blast injury and haemorrhagic shock). Effects of nomacopan on TH were determined using survival rate, organ damage, physiological parameters, and laboratory profiles. KEY RESULTS Early TCA was associated with systemic inflammatory responses and clinical outcomes in this trauma cohort. Lethal TH in the untreated rats induced early TCA that correlated with the severity of tissue damage and mortality. The addition of nomacopan to a damage-control resuscitation (DCR) protocol significantly inhibited TCA, decreased local and systemic inflammatory responses, improved haemodynamics and metabolism, attenuated tissue and organ damage, and increased survival. CONCLUSION AND IMPLICATIONS Previous findings of our and other groups revealed that early TCA represents a rational therapeutic target for trauma patients. Nomacopan as a pro-survival and organ-protective drug, could emerge as a promising adjunct to DCR that may significantly reduce the morbidity and mortality in severe TH patients while awaiting transport to critical care facilities.
Collapse
Affiliation(s)
- Zhangsheng Yang
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Tuan D Le
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Milomir O Simovic
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| | - Peter R Edsall
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Bin Liu
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Johnny L Barr
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Brian J Lund
- 59th Medical Wing Operational Medicine, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Anthony E Pusateri
- Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Yansong Li
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| |
Collapse
|
9
|
van Erp IAM, Michailidou I, van Essen TA, van der Jagt M, Moojen W, Peul WC, Baas F, Fluiter K. Tackling Neuroinflammation After Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics 2023; 20:284-303. [PMID: 36222978 PMCID: PMC10119357 DOI: 10.1007/s13311-022-01306-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality, sensorimotor morbidity, and neurocognitive disability. Neuroinflammation is one of the key drivers causing secondary brain injury after TBI. Therefore, attenuation of the inflammatory response is a potential therapeutic goal. This review summarizes the most important neuroinflammatory pathophysiology resulting from TBI and the clinical trials performed to attenuate neuroinflammation. Studies show that non-selective attenuation of the inflammatory response, in the early phase after TBI, might be detrimental and that there is a gap in the literature regarding pharmacological trials targeting specific pathways. The complement system and its crosstalk with the coagulation system play an important role in the pathophysiology of secondary brain injury after TBI. Therefore, regaining control over the complement cascades by inhibiting overshooting activation might constitute useful therapy. Activation of the complement cascade is an early component of neuroinflammation, making it a potential target to mitigate neuroinflammation in TBI. Therefore, we have described pathophysiological aspects of complement inhibition and summarized animal studies targeting the complement system in TBI. We also present the first clinical trial aimed at inhibition of complement activation in the early days after brain injury to reduce the risk of morbidity and mortality following severe TBI.
Collapse
Affiliation(s)
- Inge A M van Erp
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands.
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A van Essen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Mathieu van der Jagt
- Department of Intensive Care Adults, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Wouter Moojen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Pedragosa J, Mercurio D, Oggioni M, Marquez-Kisinousky L, de Simoni MG, Planas AM. Mannose-binding lectin promotes blood-brain barrier breakdown and exacerbates axonal damage after traumatic brain injury in mice. Exp Neurol 2021; 346:113865. [PMID: 34547288 DOI: 10.1016/j.expneurol.2021.113865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022]
Abstract
Leukocyte infiltration and blood-brain barrier breakdown contribute to secondary brain damage after traumatic brain injury (TBI). TBI induces neuroimmune responses triggering pathogenic complement activation through different pathways, including the lectin pathway. We investigated mechanisms underlying mannose-binding lectin (MBL)-mediated brain damage focusing on neutrophil infiltration and blood-brain barrier breakdown in a TBI mouse model. Wild type mice and MBL-/- null mice were subjected to controlled cortical impact. We studied neutrophil infiltration and regional localization by confocal microscopy 1, 4 and 15 days post-trauma, and investigated neutrophil extracellular trap (NET) formation. By immunofluorescence and/or Western blotting in various brain regions we studied the presence of fibrin(ogen), pentraxin-3, albumin and immunoglobulin G. Finally, we studied neurofilament proteins, synaptophysin, and αII-spectrin, and assessed white matter content in the injured tissue. TBI triggered an acute wave of neutrophil infiltration at day 1 followed by a more discrete persistence of neutrophils in the injured tissue at least until day 15. We detected the presence of NETs and pentraxin-3 in the injured tissue, as well as accumulation of fibrin(ogen), increased blood-brain barrier permeability, and neurofilament, synaptophysin and white matter loss, and calpain-mediated αII spectrin breakdown. MBL-/- mice showed reduced number of Ly6G+ neutrophils 4 days after TBI, lower accumulation of pentraxin-3 and fibrin(ogen) in the injured tissue, reduced global plasma protein extravasation, and better preservation of axonal and white matter integrity. These results show that MBL participates in secondary neutrophil accumulation and blood-brain barrier breakdown, and promotes axonal and white matter damage after TBI in mice.
Collapse
Affiliation(s)
- Jordi Pedragosa
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy
| | - Leonardo Marquez-Kisinousky
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria-Grazia de Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
11
|
Gupta A, Gupta GS. Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs. Mol Cell Biochem 2021; 476:2917-2942. [PMID: 33745077 PMCID: PMC7981598 DOI: 10.1007/s11010-021-04107-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a virus called "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)." In the majority of patients, infection with COVID-19 may be asymptomatic or may cause only mild symptoms. However, in some patients, there can also be immunological problems, such as macrophage activation syndrome (CSS) that results in cytokine storm syndrome (CSS) and acute respiratory distress syndrome (ARDS). Comprehension of host-microbe communications is the critical aspect in the advancement of new therapeutics against infectious illnesses. Endogenous animal lectins, a class of proteins, may perceive non-self glycans found on microorganisms. Serum mannose-binding lectin (sMBL), as a part of the innate immune framework, recognizes a wide range of microbial microorganisms and activates complement cascade via an antibody-independent pathway. Although the molecular basis for the intensity of SARS-CoV-2 infection is not generally understood, scientific literature indicates that COVID-19 is correlated with unregulated activation of the complement in terms of disease severity. Disseminated intravascular coagulation (DIC), inflammation, and immune paralysis contribute to unregulated complement activation. Pre-existing genetic defects in MBL and their association with complement play a major role in immune response dysregulation caused by SARS-CoV-2. In order to generate anti-complement-based therapies in Covid-19, an understanding of sMBL in immune response to SARS-CoV-2 and complement is therefore essential. This review highlights the role of endogenous sMBL and complement activation during SARS-CoV-2 infection and their therapeutic management by various agents, mainly plant lectins, since antiviral mannose-binding plant lectins (pMBLs) offer potential applications in the prevention and control of viral infections.
Collapse
Affiliation(s)
- Anita Gupta
- Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - G S Gupta
- Department of Biophysics, Sector 25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
12
|
Oggioni M, Mercurio D, Minuta D, Fumagalli S, Popiolek-Barczyk K, Sironi M, Ciechanowska A, Ippati S, De Blasio D, Perego C, Mika J, Garlanda C, De Simoni MG. Long pentraxin PTX3 is upregulated systemically and centrally after experimental neurotrauma, but its depletion leaves unaltered sensorimotor deficits or histopathology. Sci Rep 2021; 11:9616. [PMID: 33953334 PMCID: PMC8100171 DOI: 10.1038/s41598-021-89032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Long pentraxin PTX3, a pattern recognition molecule involved in innate immune responses, is upregulated by pro-inflammatory stimuli, contributors to secondary damage in traumatic brain injury (TBI). We analyzed PTX3 involvement in mice subjected to controlled cortical impact, a clinically relevant TBI mouse model. We measured PTX3 mRNA and protein in the brain and its circulating levels at different time point post-injury, and assessed behavioral deficits and brain damage progression in PTX3 KO mice. PTX3 circulating levels significantly increased 1-3 weeks after injury. In the brain, PTX3 mRNA was upregulated in different brain areas starting from 24 h and up to 5 weeks post-injury. PTX3 protein significantly increased in the brain cortex up to 3 weeks post-injury. Immunohistochemical analysis showed that, 48 h after TBI, PTX3 was localized in proximity of neutrophils, likely on neutrophils extracellular traps (NETs), while 1- and 2- weeks post-injury PTX3 co-localized with fibrin deposits. Genetic depletion of PTX3 did not affect sensorimotor deficits up to 5 weeks post-injury. At this time-point lesion volume and neuronal count, axonal damage, collagen deposition, astrogliosis, microglia activation and phagocytosis were not different in KO compared to WT mice. Members of the long pentraxin family, neuronal pentraxin 1 (nPTX1) and pentraxin 4 (PTX4) were also over-expressed in the traumatized brain, but not neuronal pentraxin 2 (nPTX2) or short pentraxins C-reactive protein (CRP) and serum amyloid P-component (SAP). The long-lasting pattern of activation of PTX3 in brain and blood supports its specific involvement in TBI. The lack of a clear-cut phenotype in PTX3 KO mice may depend on the different roles of this protein, possibly involved in inflammation early after injury and in repair processes later on, suggesting distinct functions in acute phases versus sub-acute or chronic phases. Brain long pentraxins, such as PTX4-shown here to be overexpressed in the brain after TBI-may compensate for PTX3 absence.
Collapse
Affiliation(s)
- Marco Oggioni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Domenico Mercurio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Denise Minuta
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, 20132 Milan, Italy
| | - Stefano Fumagalli
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Katarzyna Popiolek-Barczyk
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marina Sironi
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy
| | - Agata Ciechanowska
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Stefania Ippati
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Scientific Institute, San Raffaele Hospital, 20132 Milan, Italy
| | - Daiana De Blasio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Carlo Perego
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Joanna Mika
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy ,grid.452490.eHumanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, Pieve Emanuele – Milan, 20090 Italy
| | - Maria-Grazia De Simoni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
13
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
14
|
Yang MS, Xu XJ, Zhang B, Niu F, Liu BY. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury. Neural Regen Res 2021; 16:1235-1243. [PMID: 33318400 PMCID: PMC8284282 DOI: 10.4103/1673-5374.301028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The heterogeneity of traumatic brain injury (TBI)-induced secondary injury has greatly hampered the development of effective treatments for TBI patients. Targeting common processes across species may be an innovative strategy to combat debilitating TBI. In the present study, a cross-species transcriptome comparison was performed for the first time to determine the fundamental processes of secondary brain injury in Sprague-Dawley rat and C57/BL6 mouse models of TBI, caused by acute controlled cortical impact. The RNA sequencing data from the mouse model of TBI were downloaded from the Gene Expression Omnibus (ID: GSE79441) at the National Center for Biotechnology Information. For the rat data, peri-injury cerebral cortex samples were collected for transcriptomic analysis 24 hours after TBI. Differentially expressed gene-based functional analysis revealed that common features between the two species were mainly involved in the regulation and activation of the innate immune response, including complement cascades as well as Toll-like and nucleotide oligomerization domain-like receptor pathways. These findings were further corroborated by gene set enrichment analysis. Moreover, transcription factor analysis revealed that the families of signal transducers and activators of transcription (STAT), basic leucine zipper (BZIP), Rel homology domain (RHD), and interferon regulatory factor (IRF) transcription factors play vital regulatory roles in the pathophysiological processes of TBI, and are also largely associated with inflammation. These findings suggest that targeting the common innate immune response might be a promising therapeutic approach for TBI. The animal experimental procedures were approved by the Beijing Neurosurgical Institute Animal Care and Use Committee (approval No. 201802001) on June 6, 2018.
Collapse
Affiliation(s)
- Meng-Shi Yang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Jian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bai-Yun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders; China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
15
|
Initiators of Classical and Lectin Complement Pathways Are Differently Engaged after Traumatic Brain Injury-Time-Dependent Changes in the Cortex, Striatum, Thalamus and Hippocampus in a Mouse Model. Int J Mol Sci 2020; 22:ijms22010045. [PMID: 33375205 PMCID: PMC7793095 DOI: 10.3390/ijms22010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein—GFAP), microglia/macrophages (allograft inflammatory factor 1—IBA-1), and microglia (transmembrane protein 119—TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.
Collapse
|
16
|
Matzen JS, Krogh CL, Forman JL, Garred P, Møller K, Bache S. Lectin complement pathway initiators after subarachnoid hemorrhage - an observational study. J Neuroinflammation 2020; 17:338. [PMID: 33183322 PMCID: PMC7661172 DOI: 10.1186/s12974-020-01979-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Background This exploratory study investigated the time-course of lectin complement pathway (LCP) initiators in cerebrospinal fluid (CSF) and plasma in patients with subarachnoid hemorrhage (SAH), as well as their relationship to delayed cerebral ischemia (DCI) and functional outcome. Methods Concentrations of ficolin-1, ficolin-2, ficolin-3, and mannose-binding lectin (MBL) were analyzed in CSF and plasma from patients with SAH. Samples were collected daily from admission until day 9 (CSF; N_PATIENTS = 63, n_SAMPLES = 399) and day 8 (plasma; N_PATIENTS = 50, n_SAMPLES = 358), respectively. Twelve neurologically healthy patients undergoing spinal anesthesia and 12 healthy blood donors served as controls. The development of DCI during hospitalization and functional outcome at 3 months (modified Rankin Scale) were registered for patients. Results On admission, CSF levels of all LCP initiators were increased in SAH patients compared with healthy controls. Levels declined gradually over days in patients; however, a biphasic course was observed for ficolin-1. Increased CSF levels of all LCP initiators were associated with a poor functional outcome in univariate analyses. This relationship persisted for ficolin-1 and MBL in multivariate analysis after adjustments for confounders (age, sex, clinical severity, distribution and amount of blood on CT-imaging) and multiple testing (1.87 ng/mL higher in average, 95% CI, 1.17 to 2.99 and 1.69 ng/mL higher in average, 95% CI, 1.09 to 2.63, respectively). In patients who developed DCI compared with those without DCI, CSF levels of ficolin-1 and MBL tended to increase slightly more over time (p_interaction = 0.021 and 0.033, respectively); however, no association was found after adjustments for confounders and multiple testing (p-adj_interaction = 0.086 and 0.098, respectively). Plasma ficolin-1 and ficolin-3 were lower in SAH patients compared with healthy controls on all days. DCI and functional outcome were not associated with LCP initiator levels in plasma. Conclusion Patients with SAH displayed elevated CSF levels of ficolin-1, ficolin-2, ficolin-3, and MBL. Increased CSF levels of ficolin-1 and MBL were associated with a poor functional outcome. Trial registration This study was a retrospective analysis of samples, which had been prospectively sampled and stored in a biobank. Registered at clinicaltrials.gov (NCT01791257, February 13, 2013, and NCT02320539, December 19, 2014). Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-01979-y.
Collapse
Affiliation(s)
- Jeppe Sillesen Matzen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark.
| | - Charlotte Loumann Krogh
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Bache
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Popiolek-Barczyk K, Ciechanowska A, Ciapała K, Pawlik K, Oggioni M, Mercurio D, De Simoni MG, Mika J. The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Mol Cell Probes 2020; 54:101671. [PMID: 33160071 DOI: 10.1016/j.mcp.2020.101671] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in the global population. Disturbed inflammatory processes after TBI exacerbate secondary brain injury and contribute to unfavorable outcomes. Multiple inflammatory events that accompany brain trauma, such as glial activation, chemokine release, or the initiation of the complement system cascade, have been identified as potential targets for TBI treatment. However, the participation of chemokines in the complement activation remains unknown. Our studies sought to determine the changes in the expression of the molecules involved in the CCL2/CCL7/CCL12/CCR2 pathway in the injured brain and the effect of CCL2, CCL7, and CCL12 (10, 100, and 500 ng/mL) on the classic and lectin complement pathways and inflammatory factors in microglial cell cultures. Brain injury in mice was modeled by controlled cortical impact (CCI). Our findings indicate a time-dependent upregulation of CCL2, CCL7, and CCL12 at the mRNA and protein levels within the cortex, striatum, and/or thalamus beginning 24 h after the trauma. The analysis of the expression of the receptor of the tested chemokines, CCR2, revealed its substantial upregulation within the injured brain areas mainly on the mRNA level. Using primary cortical microglial cell cultures, we observed a substantial increase in the expression of CCL2, CCL7, and CCL12 after 24 h of LPS (100 ng/mL) treatment. CCL2 stimulation of microglia increased the level of IL-1β mRNA but did not influence the expression of IL-18, IL-6, and IL-10. Moreover, CCL2 significantly increased the expression of Iba1, a marker of microglia activation. CCL2 and CCL12 upregulated the expression of C1qa but did not influence the expression of C1ra and C1s1 (classical pathway); moreover, CCL2 increased ficolin A expression and reduced collectin 11 expression (lectin pathway). Additionally, we observed the downregulation of pentraxin 3, a modulator of the complement cascade, after CCL2 and CCL12 treatment. We did not detect the expression of ficolin B, Mbl1, and Mbl2 in microglial cells. Our data identify CCL2 as a modulator of the classical and lectin complement pathways suggesting that CCL2 may be a promising target for pharmacological intervention after brain injury. Moreover, our study provides evidence that CCL2 and two other CCR2 ligands may play a role in the development of changes in TBI.
Collapse
Affiliation(s)
- Katarzyna Popiolek-Barczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland.
| |
Collapse
|
18
|
Mercurio D, Oggioni M, Fumagalli S, Lynch NJ, Roscher S, Minuta D, Perego C, Ippati S, Wallis R, Schwaeble WJ, De Simoni MG. Targeted deletions of complement lectin pathway genes improve outcome in traumatic brain injury, with MASP-2 playing a major role. Acta Neuropathol Commun 2020; 8:174. [PMID: 33115535 PMCID: PMC7592565 DOI: 10.1186/s40478-020-01041-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The lectin pathway (LP) of complement activation is believed to contribute to brain inflammation. The study aims to identify the key components of the LP contributing to TBI outcome as possible novel pharmacological targets. We compared the long-term neurological deficits and neuropathology of wild-type mice (WT) to that of mice carrying gene deletions of key LP components after experimental TBI. WT or MASP-2 (Masp2-/-), ficolin-A (Fcna-/-), CL-11 (Colec11-/-), MASP-1/3 (Masp1-/-), MBL-C (Mbl2-/-), MBL-A (Mbl1-/-) or MBL-/- (Mbl1-/-/Mbl2-/-) deficient male C57BL/6J mice were used. Mice underwent sham surgery or TBI by controlled cortical impact. The sensorimotor response was evaluated by neuroscore and beam walk tests weekly for 4 weeks. To obtain a comparative analysis of the functional outcome each transgenic line was rated according to a health score calculated on sensorimotor performance. For selected genotypes, brains were harvested 6 weeks after injury for histopathological analysis. MASP-2-/-, MBL-/- and FCN-A-/- mice had better outcome scores compared to WT. Of these, MASP-2-/- mice had the best recovery after TBI, showing reduced sensorimotor deficits (by 33% at 3 weeks and by 36% at 4 weeks). They also showed higher neuronal density in the lesioned cortex with a 31.5% increase compared to WT. Measurement of LP functional activity in plasma from MASP-2-/- mice revealed the absence of LP functional activity using a C4b deposition assay. The LP critically contributes to the post-traumatic inflammatory pathology following TBI with the highest degree of protection achieved through the absence of the LP key enzyme MASP-2, underlining a therapeutic utility of MASP-2 targeting in TBI.
Collapse
Affiliation(s)
- D Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - M Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - S Fumagalli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - N J Lynch
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - S Roscher
- Department of Respiratory Sciences, University of Leicester, University Road, LE1 9HN, Leicester, UK
| | - D Minuta
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
- San Raffaele Scientific Institute, San Raffaele Hospital, 20132, Milan, Italy
| | - C Perego
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - S Ippati
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129, Milan, Italy
| | - R Wallis
- Department of Respiratory Sciences, University of Leicester, University Road, LE1 9HN, Leicester, UK
| | - W J Schwaeble
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - M-G De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
19
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
20
|
Neglia L, Fumagalli S, Orsini F, Zanetti A, Perego C, De Simoni MG. Mannose-binding lectin has a direct deleterious effect on ischemic brain microvascular endothelial cells. J Cereb Blood Flow Metab 2020; 40:1608-1620. [PMID: 31495300 PMCID: PMC7370363 DOI: 10.1177/0271678x19874509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mannose-binding lectin (MBL), an initiator of the lectin pathway, is detrimental in ischemic stroke. MBL deposition on the ischemic endothelium indicates the beginning of its actions, but downstream mechanisms are not clear yet.We investigated MBL interactions with the ischemic endothelium by exposing human brain microvascular endothelial cells (hBMECs) to protocols of ischemia. Cells were exposed to hypoxia or oxygen-glucose deprivation (OGD), and re-oxygenated with human serum (HS) or recombinant MBL (rhMBL). Hypoxic hBMECs re-oxygenated with HS showed increased complement system activation (C3c deposition, +59%) and MBL deposition (+93%) than normoxic cells. Super-resolution microscopy showed MBL internalization in hypoxic cells and altered cytoskeletal organization, indicating a potential MBL action on the endothelial structure. To isolate MBL effect, hBMECs were re-oxygenated with rhMBL after hypoxia/OGD. In both conditions, MBL reduced viability (hypoxia: -25%, OGD: -34%) compared to conditions without MBL, showing a direct toxic effect. Ischemic cells also showed greater MBL deposition (hypoxia: +143%, OGD: +126%) than normoxic cells. These results were confirmed with primary hBMECs exposed to OGD (increased MBL-induced cell death: +226%, and MBL deposition: +104%). The present findings demonstrate that MBL can exert a direct deleterious effect on ischemic brain endothelial cells in vitro, independently from complement activation.
Collapse
Affiliation(s)
- Laura Neglia
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Stefano Fumagalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Franca Orsini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Adriana Zanetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Carlo Perego
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | |
Collapse
|
21
|
Goetzl EJ, Yaffe K, Peltz CB, Ledreux A, Gorgens K, Davidson B, Granholm AC, Mustapic M, Kapogiannis D, Tweedie D, Greig NH. Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. FASEB J 2020; 34:3359-3366. [PMID: 31916313 PMCID: PMC7459190 DOI: 10.1096/fj.201902842r] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 01/16/2023]
Abstract
Possible involvement of complement (C) systems in the pathogenesis of traumatic brain injury (TBI) was investigated by quantifying Cproteins in plasma astrocyte-derived exosomes (ADEs) of subjects with sports-related TBI (sTBI) and TBI in military veterans (mtTBI) without cognitive impairment. All sTBI subjects (n = 24) had mild injuries, whereas eight of the mtTBI subjects had moderate, and 17 had mild injuries. Plasma levels of ADEs were decreased after acute sTBI and returned to normal within months. Cprotein levels in ADEs were from 12- to 35-fold higher than the corresponding levels in neuron-derived exosomes. CD81 exosome marker-normalized ADE levels of classical pathway C4b, alternative pathway factor D and Bb, lectin pathway mannose-binding lectin (MBL), and shared neurotoxic effectors C3b and C5b-9 terminal C complex were significantly higher and those of C regulatory proteins CR1 and CD59 were lower in the first week of acute sTBI (n = 12) than in controls (n = 12). Most C abnormalities were no longer detected in chronic sTBI at 3-12 months after acute sTBI, except for elevated levels of factor D, Bb, and MBL. In contrast, significant elevations of ADE levels of C4b, factor D, Bb, MBL, C3b and C5b-9 terminal C complex, and depressions of CR1 and CD59 relative to those of controls were observed after 1-4 years in early chronic mtTBI (n = 10) and persisted for decades except for normalization of Bb, MBL, and CD59 in late chronic mtTBI (n = 15). Complement inhibitors may be useful therapeutically in acute TBI and post-concussion syndrome.
Collapse
Affiliation(s)
- Edward J. Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, CA, USA
| | - Kristine Yaffe
- Neurology-Psychiatry, University of California Medical Center, San Francisco, CA, USA
- Department of Psychiatry, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Carrie B. Peltz
- Department of Psychiatry, San Francisco VA Medical Center, San Francisco, CA, USA
- Northern California Institute for Research and Education, San Francisco, CA, USA
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Kim Gorgens
- Graduate School of Professional Psychology, University of Denver, Denver, CO, USA
| | - Bradley Davidson
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA
| | | | - Maja Mustapic
- Laboratory for Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory for Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Nigel H. Greig
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
22
|
Ratajczak MZ, Mack A, Bujko K, Domingues A, Pedziwiatr D, Kucia M, Ratajczak J, Ulrich H, Kucharska-Mazur J, Samochowiec J. ATP-Nlrp3 Inflammasome-Complement Cascade Axis in Sterile Brain Inflammation in Psychiatric Patients and its Impact on Stem Cell Trafficking. Stem Cell Rev Rep 2019; 15:497-505. [PMID: 31020518 PMCID: PMC6647482 DOI: 10.1007/s12015-019-09888-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates that the occurrence of psychiatric disorders in patients is linked to a local "sterile" inflammation of brain or due to a systemic inflammation process that affects the central nervous system. This is supported by the observation that in peripheral blood of psychotic patients are detectable several mediators and markers of inflammation as well as clinical data on correlations between systemic chronic inflammatory processes and psychiatric disorders. This may explain why some reported anti-inflammatory treatment strategies have beneficial effects on ameliorating psychotic events. In this review we will present a concept that aberrant purinergic signaling and increases in extracellular level of adenosine triphosphate (ATP) in the brain parenchyma may lead to activation of Nlrp3 inflammasome in microglia cells and as a consequence microglia released danger associated molecular pattern (DAMP) proteins activate complement cascade (ComC) in mannan binding lectin (MBL) - dependent manner. Activation of ATP-Nlrp3 inflammasome-ComC axis may also orchestrate trafficking of stem cells released from bone marrow into peripheral blood observed in psychotic patients. Based on this, the ATP-Nlrp3 inflammasome-ComC axis may become a target for new therapeutic approaches, which justifies the development and clinical application of efficient anti-inflammatory treatment strategies targeting this axis in psychiatry.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland.
| | - Aaron Mack
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Alison Domingues
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Daniel Pedziwiatr
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Louisville, Brazil
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
23
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
24
|
Tenner AJ, Stevens B, Woodruff TM. New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Mol Immunol 2018; 102:3-13. [PMID: 29958698 DOI: 10.1016/j.molimm.2018.06.264] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
While the mechanisms underlying the functions of the complement system in the central nervous system (CNS) and systemically, namely opsonization, chemotaxis, membrane lysis, and regulation of inflammation are the same, the plethora of functions that complement orchestrates in the central nervous system (CNS) is complex. Strictly controlled expression of complement effector molecules, regulators and receptors across the gamut of life stages (embryogenesis, development and maturation, aging and disease) dictate fascinating contributions for this ancient system. Furthermore, it is becoming apparent that complement functions differ widely across distinct brain regions. This review provides a comprehensive overview of the newly identified roles for complement in the brain, including its roles in CNS development and function, during aging and in the processes of neurodegeneration. The diversity and selectively of beneficial and detrimental activities of complement, while challenging, should lead to precision targeting of specific components to provide disease modifying treatments for devastating psychiatric and neurodegenerative disorders that are still without effective treatment.
Collapse
Affiliation(s)
- Andrea J Tenner
- Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, CA, United States.
| | - Beth Stevens
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|