1
|
Ma J, Chen Z, Li J, Liu L, Yang Q, Wan Y, Lu X, Zhang Y, Fei X. Concurrent aerobic methane oxidation and biodegradation of waste in shallow layer of landfill during aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125282. [PMID: 40203715 DOI: 10.1016/j.jenvman.2025.125282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Aeration is a common remediation technique to mitigate greenhouse gas emissions and accelerate waste biodegradation in landfills. However, designing of landfill aeration remains challenging. Enhancing the understanding of concurrent methane (CH4) oxidation and aerobic biodegradation of waste during landfill aeration is crucial. This study combined laboratory experiments with simplified modeling to elucidate these two processes occurring in waste after different biodegradation periods. As biodegradation period of waste increased, the CH4 consumption rates decreased, suggesting a gradual change in microbial community. The oxygen (O2) consumption rates initially increased and then decreased in three reactors with the different concentrations of CH4 at the beginning of the reaction (initial CH4 concentration) of 20 %, 17 %, and 10 %. The peak O2 consumption rates were -0.048, -0.063, and -0.072 mol day-1 kg-1 dry mass, respectively. A simplified model was developed based on the chemical reaction equations, balance equations, and elemental analysis of degradable waste to quantify the molar fractions of O2 consumption attributed to CH4 oxidation and aerobic waste biodegradation. The molar fraction of O2 consumption by CH4 oxidation ranged from 1 % to 88 %. The CH4 removal efficiency ranged from 4 % to 16 %, which was influenced by the competing aerobic waste biodegradation and was lower than values reported in studies using compost materials, such as garden waste or natural soil as substrates. Nevertheless, CH4 oxidation in shallow layers of landfill contributes to overall CH4 oxidation globally. This study provides a valuable dataset and theoretical support for optimizing aeration design and mitigating CH4 emissions from landfills.
Collapse
Affiliation(s)
- Jun Ma
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Zhuo Chen
- College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, 430071, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, 430071, China.
| | - Qirui Yang
- Houston International Institute, Dalian Maritime University, Dalian, 116026, China
| | - Yong Wan
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, 430071, China
| | - Xuhong Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
2
|
Verma G, Reddy KR, Green SJ. Investigation of biogeochemical landfill covers incorporating different biochars and alkaline industrial byproducts for landfill gas mitigation: A column experiment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179192. [PMID: 40147243 DOI: 10.1016/j.scitotenv.2025.179192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Fugitive emissions of methane (CH4) and carbon dioxide (CO2) from municipal solid waste (MSW) landfills pose significant environmental risks if not captured. To address this, researchers at the University of Illinois Chicago developed a biogeochemical cover (BGCC) comprising a biochar-amended soil (BAS) layer and a basic oxygen furnace (BOF) slag layer to simultaneously mitigate CH4 and CO2. Previous laboratory experiments with BGCC comprising pinewood-derived biochar (PW)-amended soil and BOF slag (BGCC-PWBOF) demonstrated substantial potential for CH4 and CO2 mitigation. However, reliance on PW biochar and BOF slag may face challenges due to limited availability near landfill site location, which motivated the investigation of BGCC, which consists of different biochar and alkaline materials. Therefore, this study compared two BGCC configurations-one with rice husk biochar and cement kiln dust (BGCC-RHCKD) and another with pinewood biochar and BOF slag (BGCC-PWBOF)-against a conventional soil cover (SC) system in a laboratory column experiment. All three covers were exposed to synthetic landfill gas across four phases with varying CH4 influx rates. Surface emissions and gas concentrations were continuously monitored. After the experiment, the covers were dismantled, and samples from multiple depths were collected for physico-chemical characterization, microbial community analysis, and batch tests to determine CH4 oxidation rates and residual carbonation capacity. Results showed that under moderate CH4 influx rates (20.77-22.80 g CH4/m2-day) in Phase 1, BGCC-RHCKD and SC achieved peak CH4 removal efficiencies of 67.3 % and 74.2 %, respectively. The CKD layer in BGCC-RHCKD maintained 100 % CO2 removal across all phases without breakthrough, whereas BOF slag in BGCC-PWBOF experienced breakthrough after 16-22 days due to desiccation. The highest CH4 oxidation rates reached 2042.8 μg CH4/g-day (BGCC-RHCKD), 455.3 μg CH4/g-day (BGCC-PWBOF), and 372.1 μg CH4/g-day (SC) and were strongly correlated with the relative abundance of methylotrophic bacteria, especially Methylobacter luteus, in 16S rRNA gene amplicon profiles. Overall, the BGCC-RHCKD system offers an effective solution for mitigating both CH₄ and CO₂ emissions, while the SC system is effective for CH₄ emissions.
Collapse
Affiliation(s)
- Gaurav Verma
- University of Illinois Chicago, Department of Civil, Materials, and Environmental Engineering, 842 West Taylor Street, Chicago, IL 60607, USA.
| | - Krishna R Reddy
- University of Illinois Chicago, Department of Civil, Materials, and Environmental Engineering, 842 West Taylor Street, Chicago, IL 60607, USA.
| | - Stefan J Green
- Core Laboratory Services, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Verma G, Chetri JK, Reddy KR. Spatial variation of methane oxidation and carbon dioxide sequestration in landfill biogeochemical cover. ENVIRONMENTAL TECHNOLOGY 2025; 46:931-947. [PMID: 38955503 DOI: 10.1080/09593330.2024.2372052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
The study investigated the spatial variation of potential methane (CH4) oxidation and residual carbon dioxide (CO2) sequestration in biogeochemical cover (BGCC) system designed to remove CH4, CO2, and hydrogen sulfide (H2S) from landfill gas (LFG) emissions. A 50 cm x 50 cm x 100 cm tank simulated BGCC system, comprising a biochar-amended soil (BAS) layer for CH4 oxidation, a basic oxygen furnace (BOF) slag layer for CO2 and H2S sequestration, and an upper topsoil layer. Synthetic LFG was flushed through the system in five phases, with each corresponding to different compositions and flow rates. Following monitoring, the system was dismantled, and samples were extracted from different depths and locations to analyze spatial variations, focusing on moisture content (MC), organic content (OC), pH, and electrical conductivity (EC). Additionally, batch tests on selected samples from BAS and BOF slag layers were performed to assess potential CH4 oxidation and residual carbonation capacity. The aim of study was to evaluate the BGCC's effectiveness in LFG mitigation, however this study focused on assessing spatial variations in physico-chemical properties, CH4 oxidation in the BAS layer, and residual carbonation in the BOF slag layer. Findings revealed CH4 oxidation in the BAS layer varied between 22.4 and 277.9 µg CH4/g-day, with higher rates in the upper part, and significant spatial variations at 50 cm below ground surface (bgs) compared to 85 cm bgs. The BOF slag layer showed a residual carbonation capacity of 40-49.3 g CO2/kg slag, indicating non-uniform carbonation. Overall, CH4 oxidation and CO2 sequestration capacities varied spatially and with depth in the BGCC system.
Collapse
Affiliation(s)
- Gaurav Verma
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Jyoti K Chetri
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Krishna R Reddy
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Li Z, Yu Z, Zhang P, Wang S, Tan RR, Jia X, Pang X. Comparative analysis of certified emission reduction methodologies for methane emission reduction in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124242. [PMID: 39854907 DOI: 10.1016/j.jenvman.2025.124242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
As one of the top emitters of methane (CH4), China must take action to achieve its carbon neutrality goal. Programs to reduce CH4 emissions would benefit from the establishment of the China Certified Emission Reduction (CCER) trading market. However, studies investigating the impact of the CCER trading market on CH4 reduction remain limited. This study therefore analyzes the emission reduction performance of CH4-related CCER projects and investigates their accounting methodologies. The results show that 182 CH4 emissions reduction projects were registered between 2012 and 2017, covering coal mining, energy, waste treatment and disposal, and agriculture, with an annual emissions reduction of 19.8 MtCO2e. It was observed that, while the pre-restart methodology system covered a wide range of emission reduction areas, its application frequency was unevenly distributed. Most projects were registered in only a few emission reduction domains, with the majority of methodologies remaining unused since their publication. Moreover, the IPCC default values were frequently used in China-specific emission accounting, leading to significant uncertainties. Recommendations are made on how to improve the effectiveness of CH4 emissions reduction measures based on this analysis.
Collapse
Affiliation(s)
- Ze Li
- School of Environment and Safety Engineering, Qingdao University of Science Technology, Qingdao, 266042, China
| | - Zhenyang Yu
- Thrust of Innovation, Policy and Entrepreneurship, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
| | - Peidong Zhang
- School of Environment and Safety Engineering, Qingdao University of Science Technology, Qingdao, 266042, China.
| | - Siqi Wang
- School of Environment and Safety Engineering, Qingdao University of Science Technology, Qingdao, 266042, China
| | - Raymond R Tan
- Department of Chemical Engineering, De La Salle University, Manila, 0922, Philippines
| | - Xiaoping Jia
- School of Environment and Safety Engineering, Qingdao University of Science Technology, Qingdao, 266042, China.
| | - Xufei Pang
- School of Environment and Safety Engineering, Qingdao University of Science Technology, Qingdao, 266042, China
| |
Collapse
|
5
|
Kirkhorn S, Sparrevik M, Lyng KA, Hanssen OJ. Assessing the life cycle impacts of the remediation of shooting ranges in peatland environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177825. [PMID: 39637468 DOI: 10.1016/j.scitotenv.2024.177825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
This paper aims to expand knowledge of the potential environmental impacts associated with the remediation of shooting ranges in peatland environments. While the remediation of these sites currently requires the excavation and disposal of contaminated soil to meet local environmental quality guideline values, there is a growing recognition that this remediation process causes substantial environmental impacts. A life cycle assessment (LCA) was undertaken to identify the life cycle impacts and potential mitigation measures to reduce them. The results showed that for the majority of impact categories, downstream landfilling processes dominated impacts; in particular, substantial greenhouse gas emissions were associated with the decomposition of carbon-rich peat soil caused by excavation and removal (119 t CO2 equivalents, representing 67.8 % of the life cycle emissions). In addition, gravel materials used for road building was important to several impact categories. The greenhouse gas mitigation potential was 17 % and included the use of renewable fuels, electric excavators, local site equipment, material selection and the reuse of materials. While the impacts from site infrastructure and excavation may be reduced through appropriate planning and management, the greenhouse gas emissions impact from excavating carbon-rich soil is proportional to the excavated soil volume. Therefore, the acceptability of these impacts should be carefully evaluated against the benefits of reduced contaminant leaching into the receiving environment.
Collapse
Affiliation(s)
- Simen Kirkhorn
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway; Norwegian Defence Research Establishment (FFI), Kjeller, Norway.
| | - Magnus Sparrevik
- Norwegian Defence Estates Agency (NDEA), Norway; Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kari-Anne Lyng
- NORSUS Norwegian Institute for Sustainability Research, Kråkerøy, Norway
| | - Ole Jørgen Hanssen
- NORSUS Norwegian Institute for Sustainability Research, Kråkerøy, Norway
| |
Collapse
|
6
|
Castaño-Vázquez F, Sánchez-Moral S, Cuezva S, Merino S. Relationship between temperature and relative humidity with CO 2 and CH 4 concentration and ectoparasite abundance in blue tit (Cyanistes caeruleus) nests. J Therm Biol 2025; 127:104058. [PMID: 39892081 DOI: 10.1016/j.jtherbio.2025.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 02/03/2025]
Abstract
The presence of nestlings influences the microclimate inside avian nesting cavities. We explored the relationship between temperature and relative humidity and the abundance of ectoparasites and gas concentrations in blue tit nest boxes during the nestling period by comparing two years with differing climatic conditions. In the second year, we also manipulated the temperature and humidity inside the nest boxes. The average temperature in nest boxes was colder during 2016 than 2017; in the latter, even warmer conditions were attained due to the experimental manipulation of temperature. Carbon dioxide (CO2) concentration in the forest air was slightly lower in 2016 than 2017. However, in both years, the CO2 concentration of nest box air was higher than that of forest air, with 2017 showing a greater difference. Differences in brood size, larger in 2016, did not explain the difference in CO2 concentration. However, CO2 concentration was higher in nestboxes in the warmer year implying that at higher temperatures, organic matter decomposition likely accelerates, releasing more CO2 into the atmosphere. By contrast, CH4 concentration in nest-box air, which was similar in both years, was lower than that in forest air, particularly in the wettest and coldest year. Different relationships were found between the abundance of different ectoparasites and the temperature, relative humidity, and gas concentration measured at different days of nestling age. For example, a positive association is observed between flea larval abundance and temperature at nestling day 8, but a negative one is observed for mites under the same microclimate conditions. Moreover, a negative relationship was observed between the abundance of mites, midges, and blackflies and CH4 concentration at different nestling ages. These results suggest that changes in climatic conditions can also affect the concentrations of CH4 and CO2 inside and outside nest boxes, which in turn differentially affect ectoparasite abundance.
Collapse
Affiliation(s)
| | - Sergio Sánchez-Moral
- Departament of Geology, Museo Nacional de Ciencias Naturales MNCN-CSIC, Madrid, Spain
| | - Soledad Cuezva
- Departament of Geology, Museo Nacional de Ciencias Naturales MNCN-CSIC, Madrid, Spain
| | - Santiago Merino
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales MNCN-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Liu HW, Huang Y, Feng S, You SQ, Hong Y, Shen LD. Experimental study of methane oxidation efficiency in three configurations of earthen landfill cover through soil column test. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:370-381. [PMID: 39393307 DOI: 10.1016/j.wasman.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Soil column tests were conducted to investigate methane oxidation efficiency in three configurations of earthen landfill cover under two drying stages separated by an applied rainfall, including the monolithic evapotranspiration (ET) cover, the cover with capillary barrier effect (CCBE) and the three-layer cover. Comprehensive measurements were also documented for water-gas response in soil for analyzing the experimental outcomes. The maximum methane oxidation efficiency of three-layer cover, monolithic ET cover, and CCBE were about 71 %, 62 % and 58 %, respectively. This was because the three-layer cover had the largest oxygen (O2) concentration in soil above depth of 400 mm, where methane oxidation mainly occurred. This was due to the good airtightness of the bottom hydraulic barrier layer, which led to the lowest air pressure above depth of 400 mm, thereby promoting the entry of atmospheric O2 into the soil. The monolithic ET cover generally had a larger methane oxidation efficiency than CCBE during the first drying stage by up to 12 %, while the trend reversed overall during the second drying stage, likely due to the enhanced air-tightness of CCBE caused by higher soil water content after rainfall induced by the capillary barrier effects. The methane oxidation efficiency for each landfill cover became lower by up to 30 % during the second drying stage than that during the first drying stage, owing to the higher water content during the second drying stage after rainfall, leading to a larger gas pressure and hence a lower O2 concentration at shallow soil.
Collapse
Affiliation(s)
- H W Liu
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou City, Fujian Province, China; Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources (Fujian Key Laboratory Of Geohazard Prevention), Fuzhou City, Fujian Province, China.
| | - Y Huang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou City, Fujian Province, China.
| | - S Feng
- College of Civil Engineering, Fuzhou University, Fuzhou City, Fujian Province, China.
| | - S Q You
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou City, Fujian Province, China.
| | - Y Hong
- Key Laboratory of Offshore Geotechnical and Material Engineering of Zhejiang Province, Zhejiang University, Hangzhou City, Zhejiang Province, China.
| | - L D Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
8
|
Rahim S, Isa MH, Shams S, Jeludin M, Abdul Rahman EK, Hj Md Juani R, Ul Mustafa MR, Abd Manan TS, Jagaba AH. Laboratory-based assessment of geotechnical characteristics of organic waste-amended soil for landfill biocover. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66029-66043. [PMID: 39612092 DOI: 10.1007/s11356-024-35580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
A landfill biocover is essential for addressing environmental concerns, especially in waste management, as it plays a crucial role in mitigating the release of methane gas. This study investigates the geotechnical characteristics of soil amended with organic wastes for landfill biocover applications. Various organic waste amendments, viz., rice husk, crushed coconut coir, and compost, were examined at different percentages (0%, 25%, 50%, and 75%) compared with conventional landfill cover material, i.e. natural clay, as biocovers. Laboratory experiments analysed geotechnical characteristics, including organic content, Atterberg limit, compaction, consolidation, and desiccation cracking. The study revealed that organic waste amendment significantly impacted the geotechnical characteristics of landfill biocover, enhancing organic content and porosity and reducing permeability and desiccation susceptibility. Soils amended with organic content support methanotrophic bacteria growth and reduce methane emissions in landfills. The most promising biocovers were identified as 75CR (crushed coconut coir/wastewater sludge/clay in percentage ratio of 70:5:25), followed by 75CT (compost/wastewater sludge/clay in percentage ratio of 70:5:25), and 25RH (rice husk/wastewater sludge/clay in percentage ratio of 20:5:75). Biocovers offer sustainable landfill alternatives, underscoring the need to understand their geotechnical characteristics for successful installation in landfills.
Collapse
Affiliation(s)
- Suaidah Rahim
- Civil Engineering Programme Area, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam.
| | - Mohamed Hasnain Isa
- Civil Engineering Programme Area, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| | - Shahriar Shams
- Civil Engineering Programme Area, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| | - Muneerah Jeludin
- Civil Engineering Programme Area, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| | - Ena Kartina Abdul Rahman
- Civil Engineering Programme Area, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| | - Rozeana Hj Md Juani
- Civil Engineering Programme Area, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| | - Muhammad Raza Ul Mustafa
- Department of Civil & Environmental Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Seri Iskandar, 32610 , Malaysia
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia
| | - Teh Sabariah Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Darul Iman, Terengganu, 21030, Malaysia
| | - Ahmad Hussaini Jagaba
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
9
|
van den Brink JM, Scharff H, Steinert B, Melchior S, Hrachowitz M, Heimovaara TJ, Gebert J. Long-term observations on the hydraulic performance of a combined capillary barrier-methane oxidation landfill cover system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:109-118. [PMID: 39003880 DOI: 10.1016/j.wasman.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/08/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
This study quantifies the field hydraulic performance of a dual-functionality landfill cover, combining microbial methane oxidation with water diversion using a capillary barrier. The investigated 500 m2 test field, constructed on a landfill in the Netherlands, consisted of a cover soil optimised for methane oxidation, underlain by a sandy capillary layer and a gravelly capillary block. Outflows from these layers were measured between 2009 and 2023. Average precipitation was 848 mm/a, evapotranspiration, diverted infiltration and breakthrough amounted to 504 (59.4 %), 282 (33.3 %) and 62 (7.3 %) mm/a, respectively. On average, the capillary barrier diverted 82 % of the inflow into the capillary layer. Breakthrough occurred mainly from October to March when evapotranspiration was low and the maximum water storage capacity of the cover soil was reached. During this period, inflow into the capillary barrier exceeded its diversion capacity, caused by the relatively high hydraulic conductivity of the cover soil due to its optimisation for gas transport. The diversion capacity declined drastically in the year after construction and increased again afterwards. This was attributed to suffusion of sand from the capillary layer into the capillary block and subsequent washout to greater depths or the influence of iron precipitates at the bottom of the capillary layer. The effect of a more finely grained methane oxidation layer on the hydraulic and methane oxidation performance should be investigated further. These measures could further improve the combined performance of the dual functionality landfill cover system under the given conditions of a temperate climate.
Collapse
Affiliation(s)
- J M van den Brink
- Delft University of Technology, Department of Geoscience and Engineering, Stevinweg 1, 2628 CN Delft, the Netherlands; Wageningen University & Research, Soil Physics and Land Management Group, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands.
| | - H Scharff
- N.V. Afvalzorg Holding, Nauerna 1, 1566 PB Assendelft, the Netherlands; Landfill.pro, Den Haag, the Netherlands.
| | - B Steinert
- melchior + wittpohl Beratende Ingenieure PartmbB, Rödingsmarkt 43, 20459 Hamburg, Germany.
| | - S Melchior
- melchior + wittpohl Beratende Ingenieure PartmbB, Rödingsmarkt 43, 20459 Hamburg, Germany.
| | - M Hrachowitz
- Delft University of Technology, Department of Water Management, Stevinweg 1, 2628 CN Delft, the Netherlands.
| | - T J Heimovaara
- Delft University of Technology, Department of Geoscience and Engineering, Stevinweg 1, 2628 CN Delft, the Netherlands.
| | - J Gebert
- Delft University of Technology, Department of Geoscience and Engineering, Stevinweg 1, 2628 CN Delft, the Netherlands.
| |
Collapse
|
10
|
Fosco D, De Molfetta M, Renzulli P, Notarnicola B. Progress in monitoring methane emissions from landfills using drones: an overview of the last ten years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173981. [PMID: 38901587 DOI: 10.1016/j.scitotenv.2024.173981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Solid waste landfills are responsible for much of the anthropogenic methane emitted from the waste sector. The quantification of fugitive CH4 emissions from a landfill is to date characterised by high uncertainty and several methodologies have been devised to estimate emission fluxes. Unmanned Aerial Vehicles (UAVs, also known as drones) are revolutionising the way CH4 emission monitoring is conceived and offer new opportunities for quantifying emission fluxes from a landfill, mainly due to recent advances in sensor miniaturisation that make these instruments lighter and more suitable to be equipped on a drone. The paper analyses publications from the period 2014-2024 that illustrate UAV-based methods that can be used for this purpose, identifying experiences in the field and the current state of research. The review has highlighted a current research status characterised by a strong experimental focus, with few tests carried out in landfills under real emission conditions (33 % of the reviewed papers). Since 2018, there has been a growing interest in open-path sensors, tested in some controlled-release experiments according to different configurations which have given promising results, but experiences are limited and there are no experiments conducted directly in landfills. In general, the UAV-based methods identified by this systematic review are characterised by unclear uncertainties. Drones are a viable alternative to traditional monitoring methods at landfills and allow data to be acquired with a spatial and temporal resolution that can hardly be achieved by other low-cost methods. However, further studies and field trials are needed to better understand methodological aspects: especially the uncertainty of each step in the quantification process need to be properly analysed and quantified more precisely.
Collapse
Affiliation(s)
- D Fosco
- Ionian Department, University of Bari, Italy.
| | | | - P Renzulli
- Ionian Department, University of Bari, Italy
| | | |
Collapse
|
11
|
Lair A, Mansuy M, Romand C, Oberti O, Pradels C, Barina G, Denoun T, Venturini M, Trommsdorff C. Enhancing landfill efficiency to drive greenhouse gas reduction: A comprehensive study on best practices and policy recommendations. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:889-900. [PMID: 39331361 PMCID: PMC11457427 DOI: 10.1177/0734242x241270951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 09/28/2024]
Abstract
This article investigates the pivotal role of non-hazardous waste landfills in achieving greenhouse gas (GHG) reduction objectives within the European Union (EU).1 This study leverages the experience of key stakeholders in the European landfilling, assesses the efficacy of 'best-in-class' landfill installations, evaluates their potential impact on GHG reduction, and offers concrete recommendations for operators and policymakers. 'Best-in-class' landfills exceed the commonly accepted best practices by implementing all the following practices: (1) an anticipated capture system during the operating phase, (2) prompt installation of the final cover and capture system, with use of an impermeable cover, (3) operated as bioreactor, keeping optimal humidity, (4) adequate maintenance and reporting, (5) recovery of captured gas and (6) treatment of residual methane emissions throughout the waste decomposition process. The main finding is that switching from the actual mix of practices to 'best in class' practices would reduce by ~21 MtCO2eq (-36%) the emissions due to the degradation of waste landfilled between 2024 and 2035, compared to the 'business-as-usual scenario', while also providing a renewable energy source, bringing potential avoided emissions and energy sovereignty. The findings underscore that in addition to implementing the organics diversion and waste reduction targets of the EU, adopting 'best-in class' landfill practices has the potential to bolster energy recovery, mitigate emissions and stimulate biomethane production, thereby advancing the EU environmental goals.
Collapse
|
12
|
Parveen N, Naik SVCS, Vanapalli KR, Sharma HB. Bioplastic packaging in circular economy: A systems-based policy approach for multi-sectoral challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173893. [PMID: 38889821 DOI: 10.1016/j.scitotenv.2024.173893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Bioplastics have long been publicized as a sustainable plastic packaging alternative; however, their widespread industrialization is still embryonic due to complex challenges spanning multiple sectors. This review critically analyses the bioplastic lifecycle and provides a holistic evaluation of both the opportunities and potential trade-offs along their value chain. Their lifecycle is divided into three sectors: 1) resources, extraction, and manufacturing, 2) product consumption which discusses availability, consumer perception, and marketing strategies, and 3) end-of-life (EoL) management which includes segregation, recycling, and disposal. In the production phase, the primary challenges include selection of suitable raw feedstocks and addressing the techno-economic constraints of manufacturing processes. To tackle these challenges, it is recommended to source sustainable feedstocks from innovative, renewable, and waste materials, adopt green synthesis mechanisms, and optimize processes for improved efficiency. The consumption phase encompasses challenges related to market availability, cost competitiveness, and consumer perception of bioplastics. Localizing feedstock sourcing and production, leveraging the economics of scale, and promoting market demand for recycled bioplastics can positively influence the market dynamics. Additionally, dispelling misconceptions about degradability through proper labeling, and employing innovative marketing strategies to enhance consumer perception of the mechanical performance and quality of bioplastics is crucial. During the EoL management phase, major challenges include inadequate awareness, inefficient segregation protocols, and bioplastics with diverse properties that are incompatible with existing waste management infrastructure. Implementing a standardized labeling system with clear representation of suitable EoL techniques and integrating sensors and machine learning-based sorting technologies will improve segregation efficiency. Further, establishing interconnected recycling streams that clearly define the EoL pathways for different bioplastics is essential to ensure circular waste management systems. Finally, designing a comprehensive systems-based policy framework that incorporates technical, economic, environmental, and social drivers is recommended to promote bioplastics as a viable circular packaging solution.
Collapse
Affiliation(s)
- Naseeba Parveen
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India
| | - S V Chinna Swami Naik
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India.
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Sikkim Manipal Institute of Technology, Rangpo, Sikkim 737136, India
| |
Collapse
|
13
|
Stark BM, Tian K, Krause MJ. Investigation of U.S. landfill GHG reporting program methane emission models. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:86-93. [PMID: 38865908 PMCID: PMC11878276 DOI: 10.1016/j.wasman.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
As part of its commitment to the United Nations Framework Convention on Climate Change, the U.S. annually develops a national estimate of methane emissions from municipal solid waste (MSW) landfills by aggregating activity data from each facility. Since 2010, the U.S. has reported a 20 % decrease in MSW landfill emissions despite a 21 % increase in tons disposed. Operator-submitted data were investigated to understand the causes of this decline. In the U.S., operators of landfills with a gas collection and control system (GCCS) calculate their facility's emissions via two separate approaches - (1) first-order decay (FOD) and (2) collection efficiency assumption (CEA) - and select either result to feed into the annual inventory. The FOD model predicts methane generation proportional to waste disposal and that approach calculated a 19 % increase in total methane generated from 2010 to 2022, whereas generation via the CEA approach decreased by 8.9 %. The amount of measured methane collected has increased 7.5 % for the same years. Discrepancies between the two models' generated methane, assumed gas collection efficiencies, and oxidized methane compound into substantive differences in national estimates. Operators more frequently select the CEA method, which results in decreased national estimates. If only the FOD method was used, U.S. MSW landfill emissions would be 1.3-1.7 times greater than current estimates which is similar to recent extrapolations from remote sensing campaigns in the U.S. Both models contain parameters with large inherent uncertainty. Without measurement methods that continuously quantify both point-source and diffuse emissions, an assessment of either equation's accuracy cannot be made.
Collapse
Affiliation(s)
- Benjamin M Stark
- George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Kuo Tian
- George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Max J Krause
- US EPA Office of Research & Development, 26 W Martin Luther King Dr, Cincinnati, OH 45268, USA.
| |
Collapse
|
14
|
Sun M, Yu Y. Precipitation and evaporation affecting landfill gas migration into passive methane oxidation biosystems: Models development and verification. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:214-225. [PMID: 38936305 DOI: 10.1016/j.wasman.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Passive methane oxidation biosystems (PMOBs) are developed as an innovative and cost-effective solution to reduce methane (CH4) emissions from municipal solid waste landfills. A PMOB consists of a methane oxidation layer (MOL) and an underlying gas distribution layer (GDL). The length of unrestricted gas migration (LUGM) has been recently proposed as the design criterion for PMOBs where the LUGM is calculated as the horizontal length along the MOL-GDL interface with the volumetric gas content (θa) exceeding the threshold volumetric gas content (θa,occ). This paper examined water and gas migration within three PMOBs with different MOL-GDL interfaces subject to precipitation and evaporation using verified numerical models. The results show that the use of a single-phase flow model underestimates the LUGM values of the PMOB for heavy precipitation events, and a two-phase flow model should be used to calculate both the LUGM and the total gas mass flow rate into the MOL when designing PMOBs. Both zig-zag and trapezoidal MOL-GDL interfaces can redistribute the gas mass flow rate at the MOL-GDL interface, while the trapezoidal MOL-GDL interface slightly outperforms the zig-zag MOL-GDL interface for enhancing the total gas mass flow rate into the MOL when comparing with the planar MOL-GDL interface. The zig-zag and trapezoidal MOL-GDL interfaces allow gas migration in the upper part of each PMOB segment even when the lower part of each PMOB segment was filled with water, and thus have a potential to minimize hotspot formation.
Collapse
Affiliation(s)
- Minzhe Sun
- State Key Laboratory of Intelligent Geotechnics and Tunnelling, School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Yan Yu
- State Key Laboratory of Intelligent Geotechnics and Tunnelling, School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| |
Collapse
|
15
|
Folino A, Gentili E, Komilis D, Calabrò PS. Biogas recovery from a state-of-the-art Italian landfill. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122040. [PMID: 39094408 DOI: 10.1016/j.jenvman.2024.122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The Fossetto landfill has operated in the municipality of Monsummano Terme (Tuscany, Italy) since 1988, being considered a state-of-the-art landfill for 35 years. Initially, Fossetto acted as a conventional sanitary landfill for mixed municipal solid waste. With changes in regulations and technology, the Fossetto landfill was gradually equipped with a biogas recovery and valorisation system, a mechanical-biological treatment (MBT) plant in 2003 and a reverse osmosis leachate treatment plant, so the concentrated leachate has been recirculated back into the landfill body since 2006. Long-term biogas monitoring, enables the calculation of the efficiency of biogas recovery using a rather simplified methodology, which was assessed as being approximately 40% over the prior ten-years period. This value was lower than expected, confirming the results of previous studies and indicating the need of attributes. Applying the USEPA LandGEM model showed that the adoption of MBT substantially reduced biogas generation yields and rates by up to approximately 90% which was facilitated by the adoption of landfill leachate recirculation transforming the conventional landfill into a bioreactor. Detailed fugitive emission monitoring has allowed the evaluation of the impact of the cover type (final or temporary) and the emissions hotspots. From these results, possible remedial actions have been suggested including the more frequent monitoring of the fugitive emissions using simple and cost-effective methods (e.g., UAVs). Approximately 50% of fugitive emissions can be attributed to emissions hotspots, which reduce biogas recovery and the efficiency of temporary covers.
Collapse
Affiliation(s)
- Adele Folino
- Department of Civil, Energy, Environmental and Materials Engineering, Università Mediterranea di Reggio Calabria, Via Zehender - loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Emiliano Gentili
- CMSA Cooperativa Muratori Sterratori e Affini, Via L. Ariosto 3, 51016, Montecatini Terme, PT, Italy
| | - Dimitrios Komilis
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Paolo S Calabrò
- Department of Civil, Energy, Environmental and Materials Engineering, Università Mediterranea di Reggio Calabria, Via Zehender - loc. Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
16
|
Verma G, Chetri JK, Reddy KR. Evaluating the efficacy of biogeochemical cover system in mitigating landfill gas emissions: A large-scale laboratory simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50782-50803. [PMID: 39098970 DOI: 10.1007/s11356-024-34558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Municipal solid waste (MSW) landfills are a significant source of methane (CH4) emissions in the United States, contributing to global warming. Current landfill gas (LFG) management methods, like the landfill cover system and LFG collection system, do not entirely prevent LFG release. Biocovers have the potential to reduce CH4 emissions through microbial oxidation. However, LFG also contains carbon dioxide (CO2) and trace hydrogen sulfide (H2S) depending on waste composition, temperature, moisture content, and age of waste. An innovative biogeochemical cover (BGCC) was developed to tackle these concerns. This cover comprises a biochar-based biocover layer overlaid with a basic oxygen furnace (BOF) steel slag layer. The biochar-based biocover layer oxidizes CH4 emissions, while the BOF slag layer reduces CO2 and H2S through carbonation and sulfidation reaction mechanisms. The BGCC system's field performance remains unexamined. Therefore, a large-scale tank setup simulating near-field conditions was developed to evaluate the BGCC system's ability to mitigate CH4, CO2, and H2S from LFG simultaneously. Synthetic LFG was passed through the BGCC in five distinct phases, each designed to simulate the varying gas compositions and flux rates typical of MSW landfill. Gas profiles along the depth were monitored during each phase, and gas removal efficiency was measured. After testing, biocover and BOF slag samples were extracted to analyze physico-chemical properties. Batch tests were also conducted on samples extracted from the biocover and BOF slag layers to determine potential CH4 oxidation rates and residual CO2 sequestration capacity. The results showed that the BGCC system's CH4 removal efficiency decreased with higher CH4 flux rates, achieving its highest removal (74.7-79.7%) at moderate influx rates (23.9-25.5 g CH4/m2-day) and reducing to its lowest removal (27.4%) at the highest influx rate (57.5 g CH4/m2-day). Complete H2S removal occurred during Phase 3 in the biocover layer of BGCC system. CH4 oxidation rates were highest near the upper (277.9 µg CH4/g-day) and lowest in the deeper region of the biocover layer. In the tank experiment, CO2 breakthrough occurred after 156 days due to drying of the BOF slag layer, with an average residual carbonation capacity of 46 gCO2/kg slag after moisture adjustment. Overall, the BGCC system effectively mitigated LFG emissions, including CH4, CO2, and H2S, at moderate flux rates, showing promise as a comprehensive solution for LFG management.
Collapse
Affiliation(s)
- Gaurav Verma
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Jyoti K Chetri
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Krishna R Reddy
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| |
Collapse
|
17
|
Li G, Liu S, Jiao W, Feng S, Zhan L, Chen Y. Numerical investigation and optimal design of capillary barrier cover with passive gas collection pipes on the performance at limiting landfill gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172421. [PMID: 38614334 DOI: 10.1016/j.scitotenv.2024.172421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Relying solely on soil properties may not fully ensure the performance of capillary barrier covers at limiting landfill gas (LFG) emissions. This study proposed to install passive gas collection pipes in the coarse-grained soil layers of capillary barrier covers to enhance their performance at limiting LFG emissions. First, the LFG generation rate of municipal solid waste and its influencing factors were analyzed based on empirical formulas. This information provided necessary bottom boundary conditions for the analyses of LFG transport through capillary barrier covers with passive gas collection pipes (CBCPPs). Then, numerical simulations were conducted to investigate the LFG transport properties through CBCPPs and reveal relevant influencing factors. Finally, practical suggestions were proposed to optimize the design of CBCPPs. The results indicated that the maximum whole-site LFG generation rate occurred at the end of landfilling operation. The gas collection efficiency (E) of CBCPPs was mainly controlled by the ratio of the intrinsic permeability between the coarse- and fine-grained soil (K2/K1) and the laying spacing between gas collection pipes (D). E increased as K2/K1 increased but decreased as D increased. An empirical expression for estimating E based on K2/K1 and D was proposed. In practice, CBCPPs were supposed to be constructed once the landfilling operation finished. It is best to select the fine- and coarse-grained soils with K2/K1 exceeding 10,000 to construct CBCPPs.
Collapse
Affiliation(s)
- Guangyao Li
- Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China; Chongqing Research Institute, Beijing University of Technology, Chongqing 401151, China; MOE Key Laboratory of Soft Soils and Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Sida Liu
- Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China; Chongqing Research Institute, Beijing University of Technology, Chongqing 401151, China
| | - Weiguo Jiao
- School of Civil Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Song Feng
- College of Civil Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Liangtong Zhan
- MOE Key Laboratory of Soft Soils and Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yunmin Chen
- MOE Key Laboratory of Soft Soils and Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Lienhart PH, Rohra V, Clement C, Toppen LC, DeCola AC, Rizzo DM, Scarborough MJ. Landfill intermediate cover soil microbiomes and their potential for mitigating greenhouse gas emissions revealed through metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171697. [PMID: 38492594 DOI: 10.1016/j.scitotenv.2024.171697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Landfills are a major source of anthropogenic methane emissions and have been found to produce nitrous oxide, an even more potent greenhouse gas than methane. Intermediate cover soil (ICS) plays a key role in reducing methane emissions but may also result in nitrous oxide production. To assess the potential for microbial methane oxidation and nitrous oxide production, long sequencing reads were generated from ICS microbiome DNA and reads were functionally annotated for 24 samples across ICS at a large landfill in New York. Further, incubation experiments were performed to assess methane consumption and nitrous oxide production with varying amounts of ammonia supplemented. Methane was readily consumed by microbes in the composite ICS and all incubations with methane produced small amounts of nitrous oxide even when ammonia was not supplemented. Incubations without methane produced significantly less nitrous oxide than those incubated with methane. In incubations with methane added, the observed specific rate of methane consumption was 0.776 +/- 0.055 μg CH4 g dry weight (DW) soil-1 h-1 and the specific rate of nitrous oxide production was 3.64 × 10-5 +/- 1.30 × 10-5 μg N2O g DW soil-1 h-1. The methanotrophs Methylobacter and an unclassified genus within the family Methlyococcaceae were present in the original ICS samples and the incubation samples, and their abundance increased during incubations with methane. Genes encoding particulate methane monooxygenase/ ammonia monooxygenase (pMMO) were much more abundant than genes encoding soluble methane monooxygenase (sMMO) across the landfill ICS. Genes encoding proteins that convert hydroxylamine to nitrous oxide were not highly abundant in the ICS or incubation metagenomes. In total, these results suggest that although ammonia oxidation via methanotrophs may result in low levels of nitrous oxide production, ICS microbial communities have the potential to greatly reduce the overall global warming potential of landfill emissions.
Collapse
Affiliation(s)
- Peyton H Lienhart
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Venus Rohra
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Courtney Clement
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Lucinda C Toppen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States.
| | - Amy C DeCola
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Donna M Rizzo
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States; Gund Institute for Environment, University of Vermont, Burlington, VT, United States.
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States; Gund Institute for Environment, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
19
|
Li R, Xi B, Wang X, Li Y, Yuan Y, Tan W. Anaerobic oxidation of methane in landfill and adjacent groundwater environments: Occurrence, mechanisms, and potential applications. WATER RESEARCH 2024; 255:121498. [PMID: 38522398 DOI: 10.1016/j.watres.2024.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Landfills remain the predominant means of solid waste management worldwide. Widespread distribution and significant stockpiles of waste in landfills make them a significant source of methane emissions, exacerbating climate change. Anaerobic oxidation of methane (AOM) has been shown to play a critical role in mitigating methane emissions on a global scale. The rich methane and electron acceptor environment in landfills provide the necessary reaction conditions for AOM, making it a potentially low-cost and effective strategy for reducing methane emissions in landfills. However, compared to other anaerobic habitats, research on AOM in landfill environments is scarce, and there is a lack of analysis on the potential application of AOM in different zones of landfills. Therefore, this review summarizes the existing knowledge on AOM and its occurrence in landfills, analyzes the possibility of AOM occurrence in different zones of landfills, discusses its potential applications, and explores the challenges and future research directions for AOM in landfill management. The identification of research gaps and future directions outlined in this review encourages further investigation and advancement in the field of AOM, paving the way for more effective waste stabilization, greenhouse gas reduction, and pollutant mitigation strategies in landfills.
Collapse
Affiliation(s)
- Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xiaowei Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
20
|
Huang D, Chen Y, Bai X, Zhang R, Chen Q, Wang N, Xu Q. Methane removal efficiencies of biochar-mediated landfill soil cover with reduced depth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120487. [PMID: 38422848 DOI: 10.1016/j.jenvman.2024.120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Biochar amendment for landfill soil cover has the potential to enhance methane removal efficiency while minimizing the soil depth. However, there is a lack of information on the response of biochar-mediated soil cover to the changes in configuration and operational parameters during the methane transport and transformation processes. This study constructed three biochar-amended landfill soil covers, with reduced soil depths from 75 cm (C2) to 55 cm (C3) and 45 cm (C4), and the control group (C1) with 75 cm and no biochar. Two operation phases were conducted under two soil moisture contents and three inlet methane fluxes in each phase. The methane removal efficiency increased for all columns along with the increase in methane flux. However, increasing moisture content from 10% to 20% negatively influenced the methane removal efficiency due to mass transfer limitation when at a low inlet methane flux, especially for C1; while this adverse effect could be alleviated by a high flux. Except for the condition with low moisture content and flux combination, C3 showed comparable methane removal efficiency to C2, both dominating over C1. As for C4 with only 45 cm, a high moisture content combined with a high methane flux enabled its methane removal efficiency to be competitive with other soil depths. In addition to the geotechnical reasons for gas transport processes, the evolution in methanotroph community structure (mainly type I methanotrophs) induced by biochar amendment and variations in soil properties supplemented the biological reasons for the varying methane removal efficiencies.
Collapse
Affiliation(s)
- Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China; School of Ecology, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 0020518107, China
| | - Yuke Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Rujie Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Yi SC, Heijbroek A, Cutz L, Pillay S, de Jong W, Abeel T, Gebert J. Effects of fir-wood biochar on CH 4 oxidation rates and methanotrophs in landfill cover soils packed at three different proctor compaction levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167951. [PMID: 37865253 DOI: 10.1016/j.scitotenv.2023.167951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Application of biochar to landfill cover soils can purportedly improve methane (CH4) oxidation rates, but understanding the combined effects of soil texture, compaction, and biochar on the activity and composition of the methanotrophs is limited. The amendment of wood biochar on two differently textured landfill cover soils at three compaction levels of the Proctor density was explored by analyzing changes in soil physical properties relevant to methane oxidation, the effects on CH4 oxidation rates, and the composition of the methanotrophic community. Loose soils with and without biochar were pre-incubated to equally elevate the CH4 oxidation rates. Hereafter, soils were compacted and re-incubated. Methane oxidation rates, gas diffusivity, water retention characteristics, and pore size distribution were analyzed on the compacted soils. The relative abundance of methanotrophic bacteria (MOB) was determined at the end of both the pre-incubation and incubation tests of the packed samples. Biochar significantly increased porosity at all compaction levels, enhancing diffusion coefficients. Also, a re-distribution in pore sizes was observed. Increased gas diffusivity from low compaction and amendment of biochar, though, did not reflect higher methane oxidation rates due to high diffusive oxygen fluxes over the limited height of the compacted soil specimens. All soils, with and without biochar, were strongly dominated by Type II methanotrophs. In the sandy soil, biochar amendment strongly increased MOB abundance, which could be attributed to a corresponding increase in the relative abundance of Methylocystis species, while no such response was observed in the clayey soil. Compaction did not change the community composition in either soil. Fir-wood biochar addition to landfill cover soils may not always enhance methanotrophic activity and hence reduce fugitive methane emissions, with the effect being soil-specific. However, especially in finer and more compacted soils, biochar amendment can maintain soil diffusivity above a critical level, preventing the collapse of methanotrophy.
Collapse
Affiliation(s)
- Susan C Yi
- Delft University of Technology, Faculty of Civil and Geosciences Engineering, Stevinweg 1, 2628 CN Delft, Netherlands.
| | - Anne Heijbroek
- Delft University of Technology, Faculty of Civil and Geosciences Engineering, Stevinweg 1, 2628 CN Delft, Netherlands
| | - Luis Cutz
- Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | - Stephanie Pillay
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Van Mourik Broekmanweg 6, 2628 XE Delft, Netherlands
| | - Wiebren de Jong
- Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | - Thomas Abeel
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Van Mourik Broekmanweg 6, 2628 XE Delft, Netherlands; Broad Institute of MIT and Harvard, Infectious Disease and Microbiome Program, 415 Main St., Cambridge, MA 02142, USA
| | - Julia Gebert
- Delft University of Technology, Faculty of Civil and Geosciences Engineering, Stevinweg 1, 2628 CN Delft, Netherlands
| |
Collapse
|
22
|
Zhang J, Li X, Qian A, Xu X, Lv Y, Zhou X, Yang X, Zhu W, Zhang H, Ding Y. Effects of operating conditions on the in situ control of sulfur-containing odors by using a novel alternative landfill cover and its transformation mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7959-7976. [PMID: 38175505 DOI: 10.1007/s11356-023-31721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Sulfur-containing gases are main sources of landfill odors, which has become a big issue for pollution to environment and human health. Biocover is promising for treating landfill odors, with advantages of durability and environmental friendliness. In this study, charcoal sludge compost was utilized as the main effective component of a novel alternative landfill cover and the in situ control of sulfur-containing odors from municipal solid waste landfilling process was simulated under nine different operating conditions. Results showed that five sulfur-containing odors (hydrogen sulfide, H2S; methyl mercaptan, CH3SH; dimethyl sulfide, CH3SCH3; ethylmercaptan, CH3CH2SH; carbon disulfide, CS2) were monitored and removed by the biocover, with the highest removal efficiencies of 77.18% for H2S, 87.36% for CH3SH, and 92.19% for CH3SCH3 in reactor 8#, and 95.94% for CH3CH2SH and 94.44% for CS2 in reactor 3#. The orthogonal experiment showed that the factors influencing the removal efficiencies of sulfur-containing odors were ranked from high to low as follows: temperature > weight ratio > humidity content. The combination of parameters of 20% weight ratio, 25°C temperature, and 30% water content was more recommended based on the consideration of the removal efficiencies and economic benefits. The mechanisms of sulfur conversion inside biocover were analyzed. Most organic sulfur was firstly degraded to reduced sulfides or element sulfur, and then oxidized to sulfate which could be stable in the layer as the final state. In this process, sulfur-oxidizing bacteria play a great role, and the distribution of them in reactor 1#, 5#, and 8# was specifically monitored. Bradyrhizobiaceae and Rhodospirillaceae were the dominant species which can utilize sulfide as substance to produce sulfate and element sulfur, respectively. Based on the results of OUTs, the biodiversity of these sulfur-oxidizing bacteria, these microorganisms, was demonstrated to be affected by the different parameters. These results indicate that the novel alternative landfill cover modified with bamboo charcoal compost is effective in removing sulfur odors from landfills. Meanwhile, the findings have direct implications for addressing landfill odor problems through parameter adjustment.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xiaowen Li
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Aiai Qian
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xianwen Xu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ya Lv
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xinrong Zhou
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xinrui Yang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Weiqin Zhu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Hangjun Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ying Ding
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
23
|
Al-Heetimi OT, Van De Ven CJC, Van Geel PJ, Rayhani MT. Impact of temperature on the performance of compost-based landfill biocovers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118780. [PMID: 37611345 DOI: 10.1016/j.jenvman.2023.118780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Methane (CH4) emissions from landfills are a major contributor to global greenhouse gas emissions. Compost-based biocovers offer a viable approach to reduce CH4 emissions from landfills; however, the effectiveness in climates with varying temperatures is not well understood. The methane removal performances of two compost-based biocover materials (food and yard waste compost) were examined under different temperature conditions using laboratory column experiments. A reactive transport model was used to simulate the experimental results to develop a better quantitative understanding of the effect of temperature on overall methane removal efficiency. As expected, experimental results indicated that the oxidation rate was influenced by temperature, as it was reduced when the temperature decreased from 22 °C to 8 °C. However, some oxidation was observed at a lower temperature, which was confirmed by CO2 concentrations above the initial level and the observed temperatures above the exposure temperature along the height of biocover column. Furthermore, results showed that when the compost-based materials were subjected to 8 °C and then increased to 22 °C, methane oxidation within the material recovered quickly and returned to similar oxidation rates as observed before the temperature was reduced, suggesting that compost-based biocovers may not be affected by cyclic temperature variations when used in colder climates. Methane oxidation capacity was limited by the maximum oxidation rate, the biocover porosity, and the gas saturation profile that affects residence time and overall methane oxidation in the columns. The model results show that the CH4 oxidation rate was reduced by one order of magnitude when the temperature decreased from 22 °C to 8 °C. Therefore, the calculated Q10 values were 4.19 and 5.18 for the food and yard waste compost, respectively. Overall, compost-based landfill biocovers, such as food and yard waste compost, are capable of mitigate CH4 emissions from old and small landfills under different temperature conditions.
Collapse
Affiliation(s)
- Oday T Al-Heetimi
- Carleton University, Dept. of Civil & Environmental Engineering, Ottawa, ON, K1S 5B6, Canada
| | - Cole J C Van De Ven
- Carleton University, Dept. of Civil & Environmental Engineering, Ottawa, ON, K1S 5B6, Canada.
| | - Paul J Van Geel
- Carleton University, Dept. of Civil & Environmental Engineering, Ottawa, ON, K1S 5B6, Canada
| | - Mohammad T Rayhani
- Carleton University, Dept. of Civil & Environmental Engineering, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
24
|
Shangjie C, Yongqiong W, Fuqing X, Zhilin X, Xiaoping Z, Xia S, Juan L, Tiantao Z, Shibin W. Synergistic effects of vegetation and microorganisms on enhancing of biodegradation of landfill gas. ENVIRONMENTAL RESEARCH 2023; 227:115804. [PMID: 37003556 DOI: 10.1016/j.envres.2023.115804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
The uncontrolled release of landfill gas represents a significant hazard to both human health and ecological well-being. However, the synergistic interactions of vegetation and microorganisms can effectively mitigate this threat by removing pollutants. This study provides a comprehensive review of the current status of controlling landfill gas pollution through the process of revegetation in landfill cover. Our survey has identified several common indicator plants such as Setaria faberi, Sarcandra glabra, and Fraxinus chinensis that grow in covered landfill soil. Local herbaceous plants possess stronger tolerance, making them ideal for the establishment of closed landfills. Moreover, numerous studies have demonstrated that cover plants significantly promote methane oxidation, with an average oxidation capacity twice that of bare soil. Furthermore, we have conducted an analysis of the interrelationships among vegetation, landfill gas, landfill cover soil, and microorganisms, thereby providing a detailed understanding of the potential for vegetation restoration in landfill cover. Additionally, we have summarized studies on the rhizosphere effect and have deduced the mechanisms through which plants biodegrade methane and typical non-methane pollutants. Finally, we have suggested future research directions to better control landfill gas using vegetation and microorganisms.
Collapse
Affiliation(s)
- Chen Shangjie
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wang Yongqiong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xu Fuqing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xing Zhilin
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Zhang Xiaoping
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Su Xia
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Li Juan
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China
| | - Zhao Tiantao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wan Shibin
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
25
|
Ghosh A, Kumar S, Das J. Impact of leachate and landfill gas on the ecosystem and health: Research trends and the way forward towards sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117708. [PMID: 36913859 DOI: 10.1016/j.jenvman.2023.117708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Globally, a whopping increase in solid waste (SW) generation and the risks posed by climate change are major concerns. A wide spread practice for disposal of municipal solid waste (MSW) is landfill, which swells with population and urbanization. Waste, if treated properly, can be used to produce renewable energy. The recent global event COP 27 mainly stressed on production of renewable energy to achieve the Net Zero target. The MSW landfill is the most significant anthropogenic source of methane (CH4) emission. On one side, CH4 is a greenhouse gas (GHG), and on the other it is a main component of biogas. Wastewater that collects due to rainwater percolation in landfills creates landfill leachate. There is a need to understand global landfill management practices thoroughly for implementation of better practices and policies related to this threat. This study critically reviews recent publications on leachate and landfill gas. The review discusses leachate treatment and landfill gas emissions, focusing on the possible reduction technology of CH4 emission and its impact on the environment. Mixed leachate will benefit from the combinational therapy method because of its intricate combination. Implementation of circular material management, entrepreneurship ideas, blockchain, machine learning, LCA usage in waste management, and economic benefits from CH4 production have been emphasized. Bibliometric analysis of 908 articles from the last 37 years revealed that industrialized nations dominate this research domain, with the United States having the highest number of citations.
Collapse
Affiliation(s)
- Arpita Ghosh
- Indian Institute of Management Sirmaur, Paonta Sahib, 173 025, Himachal Pradesh, India
| | - Sunil Kumar
- College of Sciences and Engineering, University of Tasmania, Launceston Campus, Australia Private Bag 51, Hobart, TAS, 7001, Australia.
| | - Jit Das
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713 209, India
| |
Collapse
|
26
|
Scheutz C, Duan Z, Møller J, Kjeldsen P. Environmental assessment of landfill gas mitigation using biocover and gas collection with energy utilisation at aging landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 165:40-50. [PMID: 37080016 DOI: 10.1016/j.wasman.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
A life cycle-based environmental assessment was conducted on the mitigation of landfill gas emissions, by implementing biocover and gas collection along with energy utilisation at aging landfills. Based on recent studies about gas generation at Danish landfills, the efficiency of the mitigation technologies involved and the composition of substituted energy production, 15 scenarios were modelled using the EASETECH life cycle assessment model, through which potential environmental impacts in the category "Climate change" were calculated. In all scenarios, biocover and gas collection systems with energy utilisation led to significant environmental improvements compared to the baseline scenario with no emission mitigation action. Scenarios representing biocovers with methane oxidation efficiencies between 70 and 90 % were environmentally superior in terms of climate change impact - in comparison to scenarios with 20-30 years of gas collection and energy utilisation (collection efficiencies between 40 and 80 %). Combining gas collection with energy utilisation and the subsequent installation of a biocover saw major improvements in comparison to where only gas collection and energy utilisation were in effect. Overall, it can be concluded that a biocover under the given assumptions is environmentally more appropriate than gas collection and utilisation at aging landfills, mainly due to methane emissions escaping through the landfill cover during and after the gas collection period playing a crucial role in the latter situation. Maintaining high methane oxidation efficiency for a biocover throughout the lifetime of a landfill is vital for reducing environmental impacts.
Collapse
Affiliation(s)
- C Scheutz
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark.
| | - Z Duan
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - J Møller
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - P Kjeldsen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Ma J, Gu Y, Liu L, Zhang Y, Wei M, Jiang A, Liu X, He C. Study on the effect of landfill gas on aerobic municipal solid waste degradation: Lab-scale model and tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161875. [PMID: 36709894 DOI: 10.1016/j.scitotenv.2023.161875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Aeration is of great importance in landfill remediation. However, most existing studies on aerobic waste degradation ignore the presence of landfill gases. In this study, gas characteristics during aerobic waste degradation in the presence of landfill gas in lab-scale lysimeters were investigated. Oxygen (O2) was intermittently injected into municipal solid waste. Changes in the gas concentration and reaction rate of methane (CH4), carbon dioxide (CO2), and O2 during the reaction process were monitored and calculated. The results showed that all reactions, including aerobic degradation, CH4 oxidation, and anaerobic waste degradation, occurred simultaneously during landfill aeration. The maximum O2 consumption rate was 0.013 mol day-1 kg-1 dry waste. CH4 production was stimulated after the O2 content was insufficient to sustain the aerobic environment. Higher CH4 production was likely attributed to the remaining substrate and biomass from dead aerobic microorganisms decomposed by growing anaerobic microorganisms. Based on the biochemical reaction and principle of mass conservation, a gas balance model during waste aeration was established to analyze the proportions of aerobic waste degradation, CH4 oxidation, and anaerobic waste degradation. The CH4 oxidation reaction was more advantageous than the aerobic waste degradation reaction during aeration. With an increase in gas injection times, the anaerobic reaction gradually weakened. The maximum proportion of CH4 oxidation reaction could achieve at 21.4 % during aeration, which is of great significance for the waste degradation reaction. The maximum proportion of aerobic waste degradation and the minimum proportion of anaerobic waste degradation were approximately 16.0 % and 74.2 %, respectively. The results show that landfill gas should be considered in the progress of landfill aeration. This study provides a novel approach for calculating the proportion of reactions during landfill aeration, which deepens the understanding of the reaction process and contributes to the design of aerobic landfill projects.
Collapse
Affiliation(s)
- Jun Ma
- Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuqi Gu
- Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan 430071, China.
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingli Wei
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; Jiangsu Institute of Zoneco Co., Ltd., Yixing 214200, China
| | - Annan Jiang
- Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Xiang Liu
- Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China
| | - Chao He
- Shenzhen Metro Construction Group Co., Ltd., Shenzhen 518026, China
| |
Collapse
|
28
|
Randazzo A, Zorzi F, Venturi S, Bicocchi G, Viti G, Tatàno F, Tassi F. Degradation of biogas in a simulated landfill cover soil at laboratory scale: Compositional changes of main components and volatile organic compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:229-241. [PMID: 36577274 DOI: 10.1016/j.wasman.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A laboratory experiment lasting 28 days was run to simulate a typical landfill system and to investigate the compositional changes affecting the main components (CH4, CO2, and H2) and nonmethane volatile organic compounds from biogas generated by anaerobic digestion of food waste and passing through a soil column. Gas samples were periodically collected from both the digester headspace and the soil column at increasing distances from the biogas source. CH4 and H2 were efficiently degraded along the soil column. The isotopic values of δ13C measured in CH4 and CO2 from the soil column were relatively enriched in 13C compared to the biogas. Aromatics and alkanes were the most abundant groups in the biogas samples. Among these compounds, alkylated benzenes and long-chain C3+ alkanes were significantly degraded within the soil column, whereas benzene and short-chain alkanes were recalcitrant. Terpene and O-substituted compounds were relatively stable under oxidising conditions. Cyclic, alkene, S-substituted, and halogenated compounds, which exhibited minor amounts in the digester headspace, were virtually absent in the soil column. These results pointed out how many recalcitrant potentially toxic and polluting compounds tend to be relatively enriched along the soil column, claiming action to minimise diffuse landfill gas (LFG) emissions. The proposed experimental approach represents a reliable tool for investigating the attenuation capacities of landfill cover soils for LFG components and developing optimised covers by adopting proper soil treatments and operating conditions to improve their degradation efficiencies.
Collapse
Affiliation(s)
- Antonio Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy.
| | - Francesca Zorzi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gregorio Viti
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Fabio Tatàno
- DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
29
|
Kissas K, Kjeldsen P, Ibrom A, Scheutz C. The effect of barometric pressure changes on the performance of a passive biocover system, Skellingsted landfill, Denmark. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:216-226. [PMID: 36493665 DOI: 10.1016/j.wasman.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the performance of a passive biocover system at a Danish landfill. The overall methane oxidation efficiency of the system was assessed by comparing annual whole-site methane emissions before and after biocover installation. Annual whole-site methane emission predictions were calculated based on empirical models developed by a discrete number of tracer gas dispersion measurements. Moreover, a series of field campaigns and continuous flux measurements was carried out to evaluate the functionality of an individual biowindow. The results indicated that biocover system performance highly depended on barometric pressure variations. Under decreasing barometric pressure, estimated efficiency declined to 20%, while under increasing barometric pressure, nearly 100% oxidation was achieved. In-situ measurements on a specific biowindow showed a similar oxidation efficiency pattern in respect to barometric pressure changes despite the difference in spatial representation. Eddy covariance results revealed pronounced seasonal variability in the investigated biowindow, measuring higher methane fluxes during the cold period compared to the warm period. Results from the in-situ campaigns confirmed this finding, reporting a threefold increase in the biowindow's methane oxidation capacity from April to May. The annual average oxidation efficiency of the system was estimated to range between 51% and 65%, taking into consideration the impact of changes in barometric pressure and seasonal variability. This indicated an annual reduction in landfill's methane emissions between 24 and 35 tonnes. This study revealed the challenge facing current approaches in documenting accurately the performance of a passive biocover system, due to the short-term variability of oxidation efficiency, which is influenced by barometric pressure changes.
Collapse
Affiliation(s)
- K Kissas
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - P Kjeldsen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - A Ibrom
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Scheutz
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
30
|
Nelson B, Zytner RG, Dulac Y, Cabral AR. Mitigating fugitive methane emissions from closed landfills: A pilot-scale field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158351. [PMID: 36049680 DOI: 10.1016/j.scitotenv.2022.158351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Emissions from Canadian landfills account for 20 % of national greenhouse gas emissions, a portion of which occur as fugitive emissions. Depending on management factors, significant quantities of landfill gas are emitted during the operational phase and over several decades following landfill closure. Successful landfill reclamation developments depend on low-maintenance solutions to manage fugitive emissions. Designing passive methane oxidation biosystems (PMOBs) to complement landfill covers has become a promising complementary strategy. Achieving year-round methane oxidation in cold climates, requires specific conditions for survival of methanotrophic bacteria (responsible for methane oxidation), including optimal temperature, moisture and sufficient supply of O2 and CH4. The objective of this study was to design, construct and monitor a fully instrumented pilot-scale PMOB capable of abating fugitive methane emissions from a closed landfill in the city of Kitchener, Ontario, now a public park. Factors considered in the design include type of PMOB media, methane loading rates, hydraulic behaviour and ambient temperature. Methane oxidation efficiencies between 73 and 100 % were achieved during the monitoring period. The goal was to develop a long-term solution to mitigate fugitive methane emissions at this closed landfill. Successful mitigation will provide a low-maintenance, high impact technology that could be adopted by the municipality for abatement of CH4 emissions at other landfills under its management. The results will also be useful to landfill designers, operators, and regulatory bodies. Overall, the PMOB construction and monitoring results supported evidence that the designed PMOB was capable of abating most of the CH4 loading. The paper describes several steps taken to design, install and operate the PMOB.
Collapse
Affiliation(s)
- Brienne Nelson
- Dillon Consulting Ltd. (formerly with Univ. of Guelph), Canada
| | - Richard G Zytner
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Yohan Dulac
- Dept. of Civil and Building Eng., Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Alexandre R Cabral
- Dept. of Civil and Building Eng., Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
31
|
Chen J, Wang Y, Shao L, Lü F, Zhang H, He P. In-situ removal of odorous NH 3 and H 2S by loess modified with biologically stabilized leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116248. [PMID: 36126598 DOI: 10.1016/j.jenvman.2022.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The loess regions distribute widely in Northwestern China, North America and Eastern Europe. For these regions, landfill is a suitable technology for solid waste treatment. However, as a landfill cover material, loess is not very effective in controlling the emission of malodorous gases. The present study modified loess with biologically stabilized leachate, and investigated the capacities and mechanisms of the modified loess to remove odorous NH3 and H2S. The removal rates of NH3 and H2S at different acclimation time, targeted gas concentrations and temperatures were measured. It was found that the NH3 removal rate of the modified loess was up to 0.08 μmol/(g·hr), which was 1.8 times that of the virgin loess. The H2S removal rate of the modified loess was up to 1.74 μmol/(g·hr), which was 1.25 times that of the virgin loess. The half-meter loess layer modified by biologically stabilized leachate achieved nearly 100% removal of H2S. The improvement of NH3 and H2S removal ability was mainly due to the enrichment of relevant microorganisms. This work proposed a novel method for in-situ control of malodorous pollutants in landfills in the loess regions, and proved that the in-situ removal of NH3 and H2S using the loess modified with biologically stabilized leachate is feasible and cost-effective.
Collapse
Affiliation(s)
- Junlan Chen
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Yujing Wang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
32
|
Wang Q, Gu X, Tang S, Mohammad A, Singh DN, Xie H, Chen Y, Zuo X, Sun Z. Gas transport in landfill cover system: A critical appraisal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116020. [PMID: 36104890 DOI: 10.1016/j.jenvman.2022.116020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Landfill gas (LFG) emission is gaining more attention from the scientific fraternity and policymakers recently due to its threat to the atmosphere and human health of the populace living in surrounding premises. Though landfill cover (LFC) (viz., daily, intermittent and final cover) is widely used by landfill operators to mitigate or reduce these emissions, their overall performance is still under question. A critical analysis of available literature, primarily pertaining to (i) the composition of the landfill gases and their migration in the LFC system, (ii) experimental and mathematical investigations of the transport mechanism of gas and (iii) the impact of additives to cover soils on transport and fate of gas, has been conducted and presented in this manuscript. Investigation of the efficiency of modified soil was mainly focused on laboratory test. More field tests and application of amended cover soils should be conducted and promoted further. Studies on nitrous oxide and emerging pollutants, including poly-fluoroalkyl substances transport in landfill cover system are limited and need further research. The transport mechanisms of these unconventional contaminants should be considered regarding the selection of LFC materials including geomembrane and geosynthetic clay liners. The existing analytical and numerical models can provide a basic understanding of LFG transport mechanisms and are able to predict the migration behaviour of LFG; however, there are still knowledge gaps concerning the interaction between different species of the gas molecule when modeling multi-component gas transport. Gas transport through fractured cover should also be considered when evaluating LFG emission in the future. Simplified design method for landfill cover system regarding LFG emission based on analytical models should be proposed. Overall, mathematical models combined with experiments can facilitate more visualized and intensive insights, which would be instrumental in devising climate adaptive landfill covers.
Collapse
Affiliation(s)
- Qiao Wang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310007, China
| | - Xiting Gu
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Architectural Design and Research Institute of Zhejiang University Co. Ltd, 148 Tianmushan Road, Hangzhou, China
| | - Suqin Tang
- Hangzhou Environmental Group, 138-1 Linban Road, Hangzhou, 310022, China
| | - Arif Mohammad
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Devendra Narain Singh
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Haijian Xie
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310007, China; College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yun Chen
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310007, China; Architectural Design and Research Institute of Zhejiang University Co. Ltd, 148 Tianmushan Road, Hangzhou, China
| | - Xinru Zuo
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hangzhou, 310007, China; College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Zhilin Sun
- Ocean College, Zhejiang University, Zheda Road, Zhoushan, 316021, China; College of Hydraulic Engineering and Architecture, Tarim University, Alaer, 843300, China
| |
Collapse
|
33
|
Duan Z, Scheutz C, Kjeldsen P. Mitigation of methane emissions from three Danish landfills using different biocover systems. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:156-167. [PMID: 35738145 DOI: 10.1016/j.wasman.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The establishment of biocover systems is an emerging methodology in reducing methane (CH4) emissions from landfills. This study investigated the performance of three biocover systems with different designs (biowindow and passively and actively loaded biofilters) in mitigating CH4 emissions from three landfills in Denmark. A series of field tests were carried out to evaluate the functionality of each system, and total CH4 emissions from relevant landfill sections or the entire landfill were measured before and after biocover implementation. Surface CH4 concentration screening and local CH4 fluxes showed generally low emissions from the biowindow/biofilters (mostly < 5 g CH4 m-2 d-1), although some hotspots were identified on two actively loaded biofilters. One passively loaded biofilter exhibited high CH4 emissions, mainly due to gas overloading into the system. Gas concentration profiles measured at different locations suggested uneven gas distribution in the biofilters, and significant CH4 oxidation occurred in both the gas distribution layer (when oxygen was fed into the system) and the CH4 oxidation layer. High CH4 oxidation efficiencies of above 95% were found in all systems except for one biofilter (55%). Whole-site emission measurements showed CH4 reduction efficiencies between 29 and 72% after implementing biocover systems at the three landfills, suggesting that they were efficient in reducing CH4 emissions. The most challenging task for the passively loaded biocover systems was to control gas flow and secure homogenous gas distribution, while for actively loaded biocovers, it might be more important to eliminate emission hotspots for better functionality.
Collapse
Affiliation(s)
- Zhenhan Duan
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Scheutz
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Peter Kjeldsen
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
34
|
Qin Y, Xi B, Sun X, Zhang H, Xue C, Wu B. Methane Emission Reduction and Biological Characteristics of Landfill Cover Soil Amended With Hydrophobic Biochar. Front Bioeng Biotechnol 2022; 10:905466. [PMID: 35757810 PMCID: PMC9213677 DOI: 10.3389/fbioe.2022.905466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biochar-amended landfill cover soil (BLCS) can promote CH4 and O2 diffusion, but it increases rainwater entry in the rainy season, which is not conducive to CH4 emission reduction. Hydrophobic biochar–amended landfill cover soil (HLCS) was prepared to investigate the changes in CH4 emission reduction and biological characteristics, and BLCS was prepared as control. Results showed that rainwater retention time in HLCS was reduced by half. HLCS had a higher CH4 reduction potential, achieving 100% CH4 removal at 25% CH4 content of landfill gas, and its main contributors to CH4 reduction were found to be at depths of 10–30 cm (upper layer) and 50–60 cm (lower layer). The relative abundances of methane-oxidizing bacteria (MOB) in the upper and lower layers of HLCS were 55.93% and 46.93%, respectively, higher than those of BLCS (50.80% and 31.40%, respectively). Hydrophobic biochar amended to the landfill cover soil can realize waterproofing, ventilation, MOB growth promotion, and efficient CH4 reduction.
Collapse
Affiliation(s)
- Yongli Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Chennan Xue
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beibei Wu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| |
Collapse
|
35
|
Sirigina DSSS, Nazir SM. Non-Fossil Methane Emissions Mitigation From Agricultural Sector and Its Impact on Sustainable Development Goals. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.838265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The agriculture sector contributes to ∼40% of methane emissions globally. Methane is also 28 times (Assessment Report 5) more potent greenhouse gas than CO2. In this study, we assess the impact of measures for mitigating methane emissions from the agricultural sector on the achievement of all the 17 United Nations’ Sustainable Development Goals (SDGs). A keyword literature review was employed that focused on finding the synergies and trade-offs with non-fossil methane emissions from the agricultural sector and respective SDGs’ targets. The results were in broad consensus with the literature aimed at finding the relationship between SDGs and measures targeting climate change. There is a total of 88 synergies against eight trade-offs from the 126 SDGs’ targets that were assessed. It clearly shows that measures to mitigate methane emissions from the agricultural sector will significantly help in achieving the SDGs. Since agriculture is the primary occupation and the source of income in developing countries, it can further be inferred that methane mitigation measures in developing countries will play a larger role in achieving SDGs. Measures to mitigate methane emissions reduce poverty; diversify the source of income; promote health, equality, education, sanitation, and sustainable development while providing energy and resource security to the future generations.
Collapse
|
36
|
Chetri JK, Reddy KR, Green SJ. Use of methanotrophically activated biochar in novel biogeochemical cover system for carbon sequestration: Microbial characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153429. [PMID: 35101512 DOI: 10.1016/j.scitotenv.2022.153429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Biochar-amended soils have been explored to enhance microbial methane (CH4) oxidation in landfill cover systems. Recently, research priorities have expanded to include the mitigation of other components of landfill gas such as carbon dioxide (CO2) and hydrogen sulfide (H2S) along with CH4. In this study, column tests were performed to simulate the newly proposed biogeochemical cover systems, which incorporate biochar-amended soil for CH4 oxidation and basic oxygen furnace (BOF) slag for CO2 and H2S mitigation, to evaluate the effect of cover configuration on microbial CH4 oxidation and community composition. Biogeochemical covers included a biochar-amended soil (10% w/w), and methanotroph-enriched activated biochar amended soil (5% or 10% w/w) as a biocover layer or CH4 oxidation layer. The primary outcome measures of interest were CH4 oxidation rates and the structure and abundance of methane-oxidation bacteria in the covers. All column reactors were active in CH4 oxidation, but columns containing activated biochar-amended soils had higher CH4 oxidation rates (133 to 143 μg CH4 g-1 day-1) than those containing non-activated biochar-amended soil (50 μg CH4 g-1 day-1) and no-biochar soil or control soil (43 μg CH4 g-1 day-1). All treatments showed significant increases in the relative abundance of methanotrophs from an average relative abundance of 5.6% before incubation to a maximum of 45% following incubation. In activated biochar, the abundance of Type II methanotrophs, primarily Methylocystis and Methylosinus, was greater than that of Type I methanotrophs (Methylobacter) due to which activated biochar-amended soils also showed higher abundance of Type II methanotrophs. Overall, biogeochemical cover profiles showed promising potential for CH4 oxidation without any adverse effect on microbial community composition and methane oxidation. Biochar activation led to an alteration of the dominant methanotrophic communities and increased CH4 oxidation.
Collapse
Affiliation(s)
- Jyoti K Chetri
- University of Illinois at Chicago, Department of Civil, Materials, and Environmental Engineering, 842 West Taylor Street, Chicago, IL 60607, USA.
| | - Krishna R Reddy
- University of Illinois at Chicago, Department of Civil, Materials, and Environmental Engineering, 842 West Taylor Street, Chicago, IL 60607, USA.
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, 1653 W. Congress Parkway, Jelke Building, Room 444, Chicago, IL 60612, USA.
| |
Collapse
|
37
|
Scheutz C, Olesen AOU, Fredenslund AM, Kjeldsen P. Revisiting the passive biocover system at Klintholm landfill, six years after construction. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 145:92-101. [PMID: 35525002 DOI: 10.1016/j.wasman.2022.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
A biocover system was established at Klintholm landfill in Denmark in 2009 to mitigate methane emissions, and the system exhibited high mitigation efficiency during the first year after implementation. The biocover system was revisited in 2016/2017, and a series of field and laboratory tests were carried out to evaluate functionality about six years after establishment. Three field campaigns were executed in three different barometric pressure conditions, namely increasing, stable and decreasing. Local surface flux measurements and gas concentration profiles in the methane oxidation layer showed that barometric pressure changes had a significant effect on gas emission and methane oxidation. Elevated concentrations of oxygen were observed in the gas distribution layer, and field data showed that significant methane oxidation took place in this location. This finding was verified in laboratory-based methane oxidation incubation tests. Temperatures higher than ambient temperature were observed throughout the methane oxidation layer, with average temperatures ranging between 13 and 27 °C, even in the coldest month of the year. Field measurements showed that total methane emissions from the whole landfill cell were at the same level or lower than measurements performed in 2009/2010 after implementation of the biocover system, and laboratory tests showed methane oxidation potential approximately equal to former tests. In spite of an inhomogeneous distribution of landfill gas load to the methane oxidation layer, the performance of the biocover system had not declined over the 6-7 years since its establishment, even though no maintenance had been carried out in the intervening years.
Collapse
Affiliation(s)
- C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kgs. Lyngby, Denmark
| | - A O U Olesen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kgs. Lyngby, Denmark
| | - A M Fredenslund
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kgs. Lyngby, Denmark
| | - P Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
38
|
Enhanced Methane Oxidation Potential of Landfill Cover Soil Modified with Aged Refuse. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Aged refuse with a landfill age of 1.5 years was collected from a municipal solid waste landfill with high kitchen waste content and mixed with soil as biocover material for landfill. A series of laboratory batch tests was performed to determine the methane oxidation potential and optimal mixing ratio of landfill cover soil modified with aged refuse, and the effects of water content, temperature, CO2/CH4, and O2/CH4 ratios on its methane oxidation capacity were analyzed. The microbial community analysis of aged refuse showed that the proportions of type I and type II methane-oxidizing bacteria were 56.27% and 43.73%, respectively. Aged refuse could significantly enhance the methane oxidation potential of cover soil, and the optimal mixing ratio was approximately 1:1. The optimal temperature and water content were about 25 °C and 30%, respectively. Under the conditions of an initial methane concentration of 15% and an O2/CH4 ratio of 0.8–1.2, the measured methane oxidation rate was negatively correlated with the O2/CH4 ratio. The maximum methane oxidation capacity measured in the test reached 308.5 (μg CH4/g)/h, indicating that the low-age refuse in the landfill with high kitchen waste content is a biocover material with great application potential.
Collapse
|
39
|
Experimental Characterization of the Engineering Properties of Landfill Compost-Biocover. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A landfill biocover system optimizes environmental conditions for biotic methane (CH4) consumption that controls the fugitive and residual emissions from landfills. Research shows that wasted compost material has more (CH4) oxidation potential than other materials. Thus, in this study, the authors investigate the engineering properties of compacted compost to test its suitability for CH4 oxidation capacity. Different laboratory and analytical approaches are employed to attain the set objectives. The biochemical tests show that the studied material indicates the presence of methanotrophs with sufficient organic contents. The compacted compost also shows adequate diffusivity potential to free air space for a wide range of water content. The data also imply that compacting compost to low hydraulic conductivity can be accomplished for a wide range of water content, according to the suggested values for a landfill hydraulic barrier. Furthermore, the low thermal properties of compost as compared to other mineral materials seem more beneficial, as specifically, during the winter season, when the atmospheric temperature is low, low thermal conductivity enables it to sustain a stable temperature for the activities of the microbial organisms, which therefore extends the CH4 oxidation process right through a long period in the winter.
Collapse
|
40
|
Berenjkar P, Sparling R, Lozecznik S, Yuan Q. Methane oxidation in a landfill biowindow under wide seasonally fluctuating climatic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24623-24638. [PMID: 34825333 DOI: 10.1007/s11356-021-17566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
In the current study, a pilot biowindow was constructed in a closed cell of a Canadian Landfill, undergoing high seasonal fluctuations in the temperature from -30 in winter to 35 in summer. The biowindow was filled with biosolids compost amended with yard waste and leaf compost with the ratio of 4:1 as the substrate layer. Two years of monitoring of methane (CH4) oxidation in the biowindow led to remarkable expected observations including a thick, solid winter frost cover affecting gas exchange in winter and temperatures above 45 ℃ in the biowindow in late summer. A high influx compared to the reported values was observed into the biowindow with an average value of 1137 g.m-2.d-1, consisting of 64% of CH4 and 36% of carbon dioxide (CO2) in the landfill gas. The variations in the temperature and moisture content (MC) of the compost layer in addition to the influx fluctuations affected CH4 oxidation efficiency; however, a high average CH4 oxidation rate of 237 g.m-2.d-1 was obtained, with CH4 being mostly oxidized at top layers. The laboratory batch experiments verified that thermophilic methane-oxidizing bacteria (MOB) were active throughout the study period and oxidized CH4 with a higher rate than mesophilic MOB. The methanotrophic potential of the compost mixture showed an average value of 282 µmol.g-1.d-1 in the entire period of the study which is in the range of the highest reported maximum CH4 oxidation rates. The adopted compost mixture was suitable for CH4 oxidation if the MC was above 30%. The significance of MC variations on CH4 oxidation rate depended on the temperature range within the biowindow. At temperatures below 2 ℃, between 29 and 31℃, and above 45 ℃, MC was not a controlling factor for mesophilic CH4 oxidation.
Collapse
Affiliation(s)
- Parvin Berenjkar
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| |
Collapse
|
41
|
Scheutz C, Kjeld A, Fredenslund AM. Methane emissions from Icelandic landfills - A comparison between measured and modelled emissions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:136-145. [PMID: 34968899 DOI: 10.1016/j.wasman.2021.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
This study compares methane (CH4) emissions from five Icelandic landfills, quantified using tracer gas dispersion to modelled emission rates using the IPCC FOD model. The average CH4 emission rates measured from the investigated landfills were 475.4 kg CH4 h-1 (Álfsnes landfill), 32.5 kg CH4 h-1 (Fíflholt), 40.8 kg CH4 h-1 (Gufunes), 9.8 kg CH4 h-1 (Kirkjuferjuhjáleiga) and 78.4 kg CH4 h-1 (Stekkjarvík). At three of the landfills (Álfsnes, Fíflholt and Kirkjuferjuhjáleiga), the modelled emission was higher than the measured emission by factors ranging from 1.1 to 4.8, neglecting any CH4 oxidation in the cover soils. Even though CH4 oxidation might play a role at some of the investigated landfills, and thus reduce the gap between modelled and measured emissions, it is likely that the model overestimated CH4 generation due to uncertainties in input model parameters. Assuming that the measured emissions at the five landfills are representative of all the waste disposed in Iceland from 2007 to 2016, the measured emission should be extrapolated to 817 kg CH4 h-1, which is relatively close to the modelled national emission of 936 kg CH4 h-1 in 2017. This study showed that the application of the IPCC FOD model at national level is appropriate for estimating landfill CH4 emissions in Iceland. CH4 emissions from landfills in Iceland can be reduced by expanding or implementing gas collection or biocover systems for optimised microbial oxidation.
Collapse
Affiliation(s)
- C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark.
| | - A Kjeld
- Efla Consulting Engineers, Iceland
| | - A M Fredenslund
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
42
|
Duan Z, Kjeldsen P, Scheutz C. Efficiency of gas collection systems at Danish landfills and implications for regulations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:269-278. [PMID: 34995854 DOI: 10.1016/j.wasman.2021.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Globally, landfills are an important source of anthropogenic methane emissions. Regulations require landfill gas be managed to reduce emissions, and some landfills have therefore installed gas collection systems to recover energy and mitigate methane emissions. However, the efficiency of such systems is seldom evaluated. This paper presents the gas collection efficiencies of 23 Danish landfills and suggests how these values could be used to regulate landfill methane emissions in Denmark. Methane emissions from all sites were measured using the tracer gas dispersion method, and gas collection efficiencies were calculated using the ratio of the methane collection rate to the sum of the collection and emission (and oxidation) rates. Gas collection efficiencies ranged between 13 and 86% with an average of 50% - a value lower than for Swedish (58%), UK (64%) and US (63%) landfills. Possible reasons for the inefficiency of gas collection systems in Denmark include shallow gas collection pipes, leakage from installations (e.g. leachate wells, gas engines), low gas recovery due to minimal gas production or a lack of gas collection in active waste cells. It is suggested to use gas collection efficiency to regulate landfills and help them reach a particular methane mitigation goal. Gas collection efficiency that falls below the target mitigation rate would in turn trigger actions to reduce landfill methane emissions. At sites where the quality of the collected gas is too low to operate a gas engine, the installed gas collection system could be retrofitted to a biocover system designed for methane oxidation.
Collapse
Affiliation(s)
- Zhenhan Duan
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Peter Kjeldsen
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Scheutz
- Department of Environmental Engineering, Building 115, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
43
|
Microorganisms harbor keys to a circular bioeconomy making them useful tools in fighting plastic pollution and rising CO 2 levels. Extremophiles 2022; 26:10. [PMID: 35118556 PMCID: PMC8813813 DOI: 10.1007/s00792-022-01261-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Abstract
The major global and man-made challenges of our time are the fossil fuel-driven climate change a global plastic pollution and rapidly emerging plant, human and animal infections. To meet the necessary global changes, a dramatic transformation must take place in science and society. This transformation will involve very intense and forward oriented industrial and basic research strongly focusing on (bio)technology and industrial bioprocesses developments towards engineering a zero-carbon sustainable bioeconomy. Within this transition microorganisms-and especially extremophiles-will play a significant and global role as technology drivers. They harbor the keys and blueprints to a sustainable biotechnology in their genomes. Within this article, we outline urgent and important areas of microbial research and technology advancements and that will ultimately make major contributions during the transition from a linear towards a circular bioeconomy.
Collapse
|
44
|
Abstract
Biochar-amended soil cover (BSC) in landfills can improve the oxidation of methane. However, adding biochar can cause a larger amount of rainwater to enter the soil cover and landfill because it increases the permeability of the soil cover, which increases leachate production. Improving the hydrophobicity and waterproof ability of BSC is expected to reduce rainwater that goes into landfills. Silane coupling agent KH-570 is used to modify biochar to improve its hydrophobicity and waterproof ability after being added to the soil cover. The waterproofness of hydrophobic biochar-amended soil cover (HBSC) was studied by conducting a precipitation simulation test. Results showed that the optimum hydrophobicity of the surface-modified biochar was obtained when the mass fraction of KH-570 was 7%, the biochar dosage was 7 g, and the modification temperature was 60 °C. In these conditions, the contact angle was 143.99° and the moisture absorption rate was 0.10%. The analysis results of thermogravimetric, X-ray diffractometer and scanning electron microscopy before and after the biochar modification showed that KH-570 formed a hydrophobic organic coating layer on the biochar surface, indicating that the surface hydrophobic modification of biochar was successfully carried out by silane coupling agent. The waterproof ability of HBSC was significantly better than that of BSC in the simulated precipitation test.
Collapse
|
45
|
Kissas K, Ibrom A, Kjeldsen P, Scheutz C. Methane emission dynamics from a Danish landfill: The effect of changes in barometric pressure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:234-242. [PMID: 34902685 DOI: 10.1016/j.wasman.2021.11.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
This study investigates temporal variability on landfill methane (CH4) emissions from an old abandoned Danish landfill, caused by the rate of changes in barometric pressure. Two different emission quantification techniques, namely the dynamic tracer dispersion method (TDM) and the eddy covariance method (EC), were applied simultaneously and their results compared. The results showed a large spatial and temporal CH4 emission variation ranging from 0 to 100 kg h-1 and 0 to 12 μmol m-2 s-1, respectively. Landfill CH4 emissions dynamics were influenced by two environmental factors: the rate of change in barometric pressure (a strong negative correlation) and wind speed (a weak positive correlation). The relationship between CH4 emissions and the rate of change in barometric pressure was more complicated than a linear one, thereby making it difficult to estimate accurately annual CH4 emissions from a landfill based on discrete measurements. Furthermore, the results did not show any clear relationship between CH4 emissions and ambient temperature. Large seasonal variations were identified by the two methods, whereas no diurnal variability was observed throughout the investigated period. CH4 fluxes measured with the EC method were strongly correlated with emissions from the TDM method, even though no direct relationship could be established, due to the different sampling ranges of the two methods and the spatial heterogeneity of CH4 emissions.
Collapse
Affiliation(s)
- K Kissas
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - A Ibrom
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Scheutz
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
46
|
Huang D, Xu W, Wang Q, Xu Q. Impact of hydrogen sulfide on biochar in stimulating the methane oxidation capacity and microbial communities of landfill cover soil. CHEMOSPHERE 2022; 286:131650. [PMID: 34325261 DOI: 10.1016/j.chemosphere.2021.131650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) can influence methanotrophic activities and be adsorbed by biochar (BC); however, the impact of H2S on BC in stimulating the methane (CH4) oxidation capacity of landfill cover soil (LCS) has not been clarified. Thus, batch incubation experiments were conducted to observe the effect of H2S on the CH4 oxidation capacity of and microbial communities in BC-amended LCS. Three landfill gas conditions were considered: 5 % CH4 and 15 % oxygen (O2) (5 M), 10 % CH4 and 10 % O2, and 20 % CH4 and 5 % O2 (20 M) by volume, with H2S concentrations of 0, 100, 250, and 1000 ppm, respectively. Another series was conducted using LCS subjected to pre-H2S saturation under the 20 M gas condition. In the 5 M gas condition suitable for the dominant methanotroph Methylocaldum (type I), the BC retained its ability to stimulate the CH4 oxidation capacity of LCS (enhancement of 41-108 %) in the presence of H2S. Additionally, when H2S ≤ 250 ppm, the BC exhibited a relatively consistent impact of H2S on both CH4 oxidation capacity and microbial communities in LCS, independent of the CH4 or O2 concentrations. This result could be attributed to the different pathways of H2S metabolism for the LCS and BC-amended LCS. Furthermore, when saturated adsorption of H2S occurred for the LCS, the CH4 oxidation capacity for BC-amended LCS was higher than that for non-amended LCS, which demonstrated the ability of BC in alleviating the inhibition of H2S on CH4 oxidation due to its excellent H2S adsorption under even anoxic environments.
Collapse
Affiliation(s)
- Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Wenjun Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qian Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
47
|
Shaw JT, Shah A, Yong H, Allen G. Methods for quantifying methane emissions using unmanned aerial vehicles: a review. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200450. [PMID: 34565219 PMCID: PMC8473951 DOI: 10.1098/rsta.2020.0450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Methane is an important greenhouse gas, emissions of which have vital consequences for global climate change. Understanding and quantifying the sources (and sinks) of atmospheric methane is integral for climate change mitigation and emission reduction strategies, such as those outlined in the 2015 UN Paris Agreement on Climate Change. There are ongoing international efforts to constrain the global methane budget, using a wide variety of measurement platforms across a range of spatial and temporal scales. The advancements in unmanned aerial vehicle (UAV) technology over the past decade have opened up a new avenue for methane emission quantification. UAVs can be uniquely equipped to monitor natural and anthropogenic emissions at local scales, displaying clear advantages in versatility and manoeuvrability relative to other platforms. Their use is not without challenge, however: further miniaturization of high-performance methane instrumentation is needed to fully use the benefits UAVs afford. Developments in the models used to simulate atmospheric transport and dispersion across small, local scales are also crucial to improved flux accuracy and precision. This paper aims to provide an overview of currently available UAV-based technologies and sampling methodologies which can be used to quantify methane emission fluxes at local scales. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Collapse
Affiliation(s)
- Jacob T. Shaw
- Centre for Atmospheric Science, Department of Earth and Environmental Science, University of Manchester, Manchester, UK
| | - Adil Shah
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA CNRS, UVSQ UPSACLAY, Gif sur Yvette, France
| | - Han Yong
- Centre for Atmospheric Science, Department of Earth and Environmental Science, University of Manchester, Manchester, UK
| | - Grant Allen
- Centre for Atmospheric Science, Department of Earth and Environmental Science, University of Manchester, Manchester, UK
| |
Collapse
|
48
|
Wang Y, Levis JW, Barlaz MA. Life-Cycle Assessment of a Regulatory Compliant U.S. Municipal Solid Waste Landfill. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13583-13592. [PMID: 34597038 DOI: 10.1021/acs.est.1c02526] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Landfills receive over half of all U.S. municipal solid waste (MSW) and are the third largest source of anthropogenic methane emissions. Life-cycle assessment (LCA) of landfills is complicated by the long duration of waste disposal, gas generation and control, and the time over which the engineered infrastructure must perform. The objective of this study is to develop an LCA model for a representative U.S. MSW landfill that is responsive to landfill size, regulatory thresholds for landfill gas (LFG) collection and control, practices for LFG management (i.e., passive venting, flare, combustion for energy recovery), and four alternative schedules for LFG collection well installation. Material production required for construction and operation contributes 68-75% to toxicity impacts, while LFG emissions contribute 50-99% to global warming, ozone depletion, and smog impacts. The current non-methane organic compound regulatory threshold (34 Mg yr-1) reduces methane emissions by <7% relative to the former threshold (50 Mg yr-1). Requiring landfills to continue collecting LFG until the flow rate is <10 m3 min-1 reduces emissions by 20-52%, depending on the waste decay rate. In general, for landfills already required to collect gas, collecting gas longer is more important than collecting gas earlier to reduce methane emissions.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Civil, Construction, and Environmental Engineering,North Carolina State University, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States
| | - James W Levis
- Department of Civil, Construction, and Environmental Engineering,North Carolina State University, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States
| | - Morton A Barlaz
- Department of Civil, Construction, and Environmental Engineering,North Carolina State University, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States
| |
Collapse
|
49
|
Yang H, Jung H, Oh K, Jeon JM, Cho KS. Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions. J Microbiol Biotechnol 2021; 31:803-814. [PMID: 33879637 PMCID: PMC9705922 DOI: 10.4014/jmb.2103.03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40°C at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50°C) and mesophilic conditions (30°C). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40°C and 50°C, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the nonsummer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.
Collapse
Affiliation(s)
- Hyoju Yang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyungcheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-32772393 E-mail:
| |
Collapse
|
50
|
Manheim DC, Yeşiller N, Hanson JL. Gas Emissions from Municipal Solid Waste Landfills: A Comprehensive Review and Analysis of Global Data. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00234-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|