1
|
Hridoy MB, Allen LJS. Investigating seasonal disease emergence and extinction in stochastic epidemic models. Math Biosci 2025; 381:109383. [PMID: 39900333 DOI: 10.1016/j.mbs.2025.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Seasonal disease outbreaks are common in many infectious diseases such as seasonal influenza, Zika, dengue fever, Lyme disease, malaria, and cholera. Seasonal outbreaks are often due to weather patterns affecting pathogens or disease-carrying vectors or by social behavior. We investigate disease emergence and extinction in seasonal stochastic epidemic models. Specifically, we study disease emergence through seasonally varying parameters for transmission, recovery, and vector births and deaths in time-nonhomogeneous Markov chains for SIR, SEIR, and vector-host systems. A branching process approximation of the Markov chain is used to estimate the seasonal probabilities of disease extinction. Several disease outcome measures are used to compare the dynamics in seasonal and constant environments. Numerical investigations illustrate and confirm previous results derived from stochastic epidemic models. Seasonal environments often result in lower probabilities of disease emergence and smaller values of the basic reproduction number than in constant environments, and the time of peak emergence generally precedes the peak time of the seasonal driver. We identify some new results when both transmission and recovery vary seasonally. If the relative amplitude of the recovery exceeds that of transmission or if the periodicity is not synchronized in time, lower average probabilities of disease emergence occur in a constant environment than in a seasonal environment. We also investigate the timing of vector control. This investigation provides new methods and outcome measures to study seasonal infectious disease dynamics and offers new insights into the timing of prevention and control.
Collapse
Affiliation(s)
- Mahmudul Bari Hridoy
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409-1042, United States of America.
| | - Linda J S Allen
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409-1042, United States of America
| |
Collapse
|
2
|
Hridoy MB. An exploration of modeling approaches for capturing seasonal transmission in stochastic epidemic models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:324-354. [PMID: 40083298 DOI: 10.3934/mbe.2025013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Seasonal variations in the incidence of infectious diseases are a well-established phenomenon, driven by factors such as climate changes, social behaviors, and ecological interactions that influence host susceptibility and transmission rates. While seasonality plays a significant role in shaping epidemiological dynamics, it is often overlooked in both empirical and theoretical studies. Incorporating seasonal parameters into mathematical models of infectious diseases is crucial for accurately capturing disease dynamics, enhancing the predictive power of these models, and developing successful control strategies. In this paper, I highlight key modeling approaches for incorporating seasonality into disease transmission, including sinusoidal functions, periodic piecewise linear functions, Fourier series expansions, Gaussian functions, and data-driven methods. These approaches are evaluated in terms of their flexibility, complexity, and ability to capture distinct seasonal patterns observed in real-world epidemics. A comparative analysis showcases the relative strengths and limitations of each method, supported by real-world examples. Additionally, a stochastic Susceptible-Infected-Recovered (SIR) model with seasonal transmission is demonstrated through numerical simulations. Important outcome measures, such as the basic and instantaneous reproduction numbers and the probability of a disease outbreak derived from the branching process approximation of the Markov chain, are also presented to illustrate the impact of seasonality on disease dynamics.
Collapse
Affiliation(s)
- Mahmudul Bari Hridoy
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, Texas 79409-1042, USA
| |
Collapse
|
3
|
Valachovic EL, Shishova E. Seasonal and periodic patterns in US COVID-19 mortality using the Variable Bandpass Periodic Block Bootstrap. PLoS One 2025; 20:e0317897. [PMID: 39841757 PMCID: PMC11753702 DOI: 10.1371/journal.pone.0317897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025] Open
Abstract
Since the emergence of the SARS-CoV-2 virus, research into the existence, extent, and pattern of seasonality has been of the highest importance for public health preparation. This study uses a novel bandpass bootstrap approach called the Variable Bandpass Periodic Block Bootstrap to investigate the periodically correlated components including seasonality within US COVID-19 mortality. Bootstrapping to produce confidence intervals for periodic characteristics such as the seasonal mean requires preservation of the periodically correlated component's correlation structure during resampling. While other existing bootstrap methods can preserve the periodically correlated component correlation structure, filtration of that periodically correlated component's frequency from interference is critical to bootstrap the periodically correlated component's characteristics accurately and efficiently. The Variable Bandpass Periodic Block Bootstrap filters the periodically correlated time series to reduce interference from other components such as noise. This greatly reduces bootstrapped confidence interval size and outperforms the statistical power and accuracy of other methods when estimating the periodic mean sampling distribution. Variable Bandpass Periodic Block Bootstrap analysis of US COVID-19 mortality periodically correlated components is provided and compared against alternative bootstrapping methods. Results show that both methods find a significant seasonal component, but the Variable Bandpass Periodic Block Bootstrap produces smaller confidence intervals and only the Variable Bandpass Periodic Block Bootstrap found significant components at the second through the fifth harmonics of the seasonal component, as well as weekly component. This crucial evidence supporting the presence of a seasonal pattern and existence of additional periodically correlated components, their timing, and confidence intervals for their effect which will aid prediction and preparation for future COVID-19 responses.
Collapse
Affiliation(s)
- Edward L. Valachovic
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, United States of America
| | - Ekaterina Shishova
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, United States of America
| |
Collapse
|
4
|
Lewis P, Christoforou R, Ha PP, Wild U, Schweiker M, Erren TC. Architecture, light, and circadian biology: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177212. [PMID: 39490394 DOI: 10.1016/j.scitotenv.2024.177212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Light-dark (LD) can support or challenge the circadian organization of physiology and health. As an indoor species, the built environment inevitably influences the patterns and intensities of our LD exposures, thereby affecting health. We reviewed to what extent architectural features have been studied alongside LD and circadian biology. Systematic screening of literature from thirty-one databases identified n = 11 relevant human- and n = 19 relevant field- and simulation- studies; the latter included exploration of LD and architectural details with pertinent reference to circadian biology. Charting and synthesis concerned architecture, LD sources and metrics, circadian biology-related parameters, and health more generally. Human studies that investigate architecture, LD, and circadian biology together are limited by few participants, few architectural features, and few measurements. Most emphasis is on window-related aspects but must be judged as first explorations (i.e., not suitable to compare e.g., glazing vs shading vs position). Novel findings include the potential for time-specific alteration of blue light transmittance through windows. Circadian-light metrics (e.g., the Circadian Stimulus) are in use but analyses of links between architecture and circadian-light metrics together with biology are lacking. In conclusion, first empirical evidence links elements of LD, architecture, and circadian biology. Novel and necessary avenues of research are discussed.
Collapse
Affiliation(s)
- Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany.
| | - Rania Christoforou
- Healthy Living Spaces Lab, Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Peiman Pilehchi Ha
- Healthy Living Spaces Lab, Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ursula Wild
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
| | - Marcel Schweiker
- Healthy Living Spaces Lab, Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany; Chair of Healthy Living Spaces, Faculty of Architecture, RWTH Aachen University, Aachen, Germany
| | - Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Germany
| |
Collapse
|
5
|
Michel S, Kervezee L. One seasonal clock fits all? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:641-647. [PMID: 37947808 PMCID: PMC11226558 DOI: 10.1007/s00359-023-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Adaptation of physiology and behavior to seasonal changes in the environment are for many organisms essential for survival. Most of our knowledge about the underlying mechanisms comes from research on photoperiodic regulation of reproduction in plants, insects and mammals. However, even humans, who mostly live in environments with minimal seasonal influences, show annual rhythms in physiology (e.g., immune activity, brain function), behavior (e.g., sleep-wake cycles) and disease prevalence (e.g., infectious diseases). As seasonal variations in environmental conditions may be drastically altered due to climate change, the understanding of the mechanisms underlying seasonal adaptation of physiology and behavior becomes even more relevant. While many species have developed specific solutions for dedicated tasks of photoperiodic regulation, we find a number of common principles and mechanisms when comparing insect and mammalian systems: (1) the circadian system contributes to photoperiodic regulation; (2) similar signaling molecules (VIP and PDF) are used for transferring information from the circadian system to the neuroendocrine system controlling the photoperiodic response; (3) the hormone melatonin participates in seasonal adaptation in insects as well as mammals; and (4) changes in photoperiod affect neurotransmitter function in both animal groups. The few examples of overlap elaborated in this perspective article, as well as the discussion on relevance for humans, should be seen as encouragement to unravel the machinery of seasonal adaptation in a multitude of organisms.
Collapse
Affiliation(s)
- Stephan Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postzone S5-P, 2300 RC, PO Box 9600, Leiden, The Netherlands.
| | - Laura Kervezee
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postzone S5-P, 2300 RC, PO Box 9600, Leiden, The Netherlands
| |
Collapse
|
6
|
Grassl K, Hangler H, Gratl A, Enzmann F, Grimm M, Klocker J, Wipper S. A Free-Floating Aortic Thrombus: An Uncommon Approach to Handle a Rare Clinical Entity. J Endovasc Ther 2024:15266028241256817. [PMID: 38817015 DOI: 10.1177/15266028241256817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND Thrombotic material in the non-aneurysmatic and non-atherosclerotic aorta is a rare entity without any recommended standard treatment so far. We present a successful treatment strategy for patients who do not fit into any of the common approaches. CASE REPORT A free-floating thrombus in the descending aorta was found as source of embolism in an 82-year-old female patient with lower limb ischemia. After initial heparinization of the patient without relevant reduction of the thrombotic mass, the thrombus was removed using an interdisciplinary approach. Under echocardiographic guidance to locate the thrombus, the AngioVac device, usually licensed to remove floating thrombi from the venous system, was used off-label to remove the thrombus by a transfemoral approach. To avoid rebuilding of a new thrombus, the attachment point with an exulcerated plaque in the descending aorta was covered by a stent graft via the same femoral access. The patient did not experience any further embolic events, and the postoperative course was uncomplicated. CONCLUSION Patients with uncommon aortic diseases, such as the reported free-floating thrombus, should be treated by an individualized, interdisciplinary approach. Besides the recommended treatment options, there are other uncommon approaches that might offer an alternative in complex cases. CLINICAL IMPACT Evidence is rare for the treatment of a free-floating thrombus in the descending aorta and the treatment strategy remains discussed controversially. We present a rather uncommon approach of successful off-label treatment for patients who do not fit into any of the common approaches (operative, endovascular, or conservative treatment based on patient's comorbidities). The AngioVac System has already been successfully used off-label in the arterial system but not in the above presented way of treating a free-floating thrombus in a patient with high embolization risk and treatment-limiting comorbidities.
Collapse
Affiliation(s)
- Kristina Grassl
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Hangler
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Gratl
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef Klocker
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Wipper
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Motlogeloa O, Fitchett JM. Assessing the impact of climatic variability on acute respiratory diseases across diverse climatic zones in South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170661. [PMID: 38320698 DOI: 10.1016/j.scitotenv.2024.170661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Acute respiratory diseases are a significant public health concern in South Africa, with climatic variables such as temperature and rainfall being key influencers. This study investigates the associations between these variables and the prevalence of acute respiratory diseases in Johannesburg, Cape Town, and Gqeberha (Port Elizabeth), representing distinct climatic zones. Spearman's correlation analyses showed negative correlations in Johannesburg for respiratory disease claims with maximum temperature (r = -0.12, p < 0.0001) and mean temperature (r = -0.13, p < 0.0001), and a negative correlation with daily rainfall (r = -0.12, p < 0.0001). Cape Town demonstrated a negative correlation with maximum temperature (r = -0.18, p < 0.0001) and a positive correlation with rainfall (r = 0.08, p < 0.0001). Utilizing Distributed Lag Non-linear Models (DLNM), the study revealed that in Johannesburg, the relative risk (RR) of respiratory claims increases notably at temperatures below 12 °C, and again at a Tmax between 16 and 23 °C. The risk escalates further at >30 °C, although with a considerable error margin. For Cape Town, a stable level of moderate RR is seen from Tmax 15-24 °C, with a significant increase in RR and error margin above 30 °C. In Gqeberha, the DLNM results are less definitive, reflecting the city's moderate climate and year-round rainfall. The RR of acute respiratory diseases did not show clear patterns with temperature changes, with increasing error margins outside the 22 °C threshold. These findings emphasize the imperative for region-specific public health strategies that account for the complex, non-linear influences of climate on respiratory health. This detailed understanding of the climate-health nexus provides a robust basis for enhancing public health interventions and future research directed at reducing the impacts of climate factors.
Collapse
Affiliation(s)
- Ogone Motlogeloa
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Jennifer M Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
8
|
Kyaw MH, Spinardi JR, Jagun O, Franco Villalobos C, Kapetanakis V, Sharf-Williams R, Yarnoff B. Descriptive analysis to assess seasonal patterns of COVID-19 and influenza in low-income and middle-income countries in Asia, the Middle East and Latin America. BMJ Open 2024; 14:e081019. [PMID: 38296298 PMCID: PMC10831443 DOI: 10.1136/bmjopen-2023-081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVES Understanding disease seasonality can help predict the occurrence of outbreaks and inform public health planning. Respiratory diseases typically follow seasonal patterns; however, knowledge regarding the seasonality of COVID-19 and its impact on the seasonality of influenza remains limited. The objective of this study was to provide more evidence to understand the circulation of SARS-CoV-2, the virus responsible for COVID-19, in an endemic scenario to guide potential preventive strategies. DESIGN In this study, a descriptive analysis was undertaken to describe seasonality trends and/or overlap between COVID-19 and influenza in 12 low-income and middle-income countries using Our World in Data and FluMart data sources. Plots of COVID-19 and influenza cases were analysed. SETTING Singapore, Thailand, Malaysia, the Philippines, Argentina, Brazil, Mexico, South Africa, Morocco, Bahrain, Qatar and Saudi Arabia. OUTCOME MEASURES COVID-19 cases and influenza cases. RESULTS No seasonal patterns of SARS-CoV-2 or SARS-CoV-2/influenza cocirculation were observed in most countries, even when considering the avian influenza pandemic period. CONCLUSIONS These results can inform public health strategies. The lack of observed seasonal behaviour highlights the importance of maintaining year-round vaccination rather than implementing seasonal campaigns. Further research investigating the influence of climate conditions, social behaviour and year-round preventive measures could be fundamental for shaping appropriate policies related to COVID-19 and respiratory viral disease control in low-income and middle-income countries as COVID-19 variant data and epidemiologic patterns accrue over time.
Collapse
|
9
|
Townsend JP, Hassler HB, Lamb AD, Sah P, Alvarez Nishio A, Nguyen C, Tew AD, Galvani AP, Dornburg A. Seasonality of endemic COVID-19. mBio 2023; 14:e0142623. [PMID: 37937979 PMCID: PMC10746271 DOI: 10.1128/mbio.01426-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE The seasonality of COVID-19 is important for effective healthcare and public health decision-making. Previous waves of SARS-CoV-2 infections have indicated that the virus will likely persist as an endemic pathogen with distinct surges. However, the timing and patterns of potentially seasonal surges remain uncertain, rendering effective public health policies uninformed and in danger of poorly anticipating opportunities for intervention, such as well-timed booster vaccination drives. Applying an evolutionary approach to long-term data on closely related circulating coronaviruses, our research provides projections of seasonal surges that should be expected at major temperate population centers. These projections enable local public health efforts that are tailored to expected surges at specific locales or regions. This knowledge is crucial for enhancing medical preparedness and facilitating the implementation of targeted public health interventions.
Collapse
Affiliation(s)
- Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
- Program in Microbiology, Yale University, New Haven, USA
| | - Hayley B. Hassler
- Department of Biostatistics, Yale School of Public Health, New Haven, USA
| | - April D. Lamb
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| | - Pratha Sah
- Center for Infectious Disease Modeling and Analysis, Yale University, New Haven, USA
| | | | - Cameron Nguyen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| | - Alexandra D. Tew
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis, Yale University, New Haven, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| |
Collapse
|
10
|
Barrero Guevara LA, Goult E, Rodriguez D, Hernandez LJ, Kaufer B, Kurth T, Domenech de Cellès M. Delineating the Seasonality of Varicella and Its Association With Climate in the Tropical Country of Colombia. J Infect Dis 2023; 228:674-683. [PMID: 37384795 PMCID: PMC10503957 DOI: 10.1093/infdis/jiad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Varicella causes a major health burden in many low- to middle-income countries located in tropical regions. Because of the lack of surveillance data, however, the epidemiology of varicella in these regions remains uncharacterized. In this study, based on an extensive dataset of weekly varicella incidence in children ≤10 during 2011-2014 in 25 municipalities, we aimed to delineate the seasonality of varicella across the diverse tropical climates of Colombia. METHODS We used generalized additive models to estimate varicella seasonality, and we used clustering and matrix correlation methods to assess its correlation with climate. Furthermore, we developed a mathematical model to examine whether including the effect of climate on varicella transmission could reproduce the observed spatiotemporal patterns. RESULTS Varicella seasonality was markedly bimodal, with latitudinal changes in the peaks' timing and amplitude. This spatial gradient strongly correlated with specific humidity (Mantel statistic = 0.412, P = .001) but not temperature (Mantel statistic = 0.077, P = .225). The mathematical model reproduced the observed patterns not only in Colombia but also México, and it predicted a latitudinal gradient in Central America. CONCLUSIONS These results demonstrate large variability in varicella seasonality across Colombia and suggest that spatiotemporal humidity fluctuations can explain the calendar of varicella epidemics in Colombia, México, and potentially in Central America.
Collapse
Affiliation(s)
- Laura Andrea Barrero Guevara
- Max Planck Institute for Infection Biology, Infectious Disease Epidemiology Group, Berlin, Germany
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth Goult
- Max Planck Institute for Infection Biology, Infectious Disease Epidemiology Group, Berlin, Germany
| | | | | | - Benedikt Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Kurth
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
11
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
12
|
Cui B, An D, Li H, Luo X, Zhu H, Li M, Ai X, Ma J, Ali W, Yan C. Evaluating the threshold limit value of acceptable exposure concentration for exposure to bioaerosols in a wastewater treatment plant: Reverse-quantitative microbial risk assessment and sensitivity analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:130687. [PMID: 36989774 DOI: 10.1016/j.jhazmat.2022.130687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 05/03/2023]
Abstract
Agitation operations produce numerous pathogenic bioaerosols in WWTPs1. QMRA2 can determine risks of persons exposed to these bioaerosols. However, QMRA framework cannot help stakeholders in immediately deciding whether a risk is intolerable. Thus, evaluating threshold of acceptable exposure concentration is an urgent issue but is still rarely addressed in WWTPs. This study analyzed TLV3 benchmarks of E. coli and S. aureus bioaerosols emitted from a WWTP by reverse-QMRA. Furthermore, variance of input parameters was clarified by sensitivity analysis. Results showed that, under conservative and optimistic estimates, TLV of technicians was 1.52-2.06 and 1.26-1.68 times as large as those of workers, respectively; wearing mask drive TLV up to 1-2 orders of magnitude; TLV of M4 was at most 1.33 and 1.31 times as large as that of RD5, respectively. For sensitivity analysis, removal fraction by equipping PPE enlarge TLV for effortlessly obtaining an acceptable assessment result; exposure time was dominant when without PPE excepting the scenario of technicians exposed to E. coli bioaerosol. This study helps establish threshold guidelines for bioaerosols in WWTPs and contribute innovative perspectives for stakeholders.
Collapse
Affiliation(s)
- Beibei Cui
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China
| | - Dongzi An
- China Construction Eco-Environmental Group Co., Ltd, Beijing 100037, PR China
| | - Haojun Li
- Yunnan Design Institute Group Co., Ltd, Kunming 650100, PR China
| | - Xi Luo
- Yangtze Ecology and Environment Co., Ltd, Wuhan 430062, PR China
| | - Hao Zhu
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Ming Li
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Xiaojun Ai
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Jiaxin Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
13
|
Brett TS, Bansal S, Rohani P. Charting the spatial dynamics of early SARS-CoV-2 transmission in Washington state. PLoS Comput Biol 2023; 19:e1011263. [PMID: 37379328 PMCID: PMC10335681 DOI: 10.1371/journal.pcbi.1011263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/11/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
The spread of SARS-CoV-2 has been geographically uneven. To understand the drivers of this spatial variation in SARS-CoV-2 transmission, in particular the role of stochasticity, we used the early stages of the SARS-CoV-2 invasion in Washington state as a case study. We analysed spatially-resolved COVID-19 epidemiological data using two distinct statistical analyses. The first analysis involved using hierarchical clustering on the matrix of correlations between county-level case report time series to identify geographical patterns in the spread of SARS-CoV-2 across the state. In the second analysis, we used a stochastic transmission model to perform likelihood-based inference on hospitalised cases from five counties in the Puget Sound region. Our clustering analysis identifies five distinct clusters and clear spatial patterning. Four of the clusters correspond to different geographical regions, with the final cluster spanning the state. Our inferential analysis suggests that a high degree of connectivity across the region is necessary for the model to explain the rapid inter-county spread observed early in the pandemic. In addition, our approach allows us to quantify the impact of stochastic events in determining the subsequent epidemic. We find that atypically rapid transmission during January and February 2020 is necessary to explain the observed epidemic trajectories in King and Snohomish counties, demonstrating a persisting impact of stochastic events. Our results highlight the limited utility of epidemiological measures calculated over broad spatial scales. Furthermore, our results make clear the challenges with predicting epidemic spread within spatially extensive metropolitan areas, and indicate the need for high-resolution mobility and epidemiological data.
Collapse
Affiliation(s)
- Tobias S. Brett
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Center for Influenza Disease & Emergence Research (CIDER), Athens, Georgia, United States of America
| |
Collapse
|
14
|
Dopico XC, Mandolesi M, Hedestam GBK. Untangling immunoglobulin genotype-function associations. Immunol Lett 2023:S0165-2478(23)00073-1. [PMID: 37209913 DOI: 10.1016/j.imlet.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Immunoglobulin (IG) genes, encoding B cell receptors (BCRs), are fundamental components of the mammalian immune system, which evolved to recognize the diverse antigenic universe present in nature. To handle these myriad inputs, BCRs are generated through combinatorial recombination of a set of highly polymorphic germline genes, resulting in a vast repertoire of antigen receptors that initiate responses to pathogens and regulate commensals. Following antigen recognition and B cell activation, memory B cells and plasma cells form, allowing for the development of anamnestic antibody (Ab) responses. How inherited variation in IG genes impacts host traits, disease susceptibility, and Ab recall responses is a topic of great interest. Here, we consider approaches to translate emerging knowledge about IG genetic diversity and expressed repertoires to inform our understanding of Ab function in health and disease etiology. As our understanding of IG genetics grows, so will our need for tools to decipher preferences for IG gene or allele usage in different contexts, to better understand antibody responses at the population level.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden.
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | | |
Collapse
|
15
|
Bernhard GH, Madronich S, Lucas RM, Byrne SN, Schikowski T, Neale RE. Linkages between COVID-19, solar UV radiation, and the Montreal Protocol. Photochem Photobiol Sci 2023; 22:991-1009. [PMID: 36995652 PMCID: PMC10062285 DOI: 10.1007/s43630-023-00373-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 03/31/2023]
Abstract
There are several connections between coronavirus disease 2019 (COVID-19), solar UV radiation, and the Montreal Protocol. Exposure to ambient solar UV radiation inactivates SARS-CoV-2, the virus responsible for COVID-19. An action spectrum describing the wavelength dependence of the inactivation of SARS-CoV-2 by UV and visible radiation has recently been published. In contrast to action spectra that have been assumed in the past for estimating the effect of UV radiation on SARS-CoV-2, the new action spectrum has a large sensitivity in the UV-A (315-400 nm) range. If this "UV-A tail" is correct, solar UV radiation could be much more efficient in inactivating the virus responsible for COVID-19 than previously thought. Furthermore, the sensitivity of inactivation rates to the total column ozone would be reduced because ozone absorbs only a small amount of UV-A radiation. Using solar simulators, the times for inactivating SARS-CoV-2 have been determined by several groups; however, many measurements are affected by poorly defined experimental setups. The most reliable data suggest that 90% of viral particles embedded in saliva are inactivated within ~ 7 min by solar radiation for a solar zenith angle (SZA) of 16.5° and within ~ 13 min for a SZA of 63.4°. Slightly longer inactivation times were found for aerosolised virus particles. These times can become considerably longer during cloudy conditions or if virus particles are shielded from solar radiation. Many publications have provided evidence of an inverse relationship between ambient solar UV radiation and the incidence or severity of COVID-19, but the reasons for these negative correlations have not been unambiguously identified and could also be explained by confounders, such as ambient temperature, humidity, visible radiation, daylength, temporal changes in risk and disease management, and the proximity of people to other people. Meta-analyses of observational studies indicate inverse associations between serum 25-hydroxy vitamin D (25(OH)D) concentration and the risk of SARS-CoV-2 positivity or severity of COVID-19, although the quality of these studies is largely low. Mendelian randomisation studies have not found statistically significant evidence of a causal effect of 25(OH)D concentration on COVID-19 susceptibility or severity, but a potential link between vitamin D status and disease severity cannot be excluded as some randomised trials suggest that vitamin D supplementation is beneficial for people admitted to a hospital. Several studies indicate significant positive associations between air pollution and COVID-19 incidence and fatality rates. Conversely, well-established cohort studies indicate no association between long-term exposure to air pollution and infection with SARS-CoV-2. By limiting increases in UV radiation, the Montreal Protocol has also suppressed the inactivation rates of pathogens exposed to UV radiation. However, there is insufficient evidence to conclude that the expected larger inactivation rates without the Montreal Protocol would have had tangible consequences on the progress of the COVID-19 pandemic.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA.
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - S N Byrne
- Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Sydney, Australia
| | - T Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - R E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- School of Public Health, University of Queensland, Brisbane, Australia.
| |
Collapse
|
16
|
Bernhard GH, Bais AF, Aucamp PJ, Klekociuk AR, Liley JB, McKenzie RL. Stratospheric ozone, UV radiation, and climate interactions. Photochem Photobiol Sci 2023; 22:937-989. [PMID: 37083996 PMCID: PMC10120513 DOI: 10.1007/s43630-023-00371-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 04/14/2023]
Abstract
This assessment provides a comprehensive update of the effects of changes in stratospheric ozone and other factors (aerosols, surface reflectivity, solar activity, and climate) on the intensity of ultraviolet (UV) radiation at the Earth's surface. The assessment is performed in the context of the Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments and Adjustments. Changes in UV radiation at low- and mid-latitudes (0-60°) during the last 25 years have generally been small (e.g., typically less than 4% per decade, increasing at some sites and decreasing at others) and were mostly driven by changes in cloud cover and atmospheric aerosol content, caused partly by climate change and partly by measures to control tropospheric pollution. Without the Montreal Protocol, erythemal (sunburning) UV irradiance at northern and southern latitudes of less than 50° would have increased by 10-20% between 1996 and 2020. For southern latitudes exceeding 50°, the UV Index (UVI) would have surged by between 25% (year-round at the southern tip of South America) and more than 100% (South Pole in spring). Variability of erythemal irradiance in Antarctica was very large during the last four years. In spring 2019, erythemal UV radiation was at the minimum of the historical (1991-2018) range at the South Pole, while near record-high values were observed in spring 2020, which were up to 80% above the historical mean. In the Arctic, some of the highest erythemal irradiances on record were measured in March and April 2020. For example in March 2020, the monthly average UVI over a site in the Canadian Arctic was up to 70% higher than the historical (2005-2019) average, often exceeding this mean by three standard deviations. Under the presumption that all countries will adhere to the Montreal Protocol in the future and that atmospheric aerosol concentrations remain constant, erythemal irradiance at mid-latitudes (30-60°) is projected to decrease between 2015 and 2090 by 2-5% in the north and by 4-6% in the south due to recovering ozone. Changes projected for the tropics are ≤ 3%. However, in industrial regions that are currently affected by air pollution, UV radiation will increase as measures to reduce air pollutants will gradually restore UV radiation intensities to those of a cleaner atmosphere. Since most substances controlled by the Montreal Protocol are also greenhouse gases, the phase-out of these substances may have avoided warming by 0.5-1.0 °C over mid-latitude regions of the continents, and by more than 1.0 °C in the Arctic; however, the uncertainty of these calculations is large. We also assess the effects of changes in stratospheric ozone on climate, focusing on the poleward shift of climate zones, and discuss the role of the small Antarctic ozone hole in 2019 on the devastating "Black Summer" fires in Australia. Additional topics include the assessment of advances in measuring and modeling of UV radiation; methods for determining personal UV exposure; the effect of solar radiation management (stratospheric aerosol injections) on UV radiation relevant for plants; and possible revisions to the vitamin D action spectrum, which describes the wavelength dependence of the synthesis of previtamin D3 in human skin upon exposure to UV radiation.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA.
| | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece.
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| | - R L McKenzie
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| |
Collapse
|
17
|
Susswein Z, Rest EC, Bansal S. Disentangling the rhythms of human activity in the built environment for airborne transmission risk: An analysis of large-scale mobility data. eLife 2023; 12:e80466. [PMID: 37014055 PMCID: PMC10118388 DOI: 10.7554/elife.80466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background Since the outset of the COVID-19 pandemic, substantial public attention has focused on the role of seasonality in impacting transmission. Misconceptions have relied on seasonal mediation of respiratory diseases driven solely by environmental variables. However, seasonality is expected to be driven by host social behavior, particularly in highly susceptible populations. A key gap in understanding the role of social behavior in respiratory disease seasonality is our incomplete understanding of the seasonality of indoor human activity. Methods We leverage a novel data stream on human mobility to characterize activity in indoor versus outdoor environments in the United States. We use an observational mobile app-based location dataset encompassing over 5 million locations nationally. We classify locations as primarily indoor (e.g. stores, offices) or outdoor (e.g. playgrounds, farmers markets), disentangling location-specific visits into indoor and outdoor, to arrive at a fine-scale measure of indoor to outdoor human activity across time and space. Results We find the proportion of indoor to outdoor activity during a baseline year is seasonal, peaking in winter months. The measure displays a latitudinal gradient with stronger seasonality at northern latitudes and an additional summer peak in southern latitudes. We statistically fit this baseline indoor-outdoor activity measure to inform the incorporation of this complex empirical pattern into infectious disease dynamic models. However, we find that the disruption of the COVID-19 pandemic caused these patterns to shift significantly from baseline and the empirical patterns are necessary to predict spatiotemporal heterogeneity in disease dynamics. Conclusions Our work empirically characterizes, for the first time, the seasonality of human social behavior at a large scale with a high spatiotemporal resolutio and provides a parsimonious parameterization of seasonal behavior that can be included in infectious disease dynamics models. We provide critical evidence and methods necessary to inform the public health of seasonal and pandemic respiratory pathogens and improve our understanding of the relationship between the physical environment and infection risk in the context of global change. Funding Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM123007.
Collapse
Affiliation(s)
- Zachary Susswein
- Department of Biology, Georgetown UniversityWashington, DCUnited States
| | - Eva C Rest
- Department of Biology, Georgetown UniversityWashington, DCUnited States
| | - Shweta Bansal
- Department of Biology, Georgetown UniversityWashington, DCUnited States
| |
Collapse
|
18
|
Cohen PR, Rybak A, Werner A, Béchet S, Desandes R, Hassid F, André JM, Gelbert N, Thiebault G, Kochert F, Cahn-Sellem F, Vié Le Sage F, Angoulvant PF, Ouldali N, Frandji B, Levy C. Trends in pediatric ambulatory community acquired infections before and during COVID-19 pandemic: A prospective multicentric surveillance study in France. Lancet Reg Health Eur 2022; 22:100497. [PMID: 36034052 PMCID: PMC9398201 DOI: 10.1016/j.lanepe.2022.100497] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Covid-19 pandemic control has imposed several non-pharmaceutical interventions (NPIs). Strict application of these measures has had a dramatic reduction on the epidemiology of several infectious diseases. As the pandemic is ongoing for more than 2 years, some of these measures have been removed, mitigated, or less well applied. The aim of this study is to investigate the trends of pediatric ambulatory infectious diseases before and up to two years after the onset of the pandemic. Methods We conducted a prospective surveillance study in France with 107 pediatricians specifically trained in pediatric infectious diseases. From January 2018 to April 2022, the electronic medical records of children with an infectious disease were automatically extracted. The annual number of infectious diseases in 2020 and 2021 was compared to 2018-2019 and their frequency was compared by logistic regression. Findings From 2018 to 2021, 185,368 infectious diseases were recorded. Compared to 2018 (n=47,116) and 2019 (n=51,667), the annual number of cases decreased in 2020 (n=35,432) by about a third. Frequency of scarlet fever, tonsillopharyngitis, enteroviral infections, bronchiolitis, and gastroenteritis decreased with OR varying from 0·6 (CI95% [0·5;0·7]) to 0·9 (CI95% [0·8;0·9]), p<0·001. In 2021, among the 52,153 infectious diagnoses, an off-season rebound was observed with increased frequency of enteroviral infections, bronchiolitis, gastroenteritis and otitis with OR varying from 1·1 (CI95% [1·0;1·1]) to 1·5 (CI95% [1·4;1·5]), p<0·001. Interpretation While during NPIs strict application, the overall frequency of community-acquired infections was reduced, after relaxation of these measures, a rebound of some of them (enteroviral infections, bronchiolitis, gastroenteritis, otitis) occurred beyond the pre-pandemic level. These findings highlight the need for continuous surveillance of infectious diseases, especially insofar as future epidemics are largely unpredictable. Funding ACTIV, AFPA, GSK, MSD, Pfizer and Sanofi.
Collapse
|
19
|
Lin G, Hamilton A, Gatalo O, Haghpanah F, Igusa T, Klein E. Investigating the effects of absolute humidity and movement on COVID-19 seasonality in the United States. Sci Rep 2022; 12:16729. [PMID: 36202875 PMCID: PMC9537426 DOI: 10.1038/s41598-022-19898-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Mounting evidence suggests the primary mode of SARS-CoV-2 transmission is aerosolized transmission from close contact with infected individuals. While transmission is a direct result of human encounters, falling humidity may enhance aerosolized transmission risks similar to other respiratory viruses (e.g., influenza). Using Google COVID-19 Community Mobility Reports, we assessed the relative effects of absolute humidity and changes in individual movement patterns on daily cases while accounting for regional differences in climatological regimes. Our results indicate that increasing humidity was associated with declining cases in the spring and summer of 2020, while decreasing humidity and increase in residential mobility during winter months likely caused increases in COVID-19 cases. The effects of humidity were generally greater in regions with lower humidity levels. Given the possibility that COVID-19 will be endemic, understanding the behavioral and environmental drivers of COVID-19 seasonality in the United States will be paramount as policymakers, healthcare systems, and researchers forecast and plan accordingly.
Collapse
Affiliation(s)
- Gary Lin
- Center for Disease Dynamics, Economics & Policy, 962 Wayne Avenue, Suite 530, Silver Spring, MD, 20910-4433, USA.
| | - Alisa Hamilton
- Center for Disease Dynamics, Economics & Policy, 962 Wayne Avenue, Suite 530, Silver Spring, MD, 20910-4433, USA
| | - Oliver Gatalo
- Center for Disease Dynamics, Economics & Policy, 962 Wayne Avenue, Suite 530, Silver Spring, MD, 20910-4433, USA
| | - Fardad Haghpanah
- Center for Disease Dynamics, Economics & Policy, 962 Wayne Avenue, Suite 530, Silver Spring, MD, 20910-4433, USA
| | - Takeru Igusa
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
- Center for Systems Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eili Klein
- Center for Disease Dynamics, Economics & Policy, 962 Wayne Avenue, Suite 530, Silver Spring, MD, 20910-4433, USA
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Fitness consequences of chronic exposure to different light pollution wavelengths in nocturnal and diurnal rodents. Sci Rep 2022; 12:16486. [PMID: 36182961 PMCID: PMC9526750 DOI: 10.1038/s41598-022-19805-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Use of artificial at night (ALAN) exposes the world to continuously increasing levels and distribution of light pollution. Our understanding of the adverse effects of ALAN is based mostly on observational or laboratory studies, and its effects are probably underestimated. Demonstration of direct experimental fitness consequences of ALAN on mammals is missing. We studied the effects of chronic light pollution at different wavelengths on fitness and glucocorticoid hormone levels under semi-natural conditions in two closely related species: the nocturnal common spiny mouse (Acomys cahirinus) and the diurnal golden spiny mouse (Acomys russatus). Our results clearly demonstrate the adverse effects of ALAN exposure on the fitness of both nocturnal and diurnal species, manifested by changes in cortisol levels and reproductive timing, reduced reproductive output and reduced survival, which differed between species and wavelengths. In A. russatus exposure to blue ALAN had the strongest effect on fitness, followed by white and yellow ALAN exposure. In A. cahirinus the results are more complex and suggest it suffered from the combined effects of ALAN and competition. Our research shows that light pollution presents a real threat to both nocturnal and diurnal species, affecting the species fitness directly and through interspecific interactions. Worryingly, these effects are probably not limited to spiny mice. The clear adverse effects we documented, as well as the differences between wave lengths, contribute to our ability to present science-based recommendations to decision makers regarding the use of artificial light at night. Such information and guidelines are highly important nowadays when lighting systems are being replaced to promote energy efficiency.
Collapse
|
21
|
Ndlovu M, Moyo R, Mpofu M. Modelling COVID-19 infection with seasonality in Zimbabwe. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2022; 127:103167. [PMID: 35642222 PMCID: PMC9132494 DOI: 10.1016/j.pce.2022.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
This paper presents evidence and the existence of seasonality in current existing COVID-19 datasets for three different countries namely Zimbabwe, South Africa, and Botswana. Therefore, we modified the SVIR model through factoring in the seasonality effect by incorporating moving averages and signal processing techniques to the disease transmission rate. The simulation results strongly established the existence of seasonality in COVID-19 dynamics with a correlation of 0.746 between models with seasonality effect at 0.001 significance level. Finally, the model was used to predict the magnitude and occurrence of the fourth wave.
Collapse
|
22
|
Cao Y, Whittington JD, Kausrud K, Li R, Stenseth NC. The Relative Contribution of Climatic, Demographic Factors, Disease Control Measures and Spatiotemporal Heterogeneity to Variation of Global COVID-19 Transmission. GEOHEALTH 2022; 6:e2022GH000589. [PMID: 35946036 PMCID: PMC9349723 DOI: 10.1029/2022gh000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Despite a substantial number of COVID-19 related research papers published, it remains unclear as to which factors are associated with the observed variation in global transmission and what are their relative levels of importance. This study applies a rigorous statistical framework to provide robust estimations of the factor effects for a global and integrated perspective on this issue. We developed a mixed effect model exploring the relative importance of potential factors driving COVID-19 transmission while incorporating spatial and temporal heterogeneity of spread. We use an integrated data set for 87 countries across six continents for model specification and fitting. The best model accounts for 70.4% of the variance in the data analyzed: 10 fixed effect factors explain 20.5% of the variance, random temporal and spatial effects account for 50% of the variance. The fixed effect factors are classified into climatic, demographic and disease control groups. The explained variance in global transmission by the three groups are 0.6%, 1.1%, and 4.4% respectively. The high proportion of variance accounted for by random effects indicated striking differences in temporal transmission trajectories and effects of population mobility among the countries. In particular, the country-specific mobility-transmission relationship turns out to be the most important factor in explaining the observed global variation of transmission in the early phase of COVID-19 pandemic.
Collapse
Affiliation(s)
- Yihan Cao
- Centre for Ecological and Evolutionary Synthesis (CEES)Department of BiosciencesUniversity of OsloOsloNorway
| | - Jason D. Whittington
- Centre for Ecological and Evolutionary Synthesis (CEES)Department of BiosciencesUniversity of OsloOsloNorway
| | | | - Ruiyun Li
- Centre for Ecological and Evolutionary Synthesis (CEES)Department of BiosciencesUniversity of OsloOsloNorway
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES)Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
23
|
Chivese T, Matizanadzo JT, Musa OAH, Hindy G, Furuya-Kanamori L, Islam N, Al-Shebly R, Shalaby R, Habibullah M, Al-Marwani TA, Hourani RF, Nawaz AD, Haider MZ, Emara MM, Cyprian F, Doi SAR. The prevalence of adaptive immunity to COVID-19 and reinfection after recovery - a comprehensive systematic review and meta-analysis. Pathog Glob Health 2022; 116:269-281. [PMID: 35099367 PMCID: PMC9248963 DOI: 10.1080/20477724.2022.2029301] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study aims to estimate the prevalence and longevity of detectable SARS-CoV-2 antibodies and T and B memory cells after recovery. In addition, the prevalence of COVID-19 reinfection and the preventive efficacy of previous infection with SARS-CoV-2 were investigated. A synthesis of existing research was conducted. The Cochrane Library, the China Academic Journals Full Text Database, PubMed, and Scopus, and preprint servers were searched for studies conducted between 1 January 2020 to 1 April 2021. Included studies were assessed for methodological quality and pooled estimates of relevant outcomes were obtained in a meta-analysis using a bias adjusted synthesis method. Proportions were synthesized with the Freeman-Tukey double arcsine transformation and binary outcomes using the odds ratio (OR). Heterogeneity was assessed using the I2 and Cochran's Q statistics and publication bias was assessed using Doi plots. Fifty-four studies from 18 countries, with around 12,000,000 individuals, followed up to 8 months after recovery, were included. At 6-8 months after recovery, the prevalence of SARS-CoV-2 specific immunological memory remained high; IgG - 90.4% (95%CI 72.2-99.9, I2 = 89.0%), CD4+ - 91.7% (95%CI 78.2-97.1y), and memory B cells 80.6% (95%CI 65.0-90.2) and the pooled prevalence of reinfection was 0.2% (95%CI 0.0-0.7, I2 = 98.8). Individuals previously infected with SARS-CoV-2 had an 81% reduction in odds of a reinfection (OR 0.19, 95% CI 0.1-0.3, I2 = 90.5%). Around 90% of recovered individuals had evidence of immunological memory to SARS-CoV-2, at 6-8 months after recovery and had a low risk of reinfection.RegistrationPROSPERO: CRD42020201234.
Collapse
Affiliation(s)
- Tawanda Chivese
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar,CONTACT Tawanda Chivese ; Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Joshua T. Matizanadzo
- Department of Public Health and Primary Care, Brighton and Sussex Medical School, UK
| | - Omran A. H. Musa
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - George Hindy
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Luis Furuya-Kanamori
- UQ Centre for Clinical Research, The University of Queensland, Herston, Australia
| | - Nazmul Islam
- Department of Public Health, Qu Health, Qatar University, Doha, Qatar
| | - Rafal Al-Shebly
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Rana Shalaby
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Mohammad Habibullah
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Talal A. Al-Marwani
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Rizeq F. Hourani
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Ahmed D. Nawaz
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Mohammad Z. Haider
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Immunology Section, Basic Medical Sciences Department, College of Medicine, Qu Health, Qatar University, Doha, Qatar,Microbiology Section, Biomedical and Pharmaceutical Research Unit, Qu Health, Qatar University, Doha, Qatar
| | - Farhan Cyprian
- Immunology Section, Basic Medical Sciences Department, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| | - Suhail A. R. Doi
- Department of Population Medicine, College of Medicine, Qu Health, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Wang D, Wu X, Li C, Han J, Yin J. The impact of geo-environmental factors on global COVID-19 transmission: A review of evidence and methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154182. [PMID: 35231530 PMCID: PMC8882033 DOI: 10.1016/j.scitotenv.2022.154182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Studies on Coronavirus Disease 2019 (COVID-19) transmission indicate that geo-environmental factors have played a significant role in the global pandemic. However, there has not been a systematic review on the impact of geo-environmental factors on global COVID-19 transmission in the context of geography. As such, we reviewed 49 well-chosen studies to reveal the impact of geo-environmental factors (including the natural environment and human activity) on global COVID-19 transmission, and to inform critical intervention strategies that could mitigate the worldwide effects of the pandemic. Existing studies frequently mention the impact of climate factors (e.g., temperature and humidity); in contrast, a more decisive influence can be achieved by human activity, including human mobility, health factors, and non-pharmaceutical interventions (NPIs). The above results exhibit distinct spatiotemporal heterogeneity. The related analytical methodology consists of sensitivity analysis, mathematical modeling, and risk analysis. For future studies, we recommend highlighting geo-environmental interactions, developing geographically statistical models for multiple waves of the pandemic, and investigating NPIs and care patterns. We also propose four implications for practice to combat global COVID-19 transmission.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiatong Han
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Rijo-Ferreira F, Takahashi JS. Circadian rhythms in infectious diseases and symbiosis. Semin Cell Dev Biol 2022; 126:37-44. [PMID: 34625370 PMCID: PMC9183220 DOI: 10.1016/j.semcdb.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Timing is everything. Many organisms across the tree of life have evolved timekeeping mechanisms that regulate numerous of their cellular functions to optimize timing by anticipating changes in the environment. The specific environmental changes that are sensed depends on the organism. For animals, plants, and free-living microbes, environmental cues include light/dark cycles, daily temperature fluctuations, among others. In contrast, for a microbe that is never free-living, its rhythmic environment is its host's rhythmic biology. Here, we describe recent research on the interactions between hosts and microbes, from the perspective both of symbiosis as well as infections. In addition to describing the biology of the microbes, we focus specifically on how circadian clocks modulate these host-microbe interactions.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
26
|
Biasin M, Strizzi S, Bianco A, Macchi A, Utyro O, Pareschi G, Loffreda A, Cavalleri A, Lualdi M, Trabattoni D, Tacchetti C, Mazza D, Clerici M. UV and violet light can Neutralize SARS-CoV-2 Infectivity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022; 10:100107. [PMID: 35036965 PMCID: PMC8741330 DOI: 10.1016/j.jpap.2021.100107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
We performed an in-depth analysis of the virucidal effect of discrete wavelengths: UV-C (278 nm), UV-B (308 nm), UV-A (366 nm) and violet (405 nm) on SARS-CoV-2. By using a highly infectious titer of SARS-CoV-2 we observed that the violet light-dose resulting in a 2-log viral inactivation is only 104 times less efficient than UV-C light. Moreover, by qPCR (quantitative Polymerase chain reaction) and fluorescence in situ hybridization (FISH) approach we verified that the viral titer typically found in the sputum of COVID-19 patients can be completely inactivated by the long UV-wavelengths corresponding to UV-A and UV-B solar irradiation. The comparison of the UV action spectrum on SARS-CoV-2 to previous results obtained on other pathogens suggests that RNA viruses might be particularly sensitive to long UV wavelengths. Our data extend previous results showing that SARS-CoV-2 is highly susceptible to UV light and offer an explanation to the reduced incidence of SARS-CoV-2 infection seen in the summer season.
Collapse
Affiliation(s)
- Mara Biasin
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Andrea Bianco
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Merate, Italy
| | - Alberto Macchi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Merate, Italy
| | - Olga Utyro
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Giovanni Pareschi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Merate, Italy
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Lualdi
- Department of Imaging Diagnostic and Radioterapy, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation, IRCCS Foundation, Milan, Italy
| |
Collapse
|
27
|
Coccia M. COVID-19 pandemic over 2020 (withlockdowns) and 2021 (with vaccinations): similar effects for seasonality and environmental factors. ENVIRONMENTAL RESEARCH 2022; 208:112711. [PMID: 35033552 PMCID: PMC8757643 DOI: 10.1016/j.envres.2022.112711] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/19/2023]
Abstract
How is the dynamics of Coronavirus Disease 2019 (COVID-19) in 2020 with an health policy of full lockdowns and in 2021 with a vast campaign of vaccinations? The present study confronts this question here by developing a comparative analysis of the effects of COVID-19 pandemic between April-September 2020 (based upon strong control measures) and April-September 2021 (focused on health policy of vaccinations) in Italy, which was one of the first European countries to experience in 2020 high numbers of COVID-19 related infected individuals and deaths and in 2021 Italy has a high share of people fully vaccinated against COVID-19 (>89% of population aged over 12 years in January 2022). Results suggest that over the period under study, the arithmetic mean of confirmed cases, hospitalizations of people and admissions to Intensive Care Units (ICUs) in 2020 and 2021 is significantly equal (p-value<0.01), except fatality rate. Results suggest in December 2021 lower hospitalizations, admissions to ICUs, and fatality rate of COVID-19 than December 2020, though confirmed cases and mortality rates are in 2021 higher than 2020, and likely converging trends in the first quarter of 2022. These findings reveal that COVID-19 pandemic is driven by seasonality and environmental factors that reduce the negative effects in summer period, regardless control measures and/or vaccination campaigns. These findings here can be of benefit to design health policy responses of crisis management considering the growth of COVID-19 pandemic in winter months having reduced temperatures and low solar radiations ( COVID-19 has a behaviour of influenza-like illness). Hence, findings here suggest that strategies of prevention and control of infectious diseases similar to COVID-19 should be set up in summer months and fully implemented during low-solar-irradiation periods (autumn and winter period).
Collapse
Affiliation(s)
- Mario Coccia
- CNR, National Research Council of Italy - Via Real Collegio, n. 30 (Collegio Carlo Alberto), 10024, Moncalieri (TO), Italy.
| |
Collapse
|
28
|
Johnson KD, Grass A, Toneian D, Beiglböck M, Polechová J. Robust models of disease heterogeneity and control, with application to the SARS-CoV-2 epidemic. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000412. [PMID: 36962207 PMCID: PMC10021456 DOI: 10.1371/journal.pgph.0000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022]
Abstract
In light of the continuing emergence of new SARS-CoV-2 variants and vaccines, we create a robust simulation framework for exploring possible infection trajectories under various scenarios. The situations of primary interest involve the interaction between three components: vaccination campaigns, non-pharmaceutical interventions (NPIs), and the emergence of new SARS-CoV-2 variants. Additionally, immunity waning and vaccine boosters are modeled to account for their growing importance. New infections are generated according to a hierarchical model in which people have a random, individual infectiousness. The model thus includes super-spreading observed in the COVID-19 pandemic which is important for accurate uncertainty prediction. Our simulation functions as a dynamic compartment model in which an individual's history of infection, vaccination, and possible reinfection all play a role in their resistance to further infections. We present a risk measure for each SARS-CoV-2 variant, [Formula: see text], that accounts for the amount of resistance within a population and show how this risk changes as the vaccination rate increases. [Formula: see text] highlights that different variants may become dominant in different countries-and in different times-depending on the population compositions in terms of previous infections and vaccinations. We compare the efficacy of control strategies which act to both suppress COVID-19 outbreaks and relax restrictions when possible. We demonstrate that a controller that responds to the effective reproduction number in addition to case numbers is more efficient and effective in controlling new waves than monitoring case numbers alone. This not only reduces the median total infections and peak quarantine cases, but also controls outbreaks much more reliably: such a controller entirely prevents rare but large outbreaks. This is important as the majority of public discussions about efficient control of the epidemic have so far focused primarily on thresholds for case numbers.
Collapse
Affiliation(s)
- Kory D. Johnson
- Institute of Statistics and Mathematical Methods in Economics, TU Wien, Vienna, Austria
| | - Annemarie Grass
- Department of Mathematics, University of Vienna, Vienna, Austria
| | - Daniel Toneian
- Department of Mathematics, University of Vienna, Vienna, Austria
| | | | - Jitka Polechová
- Department of Mathematics, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Ebert K, Houts R, Noce S. Lower COVID-19 Incidence in Low-Continentality West-Coast Areas of Europe. GEOHEALTH 2022; 6:e2021GH000568. [PMID: 35516911 PMCID: PMC9066745 DOI: 10.1029/2021gh000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In March 2020, the first known cases of COVID-19 occurred in Europe. Subsequently, the pandemic developed a seasonal pattern. The incidence of COVID-19 comprises spatial heterogeneity and seasonal variations, with lower and/or shorter peaks resulting in lower total incidence and higher and/or longer peaks resulting higher total incidence. The reason behind this phenomena is still unclear. Unraveling factors that explain why certain places have higher versus lower total COVID-19 incidence can help health decision makers understand and plan for future waves of the pandemic. We test whether differences in the total incidence of COVID-19 within five European countries (Norway, Sweden, Germany, Italy, and Spain), correlate with two environmental factors: the Köppen-Geiger climate zones and the Continentality Index, while statistically controlling for crowding. Our results show that during the first 16 months of the pandemic (March 2020 to July 2021), climate zones with larger annual differences in temperature and annually distributed precipitation show a higher total incidence than climate zones with smaller differences in temperature and dry seasons. This coincides with lower continentality values. Total incidence increases with continentality, up to a Continentality Index value of 19, where a peak is reached in the semicontinental zone. Low continentality (high oceanic influence) appears to be a strong suppressing factor for COVID-19 spread. The incidence in our study area is lowest at open low continentality west coast areas.
Collapse
Affiliation(s)
- Karin Ebert
- Natural Sciences, Technology and Environmental StudiesSödertörn UniversityStockholmSweden
| | - Renate Houts
- Department of Psychology and NeuroscienceDuke UniversityDurhamNCUSA
| | - Sergio Noce
- Fondazione Centro Euro‐Mediterraneo sui Cambiamenti Climatici (CMCC)Division on Impacts on Agriculture, Forests and Ecosystem Services (IAFES)ViterboItaly
| |
Collapse
|
30
|
Chen L, Huang H, Wang Z, Deng K, Huang H. Sensitive fluorescence detection of pathogens based on target nucleic acid sequence-triggered transcription. Talanta 2022; 243:123352. [DOI: 10.1016/j.talanta.2022.123352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
31
|
Abstract
Adaptive immune responses play critical roles in viral clearance and protection against re-infection, and SARS-CoV-2 is no exception. What is exceptional is the rapid characterization of the immune response to the virus performed by researchers during the first 20 months of the pandemic. This has given us a more detailed understanding of SARS-CoV-2 compared to many viruses that have been with us for a long time. Furthermore, effective COVID-19 vaccines were developed in record time, and their rollout worldwide is already making a significant difference, although major challenges remain in terms of equal access. The pandemic has engaged scientists and the public alike, and terms such as seroprevalence, neutralizing antibodies, antibody escape and vaccine certificates have become familiar to a broad community. Here, we review key findings concerning B cell and antibody (Ab) responses to SARS-CoV-2, focusing on non-severe cases and anti-spike (S) Ab responses in particular, the latter being central to protective immunity induced by infection or vaccination. The emergence of viral variants that have acquired mutations in S acutely highlights the need for continued characterization of both emerging variants and Ab responses against these during the evolving pathogen-immune system arms race.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
32
|
Caetano-Anollés K, Hernandez N, Mughal F, Tomaszewski T, Caetano-Anollés G. The seasonal behaviour of COVID-19 and its galectin-like culprit of the viral spike. METHODS IN MICROBIOLOGY 2021; 50:27-81. [PMID: 38620818 PMCID: PMC8590929 DOI: 10.1016/bs.mim.2021.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seasonal behaviour is an attribute of many viral diseases. Like other 'winter' RNA viruses, infections caused by the causative agent of COVID-19, SARS-CoV-2, appear to exhibit significant seasonal changes. Here we discuss the seasonal behaviour of COVID-19, emerging viral phenotypes, viral evolution, and how the mutational landscape of the virus affects the seasonal attributes of the disease. We propose that the multiple seasonal drivers behind infectious disease spread (and the spread of COVID-19 specifically) are in 'trade-off' relationships and can be better described within a framework of a 'triangle of viral persistence' modulated by the environment, physiology, and behaviour. This 'trade-off' exists as one trait cannot increase without a decrease in another. We also propose that molecular components of the virus can act as sensors of environment and physiology, and could represent molecular culprits of seasonality. We searched for flexible protein structures capable of being modulated by the environment and identified a galectin-like fold within the N-terminal domain of the spike protein of SARS-CoV-2 as a potential candidate. Tracking the prevalence of mutations in this structure resulted in the identification of a hemisphere-dependent seasonal pattern driven by mutational bursts. We propose that the galectin-like structure is a frequent target of mutations because it helps the virus evade or modulate the physiological responses of the host to further its spread and survival. The flexible regions of the N-terminal domain should now become a focus for mitigation through vaccines and therapeutics and for prediction and informed public health decision making.
Collapse
Affiliation(s)
| | - Nicolas Hernandez
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Tre Tomaszewski
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
33
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
34
|
Erren TC, Lewis P. Comment on "COVID-19, the Built Environment, and Health". ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:98001. [PMID: 34519536 PMCID: PMC8439282 DOI: 10.1289/ehp10144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Castro Dopico X, Muschiol S, Christian M, Hanke L, Sheward DJ, Grinberg NF, Rorbach J, Bogdanovic G, Mcinerney GM, Allander T, Wallace C, Murrell B, Albert J, Karlsson Hedestam GB. Seropositivity in blood donors and pregnant women during the first year of SARS-CoV-2 transmission in Stockholm, Sweden. J Intern Med 2021; 290:666-676. [PMID: 34008203 PMCID: PMC8242905 DOI: 10.1111/joim.13304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND In Sweden, social restrictions to contain SARS-CoV-2 have primarily relied upon voluntary adherence to a set of recommendations. Strict lockdowns have not been enforced, potentially affecting viral dissemination. To understand the levels of past SARS-CoV-2 infection in the Stockholm population before the start of mass vaccinations, healthy blood donors and pregnant women (n = 5,100) were sampled at random between 14 March 2020 and 28 February 2021. METHODS In this cross-sectional prospective study, otherwise-healthy blood donors (n = 2,600) and pregnant women (n = 2,500) were sampled for consecutive weeks (at four intervals) throughout the study period. Sera from all participants and a cohort of historical (negative) controls (n = 595) were screened for IgG responses against stabilized trimers of the SARS-CoV-2 spike (S) glycoprotein and the smaller receptor-binding domain (RBD). As a complement to standard analytical approaches, a probabilistic (cut-off independent) Bayesian framework that assigns likelihood of past infection was used to analyse data over time. SETTING Healthy participant samples were randomly selected from their respective pools through Karolinska University Hospital. The study was carried out in accordance with Swedish Ethical Review Authority: registration number 2020-01807. PARTICIPANTS No participants were symptomatic at sampling, and blood donors were all over the age of 18. No additional metadata were available from the participants. RESULTS Blood donors and pregnant women showed a similar seroprevalence. After a steep rise at the start of the pandemic, the seroprevalence trajectory increased steadily in approach to the winter second wave of infections, approaching 15% of all individuals surveyed by 13 December 2020. By the end of February 2021, 19% of the population tested seropositive. Notably, 96% of seropositive healthy donors screened (n = 56) developed neutralizing antibody responses at titres comparable to or higher than those observed in clinical trials of SARS-CoV-2 spike mRNA vaccination, supporting that mild infection engenders a competent B-cell response. CONCLUSIONS These data indicate that in the first year since the start of community transmission, seropositivity levels in metropolitan in Stockholm had reached approximately one in five persons, providing important baseline seroprevalence information prior to the start of vaccination.
Collapse
Affiliation(s)
- X. Castro Dopico
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - S. Muschiol
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
- Department of Clinical MicrobiologyKarolinska University HospitalStockholmSweden
| | - M. Christian
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - L. Hanke
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - D. J. Sheward
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - N. F. Grinberg
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - J. Rorbach
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Max Planck Institute Biology of Ageing‐Karolinska Institutet LaboratoryKarolinska InstitutetStockholmSweden
| | - G. Bogdanovic
- Department of Clinical MicrobiologyKarolinska University HospitalStockholmSweden
| | - G. M. Mcinerney
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - T. Allander
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
- Department of Clinical MicrobiologyKarolinska University HospitalStockholmSweden
| | - C. Wallace
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
- Biostatistics Unit, Cambridge Institute of Public HealthUniversity of CambridgeCambridgeUK
| | - B. Murrell
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - J. Albert
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
- Department of Clinical MicrobiologyKarolinska University HospitalStockholmSweden
| | - G. B. Karlsson Hedestam
- From theDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
36
|
McManus A, Holland CV, Henttonen H, Stuart P. The Invasive Bank Vole ( Myodes glareolus): A Model System for Studying Parasites and Ecoimmunology during a Biological Invasion. Animals (Basel) 2021; 11:2529. [PMID: 34573495 PMCID: PMC8464959 DOI: 10.3390/ani11092529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
The primary driver of the observed increase in emerging infectious diseases (EIDs) has been identified as human interaction with wildlife and this increase has emphasized knowledge gaps in wildlife pathogens dynamics. Wild rodent models have proven excellent for studying changes in parasite communities and have been a particular focus of eco-immunological research. Helminth species have been shown to be one of the factors regulating rodent abundance and indirectly affect disease burden through trade-offs between immune pathways. The Myodes glareolus invasion in Ireland is a unique model system to explore the invasion dynamics of helminth species. Studies of the invasive population of M. glareolus in Ireland have revealed a verifiable introduction point and its steady spread. Helminths studies of this invasion have identified enemy release, spillover, spillback and dilution taking place. Longitudinal studies have the potential to demonstrate the interplay between helminth parasite dynamics and both immune adaptation and coinfecting microparasites as M. glareolus become established across Ireland. Using the M. glareolus invasion as a model system and other similar wildlife systems, we can begin to fill the large gap in our knowledge surrounding the area of wildlife pathogen dynamics.
Collapse
Affiliation(s)
- Andrew McManus
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland;
| | - Celia V. Holland
- Department of Zoology, Trinity College Dublin, the University of Dublin, College Green, D02 PN40 Dublin, Ireland;
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland (Luke), FI 00790 Helsinki, Finland;
| | - Peter Stuart
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland;
| |
Collapse
|
37
|
Herz RS, Herzog ED, Merrow M, Noya SB. The Circadian Clock, the Brain, and COVID-19: The Cases of Olfaction and the Timing of Sleep. J Biol Rhythms 2021; 36:423-431. [PMID: 34396817 PMCID: PMC8442129 DOI: 10.1177/07487304211031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Daily rhythms of behavior and neurophysiology are integral to the
circadian clocks of all animals. Examples of circadian clock
regulation in the human brain include daily rhythms in sleep-wake,
cognitive function, olfactory sensitivity, and risk for ischemic
stroke, all of which overlap with symptoms displayed by many COVID-19
patients. Motivated by the relatively unexplored, yet pervasive,
overlap between circadian functions and COVID-19 neurological
symptoms, this perspective piece uses daily variations in the sense of
smell and the timing of sleep and wakefulness as illustrative
examples. We propose that time-stamping clinical data and testing may
expand and refine diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Rachel S Herz
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sara B Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Oved S, Mofaz M, Lan A, Einat H, Kronfeld-Schor N, Yamin D, Shmueli E. Differential effects of COVID-19 lockdowns on well-being: interaction between age, gender and chronotype. J R Soc Interface 2021; 18:20210078. [PMID: 34062107 PMCID: PMC8169206 DOI: 10.1098/rsif.2021.0078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
The unprecedented restrictions imposed due to the COVID-19 pandemic altered our daily habits and severely affected our well-being and physiology. The effect of these changes is yet to be fully understood. Here, we analysed highly detailed data on 169 participants for two to six months, before and during the second COVID-19 lockdown in Israel. We extracted 12 well-being indicators from sensory data of smartwatches and from self-reported questionnaires, filled daily using a designated mobile application. We found that, in general, lockdowns resulted in significant changes in mood, sleep duration, sport duration, social encounters, resting heart rate and number of steps. Examining subpopulations, we found that younger participants (aged 20-40 years) suffered from a greater decline in mood and number of steps than older participants (aged 60-80 years). Likewise, women suffered from a higher increase in stress and reduction in social encounters than men. Younger early chronotypes did not increase their sleep duration and exhibited the highest drop in mood. Our findings underscore that while lockdowns severely impacted our well-being and physiology in general, greater damage has been identified in certain subpopulations. Accordingly, special attention should be given to younger people, who are usually not in the focus of social support, and to women.
Collapse
Affiliation(s)
- Shay Oved
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Mofaz
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Lan
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yafo, Tel-Aviv, Israel
| | - Haim Einat
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yafo, Tel-Aviv, Israel
| | - Noga Kronfeld-Schor
- School of Zoology and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dan Yamin
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Center for Combating Pandemics, Tel-Aviv University, Tel-Aviv, Israel
| | - Erez Shmueli
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
39
|
Costa R. Frontiers in Chronobiology: Endogenous Clocks at the Core of Signaling Pathways in Physiology. Front Physiol 2021; 12:684745. [PMID: 34093241 PMCID: PMC8173170 DOI: 10.3389/fphys.2021.684745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Rodolfo Costa
- Department of Biology, University of Padova, Italian National Research Council (CNR) Institute of Neuroscience, Padova, Italy
| |
Collapse
|
40
|
Haspel J, Kim M, Zee P, Schwarzmeier T, Montagnese S, Panda S, Albani A, Merrow M. A Timely Call to Arms: COVID-19, the Circadian Clock, and Critical Care. J Biol Rhythms 2021; 36:55-70. [PMID: 33573430 PMCID: PMC7882674 DOI: 10.1177/0748730421992587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We currently find ourselves in the midst of a global coronavirus disease 2019 (COVID-19) pandemic, caused by the highly infectious novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we discuss aspects of SARS-CoV-2 biology and pathology and how these might interact with the circadian clock of the host. We further focus on the severe manifestation of the illness, leading to hospitalization in an intensive care unit. The most common severe complications of COVID-19 relate to clock-regulated human physiology. We speculate on how the pandemic might be used to gain insights on the circadian clock but, more importantly, on how knowledge of the circadian clock might be used to mitigate the disease expression and the clinical course of COVID-19.
Collapse
Affiliation(s)
- Jeffrey Haspel
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minjee Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Phyllis Zee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tanja Schwarzmeier
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | | | - Adriana Albani
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU Munich, Munich, Germany
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|