1
|
Won Y, Kim HH, Jeong SH, Bhosale PB, Abusaliya A, Heo JD, Seong JK, Ahn MJ, Kim HJ, Kim GS. The Effects of Iridin and Irigenin on Cancer: Comparison with Well-Known Isoflavones in Breast, Prostate, and Gastric Cancers. Int J Mol Sci 2025; 26:2390. [PMID: 40141034 PMCID: PMC11942201 DOI: 10.3390/ijms26062390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer, a worldwide problem and one of the leading causes of death due to uncontrolled cell proliferation, can be caused by various factors, such as genetic and environmental factors. Apoptosis is a programmed cell death mechanism that eliminates abnormal cells or renews cells. There are two main apoptotic pathways: intrinsic and extrinsic pathways. These pathways can be affected by various signaling pathways in cancer, such as the PI3K/AKT, MAPK, Wnt, and JAK/STAT pathways. Numerous approaches to cancer treatment have been studied, and among them, natural compounds have been actively researched. Flavonoids are natural compounds from fruits and vegetables and have been studied for their anti-cancer effects. Isoflavones, one of the subclasses of flavonoids, are usually found in soy food or legumes and are effective in several bioactive functions. The well-known isoflavones are genistein, daidzein, and glycitein. Irigenin and iridin can be extracted from the Iris family. Both irigenin and iridin are currently being studied for anti-inflammation, antioxidant, and anti-cancer by inducing apoptosis. In this review, we summarized five isoflavones, genistein, daidzein, glycitein, irigenin, and iridin and their effects on three different cancers: breast cancer, prostate cancer, and gastric cancer.
Collapse
Affiliation(s)
- Yaeram Won
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (Y.W.); (H.-J.K.)
- Department of Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hun-Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Se-Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Jeong-Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea;
| | - Je-Kyung Seong
- Laboratory of Developmental Biology and Goenomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Mee-Jung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea;
| | - Hye-Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (Y.W.); (H.-J.K.)
- Department of Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Gon-Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| |
Collapse
|
2
|
Salama A, El-Fadaly AA, Elgohary R. Effect of atorvastatin on lipopolysaccharide-induced lung inflammation and hypoxia in mice; modulation of HIF-1α, CINC and MIP-2. Immunopharmacol Immunotoxicol 2024:1-9. [PMID: 39632508 DOI: 10.1080/08923973.2024.2436089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Acute lung injury is a crucial pathological state, particularly in some severe infectious respiratory illnesses, distinguished by acute inflammation, pulmonary edema, hypoxia, and neutrophil recruitment. Cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) play a vital role in neutrophil recruitment. OBJECTIVE Here, we validated the potential repressing effect of atorvastatin on acute lung injury induced by lipopolysaccharide (LPS) in mice. MATERIALS AND METHODS Mice were injected with LPS (250 μg/kg; i.p.) daily for 7 days, and atorvastatin (25 and 50 mg/kg; orally) daily along with LPS. RESULTS Atorvastatin ameliorated oxidative stress as evidenced by increased reduced glutathione (GSH) and nuclear factor-erythroid 2 related factor 2 (Nrf2) levels and decreased malondialdehyde (MDA) levels. Additionally, it lessened inflammatory biomarkers including tumor necrosis factor-alpha (TNF-α), mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), CINC, and MIP-2, as well as hypoxia biomarker hypoxia-inducible factor-1α (HIF-1α). Moreover, atorvastatin slowed the progression of lung tissue histological lesions. CONCLUSION Collectively, the present study suggests that, atorvastatin effectively protects against LPS-induced acute lung injury through inhibition of oxidative stress, inflammation, hypoxia, and neutrophil recruitment.
Collapse
Affiliation(s)
- Abeer Salama
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | | | - Rania Elgohary
- Department of Narcotics, Ergogenics and Poisons, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Zhang Q, Pu Q, Jiang Z, Zhao J, Dai Y, Hu N, Han Y, Jiang N, Shi L, Zhao J, Ouyang K, Huang H, Jin K, Li J. Tectorigenin Reduces Dabie bandavirus-Induced Cytokine Storm by Regulating Toll-Like Receptor 7/Extracellular Signal-Regulated Kinase Pathway. Chem Biol Drug Des 2024; 104:e70005. [PMID: 39672675 DOI: 10.1111/cbdd.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 12/15/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a severe emerging infectious disease caused by Dabie bandavirus (DBV). Tectorigenin has been demonstrated to exert anti-inflammatory effect. Here, we aimed to investigate the effects of tectorigenin on DBV-induced cytokine storm. Effects of tectorigenin on cytokines in DBV-infected THP-1 cells and plasma samples of Type I interferon receptor (IFNAR)-/- mice infected with DBV were detected. The changes in body weight and survival time of mice were recorded. The liver, spleen, kidney, and lymph node tissues were collected for hematoxylin-eosin staining. We demonstrated that tectorigenin reduced the expression levels of inflammatory cytokines in both DBV-infected THP-1 cells and plasma samples of IFNAR-/- mice infected with DBV. Tectorigenin attenuated DBV-induced histopathological changes in mice. Mechanistically, tectorigenin attenuated DBV-induced phosphorylation of inhibitor of kappa-B kinase alpha/beta (IKKα/β) of the nuclear factor-κB (NF-κB) signaling pathway, extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) signaling pathway and might function by downregulation of Toll-like receptor. The result of this study suggested that tectorigenin exerted anti-inflammatory effects in vivo and in vitro and could serve as a novel potential therapeutic strategy for SFTS.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qinqin Pu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengyi Jiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zhao
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Dai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nannan Hu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaping Han
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Jiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Luchen Shi
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaying Zhao
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Ouyang
- Department of Infectious Disease, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huaying Huang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ke Jin
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Wang Z, Jiang Y, Li Z, Weng L, Xiao C. Herbal textual research of Belamcanda chinensis (L.) redouté and screening of quality-markers based on 'pharmacodynamics-substance'. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118324. [PMID: 38754643 DOI: 10.1016/j.jep.2024.118324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Belamcanda chinensis (L.) Redouté is widely distributed in East Asia, such as China, Russia and North Korea. Belamcandae Rhizoma is the sun-dried rhizome of B. chinensis and has a long history of traditional medicinal use. It was first recorded in the Shennong's Herbal Classic, and has the effects of clearing heat and detoxifying, eliminating phlegm and benefiting the pharynx. AIM OF THE STUDY To systematically study the source of Belamcandae Rhizoma, summarize the evolution of its medicinal properties, efficacy and the application history of its prescriptions, summarize its biological activity, phytochemistry, synthetic metabolic pathway and toxicology, and screen the Quality-Markers of Belamcandae Rhizoma according to the screening principle of traditional Chinese medicine Quality-Markers. MATERIALS AND METHODS All information available on Belamcandae Rhizoma was collected using electronic search engines, such as Pubmed, Web of Science, CNKI, WFO (www.worldfloraonline.org), MPNS (https://mpsn.kew.org), Changchun University of Traditional Chinese Medicine Library collections, Chinese Medical Classics. RESULTS The source of Belamcandae Rhizoma is B. chinensis of Iridaceae. It has a long history of application in China. It has the effects of clearing heat and detoxifying, eliminating phlegm and promoting pharynx. Modern pharmacological studies have shown that it has anti-inflammatory, anti-oxidation, anti-tumor and other physiological activities, and is safe and non-toxic at normal application doses. At present, tectoridin, iridin, tectorigenin, irigenin and irisflorentin are identified as the Quality-Markers of Belamcandae Rhizoma. CONCLUSIONS As a traditional Chinese medicine, Belamcandae Rhizoma has a long history of application, and multifaceted studies have demonstrated that Belamcandae Rhizoma is a promising Chinese medicine with good application prospects. By reviewing and identifying the Quality-Markers of Belamcandae Rhizoma, this study can help to establish the evaluation procedure of it on the one hand, and identify the shortcomings research on the other hand. Currently, there are few studies on the anabolism and toxicology of it, and future studies may focus on its in vivo processes, toxicology and adverse effects.
Collapse
Affiliation(s)
- Zijian Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| | - Yuxin Jiang
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| | - Zhaoyang Li
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| | - Lili Weng
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| | - Chunping Xiao
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, Changchun, 130000, China.
| |
Collapse
|
5
|
Fang X, Zhao H, Xu T, Wu H, Sheng G. Anti-Inflammatory and Antioxidant Effects of Irigenen Alleviate Osteoarthritis Progression through Nrf2/HO-1 Pathway. Pharmaceuticals (Basel) 2024; 17:1268. [PMID: 39458910 PMCID: PMC11510601 DOI: 10.3390/ph17101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Osteoarthritis (OA) is a prevalent degenerative disease globally, characterized by cartilage degradation and joint dysfunction. Current treatments are insufficient for halting OA progression. Irigenin (IRI), a flavonoid extracted from natural plants with anti-inflammatory and antioxidant properties, has demonstrated potential in mitigating inflammation and oxidative stress in various diseases; however, its effects on OA remain unexplored. This study aims to evaluate the therapeutic effects of IRI on OA through in vivo and in vitro experiments and to elucidate the underlying molecular mechanisms. METHODS In vitro, chondrocytes were exposed to hydrogen peroxide (H2O2) to induce an oxidative stress environment and were then treated with IRI. Western blotting, RT-qPCR, immunofluorescence staining assays, flow cytometry, and apoptosis assays were employed to assess the effects of IRI on chondrocyte matrix homeostasis, inflammatory response, and apoptosis. In vivo, an OA rat model was treated with regular IRI injections, and therapeutic effects were evaluated using micro-CT, histological staining, and immunohistochemistry assays. RESULTS IRI treatment restored matrix homeostasis in chondrocytes and effectively suppressed H2O2-induced inflammation and apoptosis. Subsequent studies further revealed that IRI exerts its therapeutic effects by activating the Nrf2/HO-1 pathway. Inhibition of Nrf2 expression in chondrocytes partially blocked the anti-inflammatory and antioxidant effects of IRI. In the OA rat model, regular IRI injections effectively ameliorated cartilage degeneration. CONCLUSIONS This study identifies IRI as a promising strategy for OA treatment by modulating inflammation and apoptosis through the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
| | | | | | | | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (X.F.); (H.Z.); (T.X.); (H.W.)
| |
Collapse
|
6
|
Sarg NH, Zaher DM, Abu Jayab NN, Mostafa SH, Ismail HH, Omar HA. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts. Biochem Pharmacol 2024; 225:116307. [PMID: 38797269 DOI: 10.1016/j.bcp.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Mitochondria play a crucial role in cellular metabolism and bioenergetics, orchestrating various cellular processes, including energy production, metabolism, adaptation to stress, and redox balance. Besides, mitochondria regulate cellular metabolic homeostasis through coordination with multiple signaling pathways. Importantly, the p38 mitogen-activated protein kinase (MAPK) signaling pathway is a key player in the intricate communication with mitochondria, influencing various functions. This review explores the multifaced interaction between the mitochondria and p38 MAPK signaling and the consequent impact on metabolic alterations. Overall, the p38 MAPK pathway governs the activities of key mitochondrial proteins, which are involved in mitochondrial biogenesis, oxidative phosphorylation, thermogenesis, and iron homeostasis. Additionally, p38 MAPK contributes to the regulation of mitochondrial responses to oxidative stress and apoptosis induced by cancer therapies or natural substances by coordinating with other pathways responsible for energy homeostasis. Therefore, dysregulation of these interconnected pathways can lead to various pathologies characterized by aberrant metabolism. Consequently, gaining a deeper understanding of the interaction between mitochondria and the p38 MAPK pathway and their implications presents exciting forecasts for novel therapeutic interventions in cancer and other disorders characterized by metabolic dysregulation.
Collapse
Affiliation(s)
- Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Salma H Mostafa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussein H Ismail
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
7
|
Chen H, Chen J, Feng L, Shao H, Zhou Y, Shan J, Lin L, Ye J, Wang S. Integrated network pharmacology, molecular docking, and lipidomics to reveal the regulatory effect of Qingxuan Zhike granules on lipid metabolism in lipopolysaccharide-induced acute lung injury. Biomed Chromatogr 2024; 38:e5853. [PMID: 38486466 DOI: 10.1002/bmc.5853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/21/2024]
Abstract
Qingxuan Zhike granules (QXZKG), a traditional Chinese patent medication, has shown therapeutic potential against acute lung injury (ALI). However, the precise mechanism underlying its lung-protective effects requires further investigation. In this study, integrated network pharmacology, molecular docking, and lipidomics were used to elucidate QXZKG's regulatory effect on lipid metabolism in lipopolysaccharide-induced ALI. Animal experiments were conducted to substantiate the efficacy of QXZKG in reducing pro-inflammatory cytokines and mitigating pulmonary pathology. Network pharmacology analysis identified 145 active compounds that directly targeted 119 primary targets of QXZKG against ALI. Gene Ontology function analysis emphasized the roles of lipid metabolism and mitogen-activated protein kinase (MAPK) cascade as crucial biological processes. The MAPK1 protein exhibited promising affinities for naringenin, luteolin, and kaempferol. Lipidomic analysis revealed that 12 lipids showed significant restoration following QXZKG treatment (p < 0.05, FC >1.2 or <0.83). Specifically, DG 38:4, DG 40:7, PC O-40:8, TG 18:1_18:3_22:6, PI 18:2_20:4, FA 16:3, FA 20:3, FA 20:4, FA 22:5, and FA 24:5 were downregulated, while Cer 18:0;2O/24:0 and SM 36:1;2O/34:5 were upregulated in the QXZKG versus model groups. This study enhances our understanding of the active compounds and targets of QXZKG, as well as the potential of lipid metabolism in the treatment of ALI.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiabin Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Feng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Shao
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ye
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Liu Y, Luo J, Xu B. Elucidation of Anti-Obesity Mechanisms of Phenolics in Artemisiae argyi Folium (Aiye) by Integrating LC-MS, Network Pharmacology, and Molecular Docking. Life (Basel) 2024; 14:656. [PMID: 38929640 PMCID: PMC11205026 DOI: 10.3390/life14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The global prevalence of obesity is a pressing health issue, increasing the medical burden and posing significant health risks to humans. The side effects and complications associated with conventional medication and surgery have spurred the search for anti-obesity drugs from plant resources. Previous studies have suggested that Artemisiae argyi Folium (Aiye) water extracts could inhibit pancreatic lipase activities, control body weight increase, and improve the plasma lipids profile. However, the exact components and mechanisms were not precisely understood. Therefore, this research aims to identify the chemical profile of Aiye and provide a comprehensive prediction of its anti-obesity mechanisms. The water extract of Aiye was subjected to LC-MS analysis, which identified 30 phenolics. The anti-obesity mechanisms of these phenolics were then predicted, employing network pharmacology and molecular docking. Among the 30 phenolics, 21 passed the drug-likeness screening and exhibited 486 anti-obesity targets. The enrichment analysis revealed that these phenolics may combat obesity through PI3K-Akt signaling and MAPK, prolactin, and cAMP signaling pathways. Eight phenolics and seven central targets were selected for molecular docking, and 45 out of 56 docking had a binding affinity of less than -5 kcal/mol. This research has indicated the potential therapy targets and signaling pathways of Aiye in combating obesity.
Collapse
Affiliation(s)
- Yongxiang Liu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
| |
Collapse
|
9
|
Wang X, Fu Y, Yang X, Chen Y, Zeng N, Hu S, Ouyang S, Pan X, Wu S. Treadmill training improves lung function and inhibits alveolar cell apoptosis in spinal cord injured rats. Sci Rep 2024; 14:9723. [PMID: 38678068 PMCID: PMC11055912 DOI: 10.1038/s41598-024-59662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Secondary lung injury after SCI is a major cause of patient mortality, with apoptosis playing a key role. This study aimed to explore the impact of treadmill training and miR145-5p on the MAPK/Erk signaling pathway and apoptosis in rats with complete SCI. SD rats were used to establish T10 segmental complete SCI models and underwent treadmill training 3, 7, or 14 days postinjury. Various techniques including arterial blood gas analysis, lung wet/dry weight ratio, HE staining, immunofluorescence staining, immunohistochemical staining, qRT-PCR, and Western blotting were employed to assess alterations in lung function and the expression levels of crucial apoptosis-related factors. In order to elucidate the specific mechanism, the impact of miR145-5p on the MAPK/Erk pathway and its role in apoptosis in lung cells were confirmed through miR145-5p overexpression and knockdown experiments. Following spinal cord injury (SCI), an increase in apoptosis, activation of the MAPK/Erk pathway, and impairment of lung function were observed in SCI rats. Conversely, treadmill training resulted in a reduction in alveolar cell apoptosis, suppression of the MAPK/Erk pathway, and enhancement of lung function. The gene MAP3K3 was identified as a target of miR145-5p. The influence of miR145-5p on the MAPK/Erk pathway and its impact on apoptosis in alveolar cells were confirmed through the manipulation of miR145-5p expression levels. The upregulation of miR145-5p in spinal cord injury (SCI) rats led to a reduction in MAP3K3 protein expression within lung tissues, thereby inhibiting the MAPK/Erk signaling pathway and decreasing apoptosis. Contrarily, rats with miR145-5p knockdown undergoing treadmill training exhibited an increase in miR145-5p expression levels, resulting in the inhibition of MAP3K3 protein expression in lung tissues, suppression of the MAPK/Erk pathway, and mitigation of lung cell apoptosis. Ultimately, the findings suggest that treadmill training may attenuate apoptosis in lung cells post-spinal cord injury by modulating the MAP3K3 protein through miR145-5p to regulate the MAPK/Erk signaling pathway.
Collapse
Affiliation(s)
- Xianbin Wang
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Yingxue Fu
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xianglian Yang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Yan Chen
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China
| | - Ni Zeng
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China
| | - Shouxing Hu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuai Ouyang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xiao Pan
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuang Wu
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China.
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
10
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|