1
|
Lu Z, Ren S, Wang B, Zhang Y, Mu X, Wang Z. 3D dynamic culture of muse cells on a porous gelatin microsphere after magnetic sorting: Achieving high purity proliferation. Regen Ther 2025; 28:402-412. [PMID: 39911597 PMCID: PMC11794956 DOI: 10.1016/j.reth.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 01/04/2025] [Indexed: 02/07/2025] Open
Abstract
Muse cell has become a promising source of cells for disease treatment due to its remarkable characteristics, including stress tolerance, low tumorigenicity, effective homing ability, and differentiation into histocompatibility cells after transplantation. However, there are some obvious obstacles that need to be overcome in the efficient expansion of Muse cells. We extracted mesenchymal stem cells (MSCs) from human umbilical cord and their MSCs phenotypes were verified by flow cytometry. Then, immune magnetic sorting was performed to obtain Muse cells, and the expression of pluripotency related factors and the ability to differentiate into three germ layers were verified with sorted Muse cells. We then tested a new 3D culture method with dynamic microsphere carrier to possibly expand Muse cells more efficiently. Finally, in vivo experiments were conducted to check the homing ability of Muse cells to muscle injury. Our results showed that, the cultivation and expansion of Muse cells can be more effectively achieved through dynamic microsphere carrier; compared to non-Muse cells, Muse cells have stronger pluripotency and differentiation ability, and their homing ability in the muscle injury mice model is superior to that of non-Muse cells. Therefore, with the method of immune magnetic sorting and dynamic microsphere carrier, highly regenerative Muse cells can be more effectively sorted and expanded from MSCs.
Collapse
Affiliation(s)
| | | | - Bingjie Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yajun Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaodong Mu
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihui Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
3
|
Li H, Wei J, Li M, Li Y, Zhang T, Tian J, Liu X, Li K, Lin J. Biological characteristics of Muse cells derived from MenSCs and their application in acute liver injury and intracerebral hemorrhage diseases. Regen Ther 2024; 27:48-62. [PMID: 38496012 PMCID: PMC10940801 DOI: 10.1016/j.reth.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing interest in multilineage differentiating stress-enduring (Muse) cells within the field of regenerative medicine is attributed to their exceptional homing capabilities, prolonged viability in adverse conditions, and enhanced three-germ-layer differentiate ability, surpassing their parent mesenchymal stem cells. Given their abundant sources, non-invasive collection procedure, and periodic availability, human menstrual blood-derived endometrium stem cells (MenSCs) have been extensively investigated as a potential resource for stem cell-based therapies. However, there is no established modality to isolate Muse cells from MenSCs and disparity in gene expression profiles between Muse cells and MenSCs remain unknown. In this study, Muse cells were isolated from MenSCs by long-time trypsin incubation method. Muse cells expressed pluripotency markers and could realize multilineage differentiation in vitro. Compared with MenSCs, Muse cells showed enhanced homing ability and superior therapeutic efficacy in animal models of acute liver injury (ALI) and intracerebral hemorrhage (ICH). Furthermore, the RNA-seq analysis offers insights into the mechanism underlying the disparity in trypsin resistance and migration ability between Muse and MenSCs cells. This research offers a significant foundation for further exploration of cell-based therapies using MenSCs-derived Muse cells in the context of various human diseases, highlighting their promising application in the field of regenerative medicine.
Collapse
Affiliation(s)
- Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinghui Wei
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Mingzhi Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yaoqiang Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Tong Zhang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jialu Tian
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xuejia Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Kangjia Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
4
|
Li L, Zhao S, Leng Z, Chen S, Shi Y, Shi L, Li J, Mao K, Tang H, Meng B, Wang Y, Shang G, Liu H. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head. Ann Med 2024; 56:2416070. [PMID: 39529511 PMCID: PMC11559024 DOI: 10.1080/07853890.2024.2416070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease with a high disability rate. Long-term administration of steroids is the most common pathogenic factor for non-traumatic ONFH. Early diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) is difficult and mainly depends on imaging. OBJECTIVES The objectives of this review were to examine the pathological mechanisms of SONFH, summarize related markers of SONFH, and identify areas for future studies. METHODS We reviewed studies on pathological mechanisms and related markers of SONFH and discussed the relationship between them, as well as clinical applications and the outlook of potential markers. RESULTS The pathological mechanisms of SONFH included decreased osteogenesis, lipid accumulation, increased intraosseous pressure, and microcirculation disruption. Differential proteomics and genomics play crucial roles in the occurrence, progression, and outcome of SONFH, providing novel insights into SONFH. Additionally, the biological functions of mesenchymal stem cells (MSCs) and exosomes (Exos) in SONFH have attracted increasing attention. CONCLUSIONS The pathological mechanisms of SONFH are complex. The related markers mentioned in the current review can predict the occurrence and progression of SONFH, which will help provide effective early clinical prevention and treatment strategies for SONFH.
Collapse
Affiliation(s)
- Longyu Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shangkun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifang Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keya Mao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yisheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Takahashi M, Kushida Y, Kuroda Y, Wakao S, Horibata Y, Sugimoto H, Dezawa M, Saiki Y. Structural reconstruction of mouse acute aortic dissection by intravenously administered human Muse cells without immunosuppression. COMMUNICATIONS MEDICINE 2024; 4:174. [PMID: 39251746 PMCID: PMC11384757 DOI: 10.1038/s43856-024-00597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Stanford type B-acute aortic dissection (type B-AAD) is often life-threatening without invasive surgery. Multilineage-differentiating stress enduring cell (Muse cells), which comprise several percent of mesenchymal stem cells (MSCs), are endogenous pluripotent-like stem cells that selectively home to damaged tissue and replace damaged/apoptotic cells by in-vivo differentiation. METHODS Mortality, aortic diameter expansion, cell localization, cell differentiation, and inflammation of the dissected aorta were evaluated in type B-AAD model mice intravenously injected with human-Muse cells, -elastin-knockdown (KD)-Muse cells, -human leukocyte antigen-G (HLA-G)-KD-Muse cells, or MSCs, all without immunosuppressant. RESULTS Here, we show the Muse (50,000 cells) group has a lower incidence of aortic rupture and mortality of AAD compared with the MSC-50K (50,000 human-MSCs) and vehicle groups. Spectrum computed tomography in-vivo dynamics and 3-dimensional histologic analyses demonstrate that Muse cells more effectively home to the AAD tissue and survive for 8 weeks in the Muse group than in the MSC-750K (750,000 human-MSCs containing 50,000 Muse cells) group. Homing of Muse cells is impeded in the HLA-G-KD-Muse (50,000 cells) group. Differentiation of homed Muse cells into CD31(+) and alpha-smooth muscle actin (+) cells, production and reorganization of elastic fibers in the AAD tissue, and suppression of diameter expansion are greater in the Muse group than in the MSC-750K and elastin-KD-Muse (50,000 cells) groups. CONCLUSIONS Intravenously administered Muse cells reconstruct the dissected aorta and improve mortality and diameter enlargement rates. Moreover, small doses of purified Muse cells are more effective than large doses of MSCs. HLA-G is suggested to contribute to the successful survival and homing of Muse cells.
Collapse
Affiliation(s)
- Makoto Takahashi
- Division of Cardiovascular Surgery and Tohoku University Graduate School of Medicine1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery and Tohoku University Graduate School of Medicine1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.
| |
Collapse
|
6
|
Kushida Y, Oguma Y, Abe K, Deguchi T, Barbera FG, Nishimura N, Fujioka K, Iwatani S, Dezawa M. Human post-implantation blastocyst-like characteristics of Muse cells isolated from human umbilical cord. Cell Mol Life Sci 2024; 81:297. [PMID: 38992309 PMCID: PMC11335221 DOI: 10.1007/s00018-024-05339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.
Collapse
Affiliation(s)
- Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Kana Abe
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Taichi Deguchi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Federico Girolamo Barbera
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sota Iwatani
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
7
|
Que H, Mai E, Hu Y, Li H, Zheng W, Jiang Y, Han F, Li X, Gong P, Gu J. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair. Front Cell Dev Biol 2024; 12:1380785. [PMID: 38872932 PMCID: PMC11169632 DOI: 10.3389/fcell.2024.1380785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
8
|
Win KHN, Kushida Y, Yamana K, Iwatani S, Yoshida M, Nino N, Mon CY, Ohsaki H, Kamoshida S, Fujioka K, Dezawa M, Nishimura N. Human Muse cells isolated from preterm- and term-umbilical cord delivered therapeutic effects in rat bleomycin-induced lung injury model without immunosuppressant. Stem Cell Res Ther 2024; 15:147. [PMID: 38773627 PMCID: PMC11110192 DOI: 10.1186/s13287-024-03763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Bleomycin (BLM)-induced lung injury is characterized by mixed histopathologic changes with inflammation and fibrosis, such as observed in human patients with bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. Although no curative therapies for these lung diseases exist, stem cell therapy has emerged as a potential therapeutic option. Multilineage-differentiating stress-enduring (Muse) cells are endogenous pluripotent- and macrophage-like stem cells distributed in various adult and fetal tissues as stage-specific embryonic antigen-3-positive cells. They selectively home to damaged tissue by sensing sphingosine-1-phosphate and replace the damaged/apoptotic cells by in vivo differentiation. Clinical trials for some human diseases suggest the safety and therapeutic efficacy of intravenously injected human leukocyte antigen-mismatched allogenic Muse cells from adult bone marrow (BM) without immunosuppressant. Here, we evaluated the therapeutic effects of human Muse cells from preterm and term umbilical cord (UC), and adult BM in a rat BLM-induced lung injury model. METHODS Rats were endotracheally administered BLM to induce lung injury on day 0. On day 3, human preterm UC-Muse, term UC-Muse, or adult BM-Muse cells were administered intravenously without immunosuppressants, and rats were subjected to histopathologic analysis on day 21. Body weight, serum surfactant protein D (SP-D) levels, and oxygen saturation (SpO2) were monitored. Histopathologic lung injury scoring by the Ashcroft and modified American Thoracic Society document scales, quantitative characterization of engrafted Muse cells, RNA sequencing analysis, and in vitro migration assay of infused Muse cells were performed. RESULTS Rats administered preterm- and term-UC-Muse cells exhibited a significantly better recovery based on weight loss, serum SP-D levels, SpO2, and histopathologic lung injury scores, and a significantly higher rate of both Muse cell homing to the lung and alveolar marker expression (podoplanin and prosurfactant protein-C) than rats administered BM-Muse cells. Rats receiving preterm-UC-Muse cells showed statistically superior results to those receiving term-UC-Muse cells in many of the measures. These findings are thought to be due to higher expression of genes related to cell migration, lung differentiation, and cell adhesion. CONCLUSION Preterm UC-Muse cells deliver more efficient therapeutic effects than term UC- and BM-Muse cells for treating BLM-induced lung injury in a rat model.
Collapse
Affiliation(s)
- Kaung Htet Nay Win
- Department of Public Health, Kobe University Graduate School of Health Science, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Keiji Yamana
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Sota Iwatani
- Department of Neonatology, Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Makiko Yoshida
- Department of Pathology, Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Nanako Nino
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Cho Yee Mon
- Department of Public Health, Kobe University Graduate School of Health Science, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Hiroyuki Ohsaki
- Department of Medical Biophysics, Kobe University Graduate School of Health Science, Kobe, Hyogo, Japan
| | - Shingo Kamoshida
- Department of Medical Biophysics, Kobe University Graduate School of Health Science, Kobe, Hyogo, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
9
|
Nagaoki T, Kumagai G, Nitobe Y, Sasaki A, Fujita T, Fukutoku T, Saruta K, Tsukuda M, Asari T, Wada K, Dezawa M, Ishibashi Y. Comparison of the Anti-Inflammatory Effects of Mouse Adipose- and Bone-Marrow-Derived Multilineage-Differentiating Stress-Enduring Cells in Acute-Phase Spinal Cord Injury. J Neurotrauma 2023; 40:2596-2609. [PMID: 37051701 DOI: 10.1089/neu.2022.0470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Abstract Spinal cord injury (SCI) is a serious neurological disorder, with the consequent disabilities conferred by this disorder typically persisting for life. Multilineage-differentiating stress-enduring (Muse) cells are endogenous stem cells that can be collected from various tissues as well as from mesenchymal stem cells (MSCs); additionally, these Muse cells are currently being used in clinical trials. The anti-inflammatory effect of stem cell transplantation prevents secondary injuries of SCI; however, its effect on Muse cells remains unclear. In this study, we aimed to compare the anti-inflammatory effects of adipose (AD)- and bone marrow (BM)-Muse cells that were isolated from mice (6-week-old C57BL/6J) following intralesional administration during the acute phase of SCI. Flow cytometry was used to isolate Muse cells from AD and BM MSCs. The percentage of Muse cells was 3.9 and 2.7% for AD and BM MSCs, respectively. To examine cell viability, Muse cells were incubated under H2O2-induced oxidative stress conditions. Overall, AD-Muse cells exhibited higher viability than BM-Muse cells (p = 0.032). In enzyme-linked immunosorbent assay analysis, AD-Muse cells displayed greater secretion of brain-derived neurotrophic factor (BDNF; p = 0.008), vascular endothelial growth factor (p = 0.032), and hepatocyte growth factor (p = 0.016). DNA microarray analysis revealed higher expression of Bdnf, neurotrophin-3 (Ntf3), nerve growth factor (Ngf), pleiotrophin (Ptn), and midkine (Mdk) in AD-Muse cells than in BM-Muse cells. To assess their anti-inflammatory effects in vitro, Muse cells and macrophages were co-cultured, and the levels of cytokines (tumor necrosis factor [TNF] α and interleukin [IL] 10) were measured in the medium. Consequently, we found that TNFα levels were lower in AD-Muse cells than in BM-Muse cells (p = 0.009), and IL10 levels were higher in AD-Muse cells than in BM-Muse cells (p = 0.008). Further, we induced moderate injuries via contusion of the spinal cord at the T10 level; Muse cells were transplanted intralesionally 7 days post-SCI. The number of surviving cells, alongside the number of CD86+ (M1 inflammatory effect), and CD206+ (M2 anti-inflammatory effect) macrophages in the spinal cord were measured 7 days post-transplantation. The number of surviving AD-Muse cells was higher than the number of surviving BM-Muse cells (ratio of AD-Muse/BM-Muse = 2.5, p > 0.05). The M1/M2 ratio in the AD-Muse cell-group (0.37) was lower than that in the control (phosphate-buffered saline) group (3.60, p = 0.008). The lesion area in the AD-Muse cell group was smaller than that in the BM-non-Muse (p = 0.049) and control groups (p = 0.012). As AD-Muse cells conferred a higher cell survival and neurotrophic factor secretion ability in vitro, AD-Muse cells demonstrated reduced inflammation after SCI. Overall, intralesional AD-Muse cell therapy is a potential therapeutic candidate that is expected to exhibit anti-inflammatory effects following acute SCI.
Collapse
Affiliation(s)
- Toshihide Nagaoki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Yohshiro Nitobe
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Ayako Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Taku Fujita
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Tatsuhiro Fukutoku
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Kenya Saruta
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Manami Tsukuda
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
10
|
Ning J, Cao YY, Zhang RZ, Li Y. Characteristics of multilineage-differentiating stress-enduring cell clusters in different culture conditions. Skin Res Technol 2023; 29:e13528. [PMID: 38009041 PMCID: PMC10651948 DOI: 10.1111/srt.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE To observe the morphological characteristics of clusters of Muse cells from normal human dermal fibroblasts (NHDFs) under different culture conditions. METHODS Muse cells were sorted by magnetic activated cell sorting (MACS) from NHDFs, and were evaluated by flow cytometry. Muse cells were cultured in suspension and in adherent conditions to obtain Muse cell clusters (M-clusters), which were further characterized by alkaline phosphatase (AP) staining, immunofluorescence (IF) staining and transmission electron microscopy (TEM). The M-clusters were further cultured on Lando artificial dermal regeneration matrix (LADRM) for analysis by scanning electron microscopy (SEM) and IF staining of frozen sections. RESULTS The proportion of SSEA3 and CD105 double-positive cells obtained by MACS was 87.4%. The sorted cells rapidly formed M-clusters after suspension culture, and showed internal characteristics of stem cells under TEM. After adherent culture, M-clusters stained positively for AP, SSEA-3 and OCT-4. Each M-cluster on the surface of the LADRM displayed an outer membrane of amorphous materials under SEM. Frozen sections and fluorescence staining of LADRM loaded with M-clusters showed an uneven fluorescence intensity of SSEA-3 within the clusters. CONCLUSIONS Muse cells sorted by MACS from NHDFs could generate M-clusters, which included cells of different stemness and are wrapped in membrane-like structures.
Collapse
Affiliation(s)
- Jing Ning
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan-Yun Cao
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ru-Zhi Zhang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yue Li
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
11
|
Ide K, Kawano T, Shirakawa J, Ntege EH, Miyamoto S, Ikegami T, Sunami H, Suzuki M, Shimizu Y, Nakamura H. Exploring stage‑specific embryonic antigen 3 involvement in oral cancer progression and as a potential target for taxane‑based chemotherapy. Oncol Rep 2023; 50:182. [PMID: 37615224 PMCID: PMC10485803 DOI: 10.3892/or.2023.8619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
Despite significant advancements in therapeutic approaches, oral neoplasms remain formidable and life‑threatening conditions that affect a substantial number of individuals worldwide. Within oral malignancies, a subset of cancer stem cells (CSCs) represent a crucial population responsible for tumor initiation and progression. The identification of reliable markers for the detection and characterization of CSCs in solid tumors, particularly in the context of oral cancers, remains an ongoing challenge. Stage‑specific embryonic antigen 3 (SSEA3), previously associated with mesenchymal stem cells and linked to the progression of breast neoplasms and poor prognosis, has yet to be comprehensively elucidated in the context of oral malignancies. The present study aimed to investigate the expression and properties of SSEA3 in 16 distinct subsets of human oral neoplastic cell lines, classified as either CD44 positive (+) or CD44 negative (‑). For the first time, SSEA3 was examined as an indicator of tumorigenicity and resistance to taxane‑derived chemotherapeutic agents. In the majority of oral neoplastic cell lines analyzed, SSEA3 was expressed in a small population of CD44(+) cells. Significantly, SSEA3(+) cells exhibited heightened proliferative activity and upregulated expression of genes associated with stem cells compared with SSEA3(‑) cells. The aforementioned findings suggested that SSEA3 may contribute to the evolution and progression of oral malignancies by fostering tumor growth. Furthermore, SSEA3(+) cells displayed increased sensitivity to taxane‑based pharmaceuticals, indicating the potential for SSEA3 to be a viable target in the treatment schema for oral cavity neoplasms. In conclusion, the present study provides novel insight into the role of SSEA3 in the progression and management of oral neoplasms, potentially paving the way for more effective therapeutic approaches.
Collapse
Affiliation(s)
- Kentaro Ide
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Toshihiro Kawano
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Jumpei Shirakawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
- Plastic and Reconstructive Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Sho Miyamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
- Department of Oral Surgery, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan
| | - Taro Ikegami
- Department of Otorhinolaryngology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Hiroshi Sunami
- Plastic and Reconstructive Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Mikio Suzuki
- Department of Otorhinolaryngology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Yusuke Shimizu
- Plastic and Reconstructive Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, University of The Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
12
|
Smolinska A, Bzinkowska A, Rybkowska P, Chodkowska M, Sarnowska A. Promising Markers in the Context of Mesenchymal Stem/Stromal Cells Subpopulations with Unique Properties. Stem Cells Int 2023; 2023:1842958. [PMID: 37771549 PMCID: PMC10533301 DOI: 10.1155/2023/1842958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
The heterogeneity of the mesenchymal stem/stromal cells (MSCs) population poses a challenge to researchers and clinicians, especially those observed at the population level. What is more, the lack of precise evidences regarding MSCs developmental origin even further complicate this issue. As the available evidences indicate several possible pathways of MSCs formation, this diverse origin may be reflected in the unique subsets of cells found within the MSCs population. Such populations differ in specialization degree, proliferation, and immunomodulatory properties or exhibit other additional properties such as increased angiogenesis capacity. In this review article, we attempted to identify such outstanding populations according to the specific surface antigens or intracellular markers. Described groups were characterized depending on their specialization and potential therapeutic application. The reports presented here cover a wide variety of properties found in the recent literature, which is quite scarce for many candidates mentioned in this article. Even though the collected information would allow for better targeting of specific subpopulations in regenerative medicine to increase the effectiveness of MSC-based therapies.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
13
|
Dushime H, Moreno SG, Linard C, Adrait A, Couté Y, Peltzer J, Messiaen S, Torres C, Bensemmane L, Lewandowski D, Romeo PH, Petit V, Gault N. Fetal Muse-based therapy prevents lethal radio-induced gastrointestinal syndrome by intestinal regeneration. Stem Cell Res Ther 2023; 14:201. [PMID: 37568164 PMCID: PMC10416451 DOI: 10.1186/s13287-023-03425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Human multilineage-differentiating stress enduring (Muse) cells are nontumorigenic endogenous pluripotent-like stem cells that can be easily obtained from various adult or fetal tissues. Regenerative effects of Muse cells have been shown in some disease models. Muse cells specifically home in damaged tissues where they exert pleiotropic effects. Exposition of the small intestine to high doses of irradiation (IR) delivered after radiotherapy or nuclear accident results in a lethal gastrointestinal syndrome (GIS) characterized by acute loss of intestinal stem cells, impaired epithelial regeneration and subsequent loss of the mucosal barrier resulting in sepsis and death. To date, there is no effective medical treatment for GIS. Here, we investigate whether Muse cells can prevent lethal GIS and study how they act on intestinal stem cell microenvironment to promote intestinal regeneration. METHODS Human Muse cells from Wharton's jelly matrix of umbilical cord (WJ-Muse) were sorted by flow cytometry using the SSEA-3 marker, characterized and compared to bone-marrow derived Muse cells (BM-Muse). Under gas anesthesia, GIS mice were treated or not through an intravenous retro-orbital injection of 50,000 WJ-Muse, freshly isolated or cryopreserved, shortly after an 18 Gy-abdominal IR. No immunosuppressant was delivered to the mice. Mice were euthanized either 24 h post-IR to assess early small intestine tissue response, or 7 days post-IR to assess any regenerative response. Mouse survival, histological stainings, apoptosis and cell proliferation were studied and measurement of cytokines, recruitment of immune cells and barrier functional assay were performed. RESULTS Injection of WJ-Muse shortly after abdominal IR highly improved mouse survival as a result of a rapid regeneration of intestinal epithelium with the rescue of the impaired epithelial barrier. In small intestine of Muse-treated mice, an early enhanced secretion of IL-6 and MCP-1 cytokines was observed associated with (1) recruitment of monocytes/M2-like macrophages and (2) proliferation of Paneth cells through activation of the IL-6/Stat3 pathway. CONCLUSION Our findings indicate that a single injection of a small quantity of WJ-Muse may be a new and easy therapeutic strategy for treating lethal GIS.
Collapse
Affiliation(s)
- Honorine Dushime
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Stéphanie G Moreno
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Christine Linard
- Laboratory of Medical Radiobiology, Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Annie Adrait
- Université Grenoble Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS, FR2048, CEA, 38000, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS, FR2048, CEA, 38000, Grenoble, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), 92141, Clamart, France
- UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France
| | - Sébastien Messiaen
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Claire Torres
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Lydia Bensemmane
- Laboratory of Medical Radiobiology, Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Daniel Lewandowski
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Paul-Henri Romeo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Vanessa Petit
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France.
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France.
| | - Nathalie Gault
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France.
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France.
| |
Collapse
|
14
|
Kuroda Y, Oguma Y, Hall K, Dezawa M. Endogenous reparative pluripotent Muse cells with a unique immune privilege system: Hint at a new strategy for controlling acute and chronic inflammation. Front Pharmacol 2022; 13:1027961. [PMID: 36339573 PMCID: PMC9627303 DOI: 10.3389/fphar.2022.1027961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Multilineage-differentiating stress enduring (Muse) cells, non-tumorigenic endogenous pluripotent stem cells, reside in the bone marrow (BM), peripheral blood, and connective tissue as pluripotent surface marker SSEA-3(+) cells. They express other pluripotent markers, including Nanog, Oct3/4, and Sox2 at moderate levels, differentiate into triploblastic lineages, self-renew at a single cell level, and exhibit anti-inflammatory effects. Cultured mesenchymal stromal cells (MSCs) and fibroblasts contain several percent of SSEA-3(+)-Muse cells. Circulating Muse cells, either endogenous or administered exogenously, selectively accumulate at the damaged site by sensing sphingosine-1-phosphate (S1P), a key mediator of inflammation, produced by damaged cells and replace apoptotic and damaged cells by spontaneously differentiating into multiple cells types that comprise the tissue and repair the tissue. Thus, intravenous injection is the main route for Muse cell treatment, and surgical operation is not necessary. Furthermore, gene introduction or cytokine induction are not required for generating pluripotent or differentiated states prior to treatment. Notably, allogenic and xenogenic Muse cells escape host immune rejection after intravenous injection and survive in the tissue as functioning cells over 6 and ∼2 months, respectively, without immunosuppressant treatment. Since Muse cells survive in the host tissue for extended periods of time, therefore their anti-inflammatory, anti-fibrotic, and trophic effects are long-lasting. These unique characteristics have led to the administration of Muse cells via intravenous drip in clinical trials for stroke, acute myocardial infarction, epidermolysis bullosa, spinal cord injury, neonatal hypoxic ischemic encephalopathy, amyotrophic lateral sclerosis, and COVID-19 acute respiratory distress syndrome without HLA-matching or immunosuppressive treatment.
Collapse
Affiliation(s)
| | | | | | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Li H, Wei J, Liu X, Zhang P, Lin J. Muse cells: ushering in a new era of stem cell-based therapy for stroke. Stem Cell Res Ther 2022; 13:421. [PMID: 35986359 PMCID: PMC9389783 DOI: 10.1186/s13287-022-03126-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractStem cell-based regenerative therapies have recently become promising and advanced for treating stroke. Mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) have received the most attention for treating stroke because of the outstanding paracrine function of MSCs and the three-germ-layer differentiation ability of iPSCs. However, the unsatisfactory homing ability, differentiation, integration, and survival time in vivo limit the effectiveness of MSCs in regenerative medicine. The inherent tumorigenic property of iPSCs renders complete differentiation necessary before transplantation, which is complicated and expensive and affects the consistency among cell batches. Multilineage differentiating stress-enduring (Muse) cells are natural pluripotent stem cells in the connective tissues of nearly every organ and thus are considered nontumorigenic. A single Muse cell can differentiate into all three-germ-layer, preferentially migrate to damaged sites after transplantation, survive in hostile environments, and spontaneously differentiate into tissue-compatible cells, all of which can compensate for the shortcomings of MSCs and iPSCs. This review summarizes the recent progress in understanding the biological properties of Muse cells and highlights the differences between Muse cells and other types of stem cells. Finally, we summarized the current research progress on the application of Muse cells on stroke and challenges from bench to bedside.
Collapse
|
16
|
Leng Z, Li L, Zhou X, Dong G, Chen S, Shang G, Kou H, Yang B, Liu H. Novel Insights into the Stemness and Immune Privilege of Mesenchymal Stem Cells from Human Wharton Jelly by Single-Cell RNA Sequencing. Med Sci Monit 2022; 28:e934660. [PMID: 35153292 PMCID: PMC8855628 DOI: 10.12659/msm.934660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Fundamental and clinical interest in mesenchymal stem cells (MSCs) has risen dramatically over the past 3 decades. The immunomodulatory and differentiation abilities are the main mechanisms in vitro and in vivo. However, increasing evidence casts doubt on the stemness and immunogenicity of MSCs. MATERIAL AND METHODS We conducted a high-throughput 10x RNA sequencing and Smart-seq2 scRNA-seq analysis to reveal gene expression of Wharton jelly MSCs (WJ-MSCs) at a single-cell level. Multipotent differentiation, subpopulations, marker genes, human leucocyte antigen (HLA) gene expression, and cell cluster trajectory analysis were evaluated. RESULTS The WJ-MSCs had considerable heterogeneity between cells in terms of gene expression. They highly, partially, and hardly expressed genes related to mesodermal differentiation, endodermal differentiation, and ectodermal differentiation, respectively. Some cells seem to be bipotent or unipotent stem cells. Further, Monocle and cell cluster trajectory analysis demonstrated that 1 of the 3 divided clusters performed as stem cells, accounting for 12.6% of the population. The marker genes for a stem cell cluster were CRIM1, GLS, PLOD2, NEXN, ACTR2, FN1, MBNL1, LMOD1, COL3A1, NCL, SEC62, EPRS, COL5A2, COL8A1, and VCAN. In addition, the MSCs also highly, partially, and hardly expressed HLA-I antigen genes, HLA-II genes, and the HLA-G gene, respectively, indicating that MSCs probably have immunogenicity. A Kyoto Encyclopedia of Genes and Genomes pathway analysis of the 3 clusters demonstrated that they were mainly connected with viral infectious diseases, cancer, and endocrine and metabolic disorders. The most expressed transcription factors were zf-C2H2, HMG/HMGY, and Homeobox. CONCLUSIONS We found that only a subpopulation of WJ-MSCs are real stem cells and WJ-MSCs probably do not have immune privilege.
Collapse
Affiliation(s)
- Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Longyu Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - Guangyao Dong
- Department of Obstetrics, Kaifeng Maternal and Child Health Hospital, Kaifeng, Henan, PR China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
17
|
Liu D, Bobrovskaya L, Zhou XF. Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. BIOLOGY 2021; 10:1142. [PMID: 34827135 PMCID: PMC8614777 DOI: 10.3390/biology10111142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders are big public health challenges that are afflicting hundreds of millions of people around the world. Although many conventional pharmacological therapies have been tested in patients, their therapeutic efficacies to alleviate their symptoms and slow down the course of the diseases are usually limited. Cell therapy has attracted the interest of many researchers in the last several decades and has brought new hope for treating neurological disorders. Moreover, numerous studies have shown promising results. However, none of the studies has led to a promising therapy for patients with neurological disorders, despite the ongoing and completed clinical trials. There are many factors that may affect the outcome of cell therapy for neurological disorders due to the complexity of the nervous system, especially cell types for transplantation and the specific disease for treatment. This paper provides a review of the various cell types from humans that may be clinically used for neurological disorders, based on their characteristics and current progress in related studies.
Collapse
Affiliation(s)
| | | | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; (D.L.); (L.B.)
| |
Collapse
|
18
|
Guenther R, Dreschers S, Maassen J, Reibert D, Skazik-Voogt C, Gutermuth A. The Treasury of Wharton's Jelly. Stem Cell Rev Rep 2021; 18:1627-1638. [PMID: 34647276 PMCID: PMC9209346 DOI: 10.1007/s12015-021-10217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
Background Postnatal umbilical cord tissue contains valuable mesenchymal progenitor cells of various differentiation stages. While mesenchymal stem cells are plastic-adherent and tend to differentiate into myofibroblastic phenotypes, some round cells detach, float above the adherent cells, and build up cell aggregates, or form spheroids spontaneously. Very small luminescent cells are always involved as single cells or within collective forms and resemble the common well-known very small embryonic-like cells (VSELs). In this study, we investigated these VSELs-like cells in terms of their pluripotency phenotype and tri-lineage differentiation potential. Methods VSELs-like cells were isolated from cell-culture supernatants by a process that combines filtering, up concentration, and centrifugation. To determine their pluripotency character, we measured the expression of Nanog, Sox-2, Oct-4, SSEA-1, CXCR4, SSEA-4 on gene and protein level. In addition, the cultured cells derived from UC tissue were examined regarding their potential to differentiate into three germ layers. Result The VSELs-like cells express all of the pluripotency-associated markers we investigated and are able to differentiate into meso- endo- and ectodermal precursor cells. Conclusions Umbilical cord tissue hosts highly potent VSELs-like stem cells. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s12015-021-10217-8.
Collapse
Affiliation(s)
- Rebecca Guenther
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Steinbachstr. 17, 52074, Aachen, Germany
| | - Stephan Dreschers
- Clinic for Gynaecology, University Hospital Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Jessika Maassen
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Steinbachstr. 17, 52074, Aachen, Germany
| | - Daniel Reibert
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Steinbachstr. 17, 52074, Aachen, Germany
| | - Claudia Skazik-Voogt
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Steinbachstr. 17, 52074, Aachen, Germany
| | - Angela Gutermuth
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Steinbachstr. 17, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Shono Y, Kushida Y, Wakao S, Kuroda Y, Unno M, Kamei T, Miyagi S, Dezawa M. Protection of liver sinusoids by intravenous administration of human Muse cells in a rat extra-small partial liver transplantation model. Am J Transplant 2021; 21:2025-2039. [PMID: 33350582 PMCID: PMC8248424 DOI: 10.1111/ajt.16461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
Small-for-size syndrome (SFSS) has a poor prognosis due to excessive shear stress and sinusoidal microcirculatory disturbances in the acute phase after living-donor liver transplantation (LDLT). Multilineage-differentiating stress enduring (Muse) cells are reparative stem cells found in various tissues and currently under clinical trials. These cells selectively home to damaged sites via the sphingosine-1-phosphate (S1P)-S1P receptor 2 system and repair damaged tissue by pleiotropic effects, including tissue protection and damaged/apoptotic cell replacement by differentiating into tissue-constituent cells. The effects of intravenously administered human bone marrow-Muse cells and -mesenchymal stem cells (MSCs) (4 × 105 ) on liver sinusoidal endothelial cells (LSECs) were examined in a rat SFSS model without immunosuppression. Compared with MSCs, Muse cells intensively homed to the grafted liver, distributed to the sinusoids and vessels, and delivered improved blood chemistry and Ki-67(+) proliferative hepatocytes and -LSECs within 3 days. Tissue clearing and three-dimensional imaging by multiphoton laser confocal microscopy revealed maintenance of the sinusoid continuity, organization, and surface area, as well as decreased sinusoid interruption in the Muse group. Small-interfering RNA-induced knockdown of hepatocyte growth factor and vascular endothelial growth factor-A impaired the protective effect of Muse cells on LSECs. Intravenous injection of Muse cells might be a feasible approach for LDLT with less recipient burden.
Collapse
Affiliation(s)
- Yoshihiro Shono
- Department of SurgeryTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Shohei Wakao
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Michiaki Unno
- Department of SurgeryTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Takashi Kamei
- Department of SurgeryTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Shigehito Miyagi
- Department of SurgeryTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Mari Dezawa
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| |
Collapse
|
20
|
Yamashita T, Kushida Y, Abe K, Dezawa M. Non-Tumorigenic Pluripotent Reparative Muse Cells Provide a New Therapeutic Approach for Neurologic Diseases. Cells 2021; 10:cells10040961. [PMID: 33924240 PMCID: PMC8074773 DOI: 10.3390/cells10040961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Muse cells are non-tumorigenic endogenous reparative pluripotent cells with high therapeutic potential. They are identified as cells positive for the pluripotent surface marker SSEA-3 in the bone marrow, peripheral blood, and connective tissue. Muse cells also express other pluripotent stem cell markers, are able to differentiate into cells representative of all three germ layers, self-renew from a single cell, and are stress tolerant. They express receptors for sphingosine-1-phosphate (S1P), which is actively produced by damaged cells, allowing circulating cells to selectively home to damaged tissue. Muse cells spontaneously differentiate on-site into multiple tissue-constituent cells with few errors and replace damaged/apoptotic cells with functional cells, thereby contributing to tissue repair. Intravenous injection of exogenous Muse cells to increase the number of circulating Muse cells enhances their reparative activity. Muse cells also have a specific immunomodulatory system, represented by HLA-G expression, allowing them to be directly administered without HLA-matching or immunosuppressant treatment. Owing to these unique characteristics, clinical trials using intravenously administered donor-Muse cells have been conducted for myocardial infarction, stroke, epidermolysis bullosa, spinal cord injury, perinatal hypoxic ischemic encephalopathy, and amyotrophic lateral sclerosis. Muse cells have the potential to break through the limitations of current cell therapies for neurologic diseases, including amyotrophic lateral sclerosis. Muse cells provide a new therapeutic strategy that requires no HLA-matching or immunosuppressant treatment for administering donor-derived cells, no gene introduction or differentiation induction for cell preparation, and no surgery for delivering the cells to patients.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (T.Y.); (K.A.)
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, School of Medicine, Tohoku University, Sendai 980-8575, Japan;
| | - Koji Abe
- Department of Neurology, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (T.Y.); (K.A.)
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Correspondence: ; Tel.: +81-22-717-8025; Fax: +81-22-717-8030
| |
Collapse
|
21
|
Park YJ, Borlongan CV, Dezawa M. Cell-based treatment for perinatal hypoxic-ischemic encephalopathy. Brain Circ 2021; 7:13-17. [PMID: 34084971 PMCID: PMC8057102 DOI: 10.4103/bc.bc_7_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of acute neonatal brain injury and can lead to disabling long-term neurological complications. Treatment for HIE is limited to supportive care and hypothermia within 6 h injury which is reserved for full-term infants. Preclinical studies suggest the potential for cell-based therapies as effective treatments for HIE. Some clinical trials using umbilical cord blood cells, placenta-derived stem cells, mesenchymal stem cells (MSCs), and others have yielded promising results though more studies are needed to optimize protocols and multi-center trials are needed to prove safety and efficacy. To date, the therapeutic effects of most cell-based therapies are hypothesized to stem from the bystander effect of donor cells. Transplantation of stem cells attenuate the aberrant inflammation cascade following HIE and provide a more ideal environment for endogenous neurogenesis and repair. Recently, a subset of MSCs, the multilineage-differentiating stress-enduring (Muse) cells have shown to treat HIE and other models of neurologic diseases by replacing dead or ischemic cells and have reached clinical trials. In this review, we examine the different cell sources used in clinical trials and evaluate the underlying mechanism behind their therapeutic effects. Three databases–PubMed, Web of Science, and ClinicalTrials.gov–were used to review preclinical and clinical experimental treatments for HIE.
Collapse
Affiliation(s)
- You Jeong Park
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
22
|
Faye PA, Poumeaud F, Chazelas P, Duchesne M, Rassat M, Miressi F, Lia AS, Sturtz F, Robert PY, Favreau F, Benayoun Y. Focus on cell therapy to treat corneal endothelial diseases. Exp Eye Res 2021; 204:108462. [PMID: 33493477 DOI: 10.1016/j.exer.2021.108462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
The cornea is a multi-layered structure which allows fine refraction and provides both resistance to external insults and adequate transparency. The corneal endothelium ensures stromal hydration, failure of which, such as in Fuchs endothelial corneal dystrophy, after trauma or in aging, may lead to loss of corneal transparency and induce blindness. Currently, no efficient therapeutic alternatives exist except for corneal grafting. Thus corneal tissue engineering represents a valuable alternative approach, which may overcome cornea donor shortage. Several studies describe protocols to isolate, differentiate, and cultivate corneal endothelial cells (CEnCs) in vitro. Two main in vitro strategies can be described: expansion of eye-native cell populations, such as CEnCs, or the production and expansion of CEnCs from non-eye native cell populations, such as induced Pluripotent Stem Cells (iPSCs). The challenge with these cells is to obtain a monolayer of CEnCs on a biocompatible carrier, with a specific morphology (flat hexagonal cells), and with specific functions such as programmed cell cycle arrest. Another issue for this cell culture methodology is to define the adapted protocol (media, trophic factors, timeframe) that can mimic physiological development. Additionally, contamination by other cell types still represents a huge problem. Thus, purification methods, such as Fluorescence Activated Cell Sorting (FACS), Magnetic Ativated Cell Sorting (MACS) or Sedimentation Field Flow Fractionation (SdFFF) are useful. Animal models are also crucial to provide a translational approach for these therapies, integrating macro- and microenvironment influences, systemic hormonal or immune responses, and exogenous interactions. Non-eye native cell graft protocols are constantly improving both in efficacy and safety, with the aim of being the most suitable candidate for corneal therapies in future routine practice. The aim of this work is to review these different aspects with a special focus on issues facing CEnC culture in vitro, and to highlight animal graft models adapted to screen the efficacy of these different protocols.
Collapse
Affiliation(s)
- Pierre Antoine Faye
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France.
| | - François Poumeaud
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Pauline Chazelas
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Mathilde Duchesne
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France; CHU de Limoges, Laboratoire de Neurologie, F-87000, Limoges, France; CHU de Limoges, Service d'Anatomie Pathologique, F-87000, Limoges, France
| | - Marion Rassat
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Federica Miressi
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Anne Sophie Lia
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France; CHU Limoges, UF de Bioinformatique, F-87000, Limoges France
| | - Franck Sturtz
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | | | - Frédéric Favreau
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Yohan Benayoun
- Chénieux Ophtalmologie, Polyclinique de Limoges ELSAN, F-87000, Limoges, France
| |
Collapse
|
23
|
Lingwood C. Verotoxin Receptor-Based Pathology and Therapies. Front Cell Infect Microbiol 2020; 10:123. [PMID: 32296648 PMCID: PMC7136409 DOI: 10.3389/fcimb.2020.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Verotoxin, VT (aka Shiga toxin,Stx) is produced by enterohemorrhagic E. coli (EHEC) and is the key pathogenic factor in EHEC-induced hemolytic uremic syndrome (eHUS-hemolytic anemia/thrombocytopenia/glomerular infarct) which can follow gastrointestinal EHEC infection, particularly in children. This AB5 subunit toxin family bind target cell globotriaosyl ceramide (Gb3), a glycosphingolipid (GSL) (aka CD77, pk blood group antigen) of the globoseries of neutral GSLs, initiating lipid raft-dependent plasma membrane Gb3 clustering, membrane curvature, invagination, scission, endosomal trafficking, and retrograde traffic via the TGN to the Golgi, and ER. In the ER, A/B subunits separate and the A subunit hijacks the ER reverse translocon (dislocon-used to eliminate misfolded proteins-ER associated degradation-ERAD) for cytosolic access. This property has been used to devise toxoid-based therapy to temporarily block ERAD and rescue the mutant phenotype of several genetic protein misfolding diseases. The A subunit avoids cytosolic proteosomal degradation, to block protein synthesis via its RNA glycanase activity. In humans, Gb3 is primarily expressed in the kidney, particularly in the glomerular endothelial cells. Here, Gb3 is in lipid rafts (more ordered membrane domains which accumulate GSLs/cholesterol) whereas renal tubular Gb3 is in the non-raft membrane fraction, explaining the basic pathology of eHUS (glomerular endothelial infarct). Females are more susceptible and this correlates with higher renal Gb3 expression. HUS can be associated with encephalopathy, more commonly following verotoxin 2 exposure. Gb3 is expressed in the microvasculature of the brain. All members of the VT family bind Gb3, but with varying affinity. VT2e (pig edema toxin) binds Gb4 preferentially. Verotoxin-specific therapeutics based on chemical analogs of Gb3, though effective in vitro, have failed in vivo. While some analogs are effective in animal models, there are no good rodent models of eHUS since Gb3 is not expressed in rodent glomeruli. However, the mouse mimics the neurological symptoms more closely and provides an excellent tool to assess therapeutics. In addition to direct cytotoxicity, other factors including VT–induced cytokine release and aberrant complement cascade, are now appreciated as important in eHUS. Based on atypical HUS therapy, treatment of eHUS patients with anticomplement antibodies has proven effective in some cases. A recent switch using stem cells to try to reverse, rather than prevent VT induced pathology may prove a more effective methodology.
Collapse
Affiliation(s)
- Clifford Lingwood
- Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
24
|
Sun D, Yang L, Cao H, Shen ZY, Song HL. Study of the protective effect on damaged intestinal epithelial cells of rat multilineage-differentiating stress-enduring (Muse) cells. Cell Biol Int 2019; 44:549-559. [PMID: 31642560 PMCID: PMC7003933 DOI: 10.1002/cbin.11255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022]
Abstract
In this study, we determined whether multilineage‐differentiating stress‐enduring (Muse) cells exist in rat bone marrow and elucidated their effects on protection against the injury of intestinal epithelial cells associated with inflammation. Rat Muse cells were separated from bone marrow mesenchymal stem cells (BMMSCs) by trypsin‐incubation stress. The group of cells maintained the characteristics of BMMSCs; however, there were high positive expression levels of stage‐specific embryonic antigen‐3 (SSEA‐3; 75.6 ± 2.8%) and stage‐specific embryonic antigen‐1 (SSEA‐1; 74.8 ± 3.1%), as well as specific antigens including Nanog, POU class 5 homeobox 1 (OCT 3/4), and SRY‐box 2 (SOX 2). After inducing differentiation, α‐fetoprotein (endodermal), α‐smooth muscle actin and neurofilament medium polypeptide (ectodermal) were positive in Muse cells. Injuries of intestinal epithelial crypt cell‐6 (IEC‐6) and colorectal adenocarcinoma 2 (Caco‐2) cells as models were induced by tumor necrosis factor‐α stimulation in vitro. Muse cells exhibited significant protective effects on the proliferation and intestinal barrier structure, the underlying mechanisms of which were related to reduced levels of interleukin‐6 (IL‐6) and interferon‐γ (IFN‐γ), and the restoration of transforming growth factor‐β (TGF‐β) and IL‐10 in the inflammation microenvironment. In summary, there were minimal levels of pluripotent stem cells in rat bone marrow, which exhibit similar properties to human Muse cells. Rat Muse cells could provide protection against damage to intestinal epithelial cells depending on their anti‐inflammatory and immune regulatory functionality. Their functional impact was more obvious than that of BMMSCs.
Collapse
Affiliation(s)
- Dong Sun
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, P.R. China.,Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, P.R. China
| | - Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, P.R. China.,NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, P.R. China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, P.R. China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, 300192, P.R. China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, P.R. China.,Tianjin Key Laboratory of Organ Transplantation, Tianjin, 300192, P.R. China
| |
Collapse
|