1
|
Dos Santos BM, Pecenin MF, Borges-Pereira L, Springer E, Przyborski JM, Martins-Jr DC, Hashimoto RF, Garcia CRS. The genetically encoded calcium indicator GCaMP3 reveals spontaneous calcium oscillations at asexual stages of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2024; 260:111650. [PMID: 39151473 DOI: 10.1016/j.molbiopara.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Most protocols used to study the dynamics of calcium (Ca2+) in the malaria parasite are based on dyes, which are invasive and do not allow discrimination between the signal from the host cell and the parasite. To avoid this pitfall, we have generated a parasite line expressing the genetically encoded calcium sensor GCaMP3. The PfGCaMP3 parasite line is an innovative tool for studying spontaneous intracellular Ca2+ oscillations without external markers. Using this parasite line, we demonstrate the occurrence of spontaneous Ca2+ oscillations in the ring, trophozoite, and schizont stages in Plasmodium falciparum. Using the Fourier transform to fluorescence intensity data extracted from different experiments, we observe cytosolic Ca2+ fluctuations. These spontaneous cytosolic Ca2+ oscillations occur in the three intraerythrocytic stages of the parasite, with most oscillations occurring in the ring and trophozoite stages. A control parasite line expressing only a GFP control did not reveal such fluctuations, demonstrating the specificity of the observations. Our results clearly show dynamic, spontaneous Ca2+ oscillations during the asexual stage in P. falciparum, independent from external stimuli.
Collapse
Affiliation(s)
- Benedito M Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Mateus F Pecenin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Eric Springer
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, Gießen 35390, Germany
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, Gießen 35390, Germany
| | - David C Martins-Jr
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André 09606-045, Brazil
| | - Ronaldo F Hashimoto
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-000, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
2
|
Ramírez-Prada J, Rocha-Ortiz JS, Orozco MI, Moreno P, Guevara M, Barreto M, Burbano ME, Robledo S, Crespo-Ortiz MDP, Quiroga J, Abonia R, Cuartas V, Insuasty B. New pyridine-based chalcones and pyrazolines with anticancer, antibacterial, and antiplasmodial activities. Arch Pharm (Weinheim) 2024; 357:e2400081. [PMID: 38548680 DOI: 10.1002/ardp.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/04/2024]
Abstract
New pyridine-based chalcones 4a-h and pyrazolines 5a-h (N-acetyl), 6a-h (N-phenyl), and 7a-h (N-4-chlorophenyl) were synthesized and evaluated by the National Cancer Institute (NCI) against 60 different human cancer cell lines. Pyrazolines 6a, 6c-h, and 7a-h satisfied the pre-determined threshold inhibition criteria, obtaining that compounds 6c and 6f exhibited high antiproliferative activity, reaching submicromolar GI50 values from 0.38 to 0.45 μM, respectively. Moreover, compound 7g (4-CH3) exhibited the highest cytostatic activity of these series against different cancer cell lines from leukemia, nonsmall cell lung, colon, ovarian, renal, and prostate cancer, with LC50 values ranging from 5.41 to 8.35 μM, showing better cytotoxic activity than doxorubicin. Furthermore, the compounds were tested for antibacterial and antiplasmodial activities. Chalcone 4c was the most active with minimal inhibitory concentration (MIC) = 2 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA), while the pyrazoline 6h showed a MIC = 8 μg/mL against Neisseria gonorrhoeae. For anti-Plasmodium falciparum activity, the chalcones display higher activity with EC50 values ranging from 10.26 to 10.94 μg/mL. Docking studies were conducted against relevant proteins from P. falciparum, exhibiting the minimum binding energy with plasmepsin II. In vivo toxicity assay in Galleria mellonella suggests that most compounds are low or nontoxic.
Collapse
Affiliation(s)
- Jonathan Ramírez-Prada
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
| | - Juan S Rocha-Ortiz
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| | - Marta I Orozco
- Biotechnology and Bacterial Infections Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
- Microbiology and Infectious Diseases Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Pedro Moreno
- Group of Bioinformatics, Faculty of Engineering, Universidad del Valle, Cali, Colombia
| | - Miguel Guevara
- Group of Bioinformatics, Faculty of Engineering, Universidad del Valle, Cali, Colombia
| | - Mauricio Barreto
- Microbiology and Infectious Diseases Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Maria E Burbano
- Microbiology and Infectious Diseases Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Sara Robledo
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria Del Pilar Crespo-Ortiz
- Biotechnology and Bacterial Infections Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
- Microbiology and Infectious Diseases Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| | - Viviana Cuartas
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| |
Collapse
|
3
|
Adelusi TI, Ojo TO, Bolaji OQ, Oyewole MP, Olaoba OT, Oladipo EK. Predicting Plasmodium falciparum kinase inhibitors from antimalarial medicinal herbs using computational modeling approach. In Silico Pharmacol 2023; 12:4. [PMID: 38130691 PMCID: PMC10730500 DOI: 10.1007/s40203-023-00175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Malaria remains a significant public health challenge, with resistance to available drugs necessitating the development of novel therapies targeting invasion-dependent proteins. Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK-1) is essential for host erythrocyte invasion and parasite asexual development. This study screened a library of 490 compounds using computational methods to identify potential PfCDPK-1 inhibitors. Three compounds; 17-hydroxyazadiradione, Picracin, and Epicatechin-gallate derived from known antimalarial botanicals, showed potent inhibitory effects on PfCDPK-1. These compounds exhibited better binding affinities (-8.8, -9.1, -9.3 kCal/mol respectively), pharmacokinetics, and physicochemical properties than the purported inhibitory standard of PfCDPK-1, Purfalcamine. Molecular dynamics simulations (50 ns) and molecular mechanics analyses confirmed the stability and binding rigidity of these compounds at the active pocket of PfCDPK-1. The results suggest that these compounds are promising pharmacological targets with potential therapeutic effects for malaria treatment/management without undesirable side effects. Therefore, this study provides new insights into the development of effective antimalarial agents targeting invasion-dependent proteins, which could help combat the global malaria burden. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00175-z.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Taiwo Ooreoluwa Ojo
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
- Genomics unit, Helix Biogen Institute, P.M.B 212102, Ogbomoso, Oyo State Nigeria
| | - Olawale Quadri Bolaji
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Moyosoluwa Precious Oyewole
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Olamide Tosin Olaoba
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211 USA
| | - Elijah Kolawole Oladipo
- Genomics unit, Helix Biogen Institute, P.M.B 212102, Ogbomoso, Oyo State Nigeria
- Laboratory of Molecular Biology, Bioinformatics and Immunology, Department of Microbiology, Adeleke University, Ede, Osun State Nigeria
| |
Collapse
|
4
|
Lai P, Yang X, Li YH, Yin YL, Yao Q, Huang S, Fan YY, Song JK, Zhao GH. Characterization of CpCaM, a protein potentially involved in the growth of Cryptosporidium parvum. Parasitol Res 2023; 122:989-996. [PMID: 36879147 DOI: 10.1007/s00436-023-07803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Cryptosporidium parvum is an important apicomplexan parasite causing severe diarrhea in both humans and animals. Calmodulin (CaM), a multifunctional and universal calcium-binding protein, contributes to the growth and development of apicomplexan parasites, but the role of CaM in C. parvum remains unknown. In this study, the CaM of C. parvum encoded by the cgd2_810 gene was expressed in Escherichia coli, and the biological functions of CpCaM were preliminarily investigated. The transcriptional level of the cgd2_810 gene peaked at 36 h post infection (pi), and the CpCaM protein was mainly located around the nucleus of the whole oocysts, in the middle of sporozoites and around the nucleus of merozoites. Anti-CpCaM antibody reduced the invasion of C. parvum sporozoites by 30.69%. The present study indicates that CpCaM is potentially involved in the growth of C. parvum. Results of the study expand our knowledge on the interaction between host and Cryptosporidium.
Collapse
Affiliation(s)
- Peng Lai
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xin Yang
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yun-Hui Li
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yan-Ling Yin
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Qian Yao
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuang Huang
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ying-Ying Fan
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jun-Ke Song
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Guang-Hui Zhao
- Key Laboratory of Ruminant Disease Prevention and Control (West), College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Kar PP, Araveti PB, Srivastava A. Deciphering the kinome of Theileria annulata for identification of drug targets and anti-theilerial drug. Ticks Tick Borne Dis 2022; 13:102049. [PMID: 36215767 DOI: 10.1016/j.ttbdis.2022.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022]
Abstract
Tropical theileriosis is one of the major parasitic diseases of ruminants. It is a tick-borne disease caused by an apicomplexan parasite, Theileria annulata. In the infected cells, these parasites induce phenotypes similar to cancerous cells. Among the most critical changes induced by the parasite are immortalization, hyperproliferation, and dissemination. The proliferative signal in the T. annulata transformed cells are provided by different kinases such as mitogen-activated protein kinases, SRC family kinases, casein kinase-2, and phosphatidylinositide 3-kinase. Deregulation of protein kinases in cancer is also well known. Targeting protein kinases in a cancerous cell is one of the most common methods in cancer therapy. Here, we revisited the kinome of T. annulata and studied its evolutionary relationship with other piroplasms. This analysis revealed that T. annulata kinome encodes 54 protein kinases. Based on our analysis, 12 of these 54 kinases were identified for the first time in the T. annulata proteome. Three protein kinases, TA16570, TA09820, and TA07000, had <40% identity with Bos taurus and >40% identity with the previously identified potential drug targets present in the Therapeutic Target Database (TTD). These 3 proteins were predicted to be essential for the survival of T. annulata and were selected as drug targets. Screening these drug targets in the Protein Kinase Inhibitor Database (PKID) led to shortlisting of 5 drugs. Only Dabrafenib, out of these 5 drugs, could bind to the ATP binding site (in silico) of the Calcium Dependent Protein Kinase 3 of both T. annulata and Theileria parva. Further, dabrafenib could inhibit the proliferation of T. annulata infected bovine leucocytes in 6 days proliferation assay with the IC50 value of 0.66 µM. Also, this drug did not have a cytotoxic effect on bovine peripheral blood mononuclear cells. In summary, the analysis of T. annulata kinome led to the identification of dabrafenib as a potential drug for treating theileriosis.
Collapse
Affiliation(s)
- Prajna Parimita Kar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Prasanna Babu Araveti
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Anand Srivastava
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Adjunct Assistant Professor, Regional Centre for Biotechnology (RCB), Faridabad, India.
| |
Collapse
|
6
|
Mkhize SS, Machaba KE, Simelane MBC, Pooe OJ. Mushroom‐Derived Products as an Alternative Antimalarial Therapeutics: A Review. DRUG DEVELOPMENT FOR MALARIA 2022:235-249. [DOI: 10.1002/9783527830589.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
8
|
Boisard J, Duvernois-Berthet E, Duval L, Schrével J, Guillou L, Labat A, Le Panse S, Prensier G, Ponger L, Florent I. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery. BMC Genomics 2022; 23:485. [PMID: 35780080 PMCID: PMC9250747 DOI: 10.1186/s12864-022-08700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.
Collapse
Affiliation(s)
- Julie Boisard
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Evelyne Duvernois-Berthet
- Département Adaptations du Vivant (AVIV), Physiologie Moléculaire et Adaptation (PhyMA UMR 7221 CNRS), Muséum national d'Histoire naturelle, CNRS, CP 32, 7 rue Cuvier, 75005, Paris, France
| | - Linda Duval
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Joseph Schrével
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Laure Guillou
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne Université, 29680, Roscoff, France
| | - Amandine Labat
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Sophie Le Panse
- Plateforme d'Imagerie Merimage, FR2424, Centre National de la Recherche Scientifique, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gérard Prensier
- Cell biology and Electron Microscopy Laboratory, François Rabelais University, 10 Boulevard Tonnellé, 3223 Cedex, Tours, BP, France
| | - Loïc Ponger
- Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| | - Isabelle Florent
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| |
Collapse
|
9
|
Dash M, Sachdeva S, Bansal A, Sinha A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front Cell Infect Microbiol 2022; 12:877907. [PMID: 35782151 PMCID: PMC9241518 DOI: 10.3389/fcimb.2022.877907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium, which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Collapse
Affiliation(s)
- Manoswini Dash
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- Central Molecular Laboratory, Govind Ballabh (GB) Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sherry Sachdeva
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- *Correspondence: Abhinav Sinha,
| |
Collapse
|
10
|
Shu F, Li Y, Chu W, Chen X, Zhang Z, Guo Y, Feng Y, Xiao L, Li N. Characterization of Calcium-Dependent Protein Kinase 2A, a Potential Drug Target Against Cryptosporidiosis. Front Microbiol 2022; 13:883674. [PMID: 35558125 PMCID: PMC9090282 DOI: 10.3389/fmicb.2022.883674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are important in calcium influx, triggering several biological processes in Cryptosporidium spp. As they are not present in mammals, CDPKs are considered promising drug targets. Recent studies have characterized CpCDPK1, CpCDPK3, CpCDPK4, CpCDPK5, CpCDPK6, and CpCDPK9, but the role of CpCPK2A remains unclear. In this work, we expressed recombinant CpCDPK2A encoded by the cgd2_1060 gene in Escherichia coli and characterized the biologic functions of CpCDPK2A using qRT-PCR, immunofluorescence microscopy, immuno-electron microscopy, and in vitro neutralization. The results revealed that CpCDPK2A protein was highly expressed in the apical region of sporozoites and merozoites and in macrogamonts. Monoclonal or polyclonal antibodies against CpCDPK2A failed to block the invasion of host cells. Among the 44 candidate inhibitors from molecular docking of CpCDPK2A, one inhibitor was identified as having a potential effect on both Cryptosporidium parvum growth and CpCDPK2A enzyme activities. These data suggest that CpCDPK2A may play some roles during the development of C. parvum and might be a potential drug target against cryptosporidiosis.
Collapse
Affiliation(s)
- Fanfan Shu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenlun Chu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuehua Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
11
|
Damena D, Agamah FE, Kimathi PO, Kabongo NE, Girma H, Choga WT, Golassa L, Chimusa ER. Insilico Functional Analysis of Genome-Wide Dataset From 17,000 Individuals Identifies Candidate Malaria Resistance Genes Enriched in Malaria Pathogenic Pathways. Front Genet 2021; 12:676960. [PMID: 34868193 PMCID: PMC8639191 DOI: 10.3389/fgene.2021.676960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Recent genome-wide association studies (GWASs) of severe malaria have identified several association variants. However, much about the underlying biological functions are yet to be discovered. Here, we systematically predicted plausible candidate genes and pathways from functional analysis of severe malaria resistance GWAS summary statistics (N = 17,000) meta-analysed across 11 populations in malaria endemic regions. We applied positional mapping, expression quantitative trait locus (eQTL), chromatin interaction mapping, and gene-based association analyses to identify candidate severe malaria resistance genes. We further applied rare variant analysis to raw GWAS datasets (N = 11,000) of three malaria endemic populations including Kenya, Malawi, and Gambia and performed various population genetic structures of the identified genes in the three populations and global populations. We performed network and pathway analyses to investigate their shared biological functions. Our functional mapping analysis identified 57 genes located in the known malaria genomic loci, while our gene-based GWAS analysis identified additional 125 genes across the genome. The identified genes were significantly enriched in malaria pathogenic pathways including multiple overlapping pathways in erythrocyte-related functions, blood coagulations, ion channels, adhesion molecules, membrane signalling elements, and neuronal systems. Our population genetic analysis revealed that the minor allele frequencies (MAF) of the single nucleotide polymorphisms (SNPs) residing in the identified genes are generally higher in the three malaria endemic populations compared to global populations. Overall, our results suggest that severe malaria resistance trait is attributed to multiple genes, highlighting the possibility of harnessing new malaria therapeutics that can simultaneously target multiple malaria protective host molecular pathways.
Collapse
Affiliation(s)
- Delesa Damena
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Francis E Agamah
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Peter O Kimathi
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ntumba E Kabongo
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Hundaol Girma
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wonderful T Choga
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lemu Golassa
- Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for Male Gametogenesis and Transmission to the Mosquito Vector. mBio 2021; 12:e0257521. [PMID: 34724830 PMCID: PMC8561384 DOI: 10.1128/mbio.02575-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium-independent protein kinases (CDPKs) play key roles in calcium-mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparumcdpk4− parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4− parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry-based phosphoproteomic analyses of wild-type and Plasmodium falciparumcdpk4− late gametocyte stages to identify key CDPK4-mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events, such as DNA replication, mRNA translation, and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation and thereby is critical for parasite transmission to the mosquito vector.
Collapse
|
13
|
Calcium signaling in intracellular protist parasites. Curr Opin Microbiol 2021; 64:33-40. [PMID: 34571430 DOI: 10.1016/j.mib.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022]
Abstract
Calcium ion (Ca2+) signaling is one of the most frequently employed mechanisms of signal transduction by eukaryotic cells, and starts with either Ca2+ release from intracellular stores or Ca2+ entry through the plasma membrane. In intracellular protist parasites Ca2+ signaling initiates a sequence of events that may facilitate their invasion of host cells, respond to environmental changes within the host, or regulate the function of their intracellular organelles. In this review we examine recent findings in Ca2+ signaling in two groups of intracellular protist parasites that have been studied in more detail, the apicomplexan and the trypanosomatid parasites.
Collapse
|
14
|
Hussein HE, Johnson WC, Taus NS, Capelli-Peixoto J, Suarez CE, Mousel MR, Ueti MW. Differential expression of calcium-dependent protein kinase 4, tubulin tyrosine ligase, and methyltransferase by xanthurenic acid-induced Babesia bovis sexual stages. Parasit Vectors 2021; 14:395. [PMID: 34376245 PMCID: PMC8353865 DOI: 10.1186/s13071-021-04902-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Babesia bovis is one of the most significant tick-transmitted pathogens of cattle worldwide. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. Each life stage has developmental forms that differ in morphology and metabolism. Differentiation between these forms is highly regulated in response to changes in the parasite’s environment. Understanding the mechanisms by which Babesia parasites respond to environmental changes and the transmission cycle through the biological vector is critically important for developing bovine babesiosis control strategies. Results In this study, we induced B. bovis sexual stages in vitro using xanthurenic acid and documented changes in morphology and gene expression. In vitro induced B. bovis sexual stages displayed distinctive protrusive structures and surface ruffles. We also demonstrated the upregulation of B. bovis calcium-dependent protein kinase 4 (cdpk4), tubulin-tyrosine ligase (ttl), and methyltransferase (mt) genes by in vitro induced sexual stages and during parasite development within tick midguts. Conclusions Similar to other apicomplexan parasites, it is likely that B. bovis upregulated genes play a vital role in sexual reproduction and parasite transmission. Herein, we document the upregulation of cdpk4, ttl, and mt genes by both B. bovis in vitro induced sexual stages and parasites developing in the tick vector. Understanding the parasite's biology and identifying target genes essential for sexual reproduction will enable the production of non-transmissible live vaccines to control bovine babesiosis. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04902-3.
Collapse
Affiliation(s)
- Hala E Hussein
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Wendell C Johnson
- The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| | - Naomi S Taus
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| | - Janaina Capelli-Peixoto
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| | - Michelle R Mousel
- The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| |
Collapse
|
15
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
16
|
Zhang Q, Shao Q, Guo Y, Li N, Li Y, Su J, Xu R, Zhang Z, Xiao L, Feng Y. Characterization of Three Calcium-Dependent Protein Kinases of Cryptosporidium parvum. Front Microbiol 2021; 11:622203. [PMID: 33510735 PMCID: PMC7835281 DOI: 10.3389/fmicb.2020.622203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/02/2022] Open
Abstract
In Cryptosporidium spp., calcium-dependent protein kinases (CDPKs) are considered promising targets for the development of pharmaceutical interventions. Whole-genome sequencing has revealed the presence of 11 CDPKs in Cryptosporidium parvum (CpCDPKs). In this study, we expressed recombinant CpCDPK4, CpCDPK5, and CpCDPK6 in Escherichia coli. The biological characteristics and functions of these CpCDPKs were examined by using quantitative reverse transcription PCR (qRT-PCR), immunofluorescence microscopy, and an in vitro neutralization assay. The expression of the CpCDPK4 gene peaked at 12 h post-infection, the CpCDPK5 gene peaked at 12 and 48 h, and the CpCDPK6 gene peaked at 2–6 h. CpCDPK4 protein was located in the anterior and mid-anterior regions of sporozoites, and CpCDPK5 protein was located over the entire sporozoites, while CpCDPK6 protein was expressed in a spotty pattern. Immune sera of CpCDPK4 and CpCDPK6 exhibited significant inhibitory effects on host cell invasion, while the immune sera of CpCDPK5 had no effects. These differences in protein localization, gene expressions, and neutralizing capacities indicated that the CpCDPK proteins may have different roles during the lifecycle of Cryptosporidium spp.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Qian Shao
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiayuan Su
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Rui Xu
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
18
|
Choi R, Michaels SA, Onu EC, Hulverson MA, Saha A, Coker ME, Weeks JC, Van Voorhis WC, Ojo KK. Taming the Boys for Global Good: Contraceptive Strategy to Stop Malaria Transmission. Molecules 2020; 25:molecules25122773. [PMID: 32560085 PMCID: PMC7356879 DOI: 10.3390/molecules25122773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022] Open
Abstract
Transmission of human malaria parasites (Plasmodium spp.) by Anopheles mosquitoes is a continuous process that presents a formidable challenge for effective control of the disease. Infectious gametocytes continue to circulate in humans for up to four weeks after antimalarial drug treatment, permitting prolonged transmission to mosquitoes even after clinical cure. Almost all reported malaria cases are transmitted to humans by mosquitoes, and therefore decreasing the rate of Plasmodium transmission from humans to mosquitoes with novel transmission-blocking remedies would be an important complement to other interventions in reducing malaria incidence.
Collapse
Affiliation(s)
- Ryan Choi
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Samantha A. Michaels
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Emmanuel C. Onu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; (E.C.O.); (M.E.C.)
| | - Matthew A. Hulverson
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Aparajita Saha
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Morenike E. Coker
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; (E.C.O.); (M.E.C.)
| | - Janis C. Weeks
- Department of Biology, University of Oregon, Eugene, OR 97403, USA;
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
- Correspondence: ; Tel.: +1-206-543-0821
| |
Collapse
|