1
|
Perera DN, Palliyaguruge CL, Eapasinghe DD, Liyanage DM, Seneviratne RACH, Demini SMD, Jayasinghe JASM, Faizan M, Rajagopalan U, Galhena BP, Hays H, Senathilake K, Tennekoon KH, Samarakoon SR. Factors affecting iron absorption and the role of fortification in enhancing iron levels. NUTR BULL 2023; 48:442-457. [PMID: 37965925 DOI: 10.1111/nbu.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
Iron is an important micronutrient required for a number of biological processes including oxygen transport, cellular respiration, the synthesis of nucleic acids and the activity of key enzymes. The World Health Organization has recognised iron deficiency as the most common nutritional deficiency globally and as a major determinant of anaemia. Iron deficiency anaemia affects 40% of all children between the ages of 6 and 59 months, 37% of mothers who are pregnant and 30% of women between the ages of 15 and 49 years worldwide. Dietary iron exists in two main forms known as haem iron and non-haem iron. Haem iron is obtained from animal sources such as meat and shows higher bioavailability than non-haem iron, which can be obtained from both plant and animal sources. Different components in food can enhance or inhibit iron absorption from the diet. Components such as meat proteins and organic acids increase iron absorption, while phytate, calcium and polyphenols reduce iron absorption. Iron levels in the body are tightly regulated since both iron overload and iron deficiency can exert harmful effects on human health. Iron is stored mainly as haemoglobin and as iron bound to proteins such as ferritin and hemosiderin. Iron deficiency affects individuals at increased risk due to factors such as age, pregnancy, menstruation and various diseases. Different solutions for iron deficiency are applied at individual and community levels. Iron supplements and intravenous iron can be used to treat individuals with iron deficiency, while various types of iron-fortified foods and biofortified crops can be employed for larger communities. Foods such as rice, flour and biscuits have been used to prepare fortified iron products. However, it is important to ensure the fortification process does not exert significant negative effects on organoleptic properties and the shelf life of the food product.
Collapse
Affiliation(s)
- Dipun Nirmal Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | - Dasuni Dilkini Eapasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Dilmi Maleesha Liyanage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - R A C Haily Seneviratne
- Department of Food Sciences Technology, Faculty of Livestock Fisheries and Nutrition, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - S M D Demini
- Lanka ORIX Leasing Company (LOLC) Advanced Technologies (Pvt) Ltd, Ethul Kotte, Sri Lanka
| | - J A S M Jayasinghe
- Lanka ORIX Leasing Company (LOLC) Advanced Technologies (Pvt) Ltd, Ethul Kotte, Sri Lanka
| | - Mishal Faizan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | - B Prasanna Galhena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Hasi Hays
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kanishka Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kamani H Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Sameera R Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
2
|
Batista KS, de Albuquerque JG, de Vasconcelos MHA, Bezerra MLR, da Silva Barbalho MB, Pinheiro RO, Aquino JDS. Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19? Nutr Res Rev 2023; 36:181-198. [PMID: 34668465 PMCID: PMC8593414 DOI: 10.1017/s0954422421000317] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Scientists are working to identify prevention/treatment methods and clinical outcomes of coronavirus disease 2019 (COVID-19). Nutritional status and diet have a major impact on the COVID-19 disease process, mainly because of the bidirectional interaction between gut microbiota and lung, that is, the gut-lung axis. Individuals with inadequate nutritional status have a pre-existing imbalance in the gut microbiota and immunity as seen in obesity, diabetes, hypertension and other chronic diseases. Communication between the gut microbiota and lungs or other organs and systems may trigger worse clinical outcomes in viral respiratory infections. Thus, this review addresses new insights into the use of probiotics and prebiotics as a preventive nutritional strategy in managing respiratory infections such as COVID-19 and highlighting their anti-inflammatory effects against the main signs and symptoms associated with COVID-19. Literature search was performed through PubMed, Cochrane Library, Scopus and Web of Science databases; relevant clinical articles were included. Significant randomised clinical trials suggest that specific probiotics and/or prebiotics reduce diarrhoea, abdominal pain, vomiting, headache, cough, sore throat, fever, and viral infection complications such as acute respiratory distress syndrome. These beneficial effects are linked with modulation of the microbiota, products of microbial metabolism with antiviral activity, and immune-regulatory properties of specific probiotics and prebiotics through Treg cell production and function. There is a need to conduct clinical and pre-clinical trials to assess the combined effect of consuming these components and undergoing current therapies for COVID-19.
Collapse
Affiliation(s)
- Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Juliana Gondim de Albuquerque
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária s/n, Recife, Brazil
- Post Graduate in Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana (UAM), Ciudad de Mexico, Mexico
| | - Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Maria Luiza Rolim Bezerra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Mariany Bernardino da Silva Barbalho
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| |
Collapse
|
3
|
Csuti A, Zheng B, Zhou H. Post pH-driven encapsulation of polyphenols in next-generation foods: principles, formation and applications. Crit Rev Food Sci Nutr 2023; 64:12892-12906. [PMID: 37722872 DOI: 10.1080/10408398.2023.2258214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
To meet the needs of a growing global population (∼10 billion by 2050), there is an urgent demand for sustainable, healthy, delicious, and affordable next-generation foods. Natural polyphenols, which are abundant in edible plants, have emerged as promising food additives due to their potential health benefits. However, incorporating polyphenols into food products presents various challenges, including issues related to crystallization, low water-solubility, limited bioavailability, and chemical instability. pH-driven or pH-shifting approaches have been proposed to incorporate polyphenols into the delivery systems. Nevertheless, it is unclear whether they can be generally used for the encapsulation of polyphenols into next-generation foods. Here, we highlight a post pH-driven (PPD) approach as a viable solution. The PPD approach inherits several advantages, such as simplicity, speed, and environmental friendliness, as it eliminates the need for heat, organic solvents, and complex equipment. Moreover, the PPD approach can be widely applied to different polyphenols and food systems, enhancing its versatility while also potentially contributing to reducing food waste. This review article aims to accelerate the implementation of the PPD approach in the development of polyphenol-fortified next-generation foods by providing a comprehensive understanding of its fundamental principles, encapsulation techniques, and potential applications in plant-based foods.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Bingjing Zheng
- Research and Development, GNT Group, Dallas, North Carolina, USA
| | - Hualu Zhou
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
4
|
Gallinat A, Vilahur G, Padro T, Badimon L. Effects of Antioxidants in Fermented Beverages in Tissue Transcriptomics: Effect of Beer Intake on Myocardial Tissue after Oxidative Injury. Antioxidants (Basel) 2023; 12:antiox12051096. [PMID: 37237963 DOI: 10.3390/antiox12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Fermented beverages, such as wine and beer, are rich in polyphenols that have been shown to have protective effects against oxidative stress. Oxidative stress plays a central role in the pathogenesis and progression of cardiovascular disease. However, the potential benefits of fermented beverages on cardiovascular health need to be fully investigated at a molecular level. In this study, we aimed at analyzing the effects of beer consumption in modulating the transcriptomic response of the heart to an oxidative stress challenge induced by myocardial ischemia (MI) in the presence of hypercholesterolemia in a pre-clinical swine model. Previous studies have shown that the same intervention induces organ protective benefits. We report a dose-dependent up-regulation of electron transport chain members and the down-regulation of spliceosome-associated genes linked to beer consumption. Additionally, low-dose beer consumption resulted in a down-regulation of genes associated with the immune response, that was not shown for moderate-dose beer consumption. These findings, observed in animals having demonstrated beneficial effects at the organ-level, indicate that the antioxidants in beer differentially affect the myocardial transcriptome in a dose-dependent manner.
Collapse
Affiliation(s)
- Alex Gallinat
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, IIBSANTPAU, 08041 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, IIBSANTPAU, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Padro
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, IIBSANTPAU, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, IIBSANTPAU, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
5
|
Richter CK, Skulas-Ray AC, Gaugler TL, Meily S, Petersen KS, Kris-Etherton PM. Randomized Double-Blind Controlled Trial of Freeze-Dried Strawberry Powder Supplementation in Adults with Overweight or Obesity and Elevated Cholesterol. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:148-158. [PMID: 35512768 DOI: 10.1080/07315724.2021.2014369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Recommended dietary patterns improve cardiovascular disease (CVD) risk factors such as blood pressure and LDL-C, as well as emerging markers that confer residual risk. Strawberry consumption has been shown to improve CVD risk factors, but further research is needed to better understand these effects using a dose-response model that evaluates a standard serving and a higher (but still achievable) dose. METHODS A randomized, placebo-controlled, double-blinded crossover trial was conducted in middle-aged adults with overweight or obesity (n = 40; mean BMI = 29.4 ± 0.2 kg/m2; mean age = 50 ± 1.0 years) and moderately elevated LDL-C (mean LDL-C: 140 ± 3 mg/dL) to investigate the effect of two doses of strawberry supplementation on LDL-C and other CVD risk factors. Study interventions were: 0 g/d (control), 13 g/d (low-dose), and 40 g/d (high-dose) of freeze-dried strawberry powder (4-week supplementation periods separated by a 2-week compliance break). RESULTS There was a significant main effect of treatment for the primary outcome of LDL-C, with a 4.9% reduction following the low-dose strawberry supplement compared to the high-dose (P = 0.01), but not compared to the control. There was also a significant effect on total cholesterol (TC), with a 2.8% and 2.4% reduction following the low-dose compared to the control and high-dose, respectively (P ≤ 0.05 in post-hoc analyses). There was a near significant effect for direct LDL-C (P = 0.07). There were no significant treatment effects for other atherogenic lipoprotein characteristics, indices of vascular function, measures of inflammation, or HDL efflux. CONCLUSION Low-dose supplementation with freeze-dried strawberry powder, equivalent to ∼1 serving/day of fresh strawberries, improved cholesterol in adults with overweight or obesity, compared to both the high-dose (∼3 servings/day of fresh strawberries) and control, but did not alter other markers of CVD. UNLABELLED Supplemental data for this article is available online at.
Collapse
Affiliation(s)
- Chesney K Richter
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Ann C Skulas-Ray
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Trent L Gaugler
- Department of Mathematics, Lafayette College, Easton, Pennsylvania, USA
| | - Stacey Meily
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Kohl J, Brame J, Hauff P, Wurst R, Sehlbrede M, Fichtner UA, Armbruster C, Tinsel I, Maiwald P, Farin-Glattacker E, Fuchs R, Gollhofer A, König D. Effects of a Web-Based Weight Loss Program on the Healthy Eating Index-NVS in Adults with Overweight or Obesity and the Association with Dietary, Anthropometric and Cardiometabolic Variables: A Randomized Controlled Clinical Trial. Nutrients 2022; 15:7. [PMID: 36615666 PMCID: PMC9823428 DOI: 10.3390/nu15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This randomized, controlled clinical trial examined the impact of a web-based weight loss intervention on diet quality. Furthermore, it was investigated whether corresponding changes in diet quality were associated with changes in measures of cardiovascular risk profile. Individuals with a body mass index (BMI) of 27.5 to 34.9 kg/m2 and an age of 18 to 65 y were assigned to either an interactive and fully automated web-based weight loss program focusing on dietary energy density (intervention) or a non-interactive web-based weight loss program (control). Examinations were performed at baseline (t0), after the 12-week web-based intervention (t1), and after an additional 6 (t2) and 12 months (t3). Based on a dietary record, the Healthy Eating Index-NVS (HEI-NVS) was calculated and analyzed using a robust linear mixed model. In addition, bootstrapped correlations were performed independently of study group to examine associations between change in HEI-NVS and change in dietary, anthropometric, and cardiometabolic variables. A total of n = 153 participants with a mean BMI of 30.71 kg/m2 (SD 2.13) and an average age of 48.92 y (SD 11.17) were included in the study. HEI-NVS improved significantly in the intervention group from baseline (t0) to t2 (p = 0.003) and to t3 (p = 0.037), whereby the course was significantly different up to t2 (p = 0.013) and not significantly different up to t3 (p = 0.054) compared to the control group. Independent of study group, there was a significant negative association between change in HEI-NVS and dietary energy density. A higher total score in HEI-NVS did not correlate with improvements in cardiovascular risk profile. The interactive and fully automated web-based weight loss program improved diet quality. Independent of study group, changes in HEI-NVS correlated with changes in energy density, but there was no association between improvements in HEI-NVS and improvements in cardiovascular risk profile.
Collapse
Affiliation(s)
- Jan Kohl
- Department of Sport and Sport Science, University of Freiburg, 79117 Freiburg, Germany
| | - Judith Brame
- Department of Sport and Sport Science, University of Freiburg, 79117 Freiburg, Germany
| | - Pascal Hauff
- Department of Sport and Sport Science, University of Freiburg, 79117 Freiburg, Germany
| | - Ramona Wurst
- Department of Sport and Sport Science, University of Freiburg, 79117 Freiburg, Germany
| | - Matthias Sehlbrede
- Section of Health Care Research and Rehabilitation Research (SEVERA), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Urs Alexander Fichtner
- Section of Health Care Research and Rehabilitation Research (SEVERA), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christoph Armbruster
- Section of Health Care Research and Rehabilitation Research (SEVERA), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Iris Tinsel
- Section of Health Care Research and Rehabilitation Research (SEVERA), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Phillip Maiwald
- Section of Health Care Research and Rehabilitation Research (SEVERA), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Erik Farin-Glattacker
- Section of Health Care Research and Rehabilitation Research (SEVERA), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Reinhard Fuchs
- Department of Sport and Sport Science, University of Freiburg, 79117 Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, 79117 Freiburg, Germany
| | - Daniel König
- Department of Sport and Sport Science, University of Freiburg, 79117 Freiburg, Germany
- Department of Sport Science, Institute for Nutrition, Exercise and Health, University of Vienna, 1150 Vienna, Austria
- Department of Nutritional Sciences, Institute for Nutrition, Exercise and Health, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
8
|
Probiotics in the Management of Mental and Gastrointestinal Post-COVID Symptomes. J Clin Med 2022; 11:jcm11175155. [PMID: 36079082 PMCID: PMC9457065 DOI: 10.3390/jcm11175155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Patients with “post-COVID” syndrome manifest with a variety of signs and symptoms that continue/develop after acute COVID-19. Among the most common are gastrointestinal (GI) and mental symptoms. The reason for symptom occurrence lies in the SARS-CoV-2 capability of binding to exact receptors, among other angiotensin converting enzyme 2 (ACE2) receptors in gastrointestinal lining and neuropilin-1 (NRP-1) in the nervous system, which leads to loss of gastrointestinal and blood-brain barriers integrity and function. The data are mounting that SARS-CoV-2 can trigger systemic inflammation and lead to disruption of gut-brain axis (GBA) and the development of disorders of gut brain interaction (DGBIs). Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are the most common DGBIs syndromes. On the other hand, emotional disorders have also been demonstrated as DGBIs. Currently, there are no official recommendations or recommended procedures for the use of probiotics in patients with COVID-19. However, it can be assumed that many doctors, pharmacists, and patients will want to use a probiotic in the treatment of this disease. In such cases, strains with documented activity should be used. There is a constant need to plan and conduct new trials on the role of probiotics and verify their clinical efficacy for counteracting the negative consequences of COVID-19 pandemic. Quality control is another important but often neglected aspect in trials utilizing probiotics in various clinical entities. It determines the safety and efficacy of probiotics, which is of utmost importance in patients with post-acute COVID-19 syndrome.
Collapse
|
9
|
Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091700. [PMID: 36139775 PMCID: PMC9495581 DOI: 10.3390/antiox11091700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
A healthy gut provides the perfect habitat for trillions of bacteria, called the intestinal microbiota, which is greatly responsive to the long-term diet; it exists in a symbiotic relationship with the host and provides circulating metabolites, hormones, and cytokines necessary for human metabolism. The gut–heart axis is a novel emerging concept based on the accumulating evidence that a perturbed gut microbiota, called dysbiosis, plays a role as a risk factor in the pathogenesis of cardiovascular disease. Consequently, recovery of the gut microbiota composition and function could represent a potential new avenue for improving patient outcomes. Despite their low absorption, preclinical evidence indicates that polyphenols and their metabolites are transformed by intestinal bacteria and halt detrimental microbes’ colonization in the host. Moreover, their metabolites are potentially effective in human health due to antioxidant, anti-inflammatory, and anti-cancer effects. The aim of this review is to provide an overview of the causal role of gut dysbiosis in the pathogenesis of atherosclerosis, hypertension, and heart failure; to discuss the beneficial effects of polyphenols on the intestinal microbiota, and to hypothesize polyphenols or their derivatives as an opportunity to prevent and treat cardiovascular diseases by shaping gut eubiosis.
Collapse
|
10
|
Dai J, Sameen DE, Zeng Y, Li S, Qin W, Liu Y. An overview of tea polyphenols as bioactive agents for food packaging applications. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Chen J, Zhang H, Hu X, Xu M, Su Y, Zhang C, Yue Y, Zhang X, Wang X, Cui W, Zhao Z, Li X. Phloretin exhibits potential food-drug interactions by inhibiting human UDP-glucuronosyltransferases in vitro. Toxicol In Vitro 2022; 84:105447. [PMID: 35868516 DOI: 10.1016/j.tiv.2022.105447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Phloretin is a well-known apple polyphenol possessing a wide variety of biological effects and has been widely used in many fields. However, it's unclear whether phloretin has an effect on the activity of human UGT enzymes. Our study indicated that phloretin inhibited human UGTs on a broad spectrum. Further kinetic analysis revealed that phloretin inhibited UGT1A1, 1A6, 1A9, 2B7, and 2B15 in a noncompetitive manner, with calculated Ki of 8.34 μM, 16.69 μM, 10.58 μM, 17.74 μM and 2.46μΜ, respectively, whereas phloretin inhibited UGT1A7 in an un-competitive manner, with calculated Ki of 5.70 μM. According to the quantitative risk prediction, co-administration of phloretin with drugs primarily metabolized by UGT1A7 and/or UGT2B15 may result in potential food-drug interactions. To sum up, when phloretin or phloretin-rich food is administered with medications metabolized by UGT1A7 and/or UGT2B15, concern should be exercised.
Collapse
Affiliation(s)
- Jinqian Chen
- Departments of Pharmacy, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin 300134, PR China
| | - Hao Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Xia Hu
- Department of Agriculture Insect, Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, PR China
| | - Mengyuan Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Yanjun Su
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yuan Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Xinyu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Wei Cui
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300070, PR China
| | - Zhenyu Zhao
- Departments of Pharmacy, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin 300134, PR China.
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
12
|
Sánchez-Gomar I, Benítez-Camacho J, Cejudo-Bastante C, Casas L, Moreno-Luna R, Mantell C, Durán-Ruiz MC. Pro-Angiogenic Effects of Natural Antioxidants Extracted from Mango Leaf, Olive Leaf and Red Grape Pomace over Endothelial Colony-Forming Cells. Antioxidants (Basel) 2022; 11:antiox11050851. [PMID: 35624715 PMCID: PMC9137485 DOI: 10.3390/antiox11050851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, mainly triggered by the formation of atherosclerotic plaques that reduce blood flow. Angiogenic cell therapy based on endothelial colony forming cells (ECFCs) constitutes a promising alternative to promote vascular revascularization; however, under the oxidative environment that prevails in ischemic areas, these cells become impaired. Thus, it is necessary to investigate strategies to enhance their regenerative properties. Antioxidant substances, such as polyphenols, have been shown to be useful for this purpose. In the current study we evaluated the potential of mango leaves, olive leaves and red grape pomace extracts, rich in polyphenols, to promote ECFC reparative effects. For this, aqueous and ethanolic extracts of the aforementioned raw materials were obtained by pressurized liquid extraction (PLE). After evaluating the polyphenol content and the antioxidant activity, in vitro assays were carried out, and we found that ethanolic extracts at low concentrations improved angiogenic capacities of ECFCs and reduced proliferation, apoptosis, and the inflammatory response of these cells. Overall, mango leaves ethanolic extract provided the most promising results, but all three extracts ameliorated the functionality of ECFCs.
Collapse
Affiliation(s)
- Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Cristina Cejudo-Bastante
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
- Laboratory of Neuroinflammation, National Paraplegics Hospital, SESCAM, 45071 Toledo, Spain;
| | - Lourdes Casas
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
- Correspondence: (L.C.); (M.C.D.-R.); Tel.: +34-956-012-727 (M.C.D.-R.)
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, National Paraplegics Hospital, SESCAM, 45071 Toledo, Spain;
| | - Casimiro Mantell
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
- Correspondence: (L.C.); (M.C.D.-R.); Tel.: +34-956-012-727 (M.C.D.-R.)
| |
Collapse
|
13
|
Harriden B, D'Cunha NM, Kellett J, Isbel S, Panagiotakos DB, Naumovski N. Are dietary patterns becoming more processed? The effects of different dietary patterns on cognition: A review. Nutr Health 2022; 28:341-356. [PMID: 35450490 DOI: 10.1177/02601060221094129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Identifying dietary patterns that promote healthy aging has become increasingly important due to changes in food processing and consumption of processed foods. Recently, the effects of these foods and unhealthy dietary patterns on cognitive function have become more widely recognized. Aim: The aim of this review is to discuss the association between various dietary patterns and cognition in older age, while also highlighting growing evidence that ultra processed food (UPF) may negatively impact healthy aging. Methods: We have performed a non-systematic literature review searches in Google Scholar electronic database with pre-defined terms relating to UPF, diet, dietary patterns, cognition and ageing. Results: The most prevalent diets in the literature include the Western, Mediterranean, Dietary Approach to Stop Hypertension (DASH), Mediterranean-DASH Intervention for Neurogenerative Delay (MIND), Japanese, Nordic, and plant-based diets. Based on the findings, higher intakes of fresh fruit and vegetables, wholegrains and oily fish are common components of dietary patterns that are positively associated with better cognitive function. In contrast, the characteristics of a Western style dietary pattern, consisting of high amounts of UPF's, are increasing in many countries even where the staple dietary pattern was identified as healthy (i.e. Japan). Conclusion: The consumption of UPF, classified by the NOVA food classification system as industrially manufactured foods containing high levels of starches, vegetable oils, sugar, emulsifiers, and foods additives, has a negative impact on the overall nutritional quality of individual diets.
Collapse
Affiliation(s)
- Brittany Harriden
- Faculty of Health, 110446University of Canberra, Canberra, ACT, Australia.,Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT, Australia
| | - Nathan M D'Cunha
- Faculty of Health, 110446University of Canberra, Canberra, ACT, Australia.,Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT, Australia
| | - Jane Kellett
- Faculty of Health, 110446University of Canberra, Canberra, ACT, Australia.,Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT, Australia.,Department of Nutrition-Dietetics, School of Health and Education, 68996Harokopio University, Athens, Greece
| | - Stephen Isbel
- Faculty of Health, 110446University of Canberra, Canberra, ACT, Australia.,Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT, Australia
| | - Demosthenes B Panagiotakos
- Faculty of Health, 110446University of Canberra, Canberra, ACT, Australia.,Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT, Australia.,Department of Nutrition-Dietetics, School of Health and Education, 68996Harokopio University, Athens, Greece
| | - Nenad Naumovski
- Faculty of Health, 110446University of Canberra, Canberra, ACT, Australia.,Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT, Australia.,Department of Nutrition-Dietetics, School of Health and Education, 68996Harokopio University, Athens, Greece
| |
Collapse
|
14
|
Peanut skin extract ameliorates high-fat diet-induced atherosclerosis by regulating lipid metabolism, inflammation reaction and gut microbiota in ApoE−/− mice. Food Res Int 2022; 154:111014. [DOI: 10.1016/j.foodres.2022.111014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
|
15
|
Pilut CN, Manea A, Macasoi I, Dobrescu A, Georgescu D, Buzatu R, Faur A, Dinu S, Chioran D, Pinzaru I, Hancianu M, Dehelean C, Malița D. Comparative Evaluation of the Potential Antitumor of Helleborus purpurascens in Skin and Breast Cancer. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020194. [PMID: 35050083 PMCID: PMC8779569 DOI: 10.3390/plants11020194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 01/08/2022] [Indexed: 05/02/2023]
Abstract
In the field of oncology, the plant kingdom has an inexhaustible supply of bioactive compounds. Phytochemical compounds isolated from Helleborus species have been found to be useful in various chronic diseases. This has brought Helleborus to the attention of medical researchers. H. purpurascens is a plant characteristic of the Carpathian area, known since ancient times for its beneficial effects. The aim of the study was to evaluate the flavonoids composition of a hydroalcoholic extract of H. purpurascens, as well as to assess its antioxidant activity and antitumor potential at the level of two healthy cell lines and four tumor cell lines. In addition, the expression of the genes involved in the apoptotic process (Bcl-2, Bad, and Bax) were evaluated. The results indicated that the extract has a high concentration of flavonoids, such as epicatechin, quercetin, and kaempferol. The extract has an increased antioxidant activity, very similar to that of the standard, ascorbic acid and cytotoxic effects predominantly in the breast cancer cell line, being free of cytotoxic effects in healthy cell lines. Underlying the cytotoxic effect is the induction of the process of apoptosis, which in the present study was highlighted by decreasing the expression of anti-apoptotic genes (Bcl-2) and increasing the expression of pro-apoptotic genes (Bad and Bax). In conclusion, the hydroalcoholic extract of H. purpurascens can be considered an important source for future medical applications in cancer therapy.
Collapse
Affiliation(s)
- Ciprian Nicolae Pilut
- Department of Microbiology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Aniko Manea
- Department of Neonatology and Childcare, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (I.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Amadeus Dobrescu
- Department of Surgery II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (A.D.); (D.G.)
| | - Doina Georgescu
- Department of Medical Semiology I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (A.D.); (D.G.)
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, 9 No. Revolutiei Bv., 300041 Timisoara, Romania;
| | - Alin Faur
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Doina Chioran
- Department of Dento-Alveolar Surgery, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Iulia Pinzaru
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (I.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Cristina Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (I.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
16
|
Neacsu M, Vaughan NJ, Multari S, Haljas E, Scobbie L, Duncan GJ, Cantlay L, Fyfe C, Anderson S, Horgan G, Johnstone AM, Russell WR. Hemp and buckwheat are valuable sources of dietary amino acids, beneficially modulating gastrointestinal hormones and promoting satiety in healthy volunteers. Eur J Nutr 2021; 61:1057-1072. [PMID: 34716790 PMCID: PMC8854285 DOI: 10.1007/s00394-021-02711-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Purpose This study evaluated the postprandial effects following consumption of buckwheat, fava bean, pea, hemp and lupin compared to meat (beef); focussing on biomarkers of satiety, gut hormones, aminoacids and plant metabolites bioavailability and metabolism. Methods Ten subjects (n = 3 men; n = 7 women; 42 ± 11.8 years of age; BMI 26 ± 5.8 kg/m2) participated in six 1-day independent acute interventions, each meal containing 30 g of protein from buckwheat, fava bean, pea, hemp, lupin and meat (beef). Blood samples were collected during 24-h and VAS questionnaires over 5-h. Results Volunteers consumed significantly higher amounts of most amino acids from the meat meal, and with few exceptions, postprandial composition of plasma amino acids was not significantly different after consuming the plant-based meals. Buckwheat meal was the most satious (300 min hunger scores, p < 0.05).Significant increase in GLP-1 plasma (AUC, iAUC p = 0.01) found after hemp compared with the other plant-based meals. Decreased plasma ghrelin concentrations (iAUC p < 0.05) found on plant (hemp) vs. meat meal. Several plasma metabolites after hemp meal consumption were associated with hormone trends (partial least squares-discriminant analysis (PLS-DA): 4-hydroxyphenylpyruvic acid, indole 3-pyruvic acid, 5-hydoxytryptophan, genistein and biochanin A with GLP-1, PYY and insulin; 3-hydroxymandelic acid and luteolidin with GLP-1 and ghrelin and 4-hydroxymandelic acid, benzoic acid and secoisolariciresinol with insulin and ghrelin. Plasma branched-chain amino acids (BCAAs), (iAUC, p < 0.001); and phenylalanine and tyrosine (iAUC, p < 0.05) were lower after buckwheat comparison with meat meal. Conclusion Plants are valuable sources of amino acids which are promoting satiety. The impact of hemp and buckwheat on GLP-1 and, respectively, BCAAs should be explored further as could be relevant for aid and prevention of chronic diseases such as type 2 diabetes. Study registered with clinicaltrial.gov on 12th July 2013, study ID number: NCT01898351. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02711-z.
Collapse
Affiliation(s)
- Madalina Neacsu
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - Nicholas J Vaughan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Salvatore Multari
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Elisabeth Haljas
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Lorraine Scobbie
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Gary J Duncan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Louise Cantlay
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Claire Fyfe
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Susan Anderson
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Wendy R Russell
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| |
Collapse
|
17
|
Xu T, Zhang X, Liu Y, Wang H, Luo J, Luo Y, An P. Effects of dietary polyphenol supplementation on iron status and erythropoiesis: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2021; 114:780-793. [PMID: 33871598 DOI: 10.1093/ajcn/nqab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/23/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The iron-chelating activities of polyphenols raise concern whether there is a risk of iron deficiency or anemia induced by polyphenol supplementation. Results from clinical trials regarding the effects of polyphenol supplementation on iron status and erythropoiesis are inconclusive. OBJECTIVE We performed a systematic review and meta-analysis of randomized controlled trials to determine the effects of polyphenol supplementation on iron status and erythropoiesis. METHODS Published articles were searched between May 1988 and 7 December, 2020. Finally, we identified 34 randomized controlled trials. Random-effects meta-analyses were performed to obtain the weighted mean difference of serum iron (SI), transferrin saturation (TS), ferritin, and hemoglobin concentration. Funnel plots and Egger's test were used to determine the risk of bias. The robustness of the effect sizes was examined by sensitivity analysis. RESULTS Polyphenol supplementation had an inhibitory effect on the SI concentration (-13.72 μg/dL; 95% CI: -20.74, -6.71) and TS (-3.10%; 95% CI: -4.93, -1.27), with no effect on ferritin (-9.34 ng/mL; 95% CI: -28.55, 9.87). Polyphenols increased the hemoglobin concentration (8.53 g/L; 95% CI: 3.33, 13.73). In healthy participants, polyphenol reduced the TS (-3.83%; 95% CI: -7.47, -0.19) and increased the hemoglobin concentration (12.87 g/L; 95% CI: 1.61, 24.14). Similarly, polyphenol reduced the SI concentration (-8.60 μg/dL; 95% CI: -16.10, -1.10) and increased the hemoglobin concentration (8.50 g/L; 95% CI: 0.86, 16.15) in patients with metabolic diseases. In patients with β-thalassemia, polyphenol decreased the SI concentration (-23.19 μg/dL; 95% CI: -35.84, -10.55), TS (-3.23%; 95% CI: -5.54, -0.91), and ferritin concentration (-223.62 ng/mL; 95% CI: -359.32, -87.91), but had no effect on the hemoglobin concentration. CONCLUSION Healthy individuals and patients with metabolic diseases may benefit from the positive impact of polyphenols on erythropoiesis. Patients with β-thalassemia may benefit from the effect of polyphenols on reducing SI. This trial was registered at PROSPERO (International prospective register of systematic reviews) as CRD42020161983.
Collapse
Affiliation(s)
- Teng Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuning Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Hao Wang
- Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
|
19
|
Esposito S, Gialluisi A, Costanzo S, Di Castelnuovo A, Ruggiero E, De Curtis A, Persichillo M, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Bonaccio M. Dietary Polyphenol Intake Is Associated with Biological Aging, a Novel Predictor of Cardiovascular Disease: Cross-Sectional Findings from the Moli-Sani Study. Nutrients 2021; 13:1701. [PMID: 34067821 PMCID: PMC8157169 DOI: 10.3390/nu13051701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Biological aging, or the discrepancy between biological and chronological age of a subject (Δage), has been associated with a polyphenol-rich Mediterranean diet and represents a new, robust indicator of cardiovascular disease risk. We aimed to disentangle the relationship of dietary polyphenols and total antioxidant capacity with Δage in a cohort of Italians. A cross-sectional analysis was performed on a sub-cohort of 4592 subjects (aged ≥ 35 y; 51.8% women) from the Moli-sani Study (2005-2010). Food intake was recorded by a 188-item food-frequency questionnaire. The polyphenol antioxidant content (PAC)-score was constructed to assess the total dietary content of polyphenols. Total antioxidant capacity was measured in foods by these assays: trolox equivalent antioxidant capacity (TEAC), total radical-trapping antioxidant parameter (TRAP) and ferric reducing-antioxidant power (FRAP). A deep neural network, based on 36 circulating biomarkers, was used to compute biological age and the resulting Δage, which was tested as outcome in multivariable-adjusted linear regressions. Δage was inversely associated with the PAC-score (β = -0.31; 95%CI -0.39, -0.24) but not with total antioxidant capacity of the diet. A diet rich in polyphenols, by positively contributing to deceleration of the biological aging process, may exert beneficial effects on the long-term risk of cardiovascular disease and possibly of bone health.
Collapse
Affiliation(s)
- Simona Esposito
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | | | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
- Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, 21100 Varese-Como, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS Neuromed, via dell’Elettronica, 86077 Pozzilli, Italy; (S.E.); (A.G.); (S.C.); (E.R.); (A.D.C.); (M.P.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | | |
Collapse
|
20
|
Abbey L, Ofoe R, Gunupuru LR, Ijenyo M. Variation in frequency of CQA-tested municipal solid waste compost can alter metabolites in vegetables. Food Res Int 2021; 143:110225. [PMID: 33992339 DOI: 10.1016/j.foodres.2021.110225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 11/23/2022]
Abstract
The use of compost to enhance plant growth and mineral nutrients composition are extensively studied but not much literature information exists on its influence on plant metabolic profiles. A study was performed to assess a 5-year variable frequency of application of Compost Quality Alliance tested municipal solid waste (MSW) compost effect on metabolic profiles of the edible portions of four different vegetable plants. The plants were lettuce (Latuca sativa cv. Grand Rapids), beets (Beta vulgaris cv. Detroit Supreme), carrot (Daucus carota cv. Nantes) and green beans (Phaseolus vulgaris cv. Golden Wax) grown under a sub-humid continental climate. The treatments were annual, biennial and no (control) applications of the MSW compost. Typically, soil fertility highly increased with the annual application of the MSW compost followed by the biennial application but declined in the control plot. The annually applied MSW compost increased total amino acids in the lettuce, carrot, beets, and green beans by ca. 323%, 109%, 94% and 18% respectively, compared to the control. Overall, total phospholipids were enhanced by the biennially applied MSW compost. Total organic acids in the lettuce, beets, and green beans were altered by the annual and biennial MSW compost applications by ca. 35% and 23%; 6% and 6.4%; and 22% and 65%, respectively compared to the control. A 2-dimension principal component analysis biplot confirmed positive association between the different frequencies of MSW compost application and soil fertility enhancement of plant metabolites. In conclusion, the annual application of MSW compost enhanced amino acids, phospholipids, acylcarnitines, amines and choline but reduced glucose in the lettuce, beets, carrot, and green beans. Further studies to elucidate the mechanisms underpinning such biofortification will be required.
Collapse
Affiliation(s)
- Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Faculty of Agriculture, 50 Pictou Road, P.O. Box 550, Truro B2N 5E3, Nova Scotia, Canada.
| | - Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Faculty of Agriculture, 50 Pictou Road, P.O. Box 550, Truro B2N 5E3, Nova Scotia, Canada
| | - Lokanadha Rao Gunupuru
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Faculty of Agriculture, 50 Pictou Road, P.O. Box 550, Truro B2N 5E3, Nova Scotia, Canada
| | - Mercy Ijenyo
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Faculty of Agriculture, 50 Pictou Road, P.O. Box 550, Truro B2N 5E3, Nova Scotia, Canada
| |
Collapse
|
21
|
Micek A, Raźny U, Paweł K. Association between health risk factors and dietary flavonoid intake in cohort studies. Int J Food Sci Nutr 2021; 72:1019-1034. [PMID: 33827357 DOI: 10.1080/09637486.2021.1908965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to identify the health risk factors associated with flavonoid intake in cohort studies investigating the association between dietary polyphenols and the risk of cardiovascular disease (CVD). A systematic search of the PubMed and EMBASE databases was performed. Prospective studies with the background characteristics given for categories of flavonoid intake were eligible to inclusion. A bivariate meta-analysis summarising the intercepts and slopes of the linear regression and a dose-response meta-analysis of differences in means were used to analyse the relationships. The intake of total flavonoids was inversely associated with BMI, alcohol consumption, saturated fat intake, and current smoking, and positively associated with vitamin E, folate, fibre, beta-carotene intake, multivitamin supplement use, and high physical activity. The results of this study underline the importance of considering the association between dietary flavonoid consumption and CVD risk in the context of a healthy lifestyle.
Collapse
Affiliation(s)
- Agnieszka Micek
- Faculty of Health Sciences, Institute of Nursing and Midwifery, Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Raźny
- Faculty of Medicine, Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Kawalec Paweł
- Faculty of Health Sciences, Institute of Public Health, Department of Nutrition and Drug Research, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
22
|
Comparison of Ethanolic and Aqueous-Polyethylenglycolic Propolis Extracts: Chemical Composition and Antioxidant Properties. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5557667. [PMID: 33815551 PMCID: PMC7994069 DOI: 10.1155/2021/5557667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
In recent years, particular attention has been paid to the natural antioxidants. Bee products, especially propolis, are characterized by multifunctional (antioxidant, anti-inflammatory, antibacterial, antiviral, and food preservative) effects and can be used for the development of functional food or food preservatives. Propolis extracts that are commonly produced are ethanolic; therefore, to certain groups of consumers, for example, children and alcohol sensitive group, their applicability is limited. The aim of this study was to develop alternative propolis from aqueous-polyethylenglycolic propolis extract (AQUA-PEG) and compare the chemical composition as well as antioxidant (radical-scavenging and reduction properties) activities to those of ethanolic propolis extract (EEP). Polyethylene glycol is quite a good solvent, which can be successfully used for the preparation of NEP. The total quantity of phenolic compounds identified in AQUA-PEG (400.36 µg/mL), prepared according to our technology, is very similar to that of EEP (433.53 µg/mL), whereas the amount of phenolic acids was greater by 1.31-fold in AQUA-PEG and of flavonoids was greater by 2.38-fold in EEP. The antioxidant activity depends on the method used: by applying the ABTS and CUPRAC methods, both extracts demonstrate similar antioxidant (antiradical and reducing) activity, whereas in the case of the DPPH and FRAP method, significantly higher antioxidant activity was detected in EEP. This should be taken by researchers into account especially when interpreting the results and drawing conclusions about the antioxidant activity of propolis extracts. On the basis of the results, AQUA-PEG, prepared by the developed technology, can be used as an alternative form to ethanolic propolis extract, since it contains a large quantity of antioxidants, namely, flavonoids and phenolic acids. We believe that nonethanolic propolis extract has the prospect of being applied for the development of functional foods in order to alleviate certain symptoms of oxidative stress or for the prevention of some oxidative-stress-related diseases.
Collapse
|
23
|
Teasdale SB, Marshall S, Abbott K, Cassettari T, Duve E, Fayet-Moore F. How should we judge edible oils and fats? An umbrella review of the health effects of nutrient and bioactive components found in edible oils and fats. Crit Rev Food Sci Nutr 2021; 62:5167-5182. [PMID: 33706623 DOI: 10.1080/10408398.2021.1882382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary guidelines for many Western countries base their edible oil and fat recommendations solely on saturated fatty acid content. This study aims to demonstrate which nutritional and bioactive components make up commonly consumed edible oils and fats; and explore the health effects and strength of evidence for key nutritional and bioactive components of edible oils. An umbrella review was conducted in several stages. Food composition databases of Australia and the United States of America, and studies were examined to profile nutrient and bioactive content of edible oils and fats. PUBMED and Cochrane databases were searched for umbrella reviews, systematic literature reviews of randomized controlled trials or cohort studies, individual randomized controlled trials, and individual cohort studies to examine the effect of the nutrient or bioactive on high-burden chronic diseases (cardiovascular disease, type 2 diabetes mellitus, obesity, cancer, mental illness, cognitive impairment). Substantial systematic literature review evidence was identified for fatty acid categories, tocopherols, biophenols, and phytosterols. Insufficient evidence was identified for squalene. The evidence supports high mono- and polyunsaturated fatty acid compositions, total biophenol content, phytosterols, and possibly high α-tocopherol content as having beneficial effects on high-burden health comes. Future dietary guidelines should use a more sophisticated approach to judge edible oils beyond saturated fatty acid content.
Collapse
Affiliation(s)
- Scott B Teasdale
- Department of Science, Nutrition Research Australia, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Skye Marshall
- Department of Science, Nutrition Research Australia, Sydney, Australia.,Bond University Nutrition & Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Kylie Abbott
- Department of Science, Nutrition Research Australia, Sydney, Australia
| | - Tim Cassettari
- Department of Science, Nutrition Research Australia, Sydney, Australia.,Department of Translational Science, Nutrition Research Australia, Sydney, Australia
| | - Emily Duve
- Department of Science, Nutrition Research Australia, Sydney, Australia.,Department of Translational Science, Nutrition Research Australia, Sydney, Australia
| | | |
Collapse
|
24
|
Dimitriu T, Bolfa P, Suciu S, Cimpean A, Daradics Z, Catoi C, Armencea G, Baciut G, Bran S, Dinu C, Baciut M. Grape Seed Extract Reduces the Degree of Atherosclerosis in Ligature-Induced Periodontitis in Rats - An Experimental Study. J Med Life 2021; 13:580-586. [PMID: 33456610 PMCID: PMC7803317 DOI: 10.25122/jml-2020-0177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The associations between periodontitis and cardiovascular diseases have been intensely studied in recent years. Oxidative stress is involved in the initiation and both progression of periodontitis and atherosclerosis. Antioxidants can reduce the effects of oxidative stress on inflammatory diseases. Our aim was to measure the effects of a grape seed extract (GSE), rich in antioxidants, on atherosclerosis caused by ligature-induced periodontitis in rats. Thirty male Wistar rats were randomly divided into three groups of 10: control group, periodontitis group, and periodontitis group treated with GSE (GSE group). Periodontitis was induced by placing an orthodontic wire around the cervix of the first mandibular molar and keeping it in place for 4 weeks. On days 1, 7 and 28, blood samples were taken to assess oxidative stress and inflammation markers (malondialdehyde and glutathione - MDA, reduced glutathione - GSH, C reactive protein) and lipids. After 4 weeks, the animals were euthanized, and aortas were collected for histopathologic examination. MDA was significantly higher in Periodontitis group compared to the other groups only at day 7. GSH was significantly increased in the Control and GSE groups on days 1 and 7, compared to Periodontitis group and on day 28 higher in GSE vs. Periodontitis groups. C reactive protein was significantly increased in the Periodontitis group on days 1 and 7 compared to both groups. Cholesterol was significantly decreased in the aortas of GSE group at day 28 compared to the Periodontitis group. Oral administration of a grape seed extract reduces the oxidative stress, inflammation and atherosclerosis in a rat model of ligature-induced periodontitis.
Collapse
Affiliation(s)
- Tudor Dimitriu
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Pompei Bolfa
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Soimita Suciu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Cimpean
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Zsofia Daradics
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cornel Catoi
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Fouda YB, Ngo Lemba Tom E, Atsamo AD, Bonabe C, Dimo T. Effects of stem bark aqueous extract of Fagara tessmannii Engl (Rutaceae) on cardiovascular risks related to monosodium glutamate-induced obesity in rat: In vivo and in vitro assessments. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112972. [PMID: 32446928 DOI: 10.1016/j.jep.2020.112972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fagara tessmannii is a shrub of the African rainforests in South-West, Centre, South and East provinces in Cameroon. It is used in traditional medicine for the treatment of tumors, swellings, inflammation, gonorrhoea, schistosomiasis, antifungal, heart diseases and as anti-hypertensive. AIM OF THE STUDY We investigated the potential effects of F. tessmannii on cardiovascular risk related to monosodium glutamate-induced obesity. MATERIALS AND METHODS Monosodium glutamate (MSG, 4 mg/g/day) was injected subcutaneously to newborn Wistar rats for the four consecutive first days of their life and on the 6th, 8th and 10th day after birth. After 21 weeks, obese rats were treated orally with F. tessmannii (100 or 200 mg/kg/day), orlistat (10 mg/kg/day) or telmisartan (10 mg/kg/day) for 6 weeks. Body weight, obesity, body mass index (BMI), Lee index, insulin sensitivity and glucose tolerance, blood pressure, lipid profile as a Coronary Risk Index (CRI), and reactivity of isolated thoracic aorta were evaluated. RESULTS In addition to significantly decrease body weight (17.60% and 20.34%), BMI, Lee's index, retroperitoneal fat, total adiposity, and coronary risk indicators, F. tessmannii has significantly decreased insulin resistance and hyperglycemia and high blood pressure observed in MSG-obese rats. The high contractility to phenylephrine as well as the hypersensitivity to sodium nitroprusside (a nitric oxide-donor), observed in MSG aortic rings were significantly reduced by the F. tessmannii extract. Enhanced serum Na+ and Cl- levels and decreased K+ observed in obese rats were also significantly reversed after F. tessmannii treatment. CONCLUSIONS F. tessmannii fights against obesity and associated cardiovascular risks by modulating production and vascular responsiveness to vasoactive factors, monitoring premature aging. F. tessmannii promotes the loss of ectopic fat and other fatty tissues, the sensitivity of the peripherical tissues to insulin, the energy expenditure and the renovascular decompression and regulates ions movement which prevents hypertension.
Collapse
Affiliation(s)
- Yannick Bekono Fouda
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Esther Ngo Lemba Tom
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Albert Donatien Atsamo
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Christian Bonabe
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | - Théophile Dimo
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
26
|
Is There Such a Thing as "Anti-Nutrients"? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020; 12:nu12102929. [PMID: 32987890 PMCID: PMC7600777 DOI: 10.3390/nu12102929] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Plant-based diets are associated with reduced risk of lifestyle-induced chronic diseases. The thousands of phytochemicals they contain are implicated in cellular-based mechanisms to promote antioxidant defense and reduce inflammation. While recommendations encourage the intake of fruits and vegetables, most people fall short of their target daily intake. Despite the need to increase plant-food consumption, there have been some concerns raised about whether they are beneficial because of the various ‘anti-nutrient’ compounds they contain. Some of these anti-nutrients that have been called into question included lectins, oxalates, goitrogens, phytoestrogens, phytates, and tannins. As a result, there may be select individuals with specific health conditions who elect to decrease their plant food intake despite potential benefits. The purpose of this narrative review is to examine the science of these ‘anti-nutrients’ and weigh the evidence of whether these compounds pose an actual health threat.
Collapse
|
27
|
Platelet Responses in Cardiovascular Disease: Sex-Related Differences in Nutritional and Pharmacological Interventions. Cardiovasc Ther 2020; 2020:2342837. [PMID: 32547635 PMCID: PMC7273457 DOI: 10.1155/2020/2342837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) represent one of the biggest causes of death globally, and their prevalence, aetiology, and outcome are related to genetic, metabolic, and environmental factors, among which sex- and age-dependent differences may play a key role. Among CVD risk factors, platelet hyperactivity deserves particular mention, as it is involved in the pathophysiology of main cardiovascular events (including stroke, myocardial infarction, and peripheral vascular injury) and is closely related to sex/age differences. Several determinants (e.g., hormonal status and traditional cardiovascular risk factors), together with platelet-related factors (e.g., plasma membrane composition, receptor signaling, and platelet-derived microparticles) can elucidate sex-related disparity in platelet functionality and CVD onset and outcome, especially in relation to efficacy of current primary and secondary interventional strategies. Here, we examined the state of the art concerning sex differences in platelet biology and their relationship with specific cardiovascular events and responses to common antiplatelet therapies. Moreover, as healthy nutrition is widely recognized to play a key role in CVD, we also focused our attention on specific dietary components (especially polyunsaturated fatty acids and flavonoids) and patterns (such as Mediterranean diet), which also emerged to impact platelet functions in a sex-dependent manner. These results highlight that full understanding of gender-related differences will be useful for designing personalized strategies, in order to prevent and/or treat platelet-mediated vascular damage.
Collapse
|
28
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|
29
|
Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2020; 21:E1250. [PMID: 32070025 PMCID: PMC7072974 DOI: 10.3390/ijms21041250] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, 50139 Florence, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| |
Collapse
|