1
|
Florio M, Crudele L, Sallustio F, Moschetta A, Cariello M, Gadaleta RM. Disentangling the nutrition-microbiota liaison in inflammatory bowel disease. Mol Aspects Med 2025; 102:101349. [PMID: 39922085 DOI: 10.1016/j.mam.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/24/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a set of chronic intestinal inflammatory disorders affecting the gastrointestinal (GI) tract. Beside compromised intestinal barrier function and immune hyperactivation, a common IBD feature is dysbiosis, characterized by a reduction of some strains of Firmicutes, Bacteroidetes, Actinobacteria and an increase in Proteobacteria and pathobionts. Emerging evidence points to diet and nutrition-dependent gut microbiota (GM) modulation, as etiopathogenetic factors and adjuvant therapies in IBD. Currently, no nutritional regimen shows universal efficacy, and advice are controversial, especially those involving restrictive diets potentially resulting in malnutrition. This review provides an overview of the role of macronutrients, dietary protocols and GM modulation in IBD patients. A Western-like diet contributes to an aberrant mucosal immune response to commensal bacteria and impairment of the intestinal barrier integrity, thereby triggering intestinal inflammation. Conversely, a Mediterranean nutritional pattern appears to be one of the most beneficial dietetic regimens able to restore the host intestinal physiology, by promoting eubiosis and preserving the intestinal barrier and immune function, which in turn create a virtuous cycle improving patient adherence to the pattern. Further clinical studies are warranted, to corroborate current IBD nutritional guidelines, and develop more accurate models to move forward precision nutrition and ameliorate patients' quality of life.
Collapse
Affiliation(s)
- Marilina Florio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Raffaella M Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
2
|
Noormohammadi M, Eslamian G, Kazemi SN, Rashidkhani B, Jafari Yeganeh S. Relationship between dietary inflammatory index, plant-based dietary index, and bacterial vaginosis: A case-control study. Int J Gynaecol Obstet 2025; 168:551-558. [PMID: 39258481 DOI: 10.1002/ijgo.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE Bacterial vaginosis (BV) is a common inflammatory condition affecting the vaginal microbiome. In the present study we aimed to explore the relationship between dietary inflammatory index, plant-based dietary index, and BV. METHODS In this case-control study, 143 individuals with BV and 151 healthy participants aged 15-45 years were included. Bacterial vaginosis diagnosis was based on the Amsel criteria by a gynecologist. Participants' dietary intakes over the past year were assessed using a 168-item food frequency questionnaire. Logistic regression models were employed to analyze the association between dietary inflammatory index, plant-based dietary index, and BV odds. RESULTS Our study revealed that elevated dietary inflammatory index scores were strongly associated with higher BV odds in the crude model (odds ratio [OR]: 2.88, 95% confidence interval [CI]: 1.57-5.30, P value <0.001), and even after accounting for potential confounding factors (adjusted OR: 3.52, 95% CI: 1.66-7.46, P value = 0.001). While no significant relationship was observed between total plant-based dietary index and healthy plant-based dietary index scores with BV odds, a clear positive association existed between unhealthy plant-based dietary index and the odds of BV (aOR: 2.13, 95% CI: 1.09-4.15, P value = 0.018). CONCLUSION A positive correlation may exist between unhealthy plant-based dietary index and the likelihood of BV. Furthermore, the dietary inflammatory index may remain linked to increased BV odds.
Collapse
Affiliation(s)
- Morvarid Noormohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyedeh Neda Kazemi
- Department of Obstetrics and Gynecology, School of Medicine, Preventative Gynecology Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Rashidkhani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Jafari Yeganeh
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Coxall SC, Albers FE, Li SX, Shi Z, Hodge AM, Lynch BM, Melaku YA. Dietary patterns derived by reduced rank regression, macronutrients as response variables, and variation by economic status: NHANES 1999-2018. Eur J Nutr 2024; 63:3207-3221. [PMID: 39287642 PMCID: PMC11519099 DOI: 10.1007/s00394-024-03501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Macronutrient intakes vary across people and economic status, leading to a disparity in diet-related metabolic diseases. This study aimed to provide insight into this by: (1) identifying dietary patterns in adults using reduced rank regression (RRR), with macronutrients as response variables, and (2) investigating the associations between economic status and macronutrient based dietary patterns, and between dietary patterns with central obesity (waist circumference) and systemic inflammation (C-reactive protein [CRP]). METHODS 41,849 US participants from the National Health and Nutrition Examination Survey (NHANES), 1999-2018 were included. The percentages of energy from protein, carbohydrates, saturated fats, and unsaturated fats were used as response variables in RRR. Multivariable generalized linear models with Gaussian distribution were employed to investigate the associations. RESULTS Four dietary patterns were identified. Economic status was positively associated with both the high fat, low carbohydrate [βHighVsLow = 0.22; 95% CI: 0.16, 0.28] and high protein patterns [βHighVsLow = 0.07; 95% CI: 0.03, 0.11], and negatively associated with both the high saturated fat [βHighVsLow = -0.06; 95% CI: -0.08, -0.03] and the low alcohol patterns [βHighVsLow = -0.08; 95% CI; -0.10, -0.06]. The high saturated fat pattern was positively associated with waist circumference [βQ5VsQ1 = 1.71; 95% CI: 0.97, 2.44] and CRP [βQ5VsQ1 = 0.37; 95% CI: 0.26, 0.47]. CONCLUSION Macronutrient dietary patterns, which varied by economic status and were associated with metabolic health markers, may explain associations between economic status and health.
Collapse
Affiliation(s)
- Samuel C Coxall
- Cancer Epidemiology Division, Cancer Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Frances Em Albers
- Cancer Epidemiology Division, Cancer Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Sherly X Li
- Cancer Epidemiology Division, Cancer Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia.
- Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Yohannes Adama Melaku
- Cancer Epidemiology Division, Cancer Council Victoria, Level 8, 200 Victoria Parade, East Melbourne, Melbourne, VIC, 3002, Australia
- FHMRI Sleep Health (Adelaide Institute for Sleep Health), College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Gęgotek A, Conde T, Domingues MR, Domingues P, Skrzydlewska E. Impact of Nannochloropsis oceanica and Chlorococcum amblystomatis Extracts on UVA-Irradiated on 3D Cultured Melanoma Cells: A Proteomic Insight. Cells 2024; 13:1934. [PMID: 39682683 PMCID: PMC11640244 DOI: 10.3390/cells13231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Melanoma is one of the most malignant forms of skin cancer, characterised by the highest mortality rate among affected patients. This study aims to analyse and compare the effects of lipid extracts from the microalgae Nannochloropsis oceanica (N.o.) and Chlorococcum amblystomatis (C.a.) on the intra and extracellular proteome of UVA-irradiated melanoma cells using a three-dimensional model. Proteomic analysis revealed that UVA radiation significantly increases the levels of pro-inflammatory proteins in melanoma cells. Treatment with algae extracts reduced these protein levels in both non-irradiated and irradiated cells. Furthermore, untreated cells released proteins responsible for cell growth and proliferation into the medium, a process hindered by UVA radiation through the promotion of pro-inflammatory molecules secretion. The treatment with algae extracts effectively mitigated UVA-induced alterations. Notably, UVA radiation significantly induced the formation of 4-HNE and 15-PGJ2 protein adducts in both cells and the medium, while treatment with algae extracts stimulated the formation of 4-HNE-protein adducts and reduced the level of 15-PGJ2-protein adducts. However, both algae extracts successfully prevented these UVA-induced modifications. In conclusion, lipid extracts from N.o. and C.a. appear to be promising agents in supporting anti-melanoma therapy. However, their potent protective capacity may limit their applicability, particularly following cells exposure to UVA.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Tiago Conde
- Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.)
| | - Maria Rosário Domingues
- Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| |
Collapse
|
5
|
Wuni R, Amerah H, Ammache S, Cruvinel NT, da Silva NR, Kuhnle GGC, Horst MA, Vimaleswaran KS. Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults. Br J Nutr 2024; 132:575-589. [PMID: 39308196 PMCID: PMC11536265 DOI: 10.1017/s0007114524001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 11/01/2024]
Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed to multiple factors including genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta = 0·10 mg/dl, 95 % CI 0·05-0·16; P < 0·001), LDL-cholesterol (beta = 0·07 mg/dl, 95 % CI 0·04, 0·11; P < 0·0001), total cholesterol (beta = 0·05 mg/dl, 95 % CI: 0·03, 0·07; P < 0·0001) and the ratio of TAG to HDL-cholesterol (beta = 0·09 mg/dl, 95 % CI: 0·03, 0·15; P = 0·002). Significant interactions were found between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03) and between the high GRS and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher TAG:HDL-cholesterol ratio in individuals with the high GRS (beta = 0·14, 95 % CI: 0·06, 0·23; P < 0·001 for total fat intake; beta = 0·13, 95 % CI: 0·05, 0·22; P = 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratio might be modulated by dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Heyam Amerah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Serena Ammache
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Nathália T. Cruvinel
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Nara R. da Silva
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Gunter G. C. Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Maria A. Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, ReadingRG6 6EU, UK
| |
Collapse
|
6
|
Al‐Ibraheem AMT, Hameed AAZ, Marsool MDM, Jain H, Prajjwal P, Khazmi I, Nazzal RS, AL‐Najati HMH, Al‐Zuhairi BHYK, Razzaq M, Abd ZB, Marsool ADM, wahedaldin AI, Amir O. Exercise-Induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Sci Rep 2024; 7:e70034. [PMID: 39221051 PMCID: PMC11365580 DOI: 10.1002/hsr2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Obesity poses a significant global health challenge, necessitating effective prevention and treatment strategies. Exercise and diet are recognized as pivotal interventions in combating obesity. This study reviews the literature concerning the impact of exercise-induced cytokines, dietary factors, and inflammation on adipose tissue metabolism, shedding light on potential pathways for therapeutic intervention. METHODOLOGY A comprehensive review of relevant literature was conducted to elucidate the role of exercise-induced cytokines, including interleukin-6 (IL-6), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), irisin, myostatin, fibroblast growth factor 21 (FGF21), follistatin (FST), and angiopoietin-like 4 (ANGPTL4), in adipose tissue metabolism. Various databases were systematically searched using predefined search terms to identify relevant studies. Articles selected for inclusion underwent thorough analysis to extract pertinent data on the mechanisms underlying the influence of these cytokines on adipose tissue metabolism. RESULTS AND DISCUSSION Exercise-induced cytokines exert profound effects on adipose tissue metabolism, influencing energy expenditure (EE), thermogenesis, fat loss, and adipogenesis. For instance, IL-6 activates AMP-activated protein kinase (AMPK), promoting fatty acid oxidation and reducing lipogenesis. IL-15 upregulates peroxisome proliferator-activated receptor delta (PPARδ), stimulating fatty acid catabolism and suppressing lipogenesis. BDNF enhances AMPK-dependent fat oxidation, while irisin induces the browning of white adipose tissue (WAT), augmenting thermogenesis. Moreover, myostatin, FGF21, FST, and ANGPTL4 each play distinct roles in modulating adipose tissue metabolism, impacting factors such as fatty acid oxidation, adipogenesis, and lipid uptake. The elucidation of these pathways offers valuable insights into the complex interplay between exercise, cytokines, and adipose tissue metabolism, thereby informing the development of targeted obesity management strategies. CONCLUSION Understanding the mechanisms by which exercise-induced cytokines regulate adipose tissue metabolism is critical for devising effective obesity prevention and treatment modalities. Harnessing the therapeutic potential of exercise-induced cytokines, in conjunction with dietary interventions, holds promise for mitigating the global burden of obesity. Further research is warranted to delineate the precise mechanisms underlying the interactions between exercise, cytokines, and adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | | | - Hritvik Jain
- All India Institute of Medical SciencesJodhpurIndia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Thanaj M, Basty N, Whitcher B, Bell JD, Thomas EL. MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease. Obesity (Silver Spring) 2024; 32:1699-1708. [PMID: 39051177 DOI: 10.1002/oby.24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE This study aimed to assess the fatty acid (FA) composition of abdominal subcutaneous and visceral adipose tissue (ASAT and VAT, respectively) in the UK Biobank imaging cohort (N = 33,823) using magnetic resonance imaging (MRI). METHODS We measured the fractions of saturated, monounsaturated, and polyunsaturated FA (fSFA, fMUFA, and fPUFA, respectively) in ASAT and VAT from multiecho MRI scans. We selected a subcohort of participants who followed a vegan and an omnivore diet (N = 36) to validate the effect of diet on adipose tissue. In the wider imaging cohort, we examined the relationships between adipose tissue FA composition and various traits related to disease and body size. RESULTS We measured adipose tissue FA composition for over 33,000 participants, revealing higher fSFA and fPUFA and lower fMUFA in VAT (p < 0.00016). fMUFA and fPUFA were higher in ASAT and lower in VAT for women (p < 0.00016). Vegan participants exhibited lower fSFA in both ASAT and VAT (p < 0.00016). VAT fSFA and fMUFA showed significant associations with disease, as well as anthropometric variables. CONCLUSIONS This extensive analysis revealed the relationships between adipose tissue FA composition and a range of factors in a diverse population, highlighting the importance of studying body adipose tissue beyond its quantity.
Collapse
Affiliation(s)
- Marjola Thanaj
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
8
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
9
|
Kimmeswenger I, Lieder B. Novel Perspective on the Plasticity of Taste Perception: Is Food- and Exercise-Induced Inflammation Associated with Sweet Taste Sensitivity and Preference? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15122-15127. [PMID: 38941285 PMCID: PMC11247480 DOI: 10.1021/acs.jafc.3c09028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Obesity-related inflammation has been linked to decreased taste sensitivity and changes in the transcriptome of the taste apparatus. Increased levels of pro-inflammatory cytokines can also be found to be food-associated in individuals who consume high amounts of long-chain saturated fatty acids and sucrose independent of the body composition or individuals who exercise intensively. Previous research suggests a link between taste sensitivity and food choices. However, the interplay between food- or exercise-induced low-grade inflammation, taste perception, and food choices remains unaddressed. Understanding this relationship could provide an unnoticed explanation for interindividual differences in taste perception that influences dietary habits.
Collapse
Affiliation(s)
- Isabella Kimmeswenger
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Barbara Lieder
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Christian
Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Institute
of Clinical Nutrition, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
10
|
Sirakawin C, Lin D, Zhou Z, Wang X, Kelleher R, Huang S, Long W, Pires‐daSilva A, Liu Y, Wang J, Vinnikov IA. SKN-1/NRF2 upregulation by vitamin A is conserved from nematodes to mammals and is critical for lifespan extension in Caenorhabditis elegans. Aging Cell 2024; 23:e14064. [PMID: 38100161 PMCID: PMC10928581 DOI: 10.1111/acel.14064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/13/2024] Open
Abstract
Vitamin A (VA) is a micronutrient essential for the physiology of many organisms, but its role in longevity and age-related diseases remains unclear. In this work, we used Caenorhabditis elegans to study the impact of various bioactive compounds on lifespan. We demonstrate that VA extends lifespan and reduces lipofuscin and fat accumulation while increasing resistance to heat and oxidative stress. This resistance can be attributed to high levels of detoxifying enzymes called glutathione S-transferases, induced by the transcription factor skinhead-1 (SKN-1). Notably, VA upregulated the transcript levels of skn-1 or its mammalian ortholog NRF2 in both C. elegans, human cells, and liver tissues of mice. Moreover, the loss-of-function genetic models demonstrated a critical involvement of the SKN-1 pathway in longevity extension by VA. Our study thus provides novel insights into the molecular mechanism of anti-aging and anti-oxidative effects of VA, suggesting that this micronutrient could be used for the prevention and/or treatment of age-related disorders.
Collapse
Affiliation(s)
- Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dongfa Lin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory for Molecular Enzymology and Engineering, School of Life SciencesJilin UniversityChangchunChina
| | - Ziyue Zhou
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | | | - Shangyuan Huang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Weimiao Long
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ilya A. Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
11
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
12
|
Mei J, Qian M, Hou Y, Liang M, Chen Y, Wang C, Zhang J. Association of saturated fatty acids with cancer risk: a systematic review and meta-analysis. Lipids Health Dis 2024; 23:32. [PMID: 38291432 PMCID: PMC10826095 DOI: 10.1186/s12944-024-02025-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Extensive research has explored the link between saturated fatty acids (SFAs) and cardiovascular diseases, alongside other biological dysfunctions. Yet, their association with cancer risk remains a topic of debate among scholars. The present study aimed to elucidate this association through a robust meta-analysis. METHODS PubMed, Embase, Cochrane Library, and Web of Science databases were searched systematically to identify relevant studies published until December 2023. The Newcastle-Ottawa Scale was used as the primary metric for evaluating the quality of the included studies. Further, fixed- or random-effects models were adopted to determine the ORs and the associated confidence intervals using the Stata15.1 software. The subsequent subgroup analysis revealed the source of detection and the cancer types, accompanied by sensitivity analyses and publication bias evaluations. RESULTS The meta-analysis incorporated 55 studies, comprising 38 case-control studies and 17 cohort studies. It revealed a significant positive correlation between elevated levels of total SFAs and the cancer risk (OR of 1.294; 95% CI: 1.182-1.416; P-value less than 0.001). Moreover, elevated levels of C14:0, C16:0, and C18:0 were implicated in the augmentation of the risk of cancer. However, no statistically significant correlation of the risk of cancer was observed with the elevated levels of C4:0, C6:0, C8:0, C10:0, C12:0, C15:0, C17:0, C20:0, C22:0, and C24:0. Subgroup analysis showed a significant relationship between excessive dietary SFA intake, elevated blood SFA levels, and heightened cancer risk. Increased total SFA levels correlated with higher risks of breast, prostate, and colorectal cancers, but not with lung, pancreatic, ovarian, or stomach cancers. CONCLUSION High total SFA levels were correlated with an increased cancer risk, particularly affecting breast, prostate, and colorectal cancers. Higher levels of specific SFA subtypes (C14:0, C16:0, and C18:0) are also linked to an increased cancer risk. The findings of the present study would assist in providing dietary recommendations for cancer prevention, thereby contributing to the development of potential strategies for clinical trials in which diet-related interventions would be used in combination with immunotherapy to alter the levels of SFAs in patients and thereby improve the outcomes in cancer patients. Nonetheless, further high-quality studies are warranted to confirm these associations.
Collapse
Affiliation(s)
- Jin Mei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Meiyu Qian
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
13
|
Hornick MG, Potempa LA. Monomeric C-reactive protein as a biomarker for major depressive disorder. Front Psychiatry 2024; 14:1325220. [PMID: 38250276 PMCID: PMC10797126 DOI: 10.3389/fpsyt.2023.1325220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Neuroinflammation has been postulated to be a key factor in the pathogenesis of major depressive disorder (MDD). With this is mind, there has been a wave of research looking into pro-inflammatory mediators as potential biomarkers for MDD. One such mediator is the acute phase protein, C-reactive protein (CRP). While several studies have investigated the potential of CRP as a biomarker for MDD, the results have been inconsistent. One explanation for the lack of consistent findings may be that the high-sensitivity CRP tests utilized in these studies only measure the pentameric isoform of CRP (pCRP). Recent research, however, has indicated that the monomeric isoform of CRP (mCRP) is responsible for the pro-inflammatory function of CRP, while pCRP is weakly anti-inflammatory. The objective of this minireview is to re-examine the evidence of CRP involvement in MDD with a view of mCRP as a potential biomarker.
Collapse
Affiliation(s)
- Mary G. Hornick
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | |
Collapse
|
14
|
Holthuijsen DDB, van Roekel EH, Bours MJL, Ueland PM, Breukink SO, Janssen-Heijnen MLG, Keulen ETP, Gsur A, Kok DE, Ulvik A, Weijenberg MP, Eussen SJPM. Longitudinal associations of macronutrient and micronutrient intake with plasma kynurenines in colorectal cancer survivors up to 12 months posttreatment. Am J Clin Nutr 2023; 118:865-880. [PMID: 37923499 DOI: 10.1016/j.ajcnut.2023.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The tryptophan-kynurenine pathway is increasingly recognized to play a role in health-related quality of life (HRQoL) after cancer. Because tryptophan is an essential amino acid, and vitamins and minerals act as enzymatic cofactors in the tryptophan-kynurenine pathway, a link between diet and kynurenines is plausible. OBJECTIVES This study aimed to investigate the longitudinal associations of macronutrient and micronutrient intake with metabolites of the kynurenine pathway in colorectal cancer (CRC) survivors up to 12 mo posttreatment. METHODS In a prospective cohort of stage I-III CRC survivors (n = 247), repeated measurements were performed at 6 wk, 6 mo, and 12 mo posttreatment. Macronutrient and micronutrient intake was measured by 7-d dietary records. Plasma concentrations of tryptophan and kynurenines were analyzed using liquid chromatography tandem mass spectrometry (LC/MS-MS). Longitudinal associations were analyzed using linear mixed models adjusted for sociodemographic, clinical, and lifestyle factors. RESULTS After adjustment for multiple testing, higher total protein intake was positively associated with kynurenic acid (KA) (β as standard deviation [SD] change in KA concentration per 1 SD increase in total protein intake: 0.12; 95% CI: 0.04, 0.20), xanthurenic acid (XA) (standardized β: 0.22; 95% CI: 0.11, 0.33), 3-hydroxyanthranilic acid (HAA) (standardized β: 0.15; 95% CI: 0.04, 0.27) concentrations, and the kynurenic acid-to-quinolinic acid ratio (KA/QA) (standardized β: 0.12; 95% CI: 0.02,0.22). In contrast, higher total carbohydrate intake was associated with lower XA concentrations (standardized β: -0.18; 95% CI: -0.30, -0.07), a lower KA/QA (standardized β: -0.23; 95% CI: -0.34, -0.13), and a higher kynurenine-to-tryptophan ratio (KTR) (standardized β: 0.20; 95% CI: 0.10, 0.30). Higher fiber intake was associated with a higher KA/QA (standardized β: 0.11; 95% CI: 0.02, 0.21) and a lower KTR (standardized β: -0.12; 95% CI: -0.20, -0.03). Higher total fat intake was also associated with higher tryptophan (Trp) concentrations (standardized β: 0.18; 95% CI: 0.06, 0.30) and a lower KTR (standardized β: -0.13; 95% CI: -0.22, -0.03). For micronutrients, positive associations were observed for zinc with XA (standardized β: 0.13; 95% CI: 0.04, 0.21) and 3-hydroxykynurenine (HK) (standardized β: 0.12; 95% CI: 0.03, 0.20) concentrations and for magnesium with KA/QA (standardized β: 0.24; 95% CI: 0.13, 0.36). CONCLUSIONS Our findings show that intake of several macronutrients and micronutrients is associated with some metabolites of the kynurenine pathway in CRC survivors up to 12 mo posttreatment. These results may be relevant for enhancing HRQoL after cancer through potential diet-induced changes in kynurenines. Further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Daniëlle D B Holthuijsen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | | | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Reproduction, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maryska L G Janssen-Heijnen
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Clinical Epidemiology, VieCuri Medical Centre, Venlo, The Netherlands
| | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre Sittard-Geleen, Geleen, The Netherlands
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Epidemiology, CAPHRI School for Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Guo B, Xue M, Zhang T, Gan H, Lin R, Liu M, Liao Y, Lyu J, Zheng P, Sun B. Correlation between immune-related Tryptophan-Kynurenine pathway and severity of severe pneumonia and inflammation-related polyunsaturated fatty acids. Immun Inflamm Dis 2023; 11:e1088. [PMID: 38018595 PMCID: PMC10659755 DOI: 10.1002/iid3.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Immune dysfunction and oxidative stress caused by severe pneumonia can lead to multiple organ dysfunction and even death, causing a significant impact on health and the economy. Currently, great progress has been made in the diagnosis and treatment of this disease, but the mortality rate remains high (approximately 50%). Therefore, there is still potential for further exploration of the immune response mechanisms against severe pneumonia. OBJECTIVE This study analyzed the difference in serum metabolic profiles between patients with severe pneumonia and health individuals through metabolomics, aiming to uncover the correlation between the Tryptophan-Kynurenine pathway and the severity of severe pneumonia, as well as N-3/N-6 polyunsaturated fatty acids (PUFAs). METHODS In this study, 44 patients with severe pneumonia and 37 health controls were selected. According to the changes in the disease symptoms within the 7 days of admission, the patients were divided into aggravation (n = 22) and remission (n = 22) groups. Targeted metabolomics techniques were performed to quantify serum metabolites and analyze changes between groups. RESULTS Metabolomics analysis showed that serum kynurenine and kynurenine/tryptophan (K/T) were significantly increased and tryptophan was significantly decreased in patients with severe pneumonia; HETE and HEPE in lipids increased significantly, while eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), α-linolenic acid (linolenic acid, α-LNA), arachidonic acid (ARA), Dihomo-γ-linolenic acid (DGLA), and 13(s)-hydroperoxylinoleic acid (HPODE) decreased significantly. Additionally, the longitudinal comparison revealed that Linolenic acid, DPA, and Tryptophan increased significantly in the remission group, while and kynurenine and K/T decreased significantly. In the aggravation group, Kynurenine and K/T increased significantly, while ARA, 8(S)-hydroxyeicosatetraenoic acid (HETE), 11(S)-HETE, and Tryptophan decreased significantly. The correlation analysis matrix demonstrated that Tryptophan was positively correlated with DGLA, 12(S)-hydroxyeicosapentaenoic acid (HEPE), ARA, EPA, α-LNA, DHA, and DPA. Kynurenine was positively correlated with 8(S)-HETE and negatively correlated with DHA. Additionally, K/T was negatively correlated with DGLA, ARA, EPA, α-LNA, DHA, and DPA. CONCLUSION This study revealed that during severe pneumonia, the Tryptophan-Kynurenine pathway was activated and was positively correlated with the disease progression. On the other hand, the activation of the Tryptophan-Kynurenine pathway was negatively correlated with N-3/N-6 PUFAs.
Collapse
Affiliation(s)
- Baojun Guo
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
- School of MedicineHenan UniversityKaifengHenanChina
| | - Mingshan Xue
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Teng Zhang
- China Institute for Radiation ProtectionTaiyuanChina
| | - Hui Gan
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Runpei Lin
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Mingtao Liu
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Yuhong Liao
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Jiali Lyu
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Peiyan Zheng
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Baoqing Sun
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| |
Collapse
|
16
|
Delgado-Alarcón JM, Hernández Morante JJ, Morillas-Ruiz JM. Modification of Breakfast Fat Composition Can Modulate Cytokine and Other Inflammatory Mediators in Women: A Randomized Crossover Trial. Nutrients 2023; 15:3711. [PMID: 37686743 PMCID: PMC10489665 DOI: 10.3390/nu15173711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Previous trials have demonstrated that modifying dietary fat composition can influence the production of inflammation-related factors. Additionally, it has been suggested that not only the type of fat, but also the timing of fat intake can impact these factors. Therefore, the objective of the present study was to evaluate the effect of altering breakfast fat composition on inflammatory parameters. A 3-month crossover randomized trial was designed, involving 60 institutionalized women who alternately consumed a breakfast rich in polyunsaturated fatty acids (PUFA) (margarine), monounsaturated fatty acids (MUFA) (virgin olive oil), or saturated fatty acids (SFA) (butter), based on randomization. The following inflammatory markers were evaluated: epidermal growth factor (EGF), interferon (IFN)-α, interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, C-reactive protein (CRP), and vascular/endothelial growth factor (VEGF). The results showed that the most significant effects were observed with the high-MUFA breakfast, as there was a statistically significant decrease in plasma IL-6 (p = 0.016) and VEGF values (p = 0.035). Other factors, such as IL-1α and CRP, also decreased substantially, but did not reach the statistically significant level. On the other hand, the high-PUFA breakfast induced a significant decrease in EGF levels (p < 0.001), whereas the high-SFA breakfast had no apparent effect on these factors. In conclusion, modifying breakfast fat, particularly by increasing MUFA or PUFA intake, appears to be sufficient for promoting a lower inflammatory marker synthesis profile and may be beneficial in improving cardiovascular complications.
Collapse
Affiliation(s)
- Jessica M. Delgado-Alarcón
- Department of Food Technology and Nutrition, Universidad Católica de Murcia, Campus de Los Jerónimos, Guadalupe, 30107 Murcia, Spain;
| | - Juan José Hernández Morante
- Eating Disorders Research Unit, Universidad Católica de Murcia, Campus de Los Jerónimos, Guadalupe, 30107 Murcia, Spain
| | - Juana M. Morillas-Ruiz
- Department of Food Technology and Nutrition, Universidad Católica de Murcia, Campus de Los Jerónimos, Guadalupe, 30107 Murcia, Spain;
| |
Collapse
|
17
|
Sergi D, Zauli E, Tisato V, Secchiero P, Zauli G, Cervellati C. Lipids at the Nexus between Cerebrovascular Disease and Vascular Dementia: The Impact of HDL-Cholesterol and Ceramides. Int J Mol Sci 2023; 24:ijms24054403. [PMID: 36901834 PMCID: PMC10002119 DOI: 10.3390/ijms24054403] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cerebrovascular diseases and the subsequent brain hypoperfusion are at the basis of vascular dementia. Dyslipidemia, marked by an increase in circulating levels of triglycerides and LDL-cholesterol and a parallel decrease in HDL-cholesterol, in turn, is pivotal in promoting atherosclerosis which represents a common feature of cardiovascular and cerebrovascular diseases. In this regard, HDL-cholesterol has traditionally been considered as being protective from a cardiovascular and a cerebrovascular prospective. However, emerging evidence suggests that their quality and functionality play a more prominent role than their circulating levels in shaping cardiovascular health and possibly cognitive function. Furthermore, the quality of lipids embedded in circulating lipoproteins represents another key discriminant in modulating cardiovascular disease, with ceramides being proposed as a novel risk factor for atherosclerosis. This review highlights the role of HDL lipoprotein and ceramides in cerebrovascular diseases and the repercussion on vascular dementia. Additionally, the manuscript provides an up-to-date picture of the impact of saturated and omega-3 fatty acids on HDL circulating levels, functionality and ceramide metabolism.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Wu X, You C. The biomarkers discovery of hyperuricemia and gout: proteomics and metabolomics. PeerJ 2023; 11:e14554. [PMID: 36632144 PMCID: PMC9828291 DOI: 10.7717/peerj.14554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Hyperuricemia and gout are a group of disorders of purine metabolism. In recent years, the incidence of hyperuricemia and gout has been increasing, which is a severe threat to people's health. Several studies on hyperuricemia and gout in proteomics and metabolomics have been conducted recently. Some literature has identified biomarkers that distinguish asymptomatic hyperuricemia from acute gout or remission of gout. We summarize the physiological processes in which these biomarkers may be involved and their role in disease progression. Methodology We used professional databases including PubMed, Web of Science to conduct the literature review. This review addresses the current landscape of hyperuricemia and gout biomarkers with a focus on proteomics and metabolomics. Results Proteomic methods are used to identify differentially expressed proteins to find specific biomarkers. These findings may be suggestive for the diagnosis and treatment of hyperuricemia and gout to explore the disease pathogenesis. The identified biomarkers may be mediators of the link between hyperuricemia, gout and kidney disease, metabolic syndrome, diabetes and hypertriglyceridemia. Metabolomics reveals the main influential pathways through small molecule metabolites, such as amino acid metabolism, lipid metabolism, or other characteristic metabolic pathways. These studies have contributed to the discovery of Chinese medicine. Some traditional Chinese medicine compounds can improve the metabolic disorders of the disease. Conclusions We suggest some possible relationships of potential biomarkers with inflammatory episodes, complement activation, and metabolic pathways. These biomarkers are able to distinguish between different stages of disease development. However, there are relatively few proteomic as well as metabolomic studies on hyperuricemia and gout, and some experiments are only primary screening tests, which need further in-depth study.
Collapse
Affiliation(s)
- Xinghong Wu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Palla CA, Dominguez M, Carrín ME. Recent advances on food‐based applications of monoglyceride oleogels. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Camila A. Palla
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - Martina Dominguez
- Planta Piloto de Ingeniería Química PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - María Elena Carrín
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| |
Collapse
|
20
|
Jia D, Zhang R, Shao J, Zhang W, Cai L, Sun W. Exposure to trace levels of metals and fluoroquinolones increases inflammation and tumorigenesis risk of zebrafish embryos. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100162. [PMID: 36159734 PMCID: PMC9488011 DOI: 10.1016/j.ese.2022.100162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/04/2023]
Abstract
Exposure to trace-level heavy metals and antibiotics may elicit metabolic disorder, alter protein expression, and then induce pathological changes in zebrafish embryos, despite negligible physiological and developmental toxicity. This study investigated the single and combined developmental toxicity of fluoroquinolones (enrofloxacin [ENR] and ciprofloxacin [CIP]) (≤0.5 μM) and heavy metals (Cu and Cd) (≤0.5 μM) to zebrafish embryos, and molecular responses of zebrafish larvae upon exposure to the single pollutant (0.2 μM) or a binary metal-fluoroquinolone mixture (0.2 μM). In all single and mixture exposure groups, no developmental toxicity was observed, but oxidative stress, inflammation, and lipid depletion were found in zebrafish embryos, which was more severe in the mixture exposure groups than in the single exposure groups, probably due to increased metal bioaccumulation in the presence of ENR or CIP. Metabolomics analysis revealed the up-regulation of amino acids and down-regulation of fatty acids, corresponding to an active response to oxidative stress and the occurrence of inflammation. The up-regulation of antioxidase and immune proteins revealed by proteomics analysis further confirmed the occurrence of oxidative stress and inflammation. Furthermore, the KEGG pathway enrichment analysis showed a significant disturbance of pathways related to immunity and tumor, indicating the potential risk of tumorigenesis in zebrafish larvae. The findings provide molecular-level insights into the adverse effects of heavy metals and antibiotics (especially in chemical mixtures) on zebrafish embryos, and highlight the potential ecotoxicological risks of trace-level heavy metals and antibiotics in the environment.
Collapse
Affiliation(s)
- Dantong Jia
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Jian Shao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Environmental Science and Policy Program, Michigan State University, East Lansing, MI, 48824, United States
| | - Leilei Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
- Corresponding author. Peking University. China.
| |
Collapse
|
21
|
Palla CA, Dominguez M, Carrín ME. An overview of structure engineering to tailor the functionality of monoglyceride oleogels. Compr Rev Food Sci Food Saf 2022; 21:2587-2614. [DOI: 10.1111/1541-4337.12930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Camila A. Palla
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - Martina Dominguez
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - María Elena Carrín
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| |
Collapse
|