1
|
Huang PW, Chia-Min C, Sun CK, Cheng YS, Tang YH, Liu C, Hung KC. Therapeutic effects of probiotics on symptoms of irritability/emotional lability associated with neurodevelopmental conditions: A systematic review and meta-analysis of placebo-controlled trials. Complement Ther Med 2025; 89:103132. [PMID: 39864755 DOI: 10.1016/j.ctim.2025.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
OBJECTIVES The current study aimed at investigating the efficacies of probiotics in alleviating the symptoms of irritability/emotional lability in individuals with a neurodevelopmental condition. METHODS Randomized placebo-controlled trials were identified through searching major electronic databases from inception to December, 2023. The outcome of interests included improvements in the symptoms of irritability/emotional lability. Outcomes were quantitatively expressed as effect size (ES) based on standardized mean difference (SMD) with 95 % confidence interval (CI). RESULTS Seven studies with 1479 participants were included in this meta-analysis. The primary results revealed a significant improvement in the symptoms of irritability/emotional lability in individuals with neurodevelopmental conditions receiving probiotics compared with the placebos (SMD= -0.17, p = 0.03). Subgroup analyses demonstrated an association between a significant improvement in the symptoms of irritability/emotional lability and the use probiotics relative to placebos only in studies using multiple-strain probiotics (SMD=-0.19, p = 0.04, three studies with 452 participant) but not in those adopting single-strain regimens. CONCLUSIONS Our study supported the use of probiotics for alleviating the symptoms of irritability/emotional lability in individuals with neurodevelopmental conditions, mainly in those receiving multiple-strain probiotics as supplements. Nevertheless, the limited number of studies targeting irritability as their primary outcomes, and most did not investigate other confounding factors such as dietary habits or consumption of other nutritional supplements may impair the robustness of evidence. Our results, which were derived from a limited number of available trials, warrant further large-scale clinical investigations for verification.
Collapse
Affiliation(s)
- Ping-Wen Huang
- Department of Emergency Medicine, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Chen Chia-Min
- Department of Natural Biotechnology, Nanhua University, Chiayi, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Taiwan
| | - Yen-Hsiang Tang
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Cheng Liu
- Department of Physical Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan.
| |
Collapse
|
2
|
Dehghani E, Karimi K, Arekhi S, Ardeshir M, Rezapour R, Shayestehfar M, Memari AH. Effect of nutritional supplements on gut microbiome in individuals with neurodevelopmental disorders: a systematic review and narrative synthesis. BMC Nutr 2025; 11:64. [PMID: 40158118 PMCID: PMC11954342 DOI: 10.1186/s40795-025-01043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) encompass a range of disruptive conditions with varying prevalence rates and multiple contributing factors. Recent studies have suggested a potential connection between NDDs and the gut-brain axis. Furthermore, there is evidence indicating that nutritional supplements might have an impact on gastrointestinal (GI) and behavioral symptoms. This study aimed to explore the effects of nutritional supplements on the gut microbiota and behavioral symptoms in individuals with NDDs. METHODS A systematic search of databases such as PubMed, Scopus, Web of Science, Embase, and APA PsycINFO was conducted, utilizing relevant keywords until February 2025. In addition, the search for gray literature was carried out on Google Scholar and ProQuest. The risk of bias was assessed using the ROBINS-I tool for non-randomized studies and the RoB-1 tool for randomized controlled trials. Due to the heterogeneity of the studies, a Synthesis without Meta-analysis (SWiM) approach was employed. RESULTS The overall findings from the studies indicated positive effects of supplementation in reducing the Gastrointestinal Severity Index (GIS) score and alleviating GI symptoms. Supplementation with probiotics and vitamins increased good microbiomes (GM) and decrease in bad microbiomes (BM) among individuals with autism spectrum disorder (ASD). Moreover, the Firmicutes to Bacteroidetes ratio (F/R ratio) exhibited significant changes after supplementation. Additionally, improvements were observed in various assessment scores, including ATEC, ABC, CARS, and PGI-2. CONCLUSIONS Nutritional supplementation in individuals with NDDs can have a positive influence by modulating the microbiome, reducing dysbiosis, and enhancing gut barrier integrity. Shifting in the F/R ratio can be considered as the reason for improving gastrointestinal and behavioral symptoms by influencing neurotransmitter activity and neuroinflammation. Targeting the gut-brain axis with interventions that focus on gut microbiota offers a promising adjunct therapy for the management of NDD. Registration of the review protocol. PROSPERO registration no. CRD42023460449.
Collapse
Affiliation(s)
- Elaheh Dehghani
- Department of Clinical Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Keyvan Karimi
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheil Arekhi
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Ardeshir
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran (TUMS), Tehran, Iran
| | - Reshad Rezapour
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Monir Shayestehfar
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Hossein Memari
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
3
|
Młynarska E, Barszcz E, Budny E, Gajewska A, Kopeć K, Wasiak J, Rysz J, Franczyk B. The Gut-Brain-Microbiota Connection and Its Role in Autism Spectrum Disorders. Nutrients 2025; 17:1135. [PMID: 40218893 PMCID: PMC11990867 DOI: 10.3390/nu17071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions with a heterogeneous and multifactorial etiology that is not yet fully understood. Among the various factors that may contribute to ASD development, alterations in the gut microbiota have been increasingly recognized. Microorganisms in the gastrointestinal tract play a crucial role in the gut-brain axis (GBA), affecting nervous system development and behavior. Dysbiosis, or an imbalance in the microbiota, has been linked to both behavioral and gastrointestinal (GI) symptoms in individuals with ASD. The microbiota interacts with the central nervous system through mechanisms such as the production of short-chain fatty acids (SCFAs), the regulation of neurotransmitters, and immune system modulation. Alterations in its composition, including reduced diversity or an overabundance of specific bacterial taxa, have been associated with the severity of ASD symptoms. Dietary modifications, such as gluten-free or antioxidant-rich diets, have shown potential for improving gut health and alleviating behavioral symptoms. Probiotics, with their anti-inflammatory properties, may support neural health and reduce neuroinflammation. Fecal microbiota transplantation (FMT) is being considered, particularly for individuals with persistent GI symptoms. It has shown promising outcomes in enhancing microbial diversity and mitigating GI and behavioral symptoms. However, its limitations should be considered, as discussed in this narrative review. Further research is essential to better understand the long-term effects and safety of these therapies. Emphasizing the importance of patient stratification and phenotype characterization is crucial for developing personalized treatment strategies that account for individual microbiota profiles, genetic predispositions, and coexisting conditions. This approach could lead to more effective interventions for individuals with ASD. Recent findings suggest that gut microbiota may play a key role in innovative therapeutic approaches to ASD management.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Barszcz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Kacper Kopeć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
4
|
Di Napoli A, Pasquini L, Visconti E, Vaccaro M, Rossi-Espagnet MC, Napolitano A. Gut-brain axis and neuroplasticity in health and disease: a systematic review. LA RADIOLOGIA MEDICA 2025; 130:327-358. [PMID: 39718685 DOI: 10.1007/s11547-024-01938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
The gut microbiota emerged as a potential modulator of brain connectivity in health and disease. This systematic review details current evidence on the gut-brain axis and its influence on brain connectivity. The initial set of studies included 532 papers, updated to January 2024. Studies were selected based on employed techniques. We excluded reviews, studies without connectivity focus, studies on non-human subjects. Forty-nine papers were selected. Employed techniques in healthy subjects included 15 functional magnetic resonance imaging studies (fMRI), 5 diffusion tensor imaging, (DTI) 1 electroencephalography (EEG), 6 structural magnetic resonance imaging, 2 magnetoencephalography, 1 spectroscopy, 2 arterial spin labeling (ASL); in patients 17 fMRI, 6 DTI, 2 EEG, 9 structural MRI, 1 transcranial magnetic stimulation, 1 spectroscopy, 2 R2*MRI. In healthy subjects, the gut microbiota was associated with connectivity of areas implied in cognition, memory, attention and emotions. Among the tested areas, amygdala and temporal cortex showed functional and structural differences based on bacteria abundance, as well as frontal and somatosensory cortices, especially in patients with inflammatory bowel syndrome. Several studies confirmed the connection between microbiota and brain functions in healthy subjects and patients affected by gastrointestinal to renal and psychiatric diseases.
Collapse
Affiliation(s)
- Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy
| | - Luca Pasquini
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York City, 10065, USA.
- Radiology Department, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA.
| | | | - Maria Vaccaro
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | | | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| |
Collapse
|
5
|
Johnstone N, Cohen Kadosh K. Indicators of improved emotion behavior in 6-14-year-old children following a 4-week placebo controlled prebiotic supplement intervention at home with a parent. Nutr J 2025; 24:34. [PMID: 40025494 PMCID: PMC11871729 DOI: 10.1186/s12937-025-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND In this double-blind placebo-controlled randomised intervention we investigated the potential benefits of a prebiotic supplement on children's well-being in a home setting. The primary aim was to determine if this supplement could effectively reduce anxiety, improve mood, and enhance cognitive function, similar to findings in young adults. METHODS Fifty-three healthy children, aged 6 to 14, participated in an 8-week trial. The trial consisted of three testing time points; day zero marked the baseline measurement (T1) followed by a 28-day supplement intervention period during which they consumed 5.5 g of the prebiotic galactooligosaccharides (GOS) daily under parental guidance. Endline measures (T2) were conducted on the last day of supplement consumption, with a final follow-up testing session (T3) on day 56. Primary outcomes were trait anxiety using a questionnaire and emotional behavior in a dot-probe task on responses to positive and negative images. Secondary outcomes encompassed depression levels, cognitive function tests, and dietary intake recorded in a 4-day food diary. Additionally, we explored whether parents' emotional behavior had an impact on children's responses. RESULTS While our statistical analysis did not reveal significant effects of GOS, there were noteworthy trends. Trait anxiety levels decreased over time in both groups, with a more pronounced decrease in the GOS group (after intervention, p =.090; after follow-up, p =.031). The GOS group exhibited reduced negative emotional responses compared to the placebo group (p =.105), and post-trial depression levels decreased in the GOS group over time (p =.015). Although parental emotional responses correlated with various emotional outcomes in children, they did not influence the intervention effects. CONCLUSIONS These findings suggest positive trends in line with our hypotheses, however further investigation with greater statistical power would be beneficial. TRIAL REGISTRATION Retrospectively registered on https://clinicaltrials.gov/ [NCT06258135] on February 6, 2024.
Collapse
Affiliation(s)
- Nicola Johnstone
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
6
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [PMID: 39839986 PMCID: PMC11745983 DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Schizophrenia is a chronic psychiatric disorder characterized by a variety of symptoms broadly categorized into positive, negative, and cognitive domains. Its etiology is multifactorial, involving a complex interplay of genetic, neurobiological, and environmental factors, and its neurobiology is associated with abnormalities in different neurotransmitter systems. Due to this multifactorial etiology and neurobiology, leading to a wide heterogeneity of symptoms and clinical presentations, current antipsychotic treatments face challenges, underscoring the need for novel therapeutic approaches. Recent studies have revealed differences in the gut microbiome of individuals with schizophrenia compared to healthy controls, establishing an intricate link between this disorder and gastrointestinal health, and suggesting that microbiota-targeted interventions could help alleviate clinical symptoms. Therefore, this meta-analysis investigates whether gut microbiota manipulation can ameliorate psychotic outcomes in patients with schizophrenia receiving pharmacological treatment. Nine studies (n = 417 participants) were selected from 81 records, comprising seven randomized controlled trials and two open-label studies, all with a low risk of bias, included in this systematic review and meta-analysis. The overall combined effect size indicated significant symptom improvement following microbiota treatment (Hedges' g = 0.48, 95% CI = 0.09 to 0.88, p = 0.004, I2 = 62.35%). However, according to Hedges' g criteria, the effect size was small (approaching moderate), and study heterogeneity was moderate based on I2 criteria. This review also discusses clinical and preclinical studies to elucidate the neural, immune, and metabolic pathways by which microbiota manipulation, particularly with Lactobacillus and Bifidobacterium genera, may exert beneficial effects on schizophrenia symptoms via the gut-brain axis. Finally, we address the main confounding factors identified in our systematic review, highlight key limitations, and offer recommendations to guide future high-quality trials with larger participant cohorts to explore microbiome-based therapies as a primary or adjunctive treatment for schizophrenia.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alexandre Kanashiro
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sayuri Higa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alceu Afonso Jordão
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | |
Collapse
|
7
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Mamun AA, Geng P, Wang S, Shao C, Xiao J. IUPHAR review: Targeted therapies of signaling pathways based on the gut microbiome in autism spectrum disorders: Mechanistic and therapeutic applications. Pharmacol Res 2025; 211:107559. [PMID: 39733842 DOI: 10.1016/j.phrs.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights. In addition, this review discusses the interactions between gut microbiota and the immune, metabolic and neuroendocrine systems, focusing on crucial microbial metabolites including short-chain fatty acids (SCFAs) and several neurotransmitters. Furthermore, the review explores various therapy methods including fecal microbiota transplantation, dietary modifications, probiotics and prebiotics and evaluates their safety and efficacy in reducing ASD symptoms. The discussion shows the potential of customized microbiome-based therapeutics and the integration of multi-omics methods to understand the underlying mechanisms. Moreover, the review explores the intricate relationship between gut microbiota and ASD, aiming to develop innovative therapies that utilize the gut microbiome to improve the clinical outcomes of ASD patients. Microbial metabolites such as neurotransmitter precursors, tryptophan metabolites and SCFAs affect brain development and behavior. Symptoms of ASD are linked to changes in these metabolites. Dysbiosis in the gut microbiome may impact neuroinflammatory processes linked to autism, negatively affecting immune signaling pathways. Research indicates that probiotics and prebiotics can improve gut microbiota and alleviate symptoms in ASD patients. Fecal microbiota transplantation may also improve behavioral symptoms and restore gut microbiota balance. The review emphasizes the need for further research on gut microbiota modification as a potential therapeutic approach for ASD, highlighting its potential in clinical settings.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
9
|
Lee JC, Chen CM, Sun CK, Tsai IT, Cheng YS, Chiu HJ, Wang MY, Tang YH, Hung KC. The therapeutic effects of probiotics on core and associated behavioral symptoms of autism spectrum disorders: a systematic review and meta-analysis. Child Adolesc Psychiatry Ment Health 2024; 18:161. [PMID: 39702309 DOI: 10.1186/s13034-024-00848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND We aimed at investigating the efficacies of probiotics in alleviating the core and associated symptoms of autism spectrum disorder (ASD). METHODS Randomized placebo-controlled trials were identified from major electronic databases from inception to Nov 2023. The outcomes of interests including improvements in the total and associated symptoms of ASD were quantitatively expressed as effect size (ES) based on standardized mean difference (SMD) with 95% confidence interval (CI). RESULTS Ten studies with 522 participants (mean age = 8.11) were included in this meta-analysis. The primary results revealed significant improvement in total symptoms in the probiotics group compared with the controls (SMD = - 0.19, p = 0.03, ten studies, n = 522) but not the core symptoms (i.e., repetitive restricted behaviors, As affiliations 3 and 5 are same, we have deleted the duplicate affiliations and renumbered accordingly. Please check and confirm.problems with social behaviors/communication). Subgroup analyses demonstrated improvement in total symptoms in probiotics users relative to their controls only in studies using multiple-strain probiotics (SMD = - 0.26, p = 0.03, five studies, n = 288) but not studies using single-strain regimens. Secondary results showed improvement in adaptation (SMD = 0.37, p = 0.03, three studies, n = 139) and an improvement trend in anxiety symptoms in the probiotics group compared with controls (SMD = - 0.29, 95% CI - 0.60 to 0.02, p = 0.07, three studies, n = 163) but failed to demonstrate greater improvement in the former regarding symptoms of irritability/aggression, hyperactivity/impulsivity, inattention, and parental stress. CONCLUSIONS Our study supported probiotics use against the overall behavioral symptoms of ASD, mainly in individuals receiving multiple-strain probiotics as supplements. However, our results showed that probiotics use was only associated with improvement in adaptation and perhaps anxiety, but not core symptoms, highlighting the impact of adaptation on quality of life rather than just the core symptoms. Nevertheless, the limited number of included trials warrants further large-scale clinical investigations.
Collapse
Affiliation(s)
- Jen-Chin Lee
- Department of General Psychiatry, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Chia-Min Chen
- Department of Natural Biotechnology, Nanhua University, Chiayi, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - I-Ting Tsai
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung City, Taiwan
| | - Hsien-Jane Chiu
- Department of General Psychiatry, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan City, Taiwan
- Institute of Hospital and Health Care Administration, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Ming Yu Wang
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Yen-Hsiang Tang
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, No.901, ChungHwa Road, YungKung Dist, Tainan, 71004, Taiwan.
| |
Collapse
|
10
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [PMID: 39654662 PMCID: PMC11572612 DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions. AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD. METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness. RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD. CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
11
|
Moreno RJ, Ashwood P. An Update on Microbial Interventions in Autism Spectrum Disorder with Gastrointestinal Symptoms. Int J Mol Sci 2024; 25:13078. [PMID: 39684788 PMCID: PMC11641496 DOI: 10.3390/ijms252313078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In the United States, autism spectrum disorder (ASD) affects 1 in 33 children and is characterized by atypical social interactions, communication difficulties, and intense, restricted interests. Microbial dysbiosis in the gastrointestinal (GI) tract is frequently observed in individuals with ASD, potentially contributing to behavioral manifestations and correlating with worsening severity. Moreover, dysbiosis may contribute to the increased prevalence of GI comorbidities in the ASD population and exacerbate immune dysregulation, further worsening dysbiosis. Over the past 25 years, research on the impact of microbial manipulation on ASD outcomes has gained substantial interest. Various approaches to microbial manipulation have been preclinically and clinically tested, including antibiotic treatment, dietary modifications, prebiotics, probiotics, and fecal microbiota transplantation. Each method has shown varying degrees of success in reducing the severity of ASD behaviors and/or GI symptoms and varying long-term efficacy. In this review, we discuss these microbiome manipulation methods and their outcomes. We also discuss potential microbiome manipulation early in life, as this is a critical period for neurodevelopment.
Collapse
Affiliation(s)
- Rachel J. Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| |
Collapse
|
12
|
Mihailovich M, Tolinački M, Soković Bajić S, Lestarevic S, Pejovic-Milovancevic M, Golić N. The Microbiome-Genetics Axis in Autism Spectrum Disorders: A Probiotic Perspective. Int J Mol Sci 2024; 25:12407. [PMID: 39596472 PMCID: PMC11594817 DOI: 10.3390/ijms252212407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (commonly known as autism) is a complex and prevalent neurodevelopmental condition characterized by challenges in social behavior, restricted interests, and repetitive behaviors. It is projected that the annual cost of autism spectrum disorder in the US will reach USD 461 billion by 2025. However, despite being a major public health problem, effective treatment for the underlying symptoms remains elusive. As numerous literature data indicate the role of gut microbiota in autism prognosis, particularly in terms of alleviating gastrointestinal (GI) symptoms, high hopes have been placed on probiotics for autism treatment. Approximately twenty clinical studies have been conducted using single or mixed probiotic cultures. However, unequivocal results on the effect of probiotics on people with autism have not been obtained. The small sample sizes, differences in age of participants, choice of probiotics, dose and duration of treatment, outcome measures, and analytical methods used are largely inconsistent, making it challenging to draw distinctive conclusions. Here, we discuss the experimental evidence for specific gut bacteria and their metabolites and how they affect autism in light of the phenotypic and etiological complexity and heterogeneity. We propose a personalized medicine approach for using probiotics to increase the quality of life of individuals with autism by selecting specific probiotics to improve particular features of the condition.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
- Human Technopole, 20157 Milan, Italy
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Sanja Lestarevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
| | - Milica Pejovic-Milovancevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| |
Collapse
|
13
|
Golbaghi N, Naeimi S, Darvishi A, Najari N, Cussotto S. Probiotics in autism spectrum disorder: Recent insights from animal models. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:2722-2737. [PMID: 38666595 DOI: 10.1177/13623613241246911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
LAY ABSTRACT Autism spectrum disorder is a neurodevelopmental disorder characterized by a wide range of behavioral alterations, including impaired social interaction and repetitive behaviors. Numerous pharmacological interventions have been developed for autism spectrum disorder, often proving ineffective and accompanied by a multitude of side effects. The gut microbiota is the reservoir of bacteria inhabiting our gastrointestinal tract. The gut microbial alterations observed in individuals with autism spectrum disorder, including elevated levels of Bacteroidetes, Firmicutes, and Proteobacteria, as well as reduced levels of Bifidobacterium, provide a basis for further investigation into the role of the gut microbiota in autism spectrum disorder. Recent preclinical studies have shown favorable outcomes with probiotic therapy, including improvements in oxidative stress, anti-inflammatory effects, regulation of neurotransmitters, and restoration of microbial balance. The aim of this review is to explore the potential of probiotics for the management and treatment of autism spectrum disorder, by investigating insights from recent studies in animals.
Collapse
Affiliation(s)
- Navid Golbaghi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Saeideh Naeimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Afra Darvishi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Najari
- School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sofia Cussotto
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri Moissan, Orsay, France
| |
Collapse
|
14
|
Soleimanpour S, Abavisani M, Khoshrou A, Sahebkar A. Probiotics for autism spectrum disorder: An updated systematic review and meta-analysis of effects on symptoms. J Psychiatr Res 2024; 179:92-104. [PMID: 39265200 DOI: 10.1016/j.jpsychires.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Recent researches highlighted the significant role of the gut-brain axis and gut microbiota in autism spectrum disorder (ASD), a neurobehavioral developmental disorder characterized by a variety of neuropsychiatric and gastrointestinal symptoms, suggesting that alterations in the gut microbiota may correlate with the severity of ASD symptoms. Therefore, this study was designed to conduct a comprehensive systematic review and meta-analysis of the effectiveness of probiotic interventions in ameliorating behavioral symptoms in individuals with ASD. METHODS This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. A comprehensive literature search was performed across multiple databases including the Cochrane Library, PubMed, Web of Science, and Google Scholar up until June 2024. Inclusion criteria encompassed published randomized clinical trials (RCTs), focusing on probiotic interventions and evaluating outcomes related to ASD behavior symptoms. The study utilized Cochrane's Risk of Bias 2 for bias assessment and applied random effect models with inverse variance method for statistical analysis, also addressing publication bias and conducting subgroup analyses through Begg's and Egger's tests to explore the effects of various factors on the outcomes. RESULTS Our meta-analysis, which looked at eight studies with a total of 318 samples from ASD patients aged 1.5-20 years, showed that the probiotic intervention group had significantly better behavioral symptoms compared to the control group. This was shown by a pooled standardized mean difference (SMD) of -0.38 (95% CI: 0.58 to -0.18, p < 0.01). Subgroup analyses revealed significant findings across a variety of factors: studies conducted in the European region showed a notable improvement with an SMD of -0.44 (95%CI: 0.72 to -0.15); interventions lasting longer than three months exhibited a significant improvement with an SMD of -0.43 (95%CI: 0.65 to -0.21); and studies focusing on both participants under and greater than 10 years found significant benefits with an SMDs of -0.37 and -0.40, respectively (95%CI: 0.65 to -0.09, and 95%CI: 0.69 to -0.11, respectively). Moreover, both multi-strain probiotics and single-strain interventions showed an overall significant improvement with a SMD of -0.53 (95%CI: 0.85 to -0.22) and -0.28 (95%CI: 0.54 to -0.02), respectively. Also, the analysis confirmed the low likelihood of publication bias and the robustness of these findings. CONCLUSION Our study highlighted the significant improvement in ASD behavioral symptoms through probiotic supplementation. The need for personalized treatment approaches and further research to confirm efficacy and safety of probiotics in ASD management is emphasized.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abavisani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Kotowska M, Kołodziej M, Szajewska H, Łukasik J. The impact of probiotics on core autism symptoms - A systematic review and meta-analysis of randomized clinical trials. Clin Nutr ESPEN 2024; 63:893-902. [PMID: 39173907 DOI: 10.1016/j.clnesp.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/05/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND & AIMS Studies have shown evidence of gut dysbiosis in individuals with autism spectrum disorder (ASD). Various microbiome-modifying treatments, including probiotics, have been proposed. This review systematically assessed the evidence on the effects of probiotics on core autism symptoms in children with ASD. METHODS We performed a comprehensive literature search in Medline, Embase, CENTRAL, PsycInfo, and clinical trial registries, up to March 2023, and updated on January 10, 2024. Randomized controlled trials (RCTs) of parallel-group and cross-over designs were eligible. The population included individuals below 20 years of age diagnosed with ASD. Trials evaluating the effects of probiotics (any strain or dose) compared to placebo, no treatment, or another intervention were included. The outcomes of interest included the core autism symptoms: deficits in social skills, communication skills, and restricted, repetitive behaviors. No language restrictions were applied. Studies were excluded if an additional active compound was administered. The risk of bias was assessed using the Revised Cochrane Risk of Bias tool (RoB 2). This review was registered in PROSPERO (CRD42023393000). RESULTS In total, 12 RCTs assessing 630 participants were included. A borderline significant beneficial effect of probiotics on core ASD symptoms was found (8 RCTs, mean difference -0.21; 95% CI -0.39 to -0.03). Subgroup analysis according to study type showed a significant positive effect in parallel group trials (6 RCTs, mean difference -0.26; 95% CI -0.48 to -0.05). The pooled effect estimates for the other outcomes didn't reveal significant differences between the groups. Importantly, the risk of bias was high in nine studies. CONCLUSIONS Available data do not provide high-quality evidence supporting the use of probiotics for ASD symptoms in children.
Collapse
Affiliation(s)
- Maja Kotowska
- Department of Paediatrics, Medical University of Warsaw, Poland.
| | - Maciej Kołodziej
- Department of Paediatrics, Medical University of Warsaw, Poland.
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, Poland.
| | - Jan Łukasik
- Department of Paediatrics, Medical University of Warsaw, Poland.
| |
Collapse
|
16
|
Mihailovich M, Soković Bajić S, Dinić M, Đokić J, Živković M, Radojević D, Golić N. Cutting-Edge iPSC-Based Approaches in Studying Host-Microbe Interactions in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:10156. [PMID: 39337640 PMCID: PMC11432053 DOI: 10.3390/ijms251810156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota (GM), together with its metabolites (such as SCFA, tryptophan, dopamine, GABA, etc.), plays an important role in the functioning of the central nervous system. Various neurological and psychiatric disorders are associated with changes in the composition of GM and their metabolites, which puts them in the foreground as a potential adjuvant therapy. However, the molecular mechanisms behind this relationship are not clear enough. Therefore, before considering beneficial microbes and/or their metabolites as potential therapeutics for brain disorders, the mechanisms underlying microbiota-host interactions must be identified and characterized in detail. In this review, we summarize the current knowledge of GM alterations observed in prevalent neurological and psychiatric disorders, multiple sclerosis, major depressive disorder, Alzheimer's disease, and autism spectrum disorders, together with experimental evidence of their potential to improve patients' quality of life. We further discuss the main obstacles in the study of GM-host interactions and describe the state-of-the-art solution and trends in this field, namely "culturomics" which enables the culture and identification of novel bacteria that inhabit the human gut, and models of the gut and blood-brain barrier as well as the gut-brain axis based on induced pluripotent stem cells (iPSCs) and iPSC derivatives, thus pursuing a personalized medicine agenda for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
- Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| |
Collapse
|
17
|
Cocean AM, Vodnar DC. Exploring the gut-brain Axis: Potential therapeutic impact of Psychobiotics on mental health. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111073. [PMID: 38914414 DOI: 10.1016/j.pnpbp.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
One of the most challenging and controversial issues in microbiome research is related to gut microbial metabolism and neuropsychological disorders. Psychobiotics affect human behavior and central nervous system processes via the gut-brain axis, involving neuronal, immune, and metabolic pathways. They have therapeutic potential in the treatment of several neurodegenerative and neurodevelopmental disorders such as depression, anxiety, autism, attention deficit hyperactivity disorder, Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, anorexia nervosa, and multiple sclerosis. However, the mechanisms underlying the interaction between psychobiotics and the abovementioned diseases need further exploration. This review focuses on the relationship between gut microbiota and its impact on neurological and neurodegenerative disorders, examining the potential of psychobiotics as a preventive and therapeutic approach, summarising recent research on the gut-brain axis and the potential beneficial effects of psychobiotics, highlighting the need for further research and investigation in this area.
Collapse
Affiliation(s)
- Ana-Maria Cocean
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| |
Collapse
|
18
|
Wu Y, Su Q. Harnessing the Gut Microbiome: To What Extent Can Pre-/Probiotics Alleviate Immune Activation in Autism Spectrum Disorder? Nutrients 2024; 16:2382. [PMID: 39125263 PMCID: PMC11314583 DOI: 10.3390/nu16152382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Children diagnosed with autism spectrum disorder (ASD) are at an increased risk of experiencing gastrointestinal (GI) discomfort, which has been linked to dysfunctions in the microbiome-gut-brain axis. The bidirectional communication between gut and brain plays a crucial role in the overall health of individuals, and alterations in the gut microbiome can contribute to immune activation and gut-brain dysfunction in ASD. Despite the limited and controversial results of pre-/probiotic applications in ASD, this review comprehensively maps the association between ASD clinical symptoms and specific bacterial taxa and evaluates the efficacy of pre-/probiotics in modulating microbiota composition, reducing inflammatory biomarkers, alleviating difficulties in GI distress, sleep problems, core and other ASD-associated symptoms, as well as relieving parental concerns, separately, in individuals with ASD. Beyond simply targeting core ASD symptoms, this review highlights the potential of pre-/probiotic supplementations as a strategy to modulate gut homeostasis and immune response, and to delineate the potential mechanisms by which its direct or mediating effects can alleviate gut-brain dysfunction and poor nutritional status in ASD management. Further well-designed randomized controlled trials are needed to strengthen the existing evidence and establish optimal protocols for the use of pre-/probiotics in the context of ASD.
Collapse
Affiliation(s)
- Yuqi Wu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
20
|
Zeng P, Zhang CZ, Fan ZX, Yang CJ, Cai WY, Huang YF, Xiang ZJ, Wu JY, Zhang J, Yang J. Effect of probiotics on children with autism spectrum disorders: a meta-analysis. Ital J Pediatr 2024; 50:120. [PMID: 38902804 PMCID: PMC11191217 DOI: 10.1186/s13052-024-01692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Researches have found that alteration of intestinal flora may be closely related to the development of autism spectrum disorder (ASD). However, whether probiotics supplementation has a protective effect on ASD remains controversial. This meta-analysis aimed to analyze the outcome of probiotics in the treatment of ASD children. METHODS The Pubmed, Cochrane Library, Web of Science and Embase were searched until Sep 2022. Randomized controlled trials (RCTs) relevant to the probiotics and placebo treatment on ASD children were screened. Quality assessment of the included RCTs was evaluated by the Cochrane collaboration's tool. The primary outcomes were ASD assessment scales, including ABC (aberrant behavior checklist) and CBCL (child behavior checklist) for evaluating the behavior improvement, SRS (social responsiveness scale) for social assessment, DQ (developmental quotient) for physical and mental development and CGI-I (clinical global impression improvement) for overall improvement. The secondary outcome was total 6-GSI (gastrointestinal severity index). RESULTS In total, 6 RCTs from 6 studies with 302 children were included in the systemic review. Total 6-GSI (MD=-0.59, 95%CI [-1.02,-0.17], P < 0.05) decreased significantly after oral administration of probiotics. Whereas, there was no statistical difference in ABC, CBCL, SRS, DQ and CGI-I between probiotics and placebo groups in ASD children. CONCLUSION Probiotics treatment could improve gastrointestinal symptoms, but there was no significant improvement in ASD.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cheng-Zhi Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Chao-Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Wan-Yin Cai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yi-Fan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zu-Jin Xiang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing-Yi Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| |
Collapse
|
21
|
Giusti G, Zelič Ž, Callara AL, Sebastiani L, Santarcangelo EL. Interoception as a function of hypnotizability during rest and a heartbeat counting task. Psychophysiology 2024; 61:e14535. [PMID: 38318683 DOI: 10.1111/psyp.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The hypnotizability-related differences in morpho-functional characteristics of the insula could at least partially account for the differences in interoceptive accuracy (IA) observed between high and low hypnotizable individuals (highs, lows). Our aim was to investigate interoceptive processing in highs, lows, and medium hypnotizable individuals (mediums), who represent most of the population, during a 10-minute open eyes relaxation condition (Part 1) and three repetitions of consecutive 2-minute open eyes, closed eyes, and heartbeat counting conditions, followed by a 2-minute post-counting condition (Part 2). Electrocardiogram and electroencephalogram were recorded in 14 highs, 14 mediums, and 18 lows, classified according to the Stanford Hypnotic Susceptibility Scale: Form A. Heartbeat-evoked cortical potentials (HEP) were extracted throughout the entire session, and IA index was obtained for the heartbeat counting task (HCT). In Part 1, significant hypnotizability-related differences were observed in the right central region in both early and late HEP components, with lows showing positive amplitudes and highs/mediums showing negative amplitudes. In Part 2, the same group differences were limited to the early component. Moreover, in the left frontal regions, only mediums modified their HEP during the counting task with respect to the open/closed eyes conditions, whereas highs displayed HEP differences between counting and post-counting rest. HCT did not show significant group differences. In conclusion, highs and mediums seem to be more similar than mediums and lows regarding HEP, despite the absence of significant differences in HCT. Nonetheless, a negative correlation between hypnotizability scores and HEP amplitudes was observed in the regions showing group differences.
Collapse
Affiliation(s)
- Gioia Giusti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Žan Zelič
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Alejandro Luis Callara
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Institute of Information Science and Technologies "Alessandro Faedo" (ISTI-CNR), Pisa, Italy
| | - Enrica L Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Neri B, Callara AL, Vanello N, Menicucci D, Zaccaro A, Piarulli A, Laurino M, Norbu N, Kechok J, Sherab N, Gemignani A. Report from a Tibetan Monastery: EEG neural correlates of concentrative and analytical meditation. Front Psychol 2024; 15:1348317. [PMID: 38756494 PMCID: PMC11098278 DOI: 10.3389/fpsyg.2024.1348317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The positive effects of meditation on human wellbeing are indisputable, ranging from emotion regulation improvement to stress reduction and present-moment awareness enhancement. Changes in brain activity regulate and support these phenomena. However, the heterogeneity of meditation practices and their cultural background, as well as their poor categorization limit the generalization of results to all types of meditation. Here, we took advantage of a collaboration with the very singular and precious community of the Monks and Geshes of the Tibetan University of Sera-Jey in India to study the neural correlates of the two main types of meditation recognized in Tibetan Buddhism, namely concentrative and analytical meditation. Twenty-three meditators with different levels of expertise underwent to an ecological (i.e., within the monastery) EEG acquisition consisting of an analytical and/or concentrative meditation session at "their best," and with the only constraint of performing a 5-min-long baseline at the beginning of the session. Time-varying power-spectral-density estimates of each session were compared against the baseline (i.e., within session) and between conditions (i.e., analytical vs. concentrative). Our results showed that concentrative meditation elicited more numerous and marked changes in the EEG power compared to analytical meditation, and mainly in the form of an increase in the theta, alpha and beta frequency ranges. Moreover, the full immersion in the Monastery life allowed to share the results and discuss their interpretation with the best scholars of the Monastic University, ensuring the identification of the most expert meditators, as well as to highlight better the differences between the different types of meditation practiced by each of them.
Collapse
Affiliation(s)
- Bruno Neri
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Nicola Vanello
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Andrea Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Ngawang Norbu
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Jampa Kechok
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Ngawang Sherab
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Lin P, Zhang Q, Sun J, Li Q, Li D, Zhu M, Fu X, Zhao L, Wang M, Lou X, Chen Q, Liang K, Zhu Y, Qu C, Li Z, Ma P, Wang R, Liu H, Dong K, Guo X, Cheng X, Sun Y, Sun J. A comparison between children and adolescents with autism spectrum disorders and healthy controls in biomedical factors, trace elements, and microbiota biomarkers: a meta-analysis. Front Psychiatry 2024; 14:1318637. [PMID: 38283894 PMCID: PMC10813399 DOI: 10.3389/fpsyt.2023.1318637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. Methods Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. Results From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. Interpretation Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Qingtian Li
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Fu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiwei Qu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyu Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafen Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Ke Dong
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Jing Sun
- School of Medicine and Dentistry, Institute for Integrated Intelligence and Systems, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
- Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
24
|
Rahim F, Toguzbaeva K, Qasim NH, Dzhusupov KO, Zhumagaliuly A, Khozhamkul R. Probiotics, prebiotics, and synbiotics for patients with autism spectrum disorder: a meta-analysis and umbrella review. Front Nutr 2023; 10:1294089. [PMID: 38148790 PMCID: PMC10750421 DOI: 10.3389/fnut.2023.1294089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Background and objective The potential impact of gut health on general physical and mental well-being, particularly in relation to brain function, has led to a growing interest in the potential health advantages of prebiotics, probiotics, and synbiotics for the management of ASD. A comprehensive meta-analysis and systematic review was conducted in order to evaluate the effectiveness and protection of many drugs targeted at manipulating the microbiota in the treatment of ASD. Methods The present study employed a comprehensive examination of various electronic databases yielded a total of 3,393 records that were deemed possibly pertinent to the study. RCTs encompassed a total of 720 individuals between the ages of 2 and 17, as well as 112 adults and participants ranging from 5 to 55 years old, all of whom had received a diagnosis of ASD. Results Overall, 10 studies reported Autism-Related Behavioral Symptoms (ARBS). Regarding the enhancement of autism-related behavioral symptoms, there wasn't a statistically significant difference between the intervention groups (combined standardized mean difference = -0.07, 95% confidence interval: -0.39 to 0.24, Z = 0.46, p = 0.65). We observed that in the patients with ASD treated with probiotic frontopolar's power decreased significantly from baseline to endpoints in beta band (Baseline: 13.09 ± 3.46, vs. endpoint: 10.75 ± 2.42, p = 0.043, respectively) and gamma band (Baseline: 5.80 ± 2.42, vs. endpoint: 4.63 ± 1.39, p = 0.033, respectively). Among all tested biochemical measures, a significant negative correlation was found between frontopolar coherence in the gamma band and TNF-α (r = -0.30, p = 0.04). Conclusion The existing body of research provides a comprehensive analysis of the developing evidence that indicates the potential of probiotics, prebiotics, and synbiotics as therapeutic therapies for ASD. Our findings revealed that those there was no significant effect of such therapy on autism-related behavioral symptoms, it has significant effect on the brain connectivity through frontopolar power in beta and gamma bands mediated by chemicals and cytokines, such as TNF-α. The psychobiotics showed no serious side-effects.
Collapse
Affiliation(s)
- Fakher Rahim
- College of Health Sciences, Cihan University Sulaimaniya, Sulaymaniyah, Iraq
| | - Karlygash Toguzbaeva
- School of Public Health, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Nameer Hashim Qasim
- Cihan University Sulaimaniya Research Center (CUSRC), Cihan University – Sulaimaniya, Kurdistan Region, Suleymania, Iraq
| | - Kenesh O. Dzhusupov
- Head of Public Health Department, International Higher School of Medicine, Bishkek, Kyrgyzstan
| | - Abzal Zhumagaliuly
- School of Public Health, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Rabiga Khozhamkul
- Department of Biostatistics and Basics of Research, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
25
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
26
|
Alam S, Westmark CJ, McCullagh EA. Diet in treatment of autism spectrum disorders. Front Neurosci 2023; 16:1031016. [PMID: 37492195 PMCID: PMC10364988 DOI: 10.3389/fnins.2022.1031016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 07/27/2023] Open
Abstract
Altering the diet to treat disease dates to c. 400 BC when starvation was used to reduce seizures in persons with epilepsy. The current diversity of symptomology and mechanisms underlying autism spectrum disorders (ASDs) and a corresponding lack of disorder-specific effective treatments prompts an evaluation of diet as a therapeutic approach to improve symptoms of ASDs. In this review article, we summarize the main findings of nutritional studies in ASDs, with an emphasis on the most common monogenic cause of autism, Fragile X Syndrome (FXS), and the most studied dietary intervention, the ketogenic diet as well as other dietary interventions. We also discuss the gut microbiota in relation to pre- and probiotic therapies and provide insight into future directions that could aid in understanding the mechanism(s) underlying dietary efficacy.
Collapse
Affiliation(s)
- Sabiha Alam
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| | - Elizabeth A. McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
27
|
Scaffei E, Mazziotti R, Conti E, Costanzo V, Calderoni S, Stoccoro A, Carmassi C, Tancredi R, Baroncelli L, Battini R. A Potential Biomarker of Brain Activity in Autism Spectrum Disorders: A Pilot fNIRS Study in Female Preschoolers. Brain Sci 2023; 13:951. [PMID: 37371429 DOI: 10.3390/brainsci13060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Autism spectrum disorder (ASD) refers to a neurodevelopmental condition whose detection still remains challenging in young females due to the heterogeneity of the behavioral phenotype and the capacity of camouflage. The availability of quantitative biomarkers to assess brain function may support in the assessment of ASD. Functional Near-infrared Spectroscopy (fNIRS) is a non-invasive and flexible tool that quantifies cortical hemodynamic responses (HDR) that can be easily employed to describe brain activity. Since the study of the visual phenotype is a paradigmatic model to evaluate cerebral processing in many neurodevelopmental conditions, we hypothesized that visually-evoked HDR (vHDR) might represent a potential biomarker in ASD females. We performed a case-control study comparing vHDR in a cohort of high-functioning preschooler females with ASD (fASD) and sex/age matched peers. We demonstrated the feasibility of visual fNIRS measurements in fASD, and the possibility to discriminate between fASD and typical subjects using different signal features, such as the amplitude and lateralization of vHDR. Moreover, the level of response lateralization was correlated to the severity of autistic traits. These results corroborate the cruciality of sensory symptoms in ASD, paving the way for the validation of the fNIRS analytical tool for diagnosis and treatment outcome monitoring in the ASD population.
Collapse
Affiliation(s)
- Elena Scaffei
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50135 Florence, Italy
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
| | - Raffaele Mazziotti
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Eugenia Conti
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
| | - Valeria Costanzo
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | - Laura Baroncelli
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
28
|
Sharvin BL, Aburto MR, Cryan JF. Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiol Dis 2023; 179:106033. [PMID: 36758820 DOI: 10.1016/j.nbd.2023.106033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Research in the last decade has unveiled a crucial role for the trillions of microorganisms that reside in the gut in influencing host neurodevelopment across the lifespan via the microbiota-gut-brain axis. Studies have linked alterations in the composition, complexity, and diversity of the gut microbiota to changes in behaviour including abnormal social interactions, cognitive deficits, and anxiety- and depressive-like phenotypes. Moreover, the microbiota has been linked with neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Interestingly, there appears to be specific brain regions governing the neurocircuitry driving higher cognitive function that are susceptible to influence from manipulations to the host microbiome. This review will aim to elucidate the region-specific effects mediated by the gut microbiota, with a focus on translational animal models and some existing human neuroimaging data. Compelling preclinical evidence suggests disruption to normal microbiota-gut-brain signalling can have detrimental effects on the prefrontal cortex, amygdala, hippocampus, hypothalamus, and striatum. Furthermore, human neuroimaging studies have unveiled a role for the microbiota in mediating functional connectivity and structure of specific brain regions that can be traced back to neurocognition and behavioural output. Understanding these microbiota-mediated changes will aid in identifying unique therapeutic targets for treating neurological disorders associated with these regions.
Collapse
Affiliation(s)
- Brendan L Sharvin
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|
30
|
EEG cortical activity and connectivity correlates of early sympathetic response during cold pressor test. Sci Rep 2023; 13:1338. [PMID: 36693870 PMCID: PMC9873641 DOI: 10.1038/s41598-023-27480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Previous studies have identified several brain regions involved in the sympathetic response and its integration with pain, cognition, emotions and memory processes. However, little is known about how such regions dynamically interact during a sympathetic activation task. In this study, we analyzed EEG activity and effective connectivity during a cold pressor test (CPT). A source localization analysis identified a network of common active sources including the right precuneus (r-PCu), right and left precentral gyri (r-PCG, l-PCG), left premotor cortex (l-PMC) and left anterior cingulate cortex (l-ACC). We comprehensively analyzed the network dynamics by estimating power variation and causal interactions among the network regions through the direct directed transfer function (dDTF). A connectivity pattern dominated by interactions in [Formula: see text] (8-12) Hz band was observed in the resting state, with r-PCu acting as the main hub of information flow. After the CPT onset, we observed an abrupt suppression of such [Formula: see text]-band interactions, followed by a partial recovery towards the end of the task. On the other hand, an increase of [Formula: see text]-band (1-4) Hz interactions characterized the first part of CPT task. These results provide novel information on the brain dynamics induced by sympathetic stimuli. Our findings suggest that the observed suppression of [Formula: see text] and rise of [Formula: see text] dynamical interactions could reflect non-pain-specific arousal and attention-related response linked to stimulus' salience.
Collapse
|