1
|
Xu Y, Yang S, Rao Q, Gao Y, Zhou G, Zhao D, Shi X, Chai Y, Zhao C. A mechanistic quantitative systems pharmacology model platform for translational efficacy evaluation and checkpoint combination design of bispecific immuno-modulatory antibodies. Front Pharmacol 2025; 16:1571844. [PMID: 40276607 PMCID: PMC12018249 DOI: 10.3389/fphar.2025.1571844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Over the past 2 decades, tumor immunotherapies have witnessed remarkable advancements, especially with the emergence of immune checkpoint-targeting bispecific antibodies. However, a quantitative understanding of the dynamic cross-talking mechanisms underlying different immune checkpoints as well as the optimal dosing and target design of checkpoint-targeting bispecific antibodies still remain challenging to researchers. To address this challenge, we have here developed a multi-scale quantitative systems pharmacology (QSP) model platform that integrates a diverse array of immune checkpoints and their interactive functions. The model has been calibrated and validated against an extensive collection of multiscale experimental datasets covering 20+ different monoclonal and bispecific antibody treatments at over 60 administered dose levels. Based on high-throughput simulations, the QSP model platform comprehensively screened and characterized the potential efficacy of different bispecific antibody target combination designs, and model-based preclinical population-level simulations revealed target-specific dose-response relationships as well as alternative dosing strategies that can maintain anti-tumor treatment efficacy while reducing dosing frequencies. Model simulations also pointed out that combining checkpoint-targeting bispecific antibodies with monoclonal antibodies can lead to significantly enhanced anti-tumor efficacy. Our mechanistic QSP model can serve as an integrated precision medicine simulation platform to guide the translational research and clinical development of checkpoint-targeting immuno-modulatory bispecific antibodies.
Collapse
Affiliation(s)
- Yiyang Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Siyuan Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Qi Rao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- QSPMed Technologies, Nanjing, China
| | - Guanyue Zhou
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Dongmei Zhao
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Xinsheng Shi
- Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Yi Chai
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Wang M, Yang F, Kong J, Zong Y, Li Q, Shao B, Wang J. Traditional Chinese medicine enhances the effectiveness of immune checkpoint inhibitors in tumor treatment: A mechanism discussion. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118955. [PMID: 39427737 DOI: 10.1016/j.jep.2024.118955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immune checkpoint inhibitors (ICIs) have altered the landscape of tumor immunotherapy, offering novel therapeutic approaches alongside surgery, chemotherapy, and radiotherapy and significantly improving survival benefits. However, their clinical efficacy is limited in some patients, and their use may cause immune-related adverse events (irAEs). Integrating traditional Chinese medicine (TCM) with ICIs has demonstrated the potential to boost sensitization and reduce toxicity. Clinical trials and experimental explorations have confirmed that TCM and its active components synergistically enhance the effectiveness of ICIs. AIMS This narrative review summarizes the TCM practices that enhance the clinical efficacy and reduce irAEs of ICIs. This paper also summarizes the mechanism of experimental studies on the synergies of Chinese herbal decoctions, Chinese herbal preparation, and Chinese herbal active ingredients. Most of the studies on TCM combined with ICIs are basic experiments. We discussed the mechanism of TCM enhanced ICIs to provide reference for the research and development of TCM adjuvant immunotherapy. METHODS We conducted a literature search using PubMed and Chinese National Knowledge Infrastructure databases, with a focus on herbal decoction, Chinese medicine preparations, and active ingredients that boost the effectiveness of ICIs and reduce irAEs. The search keywords were "ICIs and traditional Chinese medicine", "PD-1 and traditional Chinese medicine", "PD-L1 and traditional Chinese medicine", "CTLA-4 and traditional Chinese medicine", "IDO1 and traditional Chinese medicine", "Tim-3 and traditional Chinese medicine", "TIGIT and traditional Chinese medicine", "irAEs and traditional Chinese medicine". The search period was from May 2014 to May 2024. Articles involving the use of TCM or its components in combination with ICIs and investigating the underlying mechanisms were screened. Finally, 30 Chinese medicines used in combination with ICIs were obtained to explore the mechanism. In the part of immune checkpoint molecules other than PD-1, there were few studies on the combined application of TCM, so studies involving the regulation of immune checkpoint molecules by TCM were included. RESULTS TCM has been shown to boost the effectiveness of ICIs and reduce irAEs. Researchers indicate that TCM and its active components can work synergistically with ICIs by regulating immune checkpoints PD-1, PD-L1, CTLA-4, and IDO1, regulating intestinal flora, improving tumor microenvironment and more. CONCLUSIONS Combining TCM with ICIs can play a better anti-tumor role, but larger samples and high-quality clinical trials are necessary to confirm this. Many Chinese medicines and their ingredients have been shown to sensitize ICIs in experimental studies, which provides a rich choice for the subsequent development of ICI enhancers.
Collapse
Affiliation(s)
- Manting Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100007, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Bin Shao
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Ruengsatra T, Soponpong J, Nalinratana N, Jirapongwattana N, Dunkoksung W, Rattanangkool E, Deesiri S, Srisa J, Songthammanuphap S, Udomnilobol U, Prueksaritanont T. Design, synthesis, and optimization of novel PD-L1 inhibitors and the identification of a highly potent and orally bioavailable PD-L1 inhibitor. Eur J Med Chem 2024; 277:116730. [PMID: 39111015 DOI: 10.1016/j.ejmech.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
In this paper we report the discovery of structurally novel and highly potent programmed cell death-ligand 1 (PD-L1) inhibitors targeting surface and intracellular PD-L1. A ring fusion design utilizing dimethoxyphenyl indazole derivatives was used, followed by structural extension, which further improved potency by inducing the formation of additional symmetrical interactions within the PD-L1 binding site, leading to the discovery of novel and highly active tetra-aryl-scaffold inhibitors. Key optimizations involved polar tail chain modifications that improve potency and minimize cell cytotoxicity. In addition, druggability issues that exist outside the rule-of-five chemical space were addressed. CB31, a representative compound, was found to exhibit outstanding activity in blocking programmed cell death-1 (PD-1)/PD-L1 interactions (IC50 = 0.2 nM) and enhancing T-cell functions, with minimal cell cytotoxicity. CB31 also displayed favorable oral pharmacokinetic properties, consistent with its high passive permeability and insusceptibility to efflux transporters, as well as its high metabolic stability. Additionally, CB31 demonstrated mechanistically differentiated features from monoclonal antibodies by inducing PD-L1 internalization, intracellular retention of PD-L1 with altered glycosylation pattern, and PD-L1 degradation. It also demonstrated greater effects on tumor size reduction and tumor cell killing, with enhanced T-cell infiltration, in a 3D tumor spheroid model. Overall, results show that CB31 is a promising small-molecule PD-L1 inhibitor that can inhibit PD-1/PD-L1 interactions and promote PD-L1 degradation.
Collapse
Affiliation(s)
- Tanachote Ruengsatra
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Jakapun Soponpong
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Nonthaneth Nalinratana
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Niphat Jirapongwattana
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Dunkoksung
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Eakkaphon Rattanangkool
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Sirikan Deesiri
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Jakkrit Srisa
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Songkiat Songthammanuphap
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Udomsak Udomnilobol
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Thomayant Prueksaritanont
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
5
|
Yadav R, Khatkar R, Yap KCH, Kang CYH, Lyu J, Singh RK, Mandal S, Mohanta A, Lam HY, Okina E, Kumar RR, Uttam V, Sharma U, Jain M, Prakash H, Tuli HS, Kumar AP, Jain A. The miRNA and PD-1/PD-L1 signaling axis: an arsenal of immunotherapeutic targets against lung cancer. Cell Death Discov 2024; 10:414. [PMID: 39343796 PMCID: PMC11439964 DOI: 10.1038/s41420-024-02182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Lung cancer is a severe challenge to the health care system with intrinsic resistance to first and second-line chemo/radiotherapies. In view of the sterile environment of lung cancer, several immunotherapeutic drugs including nivolumab, pembrolizumab, atezolizumab, and durvalumab are currently being used in clinics globally with the intention of releasing exhausted T-cells back against refractory tumor cells. Immunotherapies have a limited response rate and may cause immune-related adverse events (irAEs) in some patients. Hence, a deeper understanding of regulating immune checkpoint interactions could significantly enhance lung cancer treatments. In this review, we explore the role of miRNAs in modulating immunogenic responses against tumors. We discuss various aspects of how manipulating these checkpoints can bias the immune system's response against lung cancer. Specifically, we examine how altering the miRNA profile can impact the activity of various immune checkpoint inhibitors, focusing on the PD-1/PD-L1 pathway within the complex landscape of lung cancer. We believe that a clear understanding of the host's miRNA profile can influence the efficacy of checkpoint inhibitors and significantly contribute to existing immunotherapies for lung cancer patients. Additionally, we discuss ongoing clinical trials involving immunotherapeutic drugs, both as standalone treatments and in combination with other therapies, intending to advance the development of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Ritu Yadav
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rinku Khatkar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chloe Yun-Hui Kang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rahul Kumar Singh
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Surojit Mandal
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Adrija Mohanta
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rajiv Ranjan Kumar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | | | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
6
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
7
|
Pavelescu LA, Enache RM, Roşu OA, Profir M, Creţoiu SM, Gaspar BS. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int J Mol Sci 2024; 25:9659. [PMID: 39273605 PMCID: PMC11395316 DOI: 10.3390/ijms25179659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
8
|
Li B, Su J, Liu K, Hu C. Deep learning radiomics model based on PET/CT predicts PD-L1 expression in non-small cell lung cancer. Eur J Radiol Open 2024; 12:100549. [PMID: 38304572 PMCID: PMC10831499 DOI: 10.1016/j.ejro.2024.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Purpose Programmed cell death protein-1 ligand (PD-L1) is an important prognostic predictor for immunotherapy of non-small cell lung cancer (NSCLC). This study aimed to develop a non-invasive deep learning and radiomics model based on positron emission tomography and computed tomography (PET/CT) to predict PD-L1 expression in NSCLC. Methods A total of 136 patients with NSCLC between January 2021 and September 2022 were enrolled in this study. The patients were randomly divided into the training dataset and the validation dataset in a ratio of 7:3. Radiomics feature and deep learning feature were extracted from their PET/CT images. The Mann-whitney U-test, Least Absolute Shrinkage and Selection Operator algorithm and Spearman correlation analysis were used to select the top significant features. Then we developed a radiomics model, a deep learning model, and a fusion model based on the selected features. The performance of three models were compared by the area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. Results Of the patients, 42 patients were PD-L1 negative and 94 patients were PD-L1 positive. A total of 2446 radiomics features and 4096 deep learning features were extracted per patient. In the training dataset, the fusion model achieved a highest AUC (0.954, 95% confident internal [CI]: 0.890-0.986) compared with the radiomics model (0.829, 95%CI: 0.738-0.898) and the deep learning model (0.935, 95%CI: 0.865-0.975). In the validation dataset, the AUC of the fusion model (0.910, 95% CI: 0.779-0.977) was also higher than that of the radiomics model (0.785, 95% CI: 0.628-0.897) and the deep learning model (0.867, 95% CI: 0.724-0.952). Conclusion The PET/CT-based deep learning radiomics model can predict the PD-L1 expression accurately in NSCLC patients, and provides a non-invasive tool for clinicians to select positive PD-L1 patients.
Collapse
Affiliation(s)
| | | | - Kai Liu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Chunfeng Hu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Triantafillidis JK, Konstadoulakis MM, Papalois AE. Immunotherapy of gastric cancer: Present status and future perspectives. World J Gastroenterol 2024; 30:779-793. [PMID: 38516237 PMCID: PMC10950642 DOI: 10.3748/wjg.v30.i8.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
In this editorial, we comment on the article entitled "Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023)," which was published in the recent issue of the World Journal of Gastroenterology. We focused on the results of the authors' bibliometric analysis concerning gastric cancer immunotherapy, which they analyzed in depth by compiling the relevant publications of the last 20 years. Before that, we briefly describe the most recent data concerning the epidemiological parameters of gastric cancer (GC) in different countries, attempting to give an interpretation based on the etiological factors involved in the etiopathogenesis of the neoplasm. We then briefly discuss the conservative treatment (chemotherapy) of the various forms of this malignant neoplasm. We describe the treatment of resectable tumors, locally advanced neoplasms, and unresectable (advanced) cases. Special attention is given to modern therapeutic approaches with emphasis on immunotherapy, which seems to be the future of GC treatment, especially in combination with chemotherapy. There is also a thorough analysis of the results of the study under review in terms of the number of scientific publications, the countries in which the studies were conducted, the authors, and the scientific centers of origin, as well as the clinical studies in progress. Finally, an attempt is made to draw some con-clusions and to point out possible future directions.
Collapse
Affiliation(s)
- John K Triantafillidis
- Inflammatory Bowel Disease Unit, “Metropolitan General” Hospital, Holargos 15562, Attica, Greece. Hellenic Society for Gastrointestinal Oncology, 354 Iera Odos, Chaidari 12461, Attica, Greece
| | - Manousos M Konstadoulakis
- Second Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Attica, Greece
| | - Apostolos E Papalois
- Unit of Surgical Research and Training, Second Department of Surgery, University of Athens, School of Medicine, Aretaieion Hospital, Athens 11528, Attica, Greece
| |
Collapse
|
10
|
Firoozi MR, Sadeghi-Mohammadi S, Asadi M, Shekari N, Seyed Nejad F, Alizade-Harakiyan M, Soleimani Z, Zarredar H. Durvalumab and taxane family combination therapy enhances the antitumoral effects for NSCLC: An in vitro study. Cell Biochem Funct 2024; 42:e3919. [PMID: 38269512 DOI: 10.1002/cbf.3919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Immunotherapy has lately become the most preferred cancer treatment method, and for non-small cell lung cancer (NSCLC) first-line treatment, there are many immunotherapy options. This study aimed to assess the effectiveness and toxicity of paclitaxel (PTX), docetaxel (DTX) chemotherapy, immune checkpoint inhibitor treatment (durvalumab; DVL), and their combination in NSCLC. A-549 cells were treated with DVL in combination with PTX and DTX (a quarter of the IC50 ) to investigate their anticancer effects on these cells. The MTT assay, wound healing tests, and double-staining with Annexin V/PI were used to assess the cell viability, apoptosis, and migration. The results showed that a combination of 0.35 mg/mL DVL with 6.5 μg/mL PTX and 1.75 μg/mL DTX produced a synergistic effect with CI values of 0.88, 0.37, and 0.81, respectively. Moreover, the PTX + DTX + DVL combination led to a significantly increased apoptotic rate up to 88.70 ± 3.39% in the A549 cell line compared to monotherapy (p < .001). In addition, we found that the combination therapy with these agents increased the expression level of Bax, Cas-3, p53, and Bax/Bcl-2 ratio in all experimental groups. In conclusion, the results suggest that combining anti-PD-L1 antibody therapy with chemotherapy may provide a promising approach to enhance treatment outcomes and be a potentially efficacious strategy for treating NSCLC patients. Further research and clinical investigations are needed to elucidate the underlying molecular mechanisms and validate the therapeutic potential of these compounds in vivo.
Collapse
Affiliation(s)
- Mohammad-Reza Firoozi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Najibeh Shekari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Seyed Nejad
- Department of Radiation Oncology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Alizade-Harakiyan
- Department of Radiation Oncology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Soleimani
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Meira DD, de Castro e Caetano MC, Casotti MC, Zetum ASS, Gonçalves AFM, Moreira AR, de Oliveira AH, Pesente F, Santana GM, de Almeida Duque D, Pereira GSC, de Castro GDSC, Pavan IP, Chagas JPS, Bourguignon JHB, de Oliveira JR, Barbosa KRM, Altoé LSC, Louro LS, Merigueti LP, Alves LNR, Machado MRR, Roque MLRO, Prates PS, de Paula Segáua SH, dos Santos Uchiya T, Louro TES, Daleprane VE, Guaitolini YM, Vicente CR, dos Reis Trabach RS, de Araújo BC, dos Santos EDVW, de Paula F, Lopes TJS, de Carvalho EF, Louro ID. Prognostic Factors and Markers in Non-Small Cell Lung Cancer: Recent Progress and Future Challenges. Genes (Basel) 2023; 14:1906. [PMID: 37895255 PMCID: PMC10606762 DOI: 10.3390/genes14101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Clara de Castro e Caetano
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Rodrigues Moreira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Augusto Henrique de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gierleson Santos Cangussu Pereira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Isabele Pagani Pavan
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - João Pedro Sarcinelli Chagas
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Marlon Ramos Rosado Machado
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Luísa Rodrigues Oliveira Roque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Pedro Santana Prates
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Sayuri Honorio de Paula Segáua
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Taissa dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Curso de Medicina, Vitória 29027-502, Brazil
| | - Vinicius Eduardo Daleprane
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Eldamária de Vargas Wolfgramm dos Santos
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Tiago José S. Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| |
Collapse
|
12
|
Kong F, Wang C, Zhao L, Liao D, Wang X, Sun B, Yang P, Jia Y. Traditional Chinese medicines for non-small cell lung cancer: Therapies and mechanisms. CHINESE HERBAL MEDICINES 2023; 15:509-515. [PMID: 38094015 PMCID: PMC10715886 DOI: 10.1016/j.chmed.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 10/17/2024] Open
Abstract
The most common subtype of lung cancer is non-small cell lung cancer (NSCLC), which has a poor prognosis and seriously threatens the health of human beings. The multidisciplinary comprehensive treatment model has gradually become the mainstream of NSCLC treatment. Traditional Chinese medicine (TCM) can be used effectively either as an adjunctive therapy or alone throughout the NSCLC therapy, which has a significant impact on survival, quality of life, and reduction of toxicity. Therefore, this paper reviewed the theoretical basis, the latest clinical application, and combined treatment mechanisms in order to explore the advantage stage of TCM treatment and the synergistic therapeutic mechanisms.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Linlin Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqun Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
13
|
Ocaña-Guzmán R, Osorio-Pérez D, Chavez-Galan L. Opportunistic Infections and Immune-Related Adverse Events Associated with Administering Immune Checkpoint Inhibitors: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1119. [PMID: 37631034 PMCID: PMC10458516 DOI: 10.3390/ph16081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Manipulating the immune system by blocking the immune checkpoint receptors is the basis of immunotherapy, a relevant tool in current clinical oncology. The strategy of blocking the immune checkpoints (Immune Checkpoint Inhibitors, ICI) consists of using monoclonal antibodies to inhibit the interaction between ligand and inhibitory receptors from triggering a complete activation of helper and cytotoxic T cells to fight against tumour cells. Immunotherapy has benefited patients with diverse cancers such as stomach, lung, melanoma, and head and neck squamous cell carcinoma, among others. Unfortunately, a growing number of reports have indicated that the ICI treatment also can show a dark side under specific conditions; some of the adverse effects induced by ICI are immunosuppression, opportunistic infections, and organ-specific alterations. This review discusses some immunologic aspects related to these unwanted effects.
Collapse
Affiliation(s)
- Ranferi Ocaña-Guzmán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Diego Osorio-Pérez
- Department of Medical Oncology, Hospital de la Mujer, Mexico City 11340, Mexico;
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| |
Collapse
|
14
|
Meybodi SM, Farasati Far B, Pourmolaei A, Baradarbarjastehbaf F, Safaei M, Mohammadkhani N, Samadani AA. Immune checkpoint inhibitors promising role in cancer therapy: clinical evidence and immune-related adverse events. Med Oncol 2023; 40:243. [PMID: 37453930 DOI: 10.1007/s12032-023-02114-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The advent of immune checkpoint inhibitors (ICIs) has led to noteworthy progressions in the management of diverse cancer types, as evidenced by the pioneering "ipilimumab" medication authorized by US FDA in 2011. Importantly, ICIs agents have demonstrated encouraging potential in bringing about transformation across diverse forms of cancer by selectively targeting the immune checkpoint pathways that are exploited by cancerous cells for dodging the immune system, culminating in progressive and favorable health outcomes for patients. The primary mechanism of action (MOA) of ICIs involves blocking inhibitory immune checkpoints. There are three approved categories including Programmed Death (PD-1) inhibitors (cemiplimab, nivolumab, and pembrolizumab), Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (Ipilimumab), and Programmed Death-Ligand 1 (PDL-1) (Avelumab). Although ICIs promisingly increase therapeutic response and cancer survival rates, using ICIs has demonstrated some limitations including autoimmune reactions and toxicities, requiring close monitoring. The present review endeavors to explicate the underlying principles of the MOA and pharmacokinetics of the approved ICIs in the realm of cancer induction, including an appraisal of their level of practice-based evidence.
Collapse
Affiliation(s)
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Ali Pourmolaei
- Babol Noshirvani University of Technology, Shariati Ave, Babol, Mazandaran, Iran
| | - Farid Baradarbarjastehbaf
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Pécs, Pécs, Hungary
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, 99628, Famagusta, Turkey
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
15
|
Wu Y, Yuan M, Wang C, Chen Y, Zhang Y, Zhang J. T lymphocyte cell: A pivotal player in lung cancer. Front Immunol 2023; 14:1102778. [PMID: 36776832 PMCID: PMC9911803 DOI: 10.3389/fimmu.2023.1102778] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is responsible for the leading cause of cancer-related death worldwide, which lacks effective therapies. In recent years, accumulating evidence on the understanding of the antitumor activity of the immune system has demonstrated that immunotherapy is one of the powerful alternatives in lung cancer therapy. T cells are the core of cellular immunotherapy, which are critical for tumorigenesis and the treatment of lung cancer. Based on the different expressions of surface molecules and functional points, T cells can be subdivided into regulatory T cells, T helper cells, cytotoxic T lymphocytes, and other unconventional T cells, including γδ T cells, nature killer T cells and mucosal-associated invariant T cells. Advances in our understanding of T cells' functional mechanism will lead to a number of clinical trials on the discovery and development of new treatment strategies. Thus, we summarize the biological functions and regulations of T cells on tumorigenesis, progression, metastasis, and prognosis in lung cancer. Furthermore, we discuss the current advancements of technologies and potentials of T-cell-oriented therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanfei Chen
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
16
|
Lu S, Wang B, Wang J, Guo Y, Li S, Zhao S, Yang Y, Feng Y, Xu Z. Moxibustion for the Treatment of Cancer and its Complications: Efficacies and Mechanisms. Integr Cancer Ther 2023; 22:15347354231198089. [PMID: 37746720 PMCID: PMC10521285 DOI: 10.1177/15347354231198089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer treatment remains a significant challenge for the medical community, and improved therapies are necessary to treat cancer and its associated complications. Current anticancer therapies often have significant side effects, underscoring the need for new treatment options. Moxibustion is a representative external therapy used in traditional Chinese medicine. This review examines clinical studies demonstrating moxibustion's ability to improve the efficacy of radiotherapy and chemotherapy and control tumor progression. Moxibustion can prevent and treat various complications of cancer, including cancer-related or therapy-induced gastrointestinal symptoms, myelosuppression, fatigue, pain, and postoperative lymphedema. has also been shown to enhance the quality of life for cancer patients. However, very few studies have investigated the underlying mechanisms for these effects, a topic that requires systematic elucidation. Evidence has shown that moxibustion alone or combined with chemotherapy can improve survival and inhibit tumor growth in cancer-bearing animal models. The anticancer effect of moxibustion is associated with alleviating the tumor immunosuppressive and vascular microenvironments. Additionally, the therapeutic effects of moxibustion may originate from the heat and radiation produced during the combustion process on acupoints or lesions. This evidence provides a scientific basis for the clinical application of moxibustion in anticancer treatment and reducing the side effects of cancer therapies and helps promote the precise application of moxibustion in cancer treatment.
Collapse
Affiliation(s)
- Shanshan Lu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Bin Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Jiaqi Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yi Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| | - Shanshan Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Suhong Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yuanzhen Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yiting Feng
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zhifang Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| |
Collapse
|
17
|
Zhang Z, Liu N, Sun M. Research Progress of Immunotherapy for Gastric Cancer. Technol Cancer Res Treat 2023; 22:15330338221150555. [PMID: 37042029 PMCID: PMC10102952 DOI: 10.1177/15330338221150555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/16/2022] [Accepted: 12/22/2022] [Indexed: 04/13/2023] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal tract cancers worldwide, which has high incidence and mortality rates and poor prognosis. Although multidisciplinary comprehensive therapies consisting of surgery, chemotherapy, radiotherapy, and targeted therapy have made great progress in GC treatment, a satisfactory curative effect still cannot be achieved in many circumstances, and the 5-year survival of patients with GC remains to be very low. In China, about 75% of patients with GC are diagnosed in the advanced stage and thus miss the opportunity of surgical resection. Although the conventional treatment of GC has improved the survival time of advanced patients to a certain extent, the clinical efficacy has encountered a bottleneck and cannot bring higher survival benefits to patients. With the development of immunologic and molecular biologic technologies, immunotherapy has gradually become a new essential treatment for GC, which has attracted extensive attention in the field of oncology. The US Food and Drug Administration (USFDA) and China Food and Drug Administration (CFDA) have approved a variety of immune-related drugs for the treatment of GC, and all of which have achieved good efficacy. In this review, we summarize the recent development in nonspecific enhancer therapy, adoptive immunocell therapy, tumor vaccine therapy, oncolytic virus therapy, and immune checkpoint inhibitor therapy, and their roles in the treatment of GC.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney
Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Ningning Liu
- Department of Medical Oncology and
Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney
Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| |
Collapse
|
18
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
19
|
Sun L, Li B, Wang B, Li J, Li J. Construction of a Risk Model to Predict the Prognosis and Immunotherapy of Low-Grade Glioma Ground on 7 Ferroptosis-Related Genes. Int J Gen Med 2022; 15:4697-4716. [PMID: 35548585 PMCID: PMC9085428 DOI: 10.2147/ijgm.s352773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose Ferroptosis is closely associated with tumors. The purpose of this study was to investigate the correlation between ferroptosis and prognosis of low grade glioma (LGG) via construction and verification of a risk model. Patients and Methods The data of LGG were downloaded from public databases. Through LASSO analysis of characteristic genes, a gene signature was constructed. Patients into were divided two groups based on risk score. Subsequently, survival, clinical phenotype, functional enrichment, immune cell infiltration and somatic mutation analysis were performed. In addition, whether ferroptosis-related genes (FRGs) signature can predict the patient's response to anti-PD-1/PD-L1 immunotherapy was also investigated. Results FRGs signature had strong prognostic assessment ability, and high risk score was associated with poor overall survival (OS) of LGG. The high risk score group had higher degree of immune cell infiltration, stronger stromal activity, higher immune score, and high expression of immune checkpoint. In low risk score group anti-PD-1/PD-L1 immunotherapy has significant therapeutic advantages and clinical response. Genes and frequency of somatic mutations and clinical phenotypes in the high and low risk score groups were significantly different. Conclusion A prognostic model based on 7 FRGs can be used to predict the prognosis and immunotherapeutic response of LGG.
Collapse
Affiliation(s)
- Liwei Sun
- Department of Intervention, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin Neurosurgical Institute, Tianjin, People’s Republic of China
| | - Bing Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, People’s Republic of China
| | - Bin Wang
- Department of Intervention, Tianjin Huanhu Hospital, Tianjin, People’s Republic of China
| | - Jinduo Li
- Department of Intervention, Tianjin Huanhu Hospital, Tianjin, People’s Republic of China
| | - Jing Li
- Department of Intervention, Tianjin Huanhu Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
20
|
Zhang X, Wang Y, Xiang J, Zhao P, Xun Y, Zhang S, Xu N. Association between plasma somatic copy number variations and response to immunotherapy in patients with programmed death-ligand 1-negative non-small cell lung cancer. J Int Med Res 2022; 50:3000605221093222. [PMID: 35466753 PMCID: PMC9047987 DOI: 10.1177/03000605221093222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To determine how patients with non-small cell lung cancer (NSCLC) with programmed death-ligand 1 (PD-L1)-negative and/or a low tumor mutation burden status benefit from immune checkpoint inhibitors (ICI). Methods We determined the plasma cell-free DNA profiles of 25 patients with PD-L1-negative advanced NSCLC before ICI therapy using low-coverage whole-genome sequencing. Results Elevated cell-free copy number variations (CNVs) were associated with progressive disease, with a cutoff CNV score of 0.10 evaluated with an area under the curve of 0.790 in PD-L1-negative NSCLC. CNV changes were also correlated with poor survival. Progression-free survival and overall survival were both significantly shorter in CNVhigh compared with CNVlow patients. Conclusions Cell-free CNV may be a useful peripheral blood biomarker for predicting the response to ICIs in patients with NSCLC.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yina Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xiang
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Zhao
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Xun
- Department of Translation Medicine Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shirong Zhang
- Department of Translation Medicine Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol 2022; 29:3044-3060. [PMID: 35621637 PMCID: PMC9139602 DOI: 10.3390/curroncol29050247] [Citation(s) in RCA: 544] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of immune checkpoint proteins such as PD-1/PDL-1 and CTLA-4 represents a significant breakthrough in the field of cancer immunotherapy. Therefore, humanized monoclonal antibodies, targeting these immune checkpoint proteins have been utilized successfully in patients with metastatic melanoma, renal cell carcinoma, head and neck cancers and non-small lung cancer. The US FDA has successfully approved three different categories of immune checkpoint inhibitors (ICIs) such as PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 inhibitors (Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab). Unfortunately, not all patients respond favourably to these drugs, highlighting the role of biomarkers such as Tumour mutation burden (TMB), PDL-1 expression, microbiome, hypoxia, interferon-γ, and ECM in predicting responses to ICIs-based immunotherapy. The current study aims to review the literature and updates on ICIs in cancer therapy.
Collapse
|
22
|
Li JX, Li RZ, Ma LR, Wang P, Xu DH, Huang J, Li LQ, Tang L, Xie Y, Leung ELH, Yan PY. Targeting Mutant Kirsten Rat Sarcoma Viral Oncogene Homolog in Non-Small Cell Lung Cancer: Current Difficulties, Integrative Treatments and Future Perspectives. Front Pharmacol 2022; 13:875330. [PMID: 35517800 PMCID: PMC9065471 DOI: 10.3389/fphar.2022.875330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
In the past few decades, several gene mutations, including the anaplastic lymphoma kinase, epidermal growth factor receptor, ROS proto-oncogene 1 and rat sarcoma viral oncogene homolog (RAS), have been discovered in non-small cell lung cancer (NSCLC). Kirsten rat sarcoma viral oncogene homolog (KRAS) is the isoform most frequently altered in RAS-mutated NSCLC cases. Due to the structural and biochemical characteristics of the KRAS protein, effective approaches to treating KRAS-mutant NSCLC still remain elusive. Extensive recent research on KRAS-mutant inhibitors has made a breakthrough in identifying the covalent KRASG12C inhibitor as an effective agent for the treatment of NSCLC. This review mainly concentrated on introducing new covalent KRASG12C inhibitors like sotorasib (AMG 510) and adagrasib (MRTX 849); summarizing inhibitors targeting the KRAS-related upstream and downstream effectors in RAF/MEK/ERK pathway and PI3K/AKT/mTOR pathway; exploring the efficacy of immunotherapy and certain emerging immune-related therapeutics such as adoptive cell therapy and cancer vaccines. These inhibitors are being investigated in clinical trials and have exhibited promising effects. On the other hand, naturally extracted compounds, which have exhibited safe and effective properties in treating KRAS-mutant NSCLC through suppressing the MAPK and PI3K/AKT/mTOR signaling pathways, as well as through decreasing PD-L1 expression in preclinical studies, could be expected to enter into clinical studies. Finally, in order to confront the matter of drug resistance, the ongoing clinical trials in combination treatment strategies were summarized herein.
Collapse
Affiliation(s)
- Jia-Xin Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Run-Ze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Lin-Rui Ma
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Dong-Han Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Jie Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Li-Qi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Ling Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao, China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| |
Collapse
|
23
|
Integrative Analysis of m6A RNA Methylation Regulators and the Tumor Immune Microenvironment in Non-Small-Cell Lung Cancer. DISEASE MARKERS 2022; 2022:2989200. [PMID: 35186164 PMCID: PMC8849944 DOI: 10.1155/2022/2989200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
Abstract
Background Non-small-cell lung cancer (NSCLC) is a major component of lung cancer and is significantly correlated with poor prognosis. N6-methyladenosine (m6A) RNA methylation is closely related to the occurrence, progression, and prognosis of cancer. The potential biological functions and mechanisms of m6A RNA methylation in the immune microenvironment are still unclear. Methods We assessed m6A RNA methylation modification patterns in 1326 NSCLC patient samples based on 20 m6A regulators, linking these clusters to the tumor microenvironment and immune cell infiltration. The m6Ascore was created to quantify the m6A modification patterns of individual tumors. We then assessed the value of NSCLC patients in terms of clinical prognosis and immunotherapy response. Results According to different mRNA expression levels, two different m6A clusters were identified. m6A aggregation was significantly associated with clinical prognostic characteristics, the tumor microenvironment, and immune-related biological processes. Fifteen differential genes were screened based on these two m6A clusters, and to further investigate the mechanisms of action of these differential genes, they were subjected to unsupervised clustering analysis, which classified them into four different genomic isoforms. Prognostic analysis indicated that the survival advantage of the m6A gene cluster A modification mode was significantly prominent. We continued to construct the m6Ascore, which was used as a scoring tool to evaluate tumor typing, immunity, and prognosis. Patients with a low m6Ascore showed a significant survival advantage, and the group with a low m6Ascore had a better prognosis predicted by immunotherapy. The anti-PD-1/L1 immunotherapy cohort showed that a lower m6Ascore was associated with higher efficacy of immunotherapy. Conclusions The results suggest that m6A RNA methylation regulators make an important difference in the tumor immune microenvironment of patients with NSCLC. m6A gene characterization and the construction of the m6Ascore provide us with a richer understanding of m6A RNA methylation modification patterns in NSCLC patients and help to predict clinical prognosis and immunotherapeutic response.
Collapse
|
24
|
Zheng Y, Han L, Chen Z, Li Y, Zhou B, Hu R, Chen S, Xiao H, Ma Y, Xie G, Yang J, Ding X, Shen L. PD-L1+CD8+ T cells enrichment in lung cancer exerted regulatory function and tumor-promoting tolerance. iScience 2022; 25:103785. [PMID: 35146396 PMCID: PMC8819393 DOI: 10.1016/j.isci.2022.103785] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy targeting checkpoint blockade to rescue T cells from exhaustion has become an essential therapeutic strategy in treating cancers. Till now, little is known about the PD-L1 graphic pattern and characteristics in CD8+ T cells. We combined cytometry by time-of-flight (CyTOF) and imaging mass cytometry (IMC) approaches to analyze CD8+ T cells from primary lung cancers and discovered that PD-L1+CD8+ T cells were enriched in tumor lesions, spatially localized with PD-1+CD8+ T cells. Furthermore, PD-L1+CD8+ T cells exerted regulatory functions that inhibited CD8+ T cells proliferation and cytotoxic abilities through the PD-L1/PD-1 axis. Moreover, tumor-derived IL-27 promotes PD-L1+CD8+ T cells development through STAT1/STAT3 signaling. Single-cell RNA sequencing data analysis further clarified PD-L1+CD8+ T cells elevated in the components related to downregulation of adaptive immune response. Collectively, our data demonstrated that PD-L1+CD8+ T cells enriched in lung cancer engaged in tolerogenic effects and may become a therapeutic target in lung cancer. CyTOF and IMC revealed PD-L1+CD8+ T cells were enriched in human lung cancer PD-L1+CD8+ T cells inhibited CD8+ T cells function through PD-1/PD-L1 axis IL27 promoted PD-L1+CD8 T cells development through STAT1/STAT3 signaling
Collapse
Affiliation(s)
- Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Corresponding author
| | - Li Han
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yiyang Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui Hu
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200230, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Haibo Xiao
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200230, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guohua Xie
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Junyao Yang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Corresponding author
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Xin Hua Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Corresponding author
| |
Collapse
|
25
|
Integrative Modeling of Multiomics Data for Predicting Tumor Mutation Burden in Patients with Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2698190. [PMID: 35097114 PMCID: PMC8794677 DOI: 10.1155/2022/2698190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy has been widely used in the treatment of lung cancer, and one of the most effective biomarkers for the prognosis of immunotherapy currently is tumor mutation burden (TMB). Although whole-exome sequencing (WES) could be utilized to assess TMB, several problems prevent its routine clinical application. To develop a simplified TMB prediction model, patients with lung adenocarcinoma (LUAD) in The Cancer Genome Atlas (TCGA) were randomly split into training and validation cohorts and categorized into the TMB-high (TMB-H) and TMB-low (TMB-L) groups, respectively. Based on the 610 differentially expressed genes, 50 differentially expressed miRNAs and 58 differentially methylated CpG sites between TMB-H and TMB-L patients, we constructed 4 predictive signatures and established TMB prediction model through machine learning methods that integrating the expression or methylation profiles of 7 genes, 7 miRNAs, and 6 CpG sites. The multiomics model exhibited excellent performance in predicting TMB with the area under curve (AUC) of 0.911 in the training cohort and 0.859 in the validation cohort. Besides, the significant correlation between the multiomics model score and TMB was observed. In summary, we developed a prognostic TMB prediction model by integrating multiomics data in patients with LUAD, which might facilitate the further development of quantitative real time-polymerase chain reaction- (qRT-PCR-) based TMB prediction assay.
Collapse
|
26
|
Li J, Ge S, Sang S, Hu C, Deng S. Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by 18F-FDG PET/CT Radiomics and Clinicopathological Characteristics. Front Oncol 2021; 11:789014. [PMID: 34976829 PMCID: PMC8716940 DOI: 10.3389/fonc.2021.789014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE In the present study, we aimed to evaluate the expression of programmed death-ligand 1 (PD-L1) in patients with non-small cell lung cancer (NSCLC) by radiomic features of 18F-FDG PET/CT and clinicopathological characteristics. METHODS A total 255 NSCLC patients (training cohort: n = 170; validation cohort: n = 85) were retrospectively enrolled in the present study. A total of 80 radiomic features were extracted from pretreatment 18F-FDG PET/CT images. Clinicopathologic features were compared between the two cohorts. The least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful prognostic features in the training cohort. Radiomics signature and clinicopathologic risk factors were incorporated to develop a prediction model by using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curve was used to assess the prognostic factors. RESULTS A total of 80 radiomic features were extracted in the training dataset. In the univariate analysis, the expression of PD-L1 in lung tumors was significantly correlated with the radiomic signature, histologic type, Ki-67, SUVmax, MTV, and TLG (p< 0.05, respectively). However, the expression of PD-L1 was not correlated with age, TNM stage, and history of smoking (p> 0.05). Moreover, the prediction model for PD-L1 expression level over 1% and 50% that combined the radiomic signature and clinicopathologic features resulted in an area under the curve (AUC) of 0.762 and 0.814, respectively. CONCLUSIONS A prediction model based on PET/CT images and clinicopathological characteristics provided a novel strategy for clinicians to screen the NSCLC patients who could benefit from the anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Jihui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Nuclear Medicine, Suqian First Hospital, Suqian, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Metformin inhibits human non-small cell lung cancer by regulating AMPK-CEBPB-PDL1 signaling pathway. Cancer Immunol Immunother 2021; 71:1733-1746. [PMID: 34837101 DOI: 10.1007/s00262-021-03116-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022]
Abstract
Metformin has been found to have inhibitory effects on a variety of tumors. However, its effects on non-small cell lung cancer (NSCLC) remain unclear. We demonstrated that metformin could inhibit the proliferation of A549 and H1299 cells. RNA transcriptome sequencing revealed that PDL1 was significantly downregulated in both cell types following treatment with metformin (P < 0.001). Jaspar analysis and chromatin immunoprecipitation showed that CEBPB could directly bind the promoter region of PDL1. Western blotting showed that protein expression of the isoforms CEBPB-LAP*, CEBPB-LAP, and CEBPB-LIP was significantly upregulated and the LIP/LAP ratio was increased. Gene chip analysis showed that PDL1 was significantly upregulated in A549-CEBPB-LAP cells and significantly downregulated in A549-CEBPB-LIP cells (P < 0.05) compared with CEBPB-NC cells. Dual-luciferase reporter gene assay showed that CEBPB-LAP overexpression could promote transcription of PDL1 and CEBPB-LIP overexpression could inhibit the process. Functional assays showed that the changes in CEBPB isoforms affected the function of NSCLC cells. Western blotting showed that metformin could regulate the function of NSCLC cells via AMPK-CEBPB-PDL1 signaling. Animal experiments showed that tumor growth was significantly inhibited by metformin, and atezolizumab and metformin had a synergistic effect on tumor growth. A total of 1247 patients were retrospectively analyzed, including 166 and 1081 patients in metformin and control groups, respectively. The positive rate of PDL1 was lower than that of the control group (HR = 0.338, 95% CI = 0.235-0.487; P < 0.001). In conclusion, metformin inhibited the proliferation of NSCLC cells and played an anti-tumor role in an AMPK-CEBPB-PDL1 signaling-dependent manner.
Collapse
|
28
|
Ning X, Yu Y, Shao S, Deng R, Yu J, Wang X, She X, Huang D, Shen X, Duan W, Duan J, Zhang H. The prospect of immunotherapy combined with chemotherapy in patients with advanced non-small cell lung cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1703. [PMID: 34988212 PMCID: PMC8667101 DOI: 10.21037/atm-21-4878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/04/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Based on a thorough analysis of monotherapy (pembrolizumab) and chemoimmunotherapy, the immunomodulatory effects of chemotherapy agents are emphasized. BACKGROUND The combination of chemotherapy and immune checkpoint inhibitors should and is already being regarded as a new standard strategy for the first-line treatment of advanced NSCLC. As some scientists hold, chemoimmunotherapy is the beginning of a new era of lung cancer therapy. Scientists of this field are trying to make the perfect blend, that is, to explore the perfect condition for combination therapy. However, first, we should fully understand the specific role of chemotherapy agents in combination therapy and its specific mechanism. However, our current consideration of this aspect is not comprehensive enough. Based on a full understanding of the mechanisms and roles of these partner treatments, can the perfect blend or a more appropriate combination strategy of cancer immunotherapy be established? METHODS Search and discuss the literature of pembrolizumab in the treatment of non-small cell lung cancer, as well as previous studies on the immune regulatory function of chemotherapeutic agents, to analyze the mechanism of chemotherapeutic agents in combination immunotherapy. CONCLUSION Here, we carefully analyzed the details of clinical trials of pembrolizumab in the treatment of NSCLC, and reviewed literature in this field. Therefore, we aim to put forward that chemoimmunotherapy is not a simple model of one plus another. Accordingly, we believe that the more likely role of chemotherapeutics in combination therapy with pembrolizumab is an immunomodulator. Based on this perspective, we propose that more attention and efforts should be devoted to understanding and exploring the immunomodulatory function of chemotherapy agents.
Collapse
Affiliation(s)
- Xiangu Ning
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yang Yu
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Songjun Shao
- Department of Respiratory and Critical Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rong Deng
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jie Yu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xuming Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xueke She
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xudong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Weiming Duan
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jin Duan
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| |
Collapse
|
29
|
Ma LR, Li JX, Tang L, Li RZ, Yang JS, Sun A, Leung ELH, Yan PY. Immune checkpoints and immunotherapy in non-small cell lung cancer: Novel study progression, challenges and solutions. Oncol Lett 2021; 22:787. [PMID: 34594428 PMCID: PMC8456509 DOI: 10.3892/ol.2021.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common type of cancer with the highest mortality rate worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of the total number of lung cancer cases. In the past two decades, immunotherapy has become a more promising treatment method than traditional treatments (surgery, radiotherapy and chemotherapy). Immunotherapy has been shown to improve the survival rate of patients and to have a superior effect when controlling lung cancer than traditional therapy. However, only a small number of patients can benefit from immunotherapy, and not all patients who qualify experience long-term benefits. In the clinic, the objective response rate of programmed cell death protein 1 treatment without the prior screening of patients is only 15-20%. Immunotherapy is associated with both opportunities and challenges for patients with NSCLC. The current challenges of immunotherapy include the lack of accurate biomarkers, inevitable resistance and insufficient understanding of immune checkpoints. In previous years, several methods for overcoming the challenges posed by immunotherapy have been proposed, but combination therapy is the most suitable choice. A large number of studies have shown that the combination of drugs can significantly improve their efficacy, compared with monotherapy, and that some therapeutic combinations have been approved by the Food and Drug Administration for the treatment of NSCLC. Traditional Chinese medicine (TCM) is a traditional medical practice in China that can play an important role in immunotherapy. Most agents used in TCM originate from plants, and have the advantages of low toxicity and multiple targets. In addition, TCM includes a unique class of drugs that can improve autoimmunity. Therefore, TCM may be a promising treatment method for all types of cancer.
Collapse
Affiliation(s)
- Lin-Rui Ma
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jia-Xin Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Ling Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Run-Ze Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jia-Shun Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Ao Sun
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Elaine Lai-Han Leung
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China.,Department of Integrated Chinese and Western Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, P.R. China
| | - Pei-Yu Yan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P.R. China
| |
Collapse
|
30
|
Teng M, Chen S, Yang B, Wang Y, Han R, An M, Dong Y, You H. Determining the optimal PD-1/PD-L1 inhibitors for the first-line treatment of non-small-cell lung cancer with high-level PD-L1 expression in China. Cancer Med 2021; 10:6344-6353. [PMID: 34382361 PMCID: PMC8446572 DOI: 10.1002/cam4.4191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The programmed death 1 and ligand (PD-1/PD-L1) inhibitors have significantly altered therapeutic perspectives on non-small-cell lung cancer (NSCLC). However, their efficacy and safety are unknown since direct clinical trials have not yet been performed on them. It is also necessary to determine the economics of PD-1/PD-L1 inhibitors due to their high cost. The aim was to evaluate the efficacy, safety, and cost-effectiveness of PD-1/PD-L1 inhibitor monotherapy for advanced NSCLC patients in China with high PD-L1 expression as first-line treatment. METHODS From the PubMed, Cochrane, and Web of Science databases, we retrieved survival, progression, and safety data on PD-1/PD-L1 inhibitor monotherapy for advanced NSCLC patients. A network meta-analysis (NMA) was performed to consider PD-1/PD-L1 inhibitors in efficacy and safety. A Markov model with a full-lifetime horizon was adopted. Clinical and utility data were collected through the trial. The cost per quality-adjusted life year (QALY) was as incremental cost-effectiveness ratio (ICER). Sensitivity analyses were performed. RESULTS This study included five phase III clinical trials using four drugs: nivolumab, pembrolizumab, atezolizumab, and durvalumab. The NMA demonstrated that the four drugs had similar efficacy and safety, while pembrolizumab and atezolizumab were better for than for nivolumab (hazard ratio (HR) = 0.66, 95% confidence intervals (CIs): 0.46-0.95 and HR = 0.59, 95%CI: 0.37-0.94) in progression-free survival (PFS), and the risk of a severe adverse event was higher for atezolizumab than for nivolumab and pembrolizumab. Compared with nivolumab, durvalumab, pembrolizumab, and atezolizumab had QALY of 0.19, 0.38, and 0.53, respectively, which induced ICERs of $ 197,028.8/QALY, $ 111,859.0/QALY, and $ 76,182.3/QALY, respectively. CONCLUSION The efficacy and safety are similar among types of PD-1/PD-L1-inhibitor monotherapy. The cost-effectiveness of nivolumab appears optimal, but the other PD-1/PD-L1 inhibitors are not as cost-effective for the first-line treatment of advanced NSCLC in China.
Collapse
Affiliation(s)
- Meng‐Meng Teng
- Department of PharmacyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Si‐Ying Chen
- Department of PharmacyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Bo Yang
- Department of PharmacyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yan Wang
- Department of PharmacyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Rui‐Ying Han
- Department of PharmacyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Meng‐Na An
- Department of PharmacyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ya‐lin Dong
- Department of PharmacyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Hai‐Sheng You
- Department of PharmacyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
31
|
Ma L, Jin G, Yao K, Yang Y, Chang R, Wang W, Liu J, Zhu Z. Safety and Efficacy of Anti-PD-1/PD-L1 Inhibitors Compared With Docetaxel for NSCLC: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:699892. [PMID: 34456725 PMCID: PMC8397376 DOI: 10.3389/fphar.2021.699892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: To evaluate the efficacy and safety of anti-PD-1/PD-L1 Inhibitors versus docetaxel for non-small cell lung cancer by meta-analysis. Methods: Randomized controlled trials (RCTs) about anti-PD-1/PD-L1 Inhibitors versus docetaxel on the treatment of NSCLC were searched in CNKI, WF, VIP, PubMed, EMBASE, Cochrane Library, and Web of Science databases. Two reviewers independently screened literature, extracted data and evaluated the risk of bias of eligible studies. Meta-analysis was performed by RevMan5.3 software. Results: Compared with the use of docetaxel chemotherapy for NSCLC, the overall survival and progression-free survival of the anti-PD-1/PD-L1 Inhibitors regimen are better [overall survival: (HR= 0.73, 95%CI:0.69∼0.77, P<0.00001], progression-free survival: (HR= 0.89, 95%CI:0.83∼0.94, P<0.00001]), and lower incidence of treatment-related grade 3 or higher adverse events ([OR=0.20, 95% CI: 0.13∼0.31, P<0.00001]). Conclusion: Compared with the docetaxel chemotherapy regimen, the anti-PD-1/PD-L1 Inhibitors has certain advantages in terms of efficacy and safety. The results still need to be confirmed by a multi-center, large sample, and high-quality research.
Collapse
Affiliation(s)
- Long Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Gang Jin
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Keying Yao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Yang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Ruitong Chang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Wenhao Wang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Jiawei Liu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Zijiang Zhu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
32
|
Zhu LM, Shi HX, Sugimoto M, Bandow K, Sakagami H, Amano S, Deng HB, Ye QY, Gai Y, Xin XL, Xu ZY. Feiyanning Formula Induces Apoptosis of Lung Adenocarcinoma Cells by Activating the Mitochondrial Pathway. Front Oncol 2021; 11:690878. [PMID: 34277435 PMCID: PMC8284078 DOI: 10.3389/fonc.2021.690878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Feiyanning formula (FYN) is a traditional Chinese medicine (TCM) prescription used for more than 20 years in the treatment of lung cancer. FYN is composed of Astragalus membranaceus, Polygonatum sibiricum, Atractylodes macrocephala, Cornus officinalis, Paris polyphylla, and Polistes olivaceous, etc. All of them have been proved to have anti-tumor effect. In this study, we used the TCM network pharmacological analysis to perform the collection of compound and disease target, the prediction of compound target and biological signal and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. It was found that the activation of mitochondrial pathway might be the molecular mechanism of the anti-lung cancer effect of FYN. The experimental results showed that FYN had an inhibitory effect on the growth of lung cancer cells in a dose-dependent and time-dependent manner. Moreover, FYN induced G2/M cell cycle arrest and apoptotic cell death as early as 6 h after treatment. In addition, FYN significantly induced mitochondrial membrane depolarization and increased calreticulin expression. Metabolomics analysis showed the increase of ATP utilization (assessed by a significant increase of the AMP/ATP and ADP/ATP ratio, necessary for apoptosis induction) and decrease of polyamines (that reflects growth potential). Taken together, our study suggested that FYN induced apoptosis of lung adenocarcinoma cells by promoting metabolism and changing the mitochondrial membrane potential, further supporting the validity of network pharmacological prediction.
Collapse
Affiliation(s)
- Li-Min Zhu
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Xia Shi
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, Shinjuku, Japan
| | - Kenjiro Bandow
- Division of Biochemistry, Meikai University School of Dentistry, Saitama, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Shigeru Amano
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Hai-Bin Deng
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing-Yu Ye
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Gai
- Department of Oncology, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Li Xin
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Ye Xu
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Choi Y, Kwon O, Choi CM, Jeong MK. A Pilot Study of Whether the Cold-Heat Syndrome Type is Associated with Treatment Response and Immune Status in Patients with Non-Small Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9920469. [PMID: 34239594 PMCID: PMC8241512 DOI: 10.1155/2021/9920469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
The cold-heat syndrome type (ZHENG) is one of the essential elements of syndrome differentiation in East Asian Medicine. This pilot study aimed to explore the characteristics of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs) based on the cold-heat syndrome type. Twenty NSCLC patients treated with ICI monotherapy were included in the study and completed the cold-heat syndrome differentiation questionnaire. Demographic and clinical characteristics of the included patients were obtained through electronic medical records. Additionally, blood samples of 10 patients were analyzed with cytokine level and immune profiling. Patients were divided into two groups of cold type (n = 9) and non-cold type (n = 11), according to the cold symptoms questionnaire's cutoff point. No significant difference between the two groups was observed in clinical response to ICIs (p=0.668). Progression-free survival (PFS) seemed to be longer in patients with non-cold type than cold type (p=0.332). In patients with adenocarcinoma, the non-cold type showed longer PFS than the cold type (p=0.036). Also, there were more patients with PD-L1 negative in the cold type compared to the non-cold type (p=0.050). In immune profiling, the proportion of effector memory CD8 T-cells was higher in patients with cold type than with non-cold type (p=0.015), and the proportion of terminal effector CD8 T-cells was lower in patients with cold type than with non-cold type (p=0.005). This pilot study has shown the potential for differences in prognosis and immune status between patients with cold and non-cold types. Hopefully, it provides essential information and insight into NSCLC patients' characteristics from the perspective of syndrome differentiation. Further large-scale observational studies and intervention studies are required.
Collapse
Affiliation(s)
- Yujin Choi
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ojin Kwon
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Mi-Kyung Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
34
|
Sajjadi E, Venetis K, Scatena C, Fusco N. Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 2020; 14:1150. [PMID: 33574895 PMCID: PMC7864694 DOI: 10.3332/ecancer.2020.1150] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Precision immunotherapy is a crucial approach to improve the efficacy of anti-cancer treatments, particularly in the metastatic setting. In this respect, accurate patient selection takes advantage of the multidimensional integration of patients' clinical information and tumour-specific biomarkers status. Among these biomarkers, programmed death-ligand 1, tumour-infiltrating lymphocytes, microsatellite instability, mismatch repair and tumour mutational burden have been widely investigated. However, novel tumour-specific biomarkers and testing methods will further improve patients' outcomes. Here, we discuss the currently available strategies for the implementation of a precision immunotherapy approach in the clinical management of metastatic solid tumours and highlight future perspectives.
Collapse
Affiliation(s)
- Elham Sajjadi
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Konstantinos Venetis
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, 56126 Pisa, Italy
| | - Nicola Fusco
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
35
|
Hochmair MJ. Resistance to chemoimmunotherapy in non-small-cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:445-453. [PMID: 35582443 PMCID: PMC8992480 DOI: 10.20517/cdr.2020.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/14/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Recent clinical trials evaluating the combination of chemotherapy with immune checkpoint inhibition for the primary treatment of lung cancer showed increased progression-free and overall survival compared with chemotherapy alone. However, the combination of these two modalities is less than additive and the mechanisms of resistance to this therapeutic intervention are discussed here. So far, the conventional biomarkers for immunotherapy, namely programmed death-ligand 1 expression or tumor mutational burden are poor predictors of the efficacy of immunochemotherapy, and the optimal sequence of chemotherapy and immunotherapy has yet to be defined.
Collapse
|
36
|
Zhang JY, Yan YY, Li JJ, Adhikari R, Fu LW. PD-1/PD-L1 Based Combinational Cancer Therapy: Icing on the Cake. Front Pharmacol 2020; 11:722. [PMID: 32528284 PMCID: PMC7247431 DOI: 10.3389/fphar.2020.00722] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer has been a major global health problem due to its high morbidity and mortality. While many chemotherapy agents have been studied and applied in clinical trials or in clinic, their application is limited due to its toxic side effects and poor tolerability. Monoclonal antibodies specific to the PD-1 and PD-L1 immune checkpoints have been approved for the treatment of various tumors. However, the application of PD-1/PD-L1 inhibitors remains suboptimal and thus another strategy comes in to our sight involving the combination of checkpoint inhibitors with other agents, enhancing the therapeutic efficacy. Various novel promising approaches are now in clinical trials, just as icing on the cake. This review summarizes relevant investigations on combinatorial therapeutics based on PD-1/PD-L1 inhibition.
Collapse
Affiliation(s)
- Jian-Ye Zhang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Yan
- Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Medical College, Shanxi Datong University, Datong, China
| | - Jia-Jun Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur, Nepal
| | - Li-Wu Fu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Zhao Z, Bai H, Duan J, Wang J. Recommendations of individualized medical treatment and common adverse events management for lung cancer patients during the outbreak of COVID-19 epidemic. Thorac Cancer 2020; 11:1752-1757. [PMID: 32291968 PMCID: PMC7262202 DOI: 10.1111/1759-7714.13424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Since its outbreak in December 2019 in China, the novel coronavirus disease (COVID‐19) has rapidly spread and affected several countries. It has resulted in a difficult situation for cancer patients owing to the risks of the epidemic situation outbreak as well as cancer. Patients with cancer are more likely than the general population to contract COVID‐19 because of the systemic immunosuppressive status caused by malignant diseases or anticancer treatment. Lung cancer has the highest morbidity and mortality in China and the world. Most patients with lung cancer are smokers with poor underlying lung conditions and low immunity, thus it is vital to protect them from epidemic diseases during cancer treatment. It is necessary to provide individualized medical treatment and management of treatment‐related adverse events for patients with lung cancer based on patients' conditions and regional epidemic patterns. Key points Significant findings of the study During the outbreak of COVID‐19, taking patients' conditions and regional epidemic patterns into consideration, providing appropriate individualized treatment strategies for lung cancer patients with different stages is an urgent requirement. What this study adds Based on the characteristics of lung cancer, this article aims to provide recommendations and suggestions of individualized treatment strategies and management of common adverse events for patients with lung cancer during the epidemic period of COVID‐19.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|