1
|
Saenz-Pipaon G, Jover E, van der Bent ML, Orbe J, Rodriguez JA, Fernández-Celis A, Quax PHA, Paramo JA, López-Andrés N, Martín-Ventura JL, Nossent AY, Roncal C. Role of LCN2 in a murine model of hindlimb ischemia and in peripheral artery disease patients, and its potential regulation by miR-138-5P. Atherosclerosis 2023; 385:117343. [PMID: 37871404 DOI: 10.1016/j.atherosclerosis.2023.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND AIMS Peripheral arterial disease (PAD) is a leading cause of morbimortality worldwide. Lipocalin-2 (LCN2) has been associated with higher risk of amputation or mortality in PAD and might be involved in muscle regeneration. Our aim is to unravel the role of LCN2 in skeletal muscle repair and PAD. METHODS AND RESULTS WT and Lcn2-/- mice underwent hindlimb ischemia. Blood and crural muscles were analyzed at the inflammatory and regenerative phases. At day 2, Lcn2-/- male mice, but not females, showed increased blood and soleus muscle neutrophils, and elevated circulating pro-inflammatory monocytes (p < 0.05), while locally, total infiltrating macrophages were reduced (p < 0.05). Moreover, Lcn2-/- soleus displayed an elevation of Cxcl1 (p < 0.001), and Cxcr2 (p < 0.01 in males), and a decrease in Ccl5 (p < 0.05). At day 15, Lcn2 deficiency delayed muscle recovery, with higher density of regenerating myocytes (p < 0.04) and arterioles (αSMA+, p < 0.025). Reverse target prediction analysis identified miR-138-5p as a potential regulator of LCN2, showing an inverse correlation with Lcn2 mRNA in skeletal muscles (rho = -0.58, p < 0.01). In vitro, miR-138-5p mimic reduced Lcn2 expression and luciferase activity in murine macrophages (p < 0.05). Finally, in human serum miR-138-5p was inversely correlated with LCN2 (p ≤ 0.001 adjusted, n = 318), and associated with PAD (Odds ratio 0.634, p = 0.02, adjusted, PAD n = 264, control n = 54). CONCLUSIONS This study suggests a possible dual role of LCN2 in acute and chronic conditions, with a probable role in restraining inflammation early after skeletal muscle ischemia, while being associated with vascular damage in PAD, and identifies miR-138-5p as one potential post-transcriptional regulator of LCN2.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Eva Jover
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - M Leontien van der Bent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Josune Orbe
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; RICORS-ICTUS, ISCIII, Madrid, Spain
| | - Jose A Rodriguez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain
| | - Amaya Fernández-Celis
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose A Paramo
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain; Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - Natalia López-Andrés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Anne Yaël Nossent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain.
| |
Collapse
|
2
|
Li X, Chang Y, Shen W, Huang G, Hu N, Lv H, Jin M. miR-138 from ADSC Exo accelerates wound healing by targeting SIRT1/PTEN pathway to promote angiogenesis and fibrosis. Cell Signal 2023; 111:110843. [PMID: 37544635 DOI: 10.1016/j.cellsig.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Xue Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yuzhen Chang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Weijun Shen
- Department of Anesthesiology, Tenth People's Hospital of Tongji University, No 301 Middle Yan Chang Road, Shanghai 200072, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Nan Hu
- Department of Vascular Surgery, The Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, 21000, Jiangsu, China.
| | - Haihong Lv
- Department of endocrinology, The First Hospital of Lanzhou University, #1 Donggang West Road Road, Lanzhou, 730000, Gansu, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
3
|
Jung BK, Ryu KY. Lipocalin-2: a therapeutic target to overcome neurodegenerative diseases by regulating reactive astrogliosis. Exp Mol Med 2023; 55:2138-2146. [PMID: 37779143 PMCID: PMC10618504 DOI: 10.1038/s12276-023-01098-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Glial cell activation precedes neuronal cell death during brain aging and the progression of neurodegenerative diseases. Under neuroinflammatory stress conditions, lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin or 24p3, is produced and secreted by activated microglia and reactive astrocytes. Lcn2 expression levels are known to be increased in various cells, including reactive astrocytes, through the activation of the NF-κB signaling pathway. In the central nervous system, as LCN2 exerts neurotoxicity when secreted from reactive astrocytes, many researchers have attempted to identify various strategies to inhibit LCN2 production, secretion, and function to minimize neuroinflammation and neuronal cell death. These strategies include regulation at the transcriptional, posttranscriptional, and posttranslational levels, as well as blocking its functions using neutralizing antibodies or antagonists of its receptor. The suppression of NF-κB signaling is a strategy to inhibit LCN2 production, but it may also affect other cellular activities, raising questions about its effectiveness and feasibility. Recently, LCN2 was found to be a target of the autophagy‒lysosome pathway. Therefore, autophagy activation may be a promising therapeutic strategy to reduce the levels of secreted LCN2 and overcome neurodegenerative diseases. In this review, we focused on research progress on astrocyte-derived LCN2 in the central nervous system.
Collapse
Affiliation(s)
- Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
4
|
Yamaguchi N, Sawano T, Nakatani J, Nakano-Doi A, Nakagomi T, Matsuyama T, Tanaka H. Voluntary running exercise modifies astrocytic population and features in the peri-infarct cortex. IBRO Neurosci Rep 2023; 14:253-263. [PMID: 36880055 PMCID: PMC9984846 DOI: 10.1016/j.ibneur.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Rehabilitative exercise following a brain stroke has beneficial effects on the morphological plasticity of neurons. Particularly, voluntary running exercise after focal cerebral ischemia promotes functional recovery and ameliorates ischemia-induced dendritic spine loss in the peri-infarct motor cortex layer 5. Moreover, neuronal morphology is affected by changes in the perineuronal environment. Glial cells, whose phenotypes may be altered by exercise, are known to play a pivotal role in the formation of this perineuronal environment. Herein, we investigated the effects of voluntary running exercise on glial cells after middle cerebral artery occlusion. Voluntary running exercise increased the population of glial fibrillary acidic protein-positive astrocytes born between post-operative days (POD) 0 and 3 on POD15 in the peri-infarct cortex. After exercise, transcriptomic analysis of post-ischemic astrocytes revealed 10 upregulated and 70 downregulated genes. Furthermore, gene ontology analysis showed that the 70 downregulated genes were significantly associated with neuronal morphology. In addition, exercise reduced the number of astrocytes expressing lipocalin 2, a regulator of dendritic spine density, on POD15. Our results suggest that exercise modifies the composition of astrocytic population and their phenotype.
Collapse
Key Words
- ACSA-2, astrocyte cell surface antigen-2
- Astrocytes
- BrdU, 5-bromo-2′-deoxyuridine
- Cerebral ischemia
- DEG, differentially expressed gene
- EDTA, ethylenediaminetetraacetic acid
- FBS, fetal bovine serum
- GFAP, glial fibrillary acidic protein
- GO, gene ontology
- GST-π, glutathione S-transferase-π
- Gstp1, glutathione S-transferase, pi 1
- Gstp2, glutathione S-transferase, pi 2
- Iba1, ionized calcium-binding adapter molecule 1
- Ig, immunoglobulin
- Lcn2, lipocalin 2
- MCAO, middle cerebral artery occlusion
- PBS, phosphate-buffered saline
- PFA, 4% paraformaldehyde
- POD, post-operative day
- Proliferation
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick 3’-end labeling
- Transcriptome
- Vegfa, vascular endothelial growth factor A
- Voluntary running exercise
- Vtn, vitronectin
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Natsumi Yamaguchi
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan.,Ritsumeikan Advanced Research Academy, 1 Nishinokyo-Suzaku-cho, Nakagyo-ku, Kyoto 604-8520, Japan
| | - Toshinori Sawano
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Jin Nakatani
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Hidekazu Tanaka
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
5
|
Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomed Pharmacother 2021; 142:112002. [PMID: 34463264 DOI: 10.1016/j.biopha.2021.112002] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022] Open
Abstract
Lipocalin-2 (LCN-2) is a novel, 198 amino acid adipocytokine also referred to as neutrophil gelatinase-associated lipocalin (NGAL). LCN-2 is a circulatory protein responsible for the transportation of small and hydrophobic molecules (steroid, free fatty acids, prostaglandins and hormones) to target organs after binding to megalin/glycoprotein and GP330 SLC22A17 or 24p3R LCN-2 receptors. LCN-2 has been used as a biomarker for acute and chronic renal injury. It is present in a large variety of cells including neutrophil, hepatocytes, lung, bone marrow, adipose tissue, macrophages, thymus, non-neoplastic breast duct, prostate, and renal cells. Different functions have been associated with LCN-2. These functions include antibacterial, anti-inflammatory, and protection against cell and tissue stress. Moreover, LCN-2 can increase the pool of matrix metalloproteinase 9 in human neutrophil granulocytes. Other reported functions of LCN-2 include its ability to destroy the extracellular matrix, which could enable cancer progression and spread of metastasis. Recent reports show that the tissue level of LCN-2 is increased in metabolic disorders such as obesity and type 2 diabetes, suggesting an association between LCN-2 and insulin sensitivity and glucose homeostasis. The precise role of LCN-2 in the modulation of insulin sensitivity, glucose and lipid metabolism is still unclear. This review explores the structure of LCN-2, tissue distribution, and its interaction with important metabolic pathways.
Collapse
|
6
|
Ionescu RF, Cretoiu SM. MicroRNAs as monitoring markers for right-sided heart failure and congestive hepatopathy. J Med Life 2021; 14:142-147. [PMID: 34104236 PMCID: PMC8169151 DOI: 10.25122/jml-2021-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The last decades showed a worrying increase in the evolution of cardiovascular diseases towards different stages of heart failure (HF), as a stigma of the western lifestyle. MicroRNAs (miRNAs), non-coding RNAs, which are approximately 22-nucleotide long, were shown to regulate gene expression at the post-transcriptional level and play a role in the pathogenesis and progression of HF. miRNAs research is of high interest nowadays, as these molecules display mechanisms of action that can influence the course of evolution of common chronic diseases, including HF. The potential of post-transcriptional regulation by miRNAs concerning the diagnosis, management, and therapy for HF represents a new promising approach in the accurate assessment of cardiovascular diseases. This review aims to assess the current knowledge of miRNAs in cardiovascular diseases, especially right-sided heart failure and hepatomegaly. Moreover, attention is focused on their role as potential molecular biomarkers and more promising aspects involving miRNAs as future therapeutic targets in the pathophysiology of HF.
Collapse
Affiliation(s)
- Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency University Hospital Dr. Carol Davila, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
7
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
8
|
Wang H, Xu Y, Jin M, Li H, Li S. miR-383 reduces keratinocyte proliferation and induces the apoptosis in psoriasis via disruption of LCN2-dependent JAK/STAT pathway activation. Int Immunopharmacol 2021; 96:107587. [PMID: 33819732 DOI: 10.1016/j.intimp.2021.107587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
Psoriasis is a chronic and relapsing disorder with considerable negative effects on patients' quality of life. The finer details associated with the molecular mechanism of psoriasis and its pathogenesis remain somewhat elusive. Extensive studies have highlighted the crucial role of microRNAs (miRNAs) in the development of psoriasis. Hence, the current study aimed to investigate the effect of miR-383 on a psoriasis rat model and elucidate the underlying molecular mechanism. The rat psoriasis model was established via imiquimod (IMQ) induction followed by verification of miR-383 and LCN2 expression in the skin tissues of the models. ELISA was conducted to determine the secretion of inflammatory factors. Keratinocyte proliferation and apoptosis was evaluated by MTT assay and flow cytometric analysis. Down-regulation of miR-383 and up-regulation of LCN2 were detected in the psoriasis rat model. Our data indicated that miR-383 targeted LCN2 by binding to its 3'UTR and inhibited JAK/STAT pathway activation. Notably, miR-383 overexpression or LCN2 knockdown attenuated psoriasis-like symptoms, suppressed inflammatory response, reduced the expression of JAK3 and STAT3, ceased keratinocyte proliferation, and promoted the apoptosis. The findings of our study suggest that miR-383 may inhibit LCN2 and inactivate the JAK/STAT pathway, suppressing the progression of psoriasis in a rat model. This study provided novel insights into the pathogenesis of psoriasis and offered potential targets for psoriasis treatment.
Collapse
Affiliation(s)
- Hong Wang
- Department of Dermatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China.
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Meishan Jin
- Department of Pathology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China
| | - Hongxia Li
- Department of Dermatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China
| | - Shanshan Li
- Department of Dermatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China.
| |
Collapse
|
9
|
He S, Yin X, Wu F, Zeng S, Gao F, Xin M, Wang J, Chen J, Zhang L, Zhang J. Hyperoside protects cardiomyocytes against hypoxia‑induced injury via upregulation of microRNA‑138. Mol Med Rep 2021; 23:286. [PMID: 33649812 PMCID: PMC7905326 DOI: 10.3892/mmr.2021.11925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
Following hypoxia, cardiomyocytes are susceptible to damage, against which microRNA (miR)‑138 may act protectively. Hyperoside (Hyp) is a Chinese herbal medicine with multiple biological functions that serve an important role in cardiovascular disease. The aim of the present study was to investigate the role of Hyp in hypoxic cardiomyocytes and its effect on miR‑138. A hypoxia model was established in both H9C2 cells and C57BL/6 mice, which were stimulated by Hyp. The expression levels of miR‑138 were increased in the hypoxic myocardium in the presence of Hyp at concentrations of >50 µmol/l in vivo and >50 mg/kg in vitro. Using Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine assays, it was observed that Hyp improved hypoxia‑induced impairment of cell proliferation. Cell apoptosis was evaluated by flow cytometry and a TUNEL assay. The number of apoptotic cells in the Hyp group was lower than that in the control group. As markers of myocardial injury, the levels of lactate dehydrogenase, creatine kinase‑myocardial band isoenzyme and malondialdehyde were decreased in the Hyp group compared with the control group, whereas the levels of superoxide dismutase were increased. A marked decrease in the levels of cleaved caspase‑3 and cleaved poly(ADP) ribose polymerase and a marked increase in expression levels of Bcl‑2 were observed in the presence of Hyp. However, miR‑138 inhibition by antagomir attenuated the protective effects of Hyp. Furthermore, Hyp treatment was associated with marked downregulation of mixed lineage kinase 3 and lipocalin‑2, but not pyruvate dehydrogenase kinase 1, in hypoxic H9C2 cells. These findings demonstrated that Hyp may be beneficial for myocardial cell survival and may alleviate hypoxic injury via upregulation of miR‑138, thereby representing a promising potential strategy for clinical cardioprotection.
Collapse
Affiliation(s)
- Siyi He
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoqiang Yin
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
- Department of Graduate Student, North Sichuan Medical College, Nanchong, Sichuan 637199, P.R. China
| | - Fan Wu
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Shaojie Zeng
- Medical Team, Unit 95437, People's Liberation Army, Nanchong, Sichuan 637100, P.R. China
| | - Feng Gao
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Mei Xin
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jian Wang
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jie Chen
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Le Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jinbao Zhang
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
10
|
Chang Y, Xing L, Zhou W, Zhang W. Up-regulating microRNA-138-5p enhances the protective role of dexmedetomidine on myocardial ischemia-reperfusion injury mice via down-regulating Ltb4r1. Cell Cycle 2021; 20:445-458. [PMID: 33509010 DOI: 10.1080/15384101.2021.1878330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both microRNAs (miRs) and dexmedetomidine (Dex) have been verified to exert functional roles in myocardial ischemia-reperfusion injury (MI/RI). Given that, we concretely aim to discuss the effects of Dex and miR-138-5p on ventricular remodeling in mice affected by MI/RI via mediating leukotriene B4 receptor 1 (Ltb4r1). MI/RI mouse model was established by ligating left anterior descending coronary artery. The cardiac function, inflammatory factors and collagen fiber contents were detected after Dex/miR-138-5p/Ltb4r1 treatment. MiR-138-5p and Ltb4r1 expression in myocardial tissues were tested by RT-qPCR and western blot assay. The target relationship between miR-138-5p and Ltb4r1 was verified by online software prediction and luciferase activity assay. MiR-138-5p was down-regulated while Ltb4r1 was up-regulated in myocardial tissues of MI/RI mice. Dex improved cardiac function, alleviated myocardial damage, reduced inflammatory factor contents, collagen fibers, and Ltb4r1 expression while increased miR-138-5p expression in myocardial tissues of mice with MI/RI. Restored miR-138-5p and depleted Ltb4r1 improved cardiac function, abated inflammatory factor contents, myocardial damage, and content of collagen fibers in MI/RI mice. MiR-138-5p directly targeted Ltb4r1. The work evidence that Dex could ameliorate ventricular remodeling of MI/RI mice by up-regulating miR-138-3p and down-regulating Ltb4r1. Thus, Dex and miR-138-3p/Ltb4r1 may serve as potential targets for the ventricular remodeling of MI/RI.
Collapse
Affiliation(s)
- Yanzi Chang
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Lika Xing
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Wenjuan Zhou
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, Chief Physician, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| |
Collapse
|
11
|
Li Q, Gao J, Pang X, Chen A, Wang Y. Molecular Mechanisms of Action of Emodin: As an Anti-Cardiovascular Disease Drug. Front Pharmacol 2020; 11:559607. [PMID: 32973538 PMCID: PMC7481471 DOI: 10.3389/fphar.2020.559607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Emodin is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found to be an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and it is a pleiotropic molecule with diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Moreover, emodin has also been shown to have a wide activity of anti-cardiovascular diseases. It is mainly involved in multiple molecular targets such as inflammatory, anti-apoptosis, anti-hypertrophy, anti-fibrosis, anti-oxidative damage, abnormal, and excessive proliferation of smooth muscle cells in cardiovascular diseases. As a new type of cardiovascular disease treatment drug, emodin has broad application prospects. However, a large amount of evidences detailing the effect of emodin on many signaling pathways and cellular functions in cardiovascular disease, the overall understanding of its mechanisms of action remains elusive. In addition, by describing the evidence of the effects of emodin in detail, the toxicity and poor oral bioavailability of mice have been continuously discovered. This review aims to describe a timely overview of emodin related to the treatment of cardiovascular disease. The emphasis is to summarize the pharmacological effects of emodin as an anti-cardiovascular drug, as well as the targets and its potential mechanisms. Furthermore, the treatment of emodin compared with conventional cardiovascular drugs or target inhibitors, the toxicity, pharmacokinetics and derivatives of emodin were discussed.
Collapse
Affiliation(s)
- Qianqian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohan Pang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Pharmaceutical Informatics Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Cheng J, Chen J, Zhao Y, Yang J, Xue K, Wang Z. MicroRNA-761 suppresses remodeling of nasal mucosa and epithelial-mesenchymal transition in mice with chronic rhinosinusitis through LCN2. Stem Cell Res Ther 2020; 11:151. [PMID: 32272958 PMCID: PMC7147028 DOI: 10.1186/s13287-020-01598-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/15/2023] Open
Abstract
Background Chronic rhinosinusitis (CRS) is characterized by persistent symptomatic inflammation of the nasal passage and sinus mucosa. Various microRNAs (miRs) have been implicated in CRS. Hence, the current study was conducted to explore the effect of microRNA-761 (miR-761) on remodeling of nasal mucosa and epithelial–mesenchymal transition (EMT). Methods Bioinformatics analysis was initially performed to predict the differentially expressed genes (DEGs) associated with CRS. Gene targeting relationship between miR-761 and lipocalin 2 (LCN2) was analyzed by bioinformatics analysis and verified using dual-luciferase reporter gene assay. Histopathological analyses of the nasal mucosa tissues were conducted via hematoxylin–eosin (HE) and alcian blue (AB)-periodic acid Schiff (PAS) staining. ELISA was employed to determine the IL-8 and MMP-9 levels. To define downstream pathway of miR-761, levels of proteins related to LCN2/Twist1 signaling pathway were assessed. Additionally, the effects of miR-761 on EMT, proliferation, and apoptosis were determined. Results LCN2 was highly expressed in CRS. LCN2 was a target of miR-761. miR-761 overexpression or LCN2 silencing decreased IL-8 and MMP-9 levels and morphological changes in nasal epithelial tissue from CRS mice. Overexpressed miR-761 or silenced LCN2 decreased the expression of LCN2 and Twist1, indicating LCN2/Twist1 signaling pathway was inactivated. Moreover, miR-761 overexpression or LCN2 silencing reduced the expression of N-cadherin and vimentin, while increased that of E-cadherin, suggesting inhibition of EMT. Furthermore, miR-761 overexpression or LCN2 silencing promoted cell proliferation and inhibited cell apoptosis in CRS. Conclusion Taken together, miR-761 suppressed the remodeling of nasal mucosa through inhibition of LCN2 and the LCN2/Twist1 signaling pathway.
Collapse
Affiliation(s)
- Jinzhang Cheng
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Junjun Chen
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yin Zhao
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Jingpu Yang
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Kai Xue
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Zonggui Wang
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China.
| |
Collapse
|
13
|
Ticagrelor Enhances Release of Anti-Hypoxic Cardiac Progenitor Cell-Derived Exosomes Through Increasing Cell Proliferation In Vitro. Sci Rep 2020; 10:2494. [PMID: 32051439 PMCID: PMC7016113 DOI: 10.1038/s41598-020-59225-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the widespread clinical use of cardioprotection by long-term direct antagonism of P2Y12 receptor, underlying mechanisms are unclear. Here, we identify how release of pro-survival exosomes from human cardiac-derived mesenchymal progenitor cells (hCPCs) is regulated by clinically relevant dose of ticagrelor (1 μM), an oral selective and reversible non-thienopyridine P2Y12 inhibitor. Ticagrelor-induced enhancement of exosome levels is related to increased mitotic activity of hCPCs. We show a drug-response threshold above which the effects on hCPCs are lost due to higher dose of ticagrelor and larger adenosine levels. While it is known that pan-Aurora kinase inhibitor halts cell proliferation through dephosphorylation of histone H3 residue Ser10, we demonstrate that it also prevents ticagrelor-induced effects on release of cardiac progenitor cell-derived exosomes delivering anti-apoptotic HSP70. Indeed, sustained pre-treatment of cardiomyocytes with exosomes released from explant-derived hCPCs exposed to low-dose ticagrelor attenuated hypoxia-induced apoptosis through acute phosphorylation of ERK42/44. Our data indicate that ticagrelor can be leveraged to modulate release of anti-hypoxic exosomes from resident hCPCs.
Collapse
|
14
|
Roles of microRNAs and prospective view of competing endogenous RNAs in mycotoxicosis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108285. [DOI: 10.1016/j.mrrev.2019.108285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/07/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
|
15
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
16
|
Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 2019; 13:71. [PMID: 31485266 PMCID: PMC6714399 DOI: 10.1186/s13036-019-0193-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are implicated in the progression of ischemic stroke (IS) and bone marrow-derived mesenchymal stem cells (BMSCs)-derived exosomes play a role in IS therapy. Herein we hypothesized that the BMSCs-derived exosomes containing overexpressed miR-138-5p could protect the astrocytes following IS involved with lipocalin 2 (LCN2). Methods The differentially expressed gene related to IS was initially identified by bioinformatics analysis. miR-138-5p was predicted to regulate LCN2. The expression of miR-138-5p and LCN2 was altered in the oxygen-glucose deprivation (OGD)-induced astrocytes. Furthermore, the cell behaviors and inflammatory responses were evaluated both in astrocytes alone and astrocytes co-cultured with exosomes derived from BMSCs overexpressing miR-138-5p to explore the involvement of miR-138-5p and LCN2 in IS. Besides, middle cerebral artery occlusion (MCAO) mouse model was established to explore the effect of BMSCs-derived exosomal miR-138-5p in IS in vivo. Results LCN2 was highly expressed in IS. Besides, LCN2 was a target gene of miR-138-5p. BMSCs-derived exosomes could be endocytosed by astrocytes via co-culture. Overexpression of miR-138-5p promoted the proliferation and inhibited apoptosis of astrocytes injured by OGD, accompanied by the reduced expression of inflammatory factors, which was achieved by down-regulating LCN2. More importantly, BMSCs delivered miR-138-5p to the astrocytes via exosomes and BMSCs-derived exosomal miR-138-5p alleviated neuron injury in IS mice. Conclusion BMSCs-derived exosomal miR-138-5p reduces neurological impairment by promoting proliferation and inhibiting inflammatory responses of astrocytes following IS by targeting LCN2, which may provide a novel target for IS treatment.
Collapse
Affiliation(s)
- Yiming Deng
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Duanduan Chen
- 4School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Feng Gao
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Hong Lv
- 5Departments of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 People's Republic of China
| | - Guojun Zhang
- 5Departments of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 People's Republic of China
| | - Xuan Sun
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Lian Liu
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Dapeng Mo
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Ning Ma
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Ligang Song
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Xiaochuan Huo
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Tianyi Yan
- 4School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Jingbo Zhang
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Zhongrong Miao
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| |
Collapse
|
17
|
Down-regulation of microRNA-138 improves immunologic function via negatively targeting p53 by regulating liver macrophage in mice with acute liver failure. Biosci Rep 2019; 39:BSR20190763. [PMID: 31152110 PMCID: PMC6639459 DOI: 10.1042/bsr20190763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) have been frequently identified as key mediators in almost all developmental and pathological processes, including those in the liver. The present study was conducted with aims of investigating the role of microRNA-138 (miR-138) in acute liver failure (ALF) via a mechanism involving p53 and liver macrophage in a mouse model. The ALF mouse model was established using C57BL/6 male mice via tail vein injection of Concanamycin A (Con A) solution. The relationship between miR-138 and p53 was tested. The mononuclear macrophages were infected with mimic and inhibitor of miR-138 in order to identify roles of miR-138 in p53 and levels of inflammatory factors. Reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blot analysis and ELISA were conducted in order to determine the levels of miR-138, inflammatory factors, and p53 during ALF. The results showed an increase in the levels of miR-138 and inflammatory factors in ALF mice induced by the ConA as time progressed and reached the peak at 12 h following treatment with ConA, while it was on the contrary when it came to the level of p53. Dual-luciferase reporter gene assay revealed that p53 was a target gene of miR-138. Furthermore, the results from the in vitro transfection experiments in primary macrophages of ALF mouse showed that miR-138 down-regulated p53 and enhanced levels of inflammatory factors; thus, improving immune function in ALF mice. In conclusion, by negatively targeting p53, the decreased miR-138 improves immunologic function by regulating liver macrophage in mouse models of ALF.
Collapse
|
18
|
Li Y, Li J, Zhang P, Jiang X, Pan Z, Zheng W, Lin H. LncRNA-LET relieves hypoxia-induced injury in H9c2 cells through regulation of miR-138. J Cell Biochem 2019; 121:259-268. [PMID: 31222827 DOI: 10.1002/jcb.29146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Ischemic heart disease (IHD) is a common cardiovascular disease, occurs when coronary artery blood circularity cannot match with the heart's need. The present work attempted to study the effects of long noncoding RNA (lncRNA) low expression in tumor (LET) on the progression of IHD. H9c2 cells were injured by hypoxia to mimic a cell model of IHD. The effects of lncRNA-LET on hypoxia-injured H9c2 cells were tested by using cell counting kit-8 assay, flow cytometry, and Western blot analysis. MicroRNA-138 (miR-138) expression was tested by a quantitative real-time polymerase chain reaction, and the expression of c-Jun N-terminal kinase (JNK) and p38MAPK (p38-mitogen-activated protein kinase) proteins was measured by Western blot analysis. We found that hypoxia exposure significantly repressed the viability of H9c2 cells, and induced apoptosis. Meanwhile, phosphorylation of JNK and p38MAPK was enhanced by hypoxia. The expression of lncRNA-LET was repressed by hypoxia. Overexpression of lncRNA-LET attenuated hypoxia-induced injury in H9c2 cells. Moreover, miR-138 was a downstream effector of lncRNA-LET, that miR-138 was highly expressed in lncRNA-LET-overexpressed cell. The cardioprotective effects of lncRNA-LET were abolished when miR-138 was silenced. In conclusion, this study revealed the cardioprotective function of lncRNA-LET. lncRNA-LET conferred its cardioprotective effects possibly via upregulation of miR-138 and thus repressing the JNK and p38MAPK pathways.
Collapse
Affiliation(s)
- Yugeng Li
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Jianwei Li
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Pengzhen Zhang
- Department of Interventional Therapy, Qingdao Hiser Medical Center, Qingdao, China
| | - Xiaoying Jiang
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Zhenrui Pan
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Wenjian Zheng
- Department of Cadre Healthcare, Qingdao Hiser Medical Center, Qingdao, China
| | - Hongli Lin
- Department of Cadre Healthcare, Qingdao Hiser Medical Center, Qingdao, China
| |
Collapse
|
19
|
Mejias A, Diez-Hermano S, Ganfornina MD, Gutierrez G, Sanchez D. Characterization of mammalian Lipocalin UTRs in silico: Predictions for their role in post-transcriptional regulation. PLoS One 2019; 14:e0213206. [PMID: 30840684 PMCID: PMC6402760 DOI: 10.1371/journal.pone.0213206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 01/20/2023] Open
Abstract
The Lipocalin family is a group of homologous proteins characterized by its big array of functional capabilities. As extracellular proteins, they can bind small hydrophobic ligands through a well-conserved β-barrel folding. Lipocalins evolutionary history sprawls across many different taxa and shows great divergence even within chordates. This variability is also found in their heterogeneous tissue expression pattern. Although a handful of promoter regions have been previously described, studies on UTR regulatory roles in Lipocalin gene expression are scarce. Here we report a comprehensive bioinformatic analysis showing that complex post-transcriptional regulation exists in Lipocalin genes, as suggested by the presence of alternative UTRs with substantial sequence conservation in mammals, alongside a high diversity of transcription start sites and alternative promoters. Strong selective pressure could have operated upon Lipocalins UTRs, leading to an enrichment in particular sequence motifs that limit the choice of secondary structures. Mapping these regulatory features to the expression pattern of early and late diverging Lipocalins suggests that UTRs represent an additional phylogenetic signal, which may help to uncover how functional pleiotropy originated within the Lipocalin family.
Collapse
Affiliation(s)
- Andres Mejias
- Departamento de Genetica, Universidad de Sevilla, Sevilla, Spain
| | - Sergio Diez-Hermano
- Instituto de Biologia y Genetica Molecular-Departamento de Bioquimica y Biologia Molecular y Fisiologia, Universidad de Valladolid-CSIC, Valladolid, Spain
- Departamento de Matemática Aplicada, Universidad Complutense, Madrid, Spain
| | - Maria D. Ganfornina
- Instituto de Biologia y Genetica Molecular-Departamento de Bioquimica y Biologia Molecular y Fisiologia, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | - Diego Sanchez
- Instituto de Biologia y Genetica Molecular-Departamento de Bioquimica y Biologia Molecular y Fisiologia, Universidad de Valladolid-CSIC, Valladolid, Spain
- * E-mail:
| |
Collapse
|
20
|
Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. ACTA ACUST UNITED AC 2019; 52:e7994. [PMID: 30810622 PMCID: PMC6393853 DOI: 10.1590/1414-431x20187994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) is a common presentation for ischemic heart disease, which is a leading cause of death. Emodin is a Chinese herbal anthraquinone used in several diseases. However, the effect of emodin in hypoxia-induced injury in cardiomyocytes has not been clearly elucidated. Our study aimed to clarify the functions of emodin in hypoxia-induced injury in rat cardiomyocytes H9c2 and explore the underlying mechanism. The effects of emodin on cell viability and apoptosis were analyzed by the Cell counting kit-8 assay and flow cytometry assay, respectively. The cell proliferation- and cell apoptosis-related proteins were detected by western blot. qRT-PCR was used to determine the relative expression of miR-138. Cell transfection was performed to alter miR-138 and MLK3 expression. miR-138 target was performed by dual luciferase activity assay. Sirt1/AKT and Wnt/β-catenin pathways-related factors phosphorylation were analyzed by western blot. Emodin inhibited hypoxia-induced injury in H9c2 cells by promoting cell viability and reducing cell apoptosis. miR-138 was down-regulated by hypoxia treatment but up-regulated by emodin. Up-regulation of miR-138 alleviated hypoxia-induced cell injury. Down-regulation of miR-138 attenuated the growth-promoting effect of emodin on hypoxia-induced injury, whereas up-regulation of miR-138 enhanced the growth-promoting effects of emodin. The underlying mechanism might be by inactivating Sirt1/AKT and Wnt/β-catenin pathways. MLK3 was negatively regulated by miR-138 expression and inactivated Sirt1/AKT and Wnt/β-catenin pathways. Emodin alleviated hypoxia-induced injury in H9c2 cells via up-regulation of miR-138 modulated by MLK3, as well as by activating Sirt1/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiaoji Qin
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Shanglang Cai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changyong Zhou
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Guan
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
21
|
Yan Y, Shi R, Yu X, Sun C, Zang W, Tian H. Identification of atrial fibrillation-associated microRNAs in left and right atria of rheumatic mitral valve disease patients. Genes Genet Syst 2019; 94:23-34. [DOI: 10.1266/ggs.17-00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Rui Shi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Xiaojiang Yu
- Department of Pharmacology of Xi’an Jiaotong University
| | - Chaofeng Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Weijin Zang
- Department of Pharmacology of Xi’an Jiaotong University
| | - Hongyan Tian
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
22
|
Astragalus polysaccharide protects hypoxia-induced injury by up-regulation of miR-138 in rat neural stem cells. Biomed Pharmacother 2018; 102:295-301. [DOI: 10.1016/j.biopha.2018.03.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
|
23
|
Apoptotic Protease Activating Factor-1 Inhibitor Mitigates Myocardial Ischemia Injury via Disturbing Procaspase-9 Recruitment by Apaf-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9747296. [PMID: 29279737 PMCID: PMC5723966 DOI: 10.1155/2017/9747296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/18/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023]
Abstract
(2S,3S,4S,5R,6R)-6-(4-((4-guanidinobutoxy)carbonyl)-2,6-dihydroxyphenoxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (ZYZ-488) was discovered as a novel inhibitor of apoptotic protease activating factor-1 (Apaf-1). In present work, a surface plasmon resonance (SPR) assay confirms the direct binding between ZYZ-488 and Apaf-1 and this interaction was found to be able to block the recruitment of procaspase-9 by Apaf-1. This study also shows that the treatment of MI (myocardial infarction) mice with this novel Apaf-1 inhibitor remarkably reduces the infarct size, improves cardiac functions, and attenuates the histopathology changes caused by MI. Meanwhile, here it is shown that ZYZ-488 decreases myocardial enzyme release, inhibits cardiomyocyte apoptosis, and suppresses the activation of the downstream cascade of caspases. Moreover, in silico prediction validated the drug-like properties of ZYZ-488. In conclusion, our findings present the first piece of evidence indicating the interaction between Apaf-1 and procaspase-9 as a novel therapeutic target in myocardial infarction and suggesting ZYZ-488 as a promising therapeutic option for myocardial infarction disease.
Collapse
|
24
|
MicroRNA as a Therapeutic Target in Cardiac Remodeling. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1278436. [PMID: 29094041 PMCID: PMC5637866 DOI: 10.1155/2017/1278436] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/23/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small RNA molecules that contain 18–25 nucleotides. The alterations in their expression level play crucial role in the development of many disorders including heart diseases. Myocardial remodeling is the final pathological consequence of a variety of myocardial diseases. miRNAs have central role in regulating pathogenesis of myocardial remodeling by modulating cardiac hypertrophy, cardiomyocytes injury, cardiac fibrosis, angiogenesis, and inflammatory response through multiple mechanisms. The balancing and tight regulation of different miRNAs is a key to drive the cellular events towards functional recovery and any fall in this leads to detrimental effect on cardiac function following various insults. In this review, we discuss the impact of alterations of miRNAs expression on cardiac hypertrophy, cardiomyocytes injury, cardiac fibrosis, angiogenesis, and inflammatory response. We have also described the targets (receptors, signaling molecules, transcription factors, etc.) of miRNAs on which they act to promote or attenuate cardiac remodeling processes in different type cells of cardiac tissues.
Collapse
|
25
|
Rodrigues PC, Sawazaki-Calone I, Ervolino de Oliveira C, Soares Macedo CC, Dourado MR, Cervigne NK, Miguel MC, Ferreira do Carmo A, Lambert DW, Graner E, Daniela da Silva S, Alaoui-Jamali MA, Paes Leme AF, Salo TA, Coletta RD. Fascin promotes migration and invasion and is a prognostic marker for oral squamous cell carcinoma. Oncotarget 2017; 8:74736-74754. [PMID: 29088820 PMCID: PMC5650375 DOI: 10.18632/oncotarget.20360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) prognosis is related to clinical stage and histological grade. However, this stratification needs to be refined. We conducted a comparative proteome study in microdissected samples from normal oral mucosa and OSCC to identify biomarkers for malignancy. Fascin and plectin were identified as differently expressed and both are implicated in several malignancies, but the clinical impacts of aberrant fascin and plectin expression in OSCCs remains largely unknown. Immunohistochemistry and real-time quantitative PCR were carried out in ex vivo OSCC samples and cell lines. A loss-of-function strategy using shRNA targeting fascin was employed to investigate in vitro and in vivo the fascin role on oral tumorigenesis. Transfections of microRNA mimics were performed to determine whether the fascin overexpression is regulated by miR-138 and miR-145. We found that fascin and plectin are frequently upregulated in OSCC samples and cell lines, but only fascin overexpression is an independent unfavorable prognostic indicator of disease-specific survival. In combination with advanced T stage, high fascin level is also an independent factor of disease-free survival. Knockdown of fascin in OSCC cells promoted cell adhesion and inhibited migration, invasion and EMT, and forced expression of miR-138 in OSCC cells significantly decreased the expression of fascin. In addition, fascin downregulation leads to reduced filopodia formation and decrease on paxillin expression. The subcutaneous xenograft model showed that tumors formed in the presence of low levels of fascin were significantly smaller compared to those formed with high fascin levels. Collectively, our findings suggest that fascin expression correlates with disease progression and may serve as a prognostic marker and therapeutic target for patients with OSCC.
Collapse
Affiliation(s)
- Priscila Campioni Rodrigues
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil.,Unit of Cancer Research and Translational Medicine, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Iris Sawazaki-Calone
- Oral Pathology and Oral Medicine, Dentistry School, Western Paraná State University, Cascavel, PR, Brazil
| | | | | | - Mauricio Rocha Dourado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil.,Unit of Cancer Research and Translational Medicine, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Nilva K Cervigne
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil.,Current/Present address: Clinical Department, Faculty of Medicine of Jundiai, Jundiai, SP, Brazil
| | - Marcia Costa Miguel
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Andreia Ferreira do Carmo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil.,Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel W Lambert
- Integrated Biosciences, School of Clinical Dentistry and Sheffield Cancer Centre, University of Sheffield, Sheffield, United Kingdom
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil
| | - Sabrina Daniela da Silva
- Departments of Medicine, Oncology, Pharmacology and Therapeutics, Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.,Otolaryngology-Head and Neck Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Moulay A Alaoui-Jamali
- Departments of Medicine, Oncology, Pharmacology and Therapeutics, Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.,Otolaryngology-Head and Neck Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Tuula A Salo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil.,Unit of Cancer Research and Translational Medicine, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Institute of Oral and Maxillofacial Disease, University of Helsinki, and HUSLAB, Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
26
|
Wang L, Yu H, Cheng H, He K, Fang Z, Ge L, Cheng T, Jin Y. Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver. Cell Death Dis 2017; 8:e2722. [PMID: 28358362 PMCID: PMC5386544 DOI: 10.1038/cddis.2017.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023]
Abstract
The serine threonine kinase Stk40 has been shown to involve in mouse embryonic stem cell differentiation, pulmonary maturation and adipocyte differentiation. Here we report that targeted deletion of Stk40 leads to fetal liver hypoplasia and anemia in the mouse embryo. The reduction of erythrocytes in the fetal liver is accompanied by increased apoptosis and compromised erythroid maturation. Stk40-/- fetal liver cells have significantly reduced colony-forming units (CFUs) capable of erythroid differentiation, including burst forming unit-erythroid, CFU-erythroid (CFU-E), and CFU-granulocyte, erythrocyte, megakaryocyte and macrophage, but not CFU-granulocyte/macrophages. Purified Stk40-/- megakaryocyte-erythrocyte progenitors produce substantially fewer CFU-E colonies compared to control cells. Moreover, Stk40-/- fetal liver erythroblasts fail to form normal erythroblastic islands in association with wild type or Stk40-/- macrophages, indicating an intrinsic defect of Stk40-/- erythroblasts. Furthermore, the hematopoietic stem and progenitor cell pool is reduced in Stk40-/- fetal livers but still retains the multi-lineage reconstitution capacity. Finally, comparison of microarray data between wild type and Stk40-/- E14.5 fetal liver cells reveals a potential role of aberrantly activated TNF-α signaling in Stk40 depletion induced dyserythropoiesis with a concomitant increase in cleaved caspase-3 and decrease in Gata1 proteins. Altogether, the identification of Stk40 as a regulator for fetal erythroid maturation and survival provides new clues to the molecular regulation of erythropoiesis and related diseases.
Collapse
Affiliation(s)
- Lina Wang
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hongyao Yu
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke He
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Zhuoqing Fang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laixiang Ge
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Science, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Agarwal U, George A, Bhutani S, Ghosh-Choudhary S, Maxwell JT, Brown ME, Mehta Y, Platt MO, Liang Y, Sahoo S, Davis ME. Experimental, Systems, and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell-Derived Exosomes From Pediatric Patients. Circ Res 2017; 120:701-712. [PMID: 27872050 PMCID: PMC5315680 DOI: 10.1161/circresaha.116.309935] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE Studies have demonstrated that exosomes can repair cardiac tissue post-myocardial infarction and recapitulate the benefits of cellular therapy. OBJECTIVE We evaluated the role of donor age and hypoxia of human pediatric cardiac progenitor cell (CPC)-derived exosomes in a rat model of ischemia-reperfusion injury. METHODS AND RESULTS Human CPCs from the right atrial appendages from children of different ages undergoing cardiac surgery for congenital heart defects were isolated and cultured under hypoxic or normoxic conditions. Exosomes were isolated from the culture-conditioned media and delivered to athymic rats after ischemia-reperfusion injury. Echocardiography at day 3 post-myocardial infarction suggested statistically improved function in neonatal hypoxic and neonatal normoxic groups compared with saline-treated controls. At 28 days post-myocardial infarction, exosomes derived from neonatal normoxia, neonatal hypoxia, infant hypoxia, and child hypoxia significantly improved cardiac function compared with those from saline-treated controls. Staining showed decreased fibrosis and improved angiogenesis in hypoxic groups compared with controls. Finally, using sequencing data, a computational model was generated to link microRNA levels to specific outcomes. CONCLUSIONS CPC exosomes derived from neonates improved cardiac function independent of culture oxygen levels, whereas CPC exosomes from older children were not reparative unless subjected to hypoxic conditions. Cardiac functional improvements were associated with increased angiogenesis, reduced fibrosis, and improved hypertrophy, resulting in improved cardiac function; however, mechanisms for normoxic neonatal CPC exosomes improved function independent of those mechanisms. This is the first study of its kind demonstrating that donor age and oxygen content in the microenvironment significantly alter the efficacy of human CPC-derived exosomes.
Collapse
Affiliation(s)
- Udit Agarwal
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Alex George
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Srishti Bhutani
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Shohini Ghosh-Choudhary
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Joshua T Maxwell
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Milton E Brown
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Yash Mehta
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Manu O Platt
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Yaxuan Liang
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Susmita Sahoo
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.)
| | - Michael E Davis
- From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children's Heart Research and Outcomes Center, Emory University School of Medicine and Children's Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, New York (Y.L., S.S.).
| |
Collapse
|
28
|
Wang H, Cai J. The role of microRNAs in heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1863:2019-2030. [PMID: 27916680 DOI: 10.1016/j.bbadis.2016.11.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small non-coding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. In the past decade, many in vitro and in vivo studies have explored the involvement of microRNAs in various cardiovascular diseases. In this paper, studies focused upon the target genes and functionality of miRNAs in the pathophysiological processes of heart failure are reviewed. The selected miRNAs are categorized according to the biological relevance of their target genes in relation to four cardiovascular pathologies, namely angiogenesis, cardiac hypertrophy, fibrosis and apoptosis. This review illustrates the involvement of miRNAs in different biological signaling pathways and provides an overview of current understanding of the roles of miRNAs in cardiovascular health and diseases. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Hongjiang Wang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Hypertension Center, Fuwai Hospital, Xicheng District, North Lishi Road No. 167, Beijing 100037, China.
| |
Collapse
|
29
|
Asimakopoulou A, Weiskirchen S, Weiskirchen R. Lipocalin 2 (LCN2) Expression in Hepatic Malfunction and Therapy. Front Physiol 2016; 7:430. [PMID: 27729871 PMCID: PMC5037186 DOI: 10.3389/fphys.2016.00430] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Lipocalin 2 (LCN2) is a secreted protein that belongs to the Lipocalins, a group of transporters of small lipophilic molecules such as steroids, lipopolysaccharides, iron, and fatty acids in circulation. Two decades after its discovery and after a high variety of published findings, LCN2's altered expression has been assigned to critical roles in several pathological organ conditions, including liver injury and steatosis, renal damage, brain injury, cardiomyopathies, muscle-skeletal disorders, lung infection, and cancer in several organs. The significance of this 25-kDa lipocalin molecule has been impressively increased during the last years. Data from several studies indicate the role of LCN2 in physiological conditions as well as in response to cellular stress and injury. LCN2 in the liver shows a protective role in acute and chronic injury models where its expression is highly elevated. Moreover, LCN2 expression is being considered as a potential strong biomarker for pathological conditions, including rheumatic diseases, cancer in human organs, hepatic steatosis, hepatic damage, and inflammation. In this review, we summarize experimental and clinical findings linking LCN2 to the pathogenesis of liver disease.
Collapse
Affiliation(s)
- Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
30
|
Suk K. Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective. Prog Neurobiol 2016; 144:158-72. [DOI: 10.1016/j.pneurobio.2016.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
|