1
|
Ramírez-delaCruz M, Ortiz-Sánchez D, Bravo-Sánchez A, Portillo J, Esteban-García P, Abián-Vicén J. Effects of different exposures to normobaric hypoxia on cognitive performance in healthy young adults.: Normobaric hypoxia and cognitive performance. Physiol Behav 2025; 288:114747. [PMID: 39547435 DOI: 10.1016/j.physbeh.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Normobaric hypoxia has become an innovative non-pharmacological therapy to treat cognitive dysfunction. Nevertheless, the acute effects of exposure to hypoxia on cognitive performance remain unclear. We aimed to determine the effects of different normobaric hypoxic exposures on cognitive function in healthy young adults. Nineteen participants (13 men and 6 women; 23.7 ± 3.9 years; 172.0 ± 8.4 cm; 69.1 ± 12.2 kg) completed a cross-over randomized control trial with the following doses of fraction of inspired oxygen (FiO2): a) 21 %, b) 15 %, c) 13 % or d) 11 %. During experimental trials, the physiological response (blood oxygen saturation and heart rate) and the following cognitive abilities were evaluated: memory, sustained attention, anticipation, and reaction time. Sustained attention improved under hypoxia at 15 % FiO2 (mean difference (MD) 0.024, 95 % confidence intervals (CI) 0.005 to 0.044 s; p = 0.018) compared to 11 % and 21 % FiO2. During 11 % and 15 % FiO2, participants showed improved anticipation ability compared to normoxia (MD -0.023, 95 % CI -0.042 to -0.003 s, p = 0.020, and MD -0.009, 95 % CI -0.016 to -0.001 s, p = 0.022, respectively). However, reaction time was impaired under 11 % compared to 21 % FiO2 (MD 0.033, 95 % CI 0.008 to 0.059 s, p = 0.013). Finally, we did not find significant effects of hypoxia on memory (p > 0.05). Severe normobaric hypoxic exposure (11 % FiO2) produces detrimental effects on reaction time, although anticipation seems to be improved, compared to normoxia. In addition, cognitive processes of attention and anticipation appear to improve with moderate hypoxic exposure (15 % FiO2).
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - David Ortiz-Sánchez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1,800, 28223, Pozuelo de Alarcón, Spain.
| | - Javier Portillo
- Motor Competence and Excellence in Sport, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071. Toledo, Spain.
| | - Paula Esteban-García
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| |
Collapse
|
2
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Zhang X, Igor B, Elena D, Olga R, Glazachev O. Prevalence of occupational hypersensitivity pneumonitis: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3891-3908. [PMID: 38544315 DOI: 10.1080/09603123.2024.2333021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/16/2024] [Indexed: 10/19/2024]
Abstract
In this meta-analysis, we aimed to evaluate the prevalence of occupational hypersensitivity pneumonitis (OHP) among different occupations globally. Our search was conducted on MEDLINE via PubMed, Scopus, Web of Science, and Cochrane CENTRAL from inception to September 2023. Eligible studies were observational in nature and focused on several specific occupations. A total of 46 articles were included (n = 2,826,420 participants). The overall prevalence of OHP was found to be 4.2% (95% CI: 2.1% to 8.0%), but this varied significantly based on occupation and geographic location. Printers had the highest OHP prevalence at 57.14%, followed by tobacco workers (26.32%), and water-related workers (24.10%). South America showed the highest prevalence of 16.71%, compared to Asia (15.19%), and North America (8.52%). Significant variations in OHP prevalence by occupation and region were found, with the highest rates in printers and tobacco workers. Age and smoking were identified as contributing factors to the prevalence variability.
Collapse
Affiliation(s)
- Xinliang Zhang
- Department of Normal Physiology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Bukhtiyarov Igor
- Department of Normal Physiology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Occupational Medicine, Izmerov Research Institute of Occupational Health, Moscow, Russia
| | - Dudnik Elena
- Department of Normal Physiology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rumyantseva Olga
- Department of Occupational Medicine, Izmerov Research Institute of Occupational Health, Moscow, Russia
| | - Oleg Glazachev
- Department of Normal Physiology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
4
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
5
|
Arboit F, Pereira GC, Fialho MFP, Becker G, Brum EDS, Pillat MM, Bochi GV, Portela LOC, Zanchet EM. Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses. Biomedicines 2024; 12:2116. [PMID: 39335629 PMCID: PMC11430548 DOI: 10.3390/biomedicines12092116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Mental disorders pose a significant public health challenge, affecting millions worldwide. Given the limitations of current therapies, many patients experience inadequate responses and adverse effects. Intermittent hypoxia (IH) has demonstrated anxiolytic, antidepressant, and neuroprotective properties in various protocols. This study investigated the effects of acute IH (13% O2, 1 h), fluoxetine (FLX) and their combination on depression-like behavior, serum corticosterone, and inflammatory cytokine levels induced by acute restraint stress in C57BL/6 female mice. Methods: Behavioral assessments included the tail suspension test, forced swim test, and open field test. Results: The combined IH + FLX treatment exhibited a synergistic effect, reducing immobility time and increasing latency time, respectively, in the tail suspension test (46%, p = 0.0014; 73%, p = 0.0033) and forced swim test (56%, p = 0.0082; 48%, p = 0.0322) compared to the ARS group. Biochemical analysis revealed that individual and combined treatments significantly reduced most inflammatory interleukins by up to 96%. Corticosterone levels were reduced by 30% only in the IH group. Conclusions: These findings highlight the potential of a one-hour IH session, particularly when combined with fluoxetine, to alleviate depressive-like behaviors and exert anti-inflammatory effects, suggesting a promising therapeutic approach for depression.
Collapse
Affiliation(s)
- Francini Arboit
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Gabriele Cheiran Pereira
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Maria Fernanda Pessano Fialho
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Gabriela Becker
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Evelyne da Silva Brum
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Micheli Mainardi Pillat
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Osório Cruz Portela
- Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | - Eliane Maria Zanchet
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
6
|
Zhang G, Yang G, Zhou Y, Cao Z, Yin M, Ma L, Fan M, Zhao YQ, Zhu L. Intermittent hypoxia training effectively protects against cognitive decline caused by acute hypoxia exposure. Pflugers Arch 2024; 476:197-210. [PMID: 37994929 DOI: 10.1007/s00424-023-02885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.
Collapse
Affiliation(s)
- Guangbo Zhang
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Guochun Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Yanzhao Zhou
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
| | | | - Ming Yin
- The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Lin Ma
- The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ming Fan
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong-Qi Zhao
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China.
- Anhui Medical University, Hefei, China.
| | - Lingling Zhu
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Pena E, San Martin-Salamanca R, El Alam S, Flores K, Arriaza K. Tau Protein Alterations Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2024; 25:889. [PMID: 38255962 PMCID: PMC10815386 DOI: 10.3390/ijms25020889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Tauopathies are a group of neurodegenerative diseases whose central feature is dysfunction of the microtubule-associated protein tau (MAPT). Although the exact etiology of tauopathies is still unknown, it has been hypothesized that their onset may occur up to twenty years before the clear emergence of symptoms, which has led to questions about whether the prognosis of these diseases can be improved by, for instance, targeting the factors that influence tauopathy development. One such factor is hypoxia, which is strongly linked to Alzheimer's disease because of its association with obstructive sleep apnea and has been reported to affect molecular pathways related to the dysfunction and aggregation of tau proteins and other biomarkers of neurological damage. In particular, hypobaric hypoxia exposure increases the activation of several kinases related to the hyperphosphorylation of tau in neuronal cells, such as ERK, GSK3β, and CDK5. In addition, hypoxia also increases the levels of inflammatory molecules (IL-β1, IL-6, and TNF-α), which are also associated with neurodegeneration. This review discusses the many remaining questions regarding the influence of hypoxia on tauopathies and the contribution of high-altitude exposure to the development of these diseases.
Collapse
Affiliation(s)
| | | | - Samia El Alam
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (E.P.); (R.S.M.-S.); (K.F.); (K.A.)
| | | | | |
Collapse
|
8
|
Boulares A, Pichon A, Faucher C, Bragazzi NL, Dupuy O. Effects of Intermittent Hypoxia Protocols on Cognitive Performance and Brain Health in Older Adults Across Cognitive States: A Systematic Literature Review. J Alzheimers Dis 2024; 101:13-30. [PMID: 39093075 DOI: 10.3233/jad-240711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background The rise in the aging population highlights the need to address cognitive decline and neurodegenerative diseases. Intermittent hypoxia (IH) protocols show promise in enhancing cognitive abilities and brain health. Objective This review evaluates IH protocols' benefits on cognition and brain health in older adults, regardless of cognitive status. Methods A systematic search following PRISMA guidelines was conducted across four databases (PubMed, Scopus, Web of Science, and Cochrane Library) and two registers, covering records from inception to May 2024 (PROSPERO: CRD42023462177). Inclusion criteria were: 1) original research with quantitative details; 2) studies involving older adults, with or without cognitive impairment; 3) studies including IH protocols; 4) articles analyzing cognition and brain health in older adults. Results Seven studies and five registered trials met the criteria. Findings indicate that Intermittent Hypoxia Training (IHT) and Intermittent Hypoxia-Hyperoxia Training (IHHT) improved cognitive functions and brain health. Intermittent Hypoxic Exposure (IHE) improved cerebral tissue oxygen saturation, middle cerebral arterial flow velocity, and cerebral vascular conductance, particularly in cognitively impaired populations. IHT and IHHT had no significant effect on BDNF levels. There is a lack of studies on IHHE in older adults with and without cognitive impairment. Conclusions IH protocols may benefit cognition regardless of cognitive status. IHT and IHE positively affect cerebral outcomes, with all protocols having limited effects on BDNF levels. Future research should standardize IH protocols, investigate long-term cognitive effects, and explore neuroprotective biomarkers. Combining these protocols with physical exercise across diverse populations could refine interventions and guide targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ayoub Boulares
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Corentin Faucher
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Nicola Luigi Bragazzi
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, ON, Canada
- Department of Food and Drugs, Medical School, Human Nutrition Unit (HNU), University of Parma, Parma, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair, Health Anthropology Biosphere and Healing Systems, University of Genoa, Genoa, Italy
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| | - Olivier Dupuy
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
- School of Kinesiology and Physical Activity Sciences (EKSAP), Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Adingupu DD, Evans T, Soroush A, Hansen A, Jarvis S, Brown L, Dunn JF. Temporal Pattern of Cortical Hypoxia in Multiple Sclerosis and Its Significance on Neuropsychological and Clinical Measures of Disability. Ann Neurol 2023; 94:1067-1079. [PMID: 37605937 DOI: 10.1002/ana.26769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a degenerative disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal damage. It has been hypothesized that hypoxia plays a role in the pathogenesis of MS. This study was undertaken to investigate the reproducibility of non-invasively measured cortical microvascular hemoglobin oxygenation (St O2 ) using frequency domain near-infrared spectroscopy (fdNIRS), investigate its temporal pattern of hypoxia in people with MS (pwMS), and its relationship with neurocognitive function and mood. METHODS We investigated the reproducibility of fdNIRS measurements. We measured cortical hypoxia in pwMS, and the relationships between St O2 , neurocognitive function, fatigue, and measures of physical disability. Furthermore, we cataloged the temporal pattern of St O2 measured at 1-week intervals for 4 weeks, and at 8 weeks and ~1 year. RESULTS We show that fdNIRS parameters were highly reproducible in 7 healthy control participants measured over 6 days (p > 0.05). There was low variability between and within subjects. In line with our previous findings, we show that 33% of pwMS (n = 88) have cortical microvascular hypoxia. Over 8 weeks and at ~1 year, St O2 values for normoxic and hypoxic groups did not change significantly. There was no significant association between cognitive function and St O2 . This conclusion should be revisited as only a small proportion of the relapsing-remitting MS group (21%) was cognitively impaired. INTERPRETATION The fdNIRS parameters have high reproducibility and repeatability, and we have demonstrated that hypoxia in MS is a chronic condition, lasting at least a year. The results show a weak relationship between cognitive functioning and oxygenation, indicating future study is required. ANN NEUROL 2023;94:1067-1079.
Collapse
Affiliation(s)
- Damilola D Adingupu
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Taelor Evans
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ateyeh Soroush
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ayden Hansen
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Scott Jarvis
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Neurologic Centre, Calgary, Canada
| | - Lenora Brown
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Cao Y, Cao S, Ge RL, Bao H, Mou Y, Ji W. Brain-aging related protein expression and imaging characteristics of mice exposed to chronic hypoxia at high altitude. Front Aging Neurosci 2023; 15:1268230. [PMID: 37849650 PMCID: PMC10577427 DOI: 10.3389/fnagi.2023.1268230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Objective To determine changes in protein expression related to brain aging and imaging features in mice after chronic hypoxia exposure at high altitude. Method A total of 24 healthy 4-week-old mice were randomly divided into high altitude hypoxia (HH) and plain control (PC) groups (n = 8 per group). HH mice were transported from Xi'an (450 m above sea level) to Maduo (4,300 m above sea level) while PC mice were raised in Xi'an. After 6 months, 7.0T magnetic resonance imaging (MRI) was performed. All mice completed T2-weighted imaging (T2WI), diffusion tensor imaging (DTI), resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL), and magnetic resonance angiography (MRA) examinations. Next, brain slices were prepared and Nissl staining was used to observe morphological changes in neurons. Ultrastructural changes in neurons were observed by transmission electron microscopy. Expression changes of Caspase-3, klotho, P16, P21, and P53 at the gene and protein levels were detected by real-time PCR (RT-PCR) and Western blot. Results The number of neuronal Nissl bodies in the hippocampus and frontal cortex was significantly decreased in the HH group compared to the PC group. Some hippocampal and frontal cortical neurons were apoptotic, the nuclei were wrinkled, chromatin was aggregated, and most mitochondria were mildly swollen (crista lysis, fracture). Compared with the PC group, the HH group showed elevated expression of caspase-3 mRNA, P16 mRNA, P21 mRNA, and P53 mRNA in the hippocampus and frontal cortex. Expression of Klotho mRNA in the frontal cortex was also significantly decreased. Western blot results showed that caspase-3 protein expression in the hippocampus and frontal cortex of the HH group was increased compared with the PC group. Moreover, there was decreased Klotho protein expression and significantly increased P-P53 protein expression. Compared with the PC group, expression of P16 protein in the frontal cortex of the HH group was increased and the gray matter (GM) volume in the left visceral area, left caudate nucleus, and left piriform cortex was decreased. Furthermore, the amplitude of low frequency fluctuation was decreased in the left posterior nongranular insular lobe, right small cell reticular nucleus, left flocculus, left accessory flocculus, and left primary auditory area, but increased in the GM layer of the left superior colliculus. Regional homogeneity was decreased in the left and right olfactory regions, but increased in the left bed nucleus. After exposure to high altitude, functional connectivity (FC) between the bilateral caudate nucleus and thalamus, corpus callosum, cingulate gyrus, anterior limbic cortex, globus pallidus, and hippocampus was weakened. FC between the right caudate nucleus and hypothalamus and entorhinal cortex was also weakened. The fractional anisotropy value of the left hippocampus was decreased in the HH group. Compared with the PC group, the HH group showed significantly increased inner diameters of the bilateral common carotid artery and left internal carotid artery. The cerebral blood flow values of the bilateral cortex and bilateral hippocampus in the HH group did not change significantly. Conclusion Taken together, our findings show that chronic hypoxia exposure at high altitude may promote neuronal apoptosis and abnormal expression of related proteins, changing the structure and function of brain. These changes may contribute to brain aging.
Collapse
Affiliation(s)
- Yaxin Cao
- Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Shundao Cao
- Department of Neurology, Xi’an No. 1 Hospital, Xi’an, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Haihua Bao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Yalin Mou
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Weizhong Ji
- Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
11
|
Moris JM, Cardona A, Hinckley B, Mendez A, Blades A, Paidisetty VK, Chang CJ, Curtis R, Allen K, Koh Y. A framework of transient hypercapnia to achieve an increased cerebral blood flow induced by nasal breathing during aerobic exercise. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100183. [PMID: 37745894 PMCID: PMC10514094 DOI: 10.1016/j.cccb.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
During exercise, cerebral blood flow (CBF) is expected to only increase to a maximal volume up to a moderate intensity aerobic effort, suggesting that CBF is expected to decline past 70 % of a maximal aerobic effort. Increasing CBF during exercise permits an increased cerebral metabolic activity that stimulates neuroplasticity and other key processes of cerebral adaptations that ultimately improve cognitive health. Recent work has focused on utilizing gas-induced exposure to intermittent hypoxia during aerobic exercise to maximize the improvements in cognitive function compared to those seen under normoxic conditions. However, it is postulated that exercising by isolating breathing only to the nasal route may provide a similar effect by stimulating a transient hypercapnic condition that is non-gas dependent. Because nasal breathing prevents hyperventilation during exercise, it promotes an increase in the partial arterial pressure of CO2. The rise in systemic CO2 stimulates hypercapnia and permits the upregulation of hypoxia-related genes. In addition, the rise in systemic CO2 stimulates cerebral vasodilation, promoting a greater increase in CBF than seen during normoxic conditions. While more research is warranted, nasal breathing might also promote benefits related to improved sleep, greater immunity, and body fat loss. Altogether, this narrative review presents a theoretical framework by which exercise-induced hypercapnia by utilizing nasal breathing during moderate-intensity aerobic exercise may promote greater health adaptations and cognitive improvements than utilizing oronasal breathing.
Collapse
Affiliation(s)
- Jose M. Moris
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Arturo Cardona
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Brendan Hinckley
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Armando Mendez
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Alexandra Blades
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Vineet K. Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Christian J. Chang
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Ryan Curtis
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Kylie Allen
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, 1312 S. 5th St., Waco, TX 76798, United States
| |
Collapse
|
12
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
14
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022. [PMID: 36149520 DOI: 10.1007/s00421-022-05041-y.pmid:36149520;pmcid:pmc9613570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022; 122:2493-2514. [PMID: 36149520 PMCID: PMC9613570 DOI: 10.1007/s00421-022-05041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
17
|
Belmonte KCD, Holmgren EB, Wills TA, Gidday JM. Epigenetic conditioning induces intergenerational resilience to dementia in a mouse model of vascular cognitive impairment. Alzheimers Dement 2022; 18:1711-1720. [PMID: 35170835 PMCID: PMC9790554 DOI: 10.1002/alz.12616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Epigenetic stimuli induce beneficial or detrimental changes in gene expression, and consequently, phenotype. Some of these phenotypes can manifest across the lifespan-and even in subsequent generations. Here, we used a mouse model of vascular cognitive impairment and dementia (VCID) to determine whether epigenetically induced resilience to specific dementia-related phenotypes is heritable by first-generation progeny. METHODS Our systemic epigenetic therapy consisted of 2 months of repetitive hypoxic "conditioning" (RHC) prior to chronic cerebral hypoperfusion in adult C57BL/6J mice. Resultant changes in object recognition memory and hippocampal long-term potentiation (LTP) were assessed 3 and 4 months later, respectively. RESULTS Hypoperfusion-induced memory/plasticity deficits were abrogated by RHC. Moreover, similarly robust dementia resilience was documented in untreated cerebral hypoperfused animals derived from RHC-treated parents. CONCLUSIONS Our results in experimental VCID underscore the efficacy of epigenetics-based treatments to prevent memory loss, and demonstrate for the first time the heritability of an induced resilience to dementia.
Collapse
Affiliation(s)
- Krystal Courtney D. Belmonte
- Department of OphthalmologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of PhysiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Eleanor B. Holmgren
- Department of Cell Biology and AnatomyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Tiffany A. Wills
- Department of Cell Biology and AnatomyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Neuroscience Center of ExcellenceLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Jeff M. Gidday
- Department of OphthalmologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of PhysiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Neuroscience Center of ExcellenceLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of Biochemistry and Molecular BiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| |
Collapse
|
18
|
Su Y, Ke C, Li C, Huang C, Wan C. Intermittent hypoxia promotes the recovery of motor function in rats with cerebral ischemia by regulating mitochondrial function. Exp Biol Med (Maywood) 2022; 247:1364-1378. [PMID: 35665627 PMCID: PMC9442452 DOI: 10.1177/15353702221098962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hypoxia preconditioning is neuroprotective, but the therapeutic effects of intermittent hypoxia were not fully considered. The present study investigated the neuroprotective effect and mechanism of intermittent hypoxia on motor function after cerebral ischemia and explored alternative clinical treatment options. In total, 36 8-week-old male Sprague-Dawley rats were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO) and then randomly divided into a sham-operated group (SHAM), tMCAO-sedentary group (SED), and tMCAO-intermittent hypoxia group (IH). The intervention was performed 1 week after tMCAO and lasted 4 weeks. Rats in the IH group were placed in an animal hypoxic chamber (altitude 5000 m and oxygen concentration of 13%) for 4 h/day and 7 days/week, and rats in the SED group were placed in a normoxic environment for 4 weeks. Body weights, neurological deficit scores, cerebral infarction volume ratios, gait analyses, mitochondrial structure, adenosine triphosphate (ATP) content and AMO-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), and silencing regulatory protein 3 (Sirt3) expression in the peri-ischemic region brain tissues were detected during the intervention. Compared with the SED group, the body weight of the IH group gradually recovered, and the neurological deficit scores were significantly reduced (P < 0.05). The gait analysis results showed that the pressure of the affected paw and the maximum content area, swing speed, stride length, and other parameters were significantly restored (P < 0.05). The cerebral infarction volume ratio was significantly reduced (P < 0.01). Mitochondrial morphological structure damage in the peri-ischemic region brain tissues recovered, the number was significantly increased (P < 0.05), and the expression of AMPK, PGC-1α, and Sirt3 proteins (P < 0.05), and ATP content were significantly increased (P < 0.05). Intermittent hypoxia may activate the AMPK-PGC-1α-Sirt3 signaling pathway, promote mitochondrial biogenesis, repair mitochondrial ultrastructural damage, and improve mitochondrial function to reduce brain damage and promote motor function recovery in rats with cerebral ischemia.
Collapse
|
19
|
Rybnikova EA, Nalivaeva NN, Zenko MY, Baranova KA. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci 2022; 16:941740. [PMID: 35801184 PMCID: PMC9254677 DOI: 10.3389/fnins.2022.941740] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
This review is devoted to the phenomenon of intermittent hypoxic training and is aimed at drawing the attention of researchers to the necessity of studying the mechanisms mediating the positive, particularly neuroprotective, effects of hypoxic training at the molecular level. The review briefly describes the historical aspects of studying the beneficial effects of mild hypoxia, as well as the use of hypoxic training in medicine and sports. The physiological mechanisms of hypoxic adaptation, models of hypoxic training and their effectiveness are summarized, giving examples of their beneficial effects in various organs including the brain. The review emphasizes a high, far from being realized at present, potential of hypoxic training in preventive and clinical medicine especially in the area of neurodegeneration and age-related cognitive decline.
Collapse
Affiliation(s)
- Elena A. Rybnikova
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
- *Correspondence: Elena A. Rybnikova,
| | - Natalia N. Nalivaeva
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, Russia
| | - Mikhail Y. Zenko
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| | - Ksenia A. Baranova
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
20
|
Behrendt T, Bielitzki R, Behrens M, Herold F, Schega L. Effects of Intermittent Hypoxia-Hyperoxia on Performance- and Health-Related Outcomes in Humans: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:70. [PMID: 35639211 PMCID: PMC9156652 DOI: 10.1186/s40798-022-00450-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intermittent hypoxia applied at rest or in combination with exercise promotes multiple beneficial adaptations with regard to performance and health in humans. It was hypothesized that replacing normoxia by moderate hyperoxia can increase the adaptive response to the intermittent hypoxic stimulus. OBJECTIVE Our objective was to systematically review the current state of the literature on the effects of chronic intermittent hypoxia-hyperoxia (IHH) on performance- and health-related outcomes in humans. METHODS PubMed, Web of Science™, Scopus, and Cochrane Library databases were searched in accordance with PRISMA guidelines (January 2000 to September 2021) using the following inclusion criteria: (1) original research articles involving humans, (2) investigation of the chronic effect of IHH, (3) inclusion of a control group being not exposed to IHH, and (4) articles published in peer-reviewed journals written in English. RESULTS Of 1085 articles initially found, eight studies were included. IHH was solely performed at rest in different populations including geriatric patients (n = 1), older patients with cardiovascular (n = 3) and metabolic disease (n = 2) or cognitive impairment (n = 1), and young athletes with overtraining syndrome (n = 1). The included studies confirmed the beneficial effects of chronic exposure to IHH, showing improvements in exercise tolerance, peak oxygen uptake, and global cognitive functions, as well as lowered blood glucose levels. A trend was discernible that chronic exposure to IHH can trigger a reduction in systolic and diastolic blood pressure. The evidence of whether IHH exerts beneficial effects on blood lipid levels and haematological parameters is currently inconclusive. A meta-analysis was not possible because the reviewed studies had a considerable heterogeneity concerning the investigated populations and outcome parameters. CONCLUSION Based on the published literature, it can be suggested that chronic exposure to IHH might be a promising non-pharmacological intervention strategy for improving peak oxygen consumption, exercise tolerance, and cognitive performance as well as reducing blood glucose levels, and systolic and diastolic blood pressure in older patients with cardiovascular and metabolic diseases or cognitive impairment. However, further randomized controlled trials with adequate sample sizes are needed to confirm and extend the evidence. This systematic review was registered on the international prospective register of systematic reviews (PROSPERO-ID: CRD42021281248) ( https://www.crd.york.ac.uk/prospero/ ).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Fabian Herold
- Research Group Degenerative and Chronic Disease, Movement, Faculty of Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| |
Collapse
|
21
|
Behrendt T, Bielitzki R, Behrens M, Glazachev OS, Schega L. Effects of Intermittent Hypoxia-Hyperoxia Exposure Prior to Aerobic Cycling Exercise on Physical and Cognitive Performance in Geriatric Patients—A Randomized Controlled Trial. Front Physiol 2022; 13:899096. [PMID: 35694402 PMCID: PMC9178199 DOI: 10.3389/fphys.2022.899096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Background: It was recently shown that intermittent hypoxic-hyperoxic exposure (IHHE) applied prior to a multimodal training program promoted additional improvements in cognitive and physical performance in geriatric patients compared to physical training only. However, there is a gap in the literature to which extent the addition of IHHE can enhance the effects of an aerobic training. Therefore, the aim of this study was to investigate the efficacy of IHHE applied prior to aerobic cycling exercise on cognitive and physical performance in geriatric patients. Methods: In a randomized, two-armed, controlled, and single-blinded trial, 25 geriatric patients (77–94 years) were assigned to two groups: intervention group (IG) and sham control group (CG). Both groups completed 6 weeks of aerobic training using a motorized cycle ergometer, three times a week for 20 min per day. The IG was additionally exposed to intermittent hypoxic and hyperoxic periods for 30 min prior to exercise. The CG followed the similar procedure breathing sham hypoxia and hyperoxia (i.e., normoxia). Within 1 week before and after the interventions, cognitive performance was assessed with the Dementia-Detection Test (DemTect) and the Clock Drawing Test (CDT), while physical performance was measured using the Timed “Up and Go” Test (TUG) and the Short-Physical-Performance-Battery (SPPB). Results: No interaction effect was found with respect to the DemTect (ηp2 = 0.02). An interaction effect with medium effect size (ηp2 = 0.08) was found for CDT performance with a higher change over time for IG (d = 0.57) compared to CG (d = 0.05). The ANCOVA with baseline-adjustment indicated between-group differences with a large and medium effect size at post-test for the TUG (ηp2 = 0.29) and SPPB (ηp2 = 0.06) performance, respectively, in favour of the IG. Within-group post-hoc analysis showed that the TUG performance was worsened in the CG (d = 0.65) and remained unchanged in the IG (d = 0.19). Furthermore, SPPB performance was increased (d = 0.58) in IG, but no relevant change over time was found for CG (d = 0.00). Conclusion: The current study suggests that an additional IHHE prior to aerobic cycling exercise seems to be more effective to increase global cognitive functions as well as physical performance and to preserve functional mobility in geriatric patients in comparison to aerobic exercise alone after a 6-week intervention period.
Collapse
Affiliation(s)
- Tom Behrendt
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Tom Behrendt,
| | - Robert Bielitzki
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Oleg S. Glazachev
- Department Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lutz Schega
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
22
|
Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095339. [PMID: 35564732 PMCID: PMC9103404 DOI: 10.3390/ijerph19095339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
Abstract
Aging is associated with metabolic alterations, and with a loss of strength, muscle and bone mass. Moderate intermittent hypoxia has been proposed as a new tool to enhance health-related function. The aim of this study was to evaluate the effect of moderate intermittent hypoxia exposures on parameters related to cardiovascular and bone health in older adults. A total of 38 healthy older adults (aged 65-75 years) were divided into two groups: control group (C), and hypoxia group (H) that was subjected to an intermittent hypoxia exposure (at simulated altitude of 2500 m asl) during a 24-week period (3 days/week). Body composition, blood pressure, metabolic parameters (Cholesterol, triglycerides and glucose), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM-1), interleukin 8 (IL-8), interleukin 10 (IL-10), N-terminal propeptide of type I procollagen (PINP) and beta C-terminal telopeptide of collagen bone formation (b-CTX) were analyzed before and after the intervention. A repeated measures analysis of variance was performed to evaluate between-group differences. The results showed that the hypoxia group achieved after the intervention a decrease in fat mass, CRP (pro-inflammatory biomarker) and b-CTX (bone resorption biomarker), as well as an increase in PINP (bone formation biomarker). In conclusion, the intermittent hypoxia might be a useful therapeutic tool to deal with problems associated with aging, such as the increase in body fat, the loss of bone mass or low-grade inflammation.
Collapse
|
23
|
A prospective cohort study about the effect of repeated living high and working higher on cerebral autoregulation in unacclimatized lowlanders. Sci Rep 2022; 12:2472. [PMID: 35169168 PMCID: PMC8847624 DOI: 10.1038/s41598-022-06270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022] Open
Abstract
Cerebral autoregulation (CA) is impaired during acute high-altitude (HA) exposure, however, effects of temporarily living high and working higher on CA require further investigation. In 18 healthy lowlanders (11 women), we hypothesized that the cerebral autoregulation index (ARI) assessed by the percentage change in middle cerebral artery peak blood velocity (Δ%MCAv)/percentage change in mean arterial blood pressure (Δ%MAP) induced by a sit-to-stand maneuver, is (i) reduced on Day1 at 5050 m compared to 520 m, (ii) is improved after 6 days at 5050 m, and (iii) is less impaired during re-exposure to 5050 m after 7 days at 520 m compared to Cycle1. Participants spent 4-8 h/day at 5050 m and slept at 2900 m similar to real-life working shifts. High/low ARI indicate impaired/intact CA, respectively. With the sit-to-stand at 520 m, mean (95% CI) in ΔMAP and ΔMCAv were - 26% (- 41 to - 10) and - 13% (- 19 to - 7), P < 0.001 both comparisons; mean ± SD in ARI was 0.58 ± 2.44Δ%/Δ%, respectively. On Day1 at 5050 m, ARI worsened compared to 520 m (3.29 ± 2.42Δ%/Δ%), P = 0.006 but improved with acclimatization (1.44 ± 2.43Δ%/Δ%, P = 0.039). ARI was less affected during re-exposure to 5050 m (1.22 ± 2.52Δ%/Δ%, P = 0.027 altitude-induced change between sojourns). This study showed that CA (i) is impaired during acute HA exposure, (ii) improves with living high, working higher and (iii) is ameliorated during re-exposure to HA.
Collapse
|
24
|
Kemp SS, Penn MR, Koller GM, Griffin CT, Davis GE. Proinflammatory mediators, TNFα, IFNγ, and thrombin, directly induce lymphatic capillary tube regression. Front Cell Dev Biol 2022; 10:937982. [PMID: 35927983 PMCID: PMC9343954 DOI: 10.3389/fcell.2022.937982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, we sought to investigate the direct effects of proinflammatory mediators on lymphatic endothelial cell (LEC) capillaries and whether they might induce regression. Our laboratory has developed novel in-vitro, serum-free, lymphatic tubulogenesis assay models whereby human LEC tube networks readily form in either three-dimensional collagen or fibrin matrices. These systems were initially conceptualized in the hopes of better understanding the influence of proinflammatory mediators on LEC capillaries. In this work, we have screened and identified proinflammatory mediators that cause regression of LEC tube networks, the most potent of which is TNFα (tumor necrosis factor alpha), followed by IFNγ (interferon gamma) and thrombin. When these mediators were combined, even greater and more rapid lymphatic capillary regression occurred. Surprisingly, IL-1β (interleukin-1 beta), one of the most potent and pathologic cytokines known, had no regressive effect on these tube networks. Finally, we identified new pharmacological drug combinations capable of rescuing LEC capillaries from regression in response to the potent combination of TNFα, IFNγ, and thrombin. We speculate that protecting lymphatic capillaries from regression may be an important step toward mitigating a wide variety of acute and chronic disease states, as lymphatics are believed to clear both proinflammatory cells and mediators from inflamed and damaged tissue beds. Overall, these studies identify key proinflammatory mediators, including TNFα, IFNγ, and thrombin, that induce regression of LEC tube networks, as well as identify potential therapeutic agents to diminish LEC capillary regression responses.
Collapse
Affiliation(s)
- Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Marlena R Penn
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Gretchen M Koller
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| |
Collapse
|
25
|
Guan Y, Liu J, Gu Y, Ji X. Effects of Hypoxia on Cerebral Microvascular Angiogenesis: Benefits or Damages? Aging Dis 2022; 14:370-385. [PMID: 37008044 PMCID: PMC10017152 DOI: 10.14336/ad.2022.0902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebrovascular microcirculation is essential for maintaining the physiological functions of the brain. The brain can be protected from stress injury by remodeling the microcirculation network. Angiogenesis is a type of cerebral vascular remodeling. It is an effective approach to improve the blood flow of the cerebral microcirculation, which is necessary for preventing and treating various neurological disorders. Hypoxia is one of the most important regulators of angiogenesis, affecting the sprouting, proliferation, and maturation stages of angiogenesis. Moreover, hypoxia negatively affects cerebral vascular tissue by impairing the structural and functional integrity of the blood-brain barrier and vascular-nerve decoupling. Therefore, hypoxia has a dual effect on blood vessels and is affected by confounding factors including oxygen concentration, hypoxia duration, and hypoxia frequency and extent. Establishing an optimal model that promotes cerebral microvasculogenesis without causing vascular injury is essential. In this review, we first elaborate on the effects of hypoxia on blood vessels from two different perspectives: (1) the promotion of angiogenesis and (2) cerebral microcirculation damage. We further discuss the factors influencing the dual role of hypoxia and emphasize the benefits of moderate hypoxic irritation and its potential application as an easy, safe, and effective treatment for multiple nervous system disorders.
Collapse
Affiliation(s)
- Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to: Dr. Prof. Xunming Ji; Beijing Institute of Brain Disorders, Capital Medical University, 10 Xi Tou Tiao, You Anmen, Beijing 100069, China. E-mail: .
| |
Collapse
|
26
|
Supriya R, Gao Y, Gu Y, Baker JS. Role of Exercise Intensity on Th1/Th2 Immune Modulations During the COVID-19 Pandemic. Front Immunol 2021; 12:761382. [PMID: 35003073 PMCID: PMC8727446 DOI: 10.3389/fimmu.2021.761382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has led to several pioneering scientific discoveries resulting in no effective solutions with the exception of vaccination. Moderate exercise is a significant non-pharmacological strategy, to reduce the infection-related burden of COVID-19, especially in patients who are obese, elderly, and with additional comorbidities. The imbalance of T helper type 1 (Th1) or T helper type 2 (Th2) cells has been well documented among populations who have suffered as a result of the COVID-19 pandemic, and who are at maximum risk of infection and mortality. Moderate and low intensity exercise can benefit persons at risk from the disease and survivors by favorable modulation in Th1/Th2 ratios. Moreover, in COVID-19 patients, mild to moderate intensity aerobic exercise also increases immune system function but high intensity aerobic exercise may have adverse effects on immune responses. In addition, sustained hypoxia in COVID-19 patients has been reported to cause organ failure and cell death. Hypoxic conditions have also been highlighted to be triggered in COVID-19-susceptible individuals and COVID-19 survivors. This suggests that hypoxia inducible factor (HIF 1α) might be an important focus for researchers investigating effective strategies to minimize the effects of the pandemic. Intermittent hypoxic preconditioning (IHP) is a method of exposing subjects to short bouts of moderate hypoxia interspersed with brief periods of normal oxygen concentrations (recovery). This methodology inhibits the production of pro-inflammatory factors, activates HIF-1α to activate target genes, and subsequently leads to a higher production of red blood cells and hemoglobin. This increases angiogenesis and increases oxygen transport capacity. These factors can help alleviate virus induced cardiopulmonary hemodynamic disorders and endothelial dysfunction. Therefore, during the COVID-19 pandemic we propose that populations should engage in low to moderate exercise individually designed, prescribed and specific, that utilizes IHP including pranayama (yoga), swimming and high-altitude hiking exercise. This would be beneficial in affecting HIF-1α to combat the disease and its severity. Therefore, the promotion of certain exercises should be considered by all sections of the population. However, exercise recommendations and prescription for COVID-19 patients should be structured to match individual levels of capability and adaptability.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Rashmi Supriya,
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
27
|
Yue X, Zhou Y, Qiao M, Zhao X, Huang X, Zhao T, Cheng X, Fan M, Zhao Y, Chen R, Zhu L. Intermittent hypoxia treatment alleviates memory impairment in the 6-month-old APPswe/PS1dE9 mice and reduces amyloid beta accumulation and inflammation in the brain. Alzheimers Res Ther 2021; 13:194. [PMID: 34844651 PMCID: PMC8630860 DOI: 10.1186/s13195-021-00935-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Background Alzheimer’s disease (AD) is a progressive, degenerative, and terminal disease without cure. There is an urgent need for a new strategy to treat AD. The aim of this study was to investigate the effects of intermittent hypoxic treatment (IHT) on cognitive functions in a mouse model of AD and unravel the mechanism of action of IHT. Methods Six-month-old APPswe/PS1dE9 (APP/PS1) male mice were exposed to hypoxic environment (14.3% O2) 4 h/day for 14 days or 28 days. Cognitive functions were measured by Morris water maze test after either 14 days or 42 days of interval. Thereafter the distribution of amyloid plaque and microglial activation were determined by mouse brain immunohistochemistry, while the amyloid beta (Aβ) and inflammatory cytokines were measured by ELISA and Western Blot. Microarray was used for studying gene expressions in the hippocampus. Results IHT for 14 days or 28 days significantly improved the spatial memory ability of the 6-month-old APP/PS1 mice. The memory improvement by 14 days IHT lasted to 14 days, but not to 42 days. The level of Aβ plaques and neurofilament accumulations was reduced markedly after the IHT exposure. IHT reduced the pro-inflammatory cytokines IL-1β, IL-6 levels, and β-secretase cleavage of APP processing which implies reduced Aβ production. Microarray analysis revealed a large number of genes in the hippocampus were significantly altered which are known to be metabolism-regulated genes. Conclusions This study provides evidence of the beneficial effect of IHT on the progression of AD by alleviating memory impairment, reducing Aβ accumulation and inflammation in the brain. IHT can be developed as a novel measure to relieve the progression of AD by targeting multiple pathways in the AD pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00935-z.
Collapse
Affiliation(s)
- Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yanzhao Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Meng Qiao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xingnan Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ming Fan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yongqi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruoli Chen
- Institute for Science and Technology in Medicine, School of Pharmacy, Keele University, Kelle, UK.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China. .,Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
28
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 2021; 27:869-882. [PMID: 34237192 PMCID: PMC8265941 DOI: 10.1111/cns.13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and development of various central nervous system (CNS) diseases, sublethal insult may induce strong protection against subsequent fatal injuries by improving tolerance. Searching for potential measures to improve brain ischemic/hypoxic is of great significance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic preconditioning (I/HPC) refers to the approach to give the body a short period of mild ischemic/hypoxic stimulus which can significantly improve the body's tolerance to subsequent more severe ischemia/hypoxia event. It has been extensively studied and been considered as an effective therapeutic strategy in CNS diseases. Its protective mechanisms involved multiple processes, such as activation of hypoxia signaling pathways, anti-inflammation, antioxidant stress, and autophagy induction, etc. As a strategy to induce endogenous neuroprotection, I/HPC has attracted extensive attention and become one of the research frontiers and hotspots in the field of neurotherapy. In this review, we discuss the basic and clinical research progress of I/HPC on CNS diseases, and summarize its mechanisms. Furthermore, we highlight the limitations and challenges of their translation from basic research to clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68:101343. [PMID: 33862277 DOI: 10.1016/j.arr.2021.101343] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
31
|
Mallet RT, Burtscher J, Richalet JP, Millet GP, Burtscher M. Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc Health Risk Manag 2021; 17:317-335. [PMID: 34135590 PMCID: PMC8197622 DOI: 10.2147/vhrm.s294121] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Globally, about 400 million people reside at terrestrial altitudes above 1500 m, and more than 100 million lowlanders visit mountainous areas above 2500 m annually. The interactions between the low barometric pressure and partial pressure of O2, climate, individual genetic, lifestyle and socio-economic factors, as well as adaptation and acclimatization processes at high elevations are extremely complex. It is challenging to decipher the effects of these myriad factors on the cardiovascular health in high altitude residents, and even more so in those ascending to high altitudes with or without preexisting diseases. This review aims to interpret epidemiological observations in high-altitude populations; present and discuss cardiovascular responses to acute and subacute high-altitude exposure in general and more specifically in people with preexisting cardiovascular diseases; the relations between cardiovascular pathologies and neurodegenerative diseases at altitude; the effects of high-altitude exercise; and the putative cardioprotective mechanisms of hypobaric hypoxia.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Jean-Paul Richalet
- Laboratoire Hypoxie & Poumon, UMR Inserm U1272, Université Sorbonne Paris Nord 13, Bobigny Cedex, F-93017, France
| | - Gregoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria
- Austrian Society for Alpine and High-Altitude Medicine, Mieming, Austria
| |
Collapse
|
32
|
[Into thin air - Altitude training and hypoxic conditioning: From athlete to patient]. Rev Mal Respir 2021; 38:404-417. [PMID: 33722445 DOI: 10.1016/j.rmr.2021.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Hypoxic exposure should be considered as a continuum, the effects of which depend on the dose and individual response to hypoxia. Hypoxic conditioning (HC) represents an innovative and promising strategy, ranging from improved human performance to therapeutic applications. STATE OF THE ART With the aim of improving sports performance, the effectiveness of hypoxic exposure, whether natural or simulated, is difficult to demonstrate because of the large variability of the protocols used. In therapeutics, the benefits of HC are described in many pathological conditions such as obesity or cardiovascular pathologies. If the HC benefits from a strong preclinical rationale, its application to humans remains limited. PERSPECTIVES Advances in training and acclimation will require greater personalization and precise periodization of hypoxic exposures. For patients, the harmonization of HC protocols, the identification of biomarkers and the development and subsequent validation of devices allowing a precise control of the hypoxic stimulus are necessary steps for the development of HC. CONCLUSIONS From the athlete to the patient, HC represents an innovative and promising field of research, ranging from the improvement of human performance to the prevention and treatment of certain pathologies.
Collapse
|
33
|
Burtscher J, Syed MMK, Lashuel HA, Millet GP. Hypoxia Conditioning as a Promising Therapeutic Target in Parkinson's Disease? Mov Disord 2021; 36:857-861. [DOI: 10.1002/mds.28544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- Institute of Sport Sciences, University of Lausanne Lausanne Switzerland
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute, EPFL Lausanne Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute, EPFL Lausanne Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne Lausanne Switzerland
| |
Collapse
|
34
|
A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22020582. [PMID: 33430140 PMCID: PMC7826574 DOI: 10.3390/ijms22020582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington’s disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington’s disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington’s disease from this knowledge base.
Collapse
|
35
|
Kang I, Kondo D, Kim J, Lyoo IK, Yurgelun-Todd D, Hwang J, Renshaw PF. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med Hypotheses 2020; 146:110398. [PMID: 33246695 DOI: 10.1016/j.mehy.2020.110398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that regulates gene expressions in response to decreased oxygen levels in the tissue, or hypoxia. HIF-1 exerts protective effects against hypoxia by mediating mitochondrial metabolism and consequently reducing oxidative stress. Recently, increased levels of oxidative stress and abnormal energy metabolism in the brain have been suggested to play essential roles in the pathogenesis of depression. Given that HIF-1 activates creatine metabolism and increases phosphocreatine levels in the intestinal epithelial cells, we assume that HIF-1 may induce similar processes in the brain. Elevated phosphocreatine levels in the brain, as measured by magnetic resonance spectroscopy, were associated with better treatment response to the antidepressants in individuals with depression. In addition, oral creatine supplements, which led to increased phosphocreatine levels in the brain, also enhanced the effects of antidepressants in individuals with depression. As such, we hypothesized that increasing the HIF-1, which potentially facilitates creatine metabolism in the brain, might be a new therapeutic target in depression. With this regard, we suggested that interventions to elevate the HIF-1 levels in the brain, including the intermittent hypoxia conditioning and hyperbaric oxygen therapy, might be considered as new additional treatments for depression.
Collapse
Affiliation(s)
- Ilhyang Kang
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Douglas Kondo
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea; Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA; Veterans Integrated Service Network 19 Mental Illness Research Education Clinical, Centers of Excellence, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, South Korea.
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA; Veterans Integrated Service Network 19 Mental Illness Research Education Clinical, Centers of Excellence, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| |
Collapse
|
36
|
Li XY, Zhang M, Xu W, Li JQ, Cao XP, Yu JT, Tan L. Midlife Modifiable Risk Factors for Dementia: A Systematic Review and Meta-analysis of 34 Prospective Cohort Studies. Curr Alzheimer Res 2020; 16:1254-1268. [PMID: 31902364 DOI: 10.2174/1567205017666200103111253] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/25/2019] [Accepted: 12/29/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of this study is to assess the association between midlife risk factors and dementia. METHODS PubMed and Cochrane library were systematically searched on May 24, 2018, to retrieve prospective cohort studies. The summary Relative Risk (RR) and 95% Confidence Interval (CI) were calculated by the random-effect model to explore the association between midlife risk factors and dementia. Sensitivity analysis and meta-regression were conducted to explore the source of heterogeneity. Publication bias was examined using Begg's and Egger's tests. RESULTS Thirty-four prospective cohort studies were included, among which 24 were eligible for metaanalysis. A total of 159,594 non-demented adults were enrolled at baseline before 65 years and 13,540 people were diagnosed with dementia after follow-up. The pooled results revealed that five factors could significantly increase the dementia risk by 41 to 78%, including obesity (RR, 1.78; 95% CI: 1.31-2.41), diabetes mellitus (RR, 1.69; 95% CI: 1.38-2.07), current smoking (RR, 1.61; 95%, CI: 1.32-1.95), hypercholesterolemia (RR, 1.57; 95% CI: 1.19-2.07), and hypertension (borderline blood pressure RR, 1.41; 95% CI: 1.23-1.62 and high Systolic Blood Pressure (SBP) RR, 1.72; 95% CI: 1.25-2.37). However, the sensitivity analyses found that the results of hypercholesterolemia and high SBP were not reliable, which need to be confirmed by more high-quality studies. No influences due to publication bias were revealed. In the systematic review, another three factors (hyperhomocysteinemia, psychological stress, and heavy drinking) were found to be associated with elevated dementia risk. In addition, physical exercise, a healthy diet, and hormone therapy in middle age were associated with the reduction of dementia risk. CONCLUSIONS Middle-aged people with obesity, diabetes, hypertension, or hypercholesterolemia, and current smokers in midlife are at higher risk of developing dementia later in life.
Collapse
Affiliation(s)
- Xiao-Ying Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Min Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| |
Collapse
|
37
|
Hu K, Deng W, Yang J, Wei Y, Wen C, Li X, Chen Q, Ke D, Li G. Intermittent hypoxia reduces infarct size in rats with acute myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord 2020; 20:422. [PMID: 32962654 PMCID: PMC7507284 DOI: 10.1186/s12872-020-01702-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022] Open
Abstract
Background To determine whether intermittent hypoxia (IH) can reduce the infarct size (IS) after acute myocardial infarction (AMI) in rats. Methods Articles were identified in PubMed, EMBASE and the Web of Science and were included if they evaluated the effect of IH on the changes in the infarcted area after AMI in rats. Results A preliminary search identified 3633 articles and 29 data sets from 23 articles (12 in vivo, 16 in vitro). The IS decreased after AMI in IH rats both in vitro (SMD -1.46, 95% CI [− 2.37, − 0.55]; I2 = 85.6%, P = 0.000) and in vivo (SMD -1.43, 95% CI [− 2.05, − 0.82], I2 = 73.6%, P = 0.000). Sensitivity analysis indicated that IH had a strong protective effect against myocardial infarction, and the hypoxia concentration was significantly correlated with the change in IS after AMI. Conclusion IH can reduce IS after AMI in rats. This effect of IH may be related to the dose of hypoxia, and the oxygen concentration may be one of the most important influencing factors.
Collapse
Affiliation(s)
- Ke Hu
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wei Deng
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Jing Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yu Wei
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Chaolin Wen
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xingsheng Li
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Qingwei Chen
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Dazhi Ke
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guiqiong Li
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| |
Collapse
|
38
|
Iwamoto E, Hanson BE, Bock JM, Casey DP. Intermittent hypoxia enhances shear-mediated dilation of the internal carotid artery in young adults. J Appl Physiol (1985) 2020; 129:603-611. [DOI: 10.1152/japplphysiol.00274.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We explored the effects of cyclic intermittent hypoxia (IH) on shear-mediated dilation of the internal carotid artery (ICA), a potential index of cerebral endothelial function, in young adults. Cyclic IH increased blood flow and shear rate in the ICA and, as a result, increased shear-mediated dilation of the ICA. These data suggest that cyclic IH could potentially be applied as a nonpharmacological therapy to optimize cerebral vascular health.
Collapse
Affiliation(s)
- Erika Iwamoto
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Brady E. Hanson
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Joshua M. Bock
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Darren P. Casey
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
39
|
Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8363245. [PMID: 32832006 PMCID: PMC7422410 DOI: 10.1155/2020/8363245] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.
Collapse
|
40
|
Bao X, Liu H, Liu HY, Long Y, Tan JW, Zhu ZM. The effect of intermittent hypoxia training on migraine: a randomized controlled trial. Am J Transl Res 2020; 12:4059-4065. [PMID: 32774759 PMCID: PMC7407698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the effect of intermittent hypoxia training (IHT) for migraine. DESIGN A single-blind, randomized controlled trial. All participants were recruited from a rehabilitation department in an acute university-affiliated hospital. METHODS Participants with migraines were randomly assigned to two groups (IHT group and control group). The Migraine Disability Assessment (MIDAS), Visual Analog Scale (VAS), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Vascular endothelial growth factor (VEGF), calcitonin gene related peptide (CGRP) and cerebrovascular hemodynamic parameters were collected at baseline and end of the 8th week. The attack frequencies of migraines were evaluated at 3 months. RESULTS Among the 48 subjects, five males and forty-three females, the ages ranged from 19 to 53 years old (mean ± SD = 31.3±7.78). MIDAS, SF-36, VAS, BAI, BDI, VEGF, CGRP and cerebrovascular hemodynamic parameters were improved after IHT intervention. There were significant differences between IHT group and the control group in MIDAS, SF-36, VAS, BAI, BDI, VEGF, CGRP and cerebrovascular hemodynamic parameters at the end of the 8th weeks (P<0.05). Attack frequencies were improved within 3 months after IH training intervention (P<0.01), but not in the control group (P>0.05). No adverse events occurred during the study. CONCLUSION IHT could improve migraines after intervention up to three months. IHT could be an effective method for relieving a migraine.
Collapse
Affiliation(s)
- Xiao Bao
- Department of Rehabilitation Medicine, Yue Bei People’s HospitalShaoguan, China
| | - Howe Liu
- Department of Physical Therapy, University of North Texas Health Science CenterFort Worth, USA
| | - Hui-Yu Liu
- Department of Rehabilitation Medicine, Yue Bei People’s HospitalShaoguan, China
| | - Ying Long
- Department of Hyperbaric Oxygen Medicine, Shenzhen People’s HospitalShenzhen, China
| | - Jie-Wen Tan
- Department of Rehabilitation Medicine, Xinhua College of Sun Yat-sen UniversityGuangzhou, China
| | - Zhi-Min Zhu
- Department of Rehabilitation Medicine, Lianjiang People’s HospitalLianjiang, China
| |
Collapse
|
41
|
Chacaroun S, Borowik A, Doutreleau S, Belaidi E, Wuyam B, Tamisier R, Pépin JL, Flore P, Verges S. Cardiovascular and metabolic responses to passive hypoxic conditioning in overweight and mildly obese individuals. Am J Physiol Regul Integr Comp Physiol 2020; 319:R211-R222. [PMID: 32609532 DOI: 10.1152/ajpregu.00311.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although severe intermittent hypoxia (IH) is well known to induce deleterious cardiometabolic consequences, moderate IH may induce positive effects in obese individuals. The present study aimed to evaluate the effect of two hypoxic conditioning programs on cardiovascular and metabolic health status of overweight or obese individuals. In this randomized single-blind controlled study, 35 subjects (54 ± 9.3 yr, 31.7 ± 3.5 kg/m2) were randomized into three 8-wk interventions (three 1-h sessions per week): sustained hypoxia (SH), arterial oxygen saturation ([Formula: see text]) = 75%; IH, 5 min [Formula: see text] = 75% - 3 min normoxia; normoxia. Ventilation, heart rate, blood pressure, and tissue oxygenation were measured during the first and last hypoxic conditioning sessions. Vascular function, blood glucose and insulin, lipid profile, nitric oxide metabolites, and oxidative stress were evaluated before and after the interventions. Both SH and IH increased ventilation in hypoxia (+1.8 ± 2.1 and +2.3 ± 3.6 L/min, respectively; P < 0.05) and reduced normoxic diastolic blood pressure (-12 ± 15 and -13 ± 10 mmHg, respectively; P < 0.05), whereas changes in normoxic systolic blood pressure were not significant (+3 ± 9 and -6 ± 13 mmHg, respectively; P > 0.05). IH only reduced heart rate variability (e.g., root-mean-square difference of successive normal R-R intervals in normoxia -21 ± 35%; P < 0.05). Both SH and IH induced no significant change in body mass index, vascular function, blood glucose, insulin and lipid profile, nitric oxide metabolites, or oxidative stress, except for an increase in superoxide dismutase activity following SH. This study indicates that passive hypoxic conditioning in obese individuals induces some positive cardiovascular and respiratory improvements despite no change in anthropometric data and even a reduction in heart rate variability during IH exposure.
Collapse
Affiliation(s)
- Samarmar Chacaroun
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Anna Borowik
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Stephane Doutreleau
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Elise Belaidi
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Bernard Wuyam
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Renaud Tamisier
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pépin
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Patrice Flore
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Samuel Verges
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
42
|
Manukhina EB, Tseilikman VE, Karpenko MN, Pestereva NS, Tseilikman OB, Komelkova MV, Kondashevskaya MV, Goryacheva AV, Lapshin MS, Platkovskii PO, Sarapultsev AP, Alliluev AV, Downey HF. Intermittent Hypoxic Conditioning Alleviates Post-Traumatic Stress Disorder-Induced Damage and Dysfunction of Rat Visceral Organs and Brain. Int J Mol Sci 2020; 21:ijms21010345. [PMID: 31948051 PMCID: PMC6981426 DOI: 10.3390/ijms21010345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) causes mental and somatic diseases. Intermittent hypoxic conditioning (IHC) has cardio-, vaso-, and neuroprotective effects and alleviates experimental PTSD. IHC’s ability to alleviate harmful PTSD effects on rat heart, liver, and brain was examined. PTSD was induced by 10-day exposure to cat urine scent (PTSD rats). Some rats were then adapted to 14-day IHC (PTSD+IHC rats), while PTSD and untreated control rats were cage rested. PTSD rats had a higher anxiety index (AI, X-maze test), than control or PTSD+IHC rats. This higher AI was associated with reduced glycogen content and histological signs of metabolic and hypoxic damage and of impaired contractility. The livers of PTSD rats had reduced glycogen content. Liver and blood alanine and aspartate aminotransferase activities of PTSD rats were significantly increased. PTSD rats had increased norepinephrine concentration and decreased monoamine oxidase A activity in cerebral cortex. The PTSD-induced elevation of carbonylated proteins and lipid peroxidation products in these organs reflects oxidative stress, a known cause of organ pathology. IHC alleviated PTSD-induced metabolic and structural injury and reduced oxidative stress. Therefore, IHC is a promising preventive treatment for PTSD-related morphological and functional damage to organs, due, in part, to IHC’s reduction of oxidative stress.
Collapse
Affiliation(s)
- Eugenia B. Manukhina
- School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence:
| | - Vadim E. Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
| | - Marina N. Karpenko
- I.P. Pavlov Physiology Department, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Nina S. Pestereva
- I.P. Pavlov Physiology Department, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Olga B. Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
- School of Basic Medicine, Chelyabinsk State University, Chelyabinsk 454001, Russia
| | - Maria V. Komelkova
- School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
| | - Marina V. Kondashevskaya
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow 117418, Russia
| | - Anna V. Goryacheva
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - Maxim S. Lapshin
- School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
| | - Pavel O. Platkovskii
- School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey P. Sarapultsev
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Anatoly V. Alliluev
- School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
| | - H. Fred Downey
- School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
43
|
Koller GM, Schafer C, Kemp SS, Aguera KN, Lin PK, Forgy JC, Griffin CT, Davis GE. Proinflammatory Mediators, IL (Interleukin)-1β, TNF (Tumor Necrosis Factor) α, and Thrombin Directly Induce Capillary Tube Regression. Arterioscler Thromb Vasc Biol 2019; 40:365-377. [PMID: 31852224 DOI: 10.1161/atvbaha.119.313536] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In this work, we examine the molecular basis for capillary tube regression and identify key proregressive factors, signaling pathways, and pharmacological antagonists of this process. Approach and Results: We demonstrate that the proinflammatory mediators, IL (interleukin)-1β, TNF (tumor necrosis factor) α, and thrombin, singly and in combination, are potent regulators of capillary tube regression in vitro. These proregressive factors, when added to endothelial cell-pericyte cocultures, led to selective loss of endothelial cell-lined tube networks, with retention and proliferation of pericytes despite the marked destruction of adjacent capillary tubes. Moreover, treatment of macrophages with the TLR (toll-like receptor) agonists Pam3CSK4 and lipopolysaccharide generates conditioned media with marked proregressive activity, that is completely blocked by a combination of neutralizing antibodies directed to IL-1β and TNFα but not to other factors. The same combination of blocking antibodies, as well as the anti-inflammatory cytokine IL-10, interfere with macrophage-dependent hyaloid vasculature regression in mice suggesting that proinflammatory cytokine signaling regulates capillary regression in vivo. In addition, we identified a capillary regression signaling signature in endothelial cells downstream of these proregressive agents that is characterized by increased levels of ICAM-1 (intercellular adhesion molecule-1), phospho-p38, and phospho-MLC2 (myosin light chain-2) and decreased levels of phospho-Pak2, acetylated tubulin, phospho-cofilin, and pro-caspase3. Finally, we identified combinations of pharmacological agents (ie, FIST and FISTSB) that markedly rescue the proregressive activities of IL-1β, TNFα, and thrombin, individually and in combination. CONCLUSIONS Overall, these new studies demonstrate that the major proinflammatory mediators, IL-1β, TNFα, and thrombin, are key regulators of capillary tube regression-a critical pathological process regulating human disease.
Collapse
Affiliation(s)
- Gretchen M Koller
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Christopher Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (C.S., C.T.G.), University of Oklahoma Health Sciences Center
| | - Scott S Kemp
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Kalia N Aguera
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Prisca K Lin
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Joshua C Forgy
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (C.S., C.T.G.), University of Oklahoma Health Sciences Center.,Department of Cell Biology (C.T.G.), University of Oklahoma Health Sciences Center
| | - George E Davis
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| |
Collapse
|
44
|
Fang B, Zhao Q, Ling W, Zhang Y, Ou M. Hypoxia induces HT-22 neuronal cell death via Orai1/CDK5 pathway-mediated Tau hyperphosphorylation. Am J Transl Res 2019; 11:7591-7603. [PMID: 31934303 PMCID: PMC6943478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia and apoptosis are involved in the pathogenesis of Alzheimer's disease (AD). Hypoxia induces the formation of amyloid precursor protein in neurons, leading to the abnormal deposition of β-amyloid protein and hyperphosphorylation of Tau. Such changes increase the risk of AD. In the present study, a cellular model of hypoxia-induced AD was established by exposing HT-22 mouse hippocampal neurons to the chemical hypoxia-mimicking agent cobalt chloride (CoCl2). It was found that hypoxia increased neuronal apoptosis. Hypoxia caused an abnormal increase in the expression of the intracellular calcium channel protein Orai1 and cyclin-dependent kinase 5 (CDK5), resulting in hyperphosphorylation of Tau. Treatment with small-interfering RNA against Orai1 (siOrai1) or an Orai1-overexpression plasmid effectively intervened the CDK5-mediated hyperphosphorylation of Tau. In summary, following hypoxic injury of neuron, the Orai1-induced expression of CDK5 leads to Tau hyperphosphorylation. Tau hyperphosphorylation is an important pathophysiological manifestation in AD patients. These results indicated that hypoxia induces HT-22 cell death by Orai1/CDK5 pathway mediated Tau hyperphosporylation. This study simulated the pathological process associated with AD and proposed that hypoxia of intravascular cells with normal blood oxygen saturation might be one of a pathogenic mechanisms of AD. Therefore, this work may provide a new theoretical basis for AD prevention and treatment.
Collapse
Affiliation(s)
- Binbin Fang
- Department of Clinical Laboratory, Wuxi Mental Health Center Affiliated with Nanjing Medical UniversityWuxi, Jiangsu, People’s Republic of China
| | - Qing Zhao
- Department of Pharmacy, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
| | - Weiming Ling
- Department of Clinical Laboratory, Wuxi Mental Health Center Affiliated with Nanjing Medical UniversityWuxi, Jiangsu, People’s Republic of China
| | - Yuechun Zhang
- Department of Clinical Laboratory, Wuxi Mental Health Center Affiliated with Nanjing Medical UniversityWuxi, Jiangsu, People’s Republic of China
| | - Mengmeng Ou
- Department of Clinical Laboratory, Wuxi Mental Health Center Affiliated with Nanjing Medical UniversityWuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
45
|
Li Y, Wu Y, Chen L, Zeng H, Chen X, Lun W, Fan X, Wong WY. A time-resolved near-infrared phosphorescent iridium(iii) complex for fast and highly specific peroxynitrite detection and bioimaging applications. J Mater Chem B 2019; 7:7612-7618. [PMID: 31746928 DOI: 10.1039/c9tb01673b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxynitrite (ONOO-), one of the reactive oxygen/nitrogen species (ROS/RNS) found in vivo, plays crucial roles in many physiological and pathological processes. The ability to selectively and sensitively determine ONOO-in vivo is important for the understanding of its biological roles. Thus, by utilizing the excellent chemical stability and photostability, high luminescence efficiency, and long luminescence lifetime of iridium complexes, we developed a novel near-infrared (NIR) phosphorescent iridium(iii) complex (FNO2) probe to detect ONOO- within seconds. The probe FNO2 showed better selectivity towards ONOO- over other interfering biomolecules, including O2- and ClO-. Moreover, it possessed a long luminescence lifetime, which enabled successful elimination of the interference from background fluorescence in vitro (simulated by Rhodamine B) in time-resolved emission spectra. Finally, in addition to its low cytotoxicity, the probe FNO2 showed emission wavelength in the NIR region and was able to specifically sense ONOO- induced in living cells and inflamed mouse models.
Collapse
Affiliation(s)
- Yuanyan Li
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, P. R. China. and School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Yongquan Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China. and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.
| | - Luyan Chen
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Hong Zeng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xiaoyong Chen
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Weican Lun
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xiaolin Fan
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, P. R. China. and School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
46
|
Serebrovska ZO, Serebrovska TV, Kholin VA, Tumanovska LV, Shysh AM, Pashevin DA, Goncharov SV, Stroy D, Grib ON, Shatylo VB, Bachinskaya NY, Egorov E, Xi L, Dosenko VE. Intermittent Hypoxia-Hyperoxia Training Improves Cognitive Function and Decreases Circulating Biomarkers of Alzheimer's Disease in Patients with Mild Cognitive Impairment: A Pilot Study. Int J Mol Sci 2019; 20:E5405. [PMID: 31671598 PMCID: PMC6862463 DOI: 10.3390/ijms20215405] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) affects not only the central nervous system, but also peripheral blood cells including neutrophils and platelets, which actively participate in pathogenesis of AD through a vicious cycle between platelets aggregation and production of excessive amyloid beta (Aβ). Platelets adhesion on amyloid plaques also increases the risk of cerebral microcirculation disorders. Moreover, activated platelets release soluble adhesion molecules that cause migration, adhesion/activation of neutrophils and formation of neutrophil extracellular traps (NETs), which may damage blood brain barrier and destroy brain parenchyma. The present study examined the effects of intermittent hypoxic-hyperoxic training (IHHT) on elderly patients with mild cognitive impairment (MCI), a precursor of AD. Twenty-one participants (age 51-74 years) were divided into three groups: Healthy Control (n = 7), MCI+Sham (n = 6), and MCI+IHHT (n = 8). IHHT was carried out five times per week for three weeks (total 15 sessions). Each IHHT session consisted of four cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Cognitive parameters, Aβ and amyloid precursor protein (APP) expression, microRNA 29, and long non-coding RNA in isolated platelets as well as NETs in peripheral blood were investigated. We found an initial decline in cognitive function indices in both MCI+Sham and MCI+IHHT groups and significant correlations between cognitive test scores and the levels of circulating biomarkers of AD. Whereas sham training led to no change in these parameters, IHHT resulted in the improvement in cognitive test scores, along with significant increase in APP ratio and decrease in Aβ expression and NETs formation one day after the end of three-week IHHT. Such effects on Aβ expression and NETs formation remained more pronounced one month after IHHT. In conclusion, our results from this pilot study suggested a potential utility of IHHT as a new non-pharmacological therapy to improve cognitive function in pre-AD patients and slow down the development of AD.
Collapse
Affiliation(s)
- Zoya O Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | | | - Viktor A Kholin
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine.
| | - Lesya V Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Angela M Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Denis A Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Sergii V Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Dmytro Stroy
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| | - Oksana N Grib
- Department of Clinical Physiology and Pathology of Internal Organs, Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine.
| | - Valeriy B Shatylo
- Department of Clinical Physiology and Pathology of Internal Organs, Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine.
| | - Natalia Yu Bachinskaya
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv 04114, Ukraine.
| | - Egor Egorov
- CellAir Constructions GmbH, Schorndorf 73614, Germany.
| | - Lei Xi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine.
| |
Collapse
|
47
|
Effect of Intermittent Hypoxia Training for Dizziness: A Randomized Controlled Trial. J Sport Rehabil 2019; 28:540-543. [PMID: 29584516 DOI: 10.1123/jsr.2017-0341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the effect of intermittent hypoxia training (IHT) for dizziness. DESIGN A single-blind, randomized controlled trial. All participants were recruited from a rehabilitation department in an acute university-affiliated hospital. INTERVENTION Participants with dizziness were randomly assigned to 2 groups (IHT group and control group). The Dizziness Handicap Inventory, Activities-specific Balance Confidence Scale, and Vertigo Visual Analog Scale were conducted at baseline, end of the fourth week. RESULTS Among 52 subjects, there were18 males and 34 females, ages 35 to 62 years old (mean [SD] = 46.9 [7.93]). Time length since onset ranged from 12 to 34 months (20.2 [7.15] mo). Dizziness Handicap Inventory, Activities-specific Balance Confidence Scale, Vertigo Visual Analog Scale scores, and attack frequencies of dizziness were improved after IHT intervention in the end of the fourth week. There were significant differences between the IHT group and the control group in the Dizziness Handicap Inventory, Activities-specific Balance Confidence Scale, Vertigo Visual Analog Scale scores, and attack frequencies of dizziness at the end of the fourth week (P < .05). No adverse events occurred during the study. CONCLUSION IHT could improve dizziness after intervention at the end of the fourth week. IHT could be the effective method for treating dizziness.
Collapse
|
48
|
Chacaroun S, Vega-Escamilla Y Gonzalez I, Flore P, Doutreleau S, Verges S. Physiological responses to hypoxic constant-load and high-intensity interval exercise sessions in healthy subjects. Eur J Appl Physiol 2018; 119:123-134. [PMID: 30315366 DOI: 10.1007/s00421-018-4006-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to assess the acute cardiorespiratory as well as muscle and cerebral tissue oxygenation responses to submaximal constant-load (CL) and high-intensity interval (HII) cycling exercise performed in normoxia and in hypoxia at similar intensity, reproducing whole-body endurance exercise training sessions as performed in sedentary and clinical populations. METHODS Healthy subjects performed two CL (30 min, 75% of maximal heart rate, n = 12) and two HII (15 times 1-min high-intensity exercise-1-min passive recovery, n = 12) cycling exercise sessions in normoxia and in hypoxia [mean arterial oxygen saturation 76 ± 1% (clamped) during CL and 77 ± 5% (inspiratory oxygen fraction 0.135) during HII]. Cardiorespiratory and near-infrared spectroscopy parameters as well as the rate of perceived exertion were continuously recorded. RESULTS Power output was 21 ± 11% and 15% (according to protocol design) lower in hypoxia compared to normoxia during CL and HII exercise sessions, respectively. Heart rate did not differ between normoxic and hypoxic exercise sessions, while minute ventilation was higher in hypoxia during HII exercise only (+ 13 ± 29%, p < 0.05). Quadriceps tissue saturation index did not differ significantly between normoxia and hypoxia (CL 60 ± 8% versus 59 ± 5%; HII 59 ± 10% versus 56 ± 9%; p > 0.05), while prefrontal cortex deoxygenation was significantly greater in hypoxia during both CL (66 ± 4% versus 56 ± 6%) and HII (58 ± 5% versus 55 ± 5%; p < 0.05) sessions. The rate of perceived exertion did not differ between normoxic and hypoxic CL (2.4 ± 1.7 versus 2.9 ± 1.8) and HII (6.9 ± 1.4 versus 7.5 ± 0.8) sessions (p > 0.05). CONCLUSION This study indicates that at identical heart rate, reducing arterial oxygen saturation near 75% does not accentuate muscle deoxygenation during both CL and HII exercise sessions compared to normoxia. Hence, within these conditions, larger muscle hypoxic stress should not be expected.
Collapse
Affiliation(s)
- S Chacaroun
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France
| | - I Vega-Escamilla Y Gonzalez
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France
| | - P Flore
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France
| | - S Doutreleau
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France.,Grenoble Alpes University Hospital, Grenoble, France
| | - Samuel Verges
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France. .,Grenoble Alpes University Hospital, Grenoble, France.
| |
Collapse
|
49
|
Törpel A, Herold F, Hamacher D, Müller NG, Schega L. Strengthening the Brain-Is Resistance Training with Blood Flow Restriction an Effective Strategy for Cognitive Improvement? J Clin Med 2018; 7:E337. [PMID: 30304785 PMCID: PMC6210989 DOI: 10.3390/jcm7100337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is accompanied by a decrease in physical capabilities (e.g., strength loss) and cognitive decline. The observed bidirectional relationship between physical activity and brain health suggests that physical activities could be beneficial to maintain and improve brain functioning (e.g., cognitive performance). However, the exercise type (e.g., resistance training, endurance training) and their exercise variables (e.g., load, duration, frequency) for an effective physical activity that optimally enhance cognitive performance are still unknown. There is growing evidence that resistance training induces substantial brain changes which contribute to improved cognitive functions. A relative new method in the field of resistance training is blood flow restriction training (BFR). While resistance training with BFR is widely studied in the context of muscular performance, this training strategy also induces an activation of signaling pathways associated with neuroplasticity and cognitive functions. Based on this, it seems reasonable to hypothesize that resistance training with BFR is a promising new strategy to boost the effectiveness of resistance training interventions regarding cognitive performance. To support our hypothesis, we provide rationales of possible adaptation processes induced by resistance training with BFR. Furthermore, we outline recommendations for future studies planning to investigate the effects of resistance training with BFR on cognition.
Collapse
Affiliation(s)
- Alexander Törpel
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Dennis Hamacher
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Lutz Schega
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| |
Collapse
|
50
|
Jung ME, Mallet RT. Intermittent hypoxia training: Powerful, non-invasive cerebroprotection against ethanol withdrawal excitotoxicity. Respir Physiol Neurobiol 2018; 256:67-78. [PMID: 28811138 PMCID: PMC5825251 DOI: 10.1016/j.resp.2017.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022]
Abstract
Ethanol intoxication and withdrawal exact a devastating toll on the central nervous system. Abrupt ethanol withdrawal provokes massive release of the excitatory neurotransmitter glutamate, which over-activates its postsynaptic receptors, causing intense Ca2+ loading, p38 mitogen activated protein kinase activation and oxidative stress, culminating in ATP depletion, mitochondrial injury, amyloid β deposition and neuronal death. Collectively, these mechanisms produce neurocognitive and sensorimotor dysfunction that discourages continued abstinence. Although the brain is heavily dependent on blood-borne O2 to sustain its aerobic ATP production, brief, cyclic episodes of moderate hypoxia and reoxygenation, when judiciously applied over the course of days or weeks, evoke adaptations that protect the brain from ethanol withdrawal-induced glutamate excitotoxicity, mitochondrial damage, oxidative stress and amyloid β accumulation. This review summarizes evidence from ongoing preclinical research that demonstrates intermittent hypoxia training to be a potentially powerful yet non-invasive intervention capable of affording robust, sustained neuroprotection during ethanol withdrawal.
Collapse
Affiliation(s)
- Marianna E Jung
- Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| | - Robert T Mallet
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| |
Collapse
|