1
|
Ledwidge PS, Hartland LC, Brickman K, Burkhart SO, Abt JP. Challenges and Research Opportunities for Integrating Quantitative Electroencephalography Into Sports Concussion Rehabilitation. J Sport Rehabil 2025; 34:278-286. [PMID: 39719135 DOI: 10.1123/jsr.2024-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 12/26/2024]
Abstract
Although concussion management and return to play/learn decision making focuses on reducing symptoms, there is growing interest in objective physiological approaches to treatment. Clinical and technological advancements have aided concussion management; however, the scientific study of the neurophysiology of concussion has not translated into its standard of care. This expert commentary is motivated by novel clinical applications of electroencephalographic-based neurofeedback approaches (eg, quantitative electroencephalography [QEEG]) for treating traumatic brain injury and emerging research interest in its translation for treating concussion. QEEG's low-cost relative to other brain recording/imaging techniques and precedent in clinical and medical care makes it a potential tool for concussion rehabilitation. Although uncommon, licensed and certified clinicians and medical professionals are implementing QEEG neurofeedback for concussion management within their score of practice. These approaches are not widely adopted nor recommended by professional medical societies, likely because of a limited evidence base of well-designed studies with available standard protocols. Thus, the potential efficacy of QEEG neurofeedback for treating persistent symptoms or cognitive dysfunction after sports-related concussion is unknown. This commentary will update the concussion clinician-scientist on the emerging research, techniques, and disagreements pertaining to the translation of QEEG neurofeedback for concussion management, particularly in the treatment of persistent cognitive difficulties. This commentary will also introduce to readers the fundamentals of how the electroencephalogram may be acquired, measured, and implemented during QEEG neurofeedback. An evidence base of supportive findings from well-designed studies, including those that are retrospective, outcomes-based, and, ultimately, placebo/sham-controlled is recommended prior to considering more widespread adoption of QEEG neurofeedback approaches for treating persistent symptoms or cognitive deficits after sports-related concussion. We review the considerable barriers to this research and clinical implementation, and conclude with opportunities for future research, which will be necessary for establishing the quality and efficacy of QEEG neurofeedback for concussion care.
Collapse
Affiliation(s)
- Patrick S Ledwidge
- Department of Psychological Sciences, Western Kentucky University, Bowling Green, KY, USA
| | - Lindsey C Hartland
- Children's Health Andrews Institute for Orthopaedics and Sports Medicine, Plano, TX, USA
| | - Kirstiana Brickman
- Department of Psychological Sciences, Western Kentucky University, Bowling Green, KY, USA
| | - Scott O Burkhart
- Graduate School of Clinical Psychology, George Fox University, Newberg, OR, USA
| | - John P Abt
- Children's Health Andrews Institute for Orthopaedics and Sports Medicine, Plano, TX, USA
| |
Collapse
|
2
|
Nami M, Thatcher R, Kashou N, Lopes D, Lobo M, Bolanos JF, Morris K, Sadri M, Bustos T, Sanchez GE, Mohd-Yusof A, Fiallos J, Dye J, Guo X, Peatfield N, Asiryan M, Mayuku-Dore A, Krakauskaite S, Soler EP, Cramer SC, Besio WG, Berenyi A, Tripathi M, Hagedorn D, Ingemanson M, Gombosev M, Liker M, Salimpour Y, Mortazavi M, Braverman E, Prichep LS, Chopra D, Eliashiv DS, Hariri R, Tiwari A, Green K, Cormier J, Hussain N, Tarhan N, Sipple D, Roy M, Yu JS, Filler A, Chen M, Wheeler C, Ashford JW, Blum K, Zelinsky D, Yamamoto V, Kateb B. A Proposed Brain-, Spine-, and Mental- Health Screening Methodology (NEUROSCREEN) for Healthcare Systems: Position of the Society for Brain Mapping and Therapeutics. J Alzheimers Dis 2022; 86:21-42. [PMID: 35034899 DOI: 10.3233/jad-215240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans. This is especially true in the elderly populations, wherein only 16% of seniors say they receive regular cognitive evaluations. Therefore, there is a great need for development of an optimized clinical brain screening workflow methodology like what is already in existence for prostate and breast exams. Such a methodology should be designed to facilitate objective early detection and cost-effective treatment of such disorders. In this paper we have reviewed the existing clinical protocols, recent technological advances and suggested reliable clinical workflows for brain screening. Such protocols range from questionnaires and smartphone apps to multi-modality brain mapping and advanced imaging where applicable. To that end, the Society for Brain Mapping and Therapeutics (SBMT) proposes the Brain, Spine and Mental Health Screening (NEUROSCREEN) as a multi-faceted approach. Beside other assessment tools, NEUROSCREEN employs smartphone guided cognitive assessments and quantitative electroencephalography (qEEG) as well as potential genetic testing for cognitive decline risk as inexpensive and effective screening tools to facilitate objective diagnosis, monitor disease progression, and guide personalized treatment interventions. Operationalizing NEUROSCREEN is expected to result in reduced healthcare costs and improving quality of life at national and later, global scales.
Collapse
Affiliation(s)
- Mohammad Nami
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama.,Department of Neuroscience, School of Advanced Medical Sciences and Technologies, and Dana Brain Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran.,Inclusive Brain Health and BrainLabs International, Swiss Alternative Medicine, Geneva, Switzerland
| | - Robert Thatcher
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Applied Neuroscience, Inc., St Petersburg, FL, USA
| | - Nasser Kashou
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Dahabada Lopes
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Maria Lobo
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Joe F Bolanos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Kevin Morris
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Melody Sadri
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Teshia Bustos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Gilberto E Sanchez
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Alena Mohd-Yusof
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - John Fiallos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Justin Dye
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University, CA, USA
| | | | - Milena Asiryan
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Alero Mayuku-Dore
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Solventa Krakauskaite
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Ernesto Palmero Soler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Steven C Cramer
- Department of Neurology, UCLA, and California Rehabilitation Institute, Los Angeles, CA, USA
| | - Walter G Besio
- Electrical Computer and Biomedical Engineering Department and Interdisciplinary Neuroscience Program, University of Rhode Island, RI, USA
| | - Antal Berenyi
- The Neuroscience Institute, New York University, New York, NY, USA
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | - Mark Liker
- Department of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yousef Salimpour
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Dawn S Eliashiv
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,UCLA David Geffen, School of Medicine, Department of Neurology, Los Angeles, CA, USA
| | - Robert Hariri
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Celularity Corporation, Warren, NJ, USA.,Weill Cornell School of Medicine, Department of Neurosurgery, New York, NY, USA.,Brain Technology and Innovation Park, Los Angeles, CA, USA
| | - Ambooj Tiwari
- Departments of Neurology, Radiology & Neurosurgery - NYU Grossman School of Medicine, New York, NY, USA
| | - Ken Green
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Jason Cormier
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Lafayette Surgical Specialty Hospital, Lafayette, LA, USA
| | - Namath Hussain
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Department of Psychiatry, Faculty of Medicine, Uskudar University, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Faculty of Medicine, Uskudar University, Turkey
| | - Daniel Sipple
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Midwest Spine and Brain Institute, Roseville, MN, USA
| | - Michael Roy
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Uniformed Services University Health Science (USUHS), Baltimore, MD, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron Filler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Institute for Nerve Medicine, Santa Monica, CA, USA.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mike Chen
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Department of Neurosurgery, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chris Wheeler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | | | - Kenneth Blum
- Division of Addiction Research, Center for Psychiatry, Medicine, and Primary Care, Western Health Sciences, Pomona, CA, USA
| | | | - Vicky Yamamoto
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,USC Keck School of Medicine, The USC Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA, USA.,USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Babak Kateb
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Loma Linda University, Department of Neurosurgery, Loma Linda, CA, USA.,National Center for NanoBioElectronic (NCNBE), Los Angeles, CA, USA.,Brain Technology and Innovation Park, Los Angeles, CA, USA
| |
Collapse
|
3
|
Livint Popa L, Dragos H, Pantelemon C, Verisezan Rosu O, Strilciuc S. The Role of Quantitative EEG in the Diagnosis of Neuropsychiatric Disorders. J Med Life 2020; 13:8-15. [PMID: 32341694 PMCID: PMC7175442 DOI: 10.25122/jml-2019-0085] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Quantitative electroencephalography (QEEG) is a modern type of electroencephalography (EEG) analysis that involves recording digital EEG signals which are processed, transformed, and analyzed using complex mathematical algorithms. QEEG has brought new techniques of EEG signals feature extraction: analysis of specific frequency band and signal complexity, analysis of connectivity, and network analysis. The clinical application of QEEG is extensive, including neuropsychiatric disorders, epilepsy, stroke, dementia, traumatic brain injury, mental health disorders, and many others. In this review, we talk through existing evidence on the practical applications of this clinical tool. We conclude that to date, the role of QEEG is not necessarily to pinpoint an immediate diagnosis but to provide additional insight in conjunction with other diagnostic evaluations in order to objective information necessary for obtaining a precise diagnosis, correct disease severity assessment, and specific treatment response evaluation.
Collapse
Affiliation(s)
- Livia Livint Popa
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.,Department of Clinical Neurosciences, "Iuliu Hatieganu "University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Hanna Dragos
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.,Department of Clinical Neurosciences, "Iuliu Hatieganu "University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Pantelemon
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.,Department of Clinical Neurosciences, "Iuliu Hatieganu "University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Olivia Verisezan Rosu
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.,Department of Clinical Neurosciences, "Iuliu Hatieganu "University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stefan Strilciuc
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.,Department of Clinical Neurosciences, "Iuliu Hatieganu "University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Bennett CN, Gupta RK, Prabhakar P, Christopher R, Sampath S, Thennarasu K, Rajeswaran J. Clinical and Biochemical Outcomes Following EEG Neurofeedback Training in Traumatic Brain Injury in the Context of Spontaneous Recovery. Clin EEG Neurosci 2018; 49:433-440. [PMID: 29268620 DOI: 10.1177/1550059417744899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
UNLABELLED It has been found that reduction of posttraumatic stress symptoms is positively associated with the reduction of postconcussive symptoms. Cortisol is commonly used as a biomarker of stress. Understanding the role of posttraumatic stress and cortisol in symptom reduction has implication for neuropsychological rehabilitation particularly in the context of spontaneous recovery. OBJECTIVE The aim of the research was to study the effectiveness of EEG neurofeedback training on clinical symptoms, perceived stress, and cortisol in traumatic brain injury (TBI) patients in the context of spontaneous recovery. METHODS The design was an experimental longitudinal design with the pre-post comparison. The sample comprised 60 patients with the diagnosis of TBI-30 patients in the neurofeedback training (NFT) group and 30 patients in the treatment as usual group (TAU) group. Half of the patients were recruited within 6 months of injury to study the role of spontaneous recovery and the other half were recruited in the 12 to 18 months postinjury phase. Alpha-theta training was given to the NFT group over 20 sessions. Pre and post comparisons were made on clinical symptom rating, perceived stress, and serum cortisol levels. RESULTS The results indicate significant differences in symptom reporting and perceived stress between the NFT and TAU groups. Significant differences were also seen in cortisol levels with implications for the acute recovery phase. CONCLUSION Alpha-theta NFT has a beneficial effect on symptom reduction as well as perceived stress. It also has a beneficial effect on levels of serum cortisol, corroborating these findings.
Collapse
Affiliation(s)
- Cathlyn N Bennett
- 1 Department of Clinical Psychology, National Institute of Mental Health & Neuro Sciences, Bengaluru, Karnataka, India
| | - Rajnish K Gupta
- 1 Department of Clinical Psychology, National Institute of Mental Health & Neuro Sciences, Bengaluru, Karnataka, India
| | - Puttachandra Prabhakar
- 2 Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences, Bengaluru, Karnataka, India
| | - Rita Christopher
- 2 Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences, Bengaluru, Karnataka, India
| | - Somanna Sampath
- 3 Department of Neurosurgery, National Institute of Mental Health & Neuro Sciences, Bengaluru, Karnataka, India
| | - K Thennarasu
- 4 Department of Biostatistics, National Institute of Mental Health & Neuro Sciences, Bengaluru, Karnataka, India
| | - Jamuna Rajeswaran
- 1 Department of Clinical Psychology, National Institute of Mental Health & Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Chen C, Zhou C, Cavanaugh JM, Kallakuri S, Desai A, Zhang L, King AI. Quantitative electroencephalography in a swine model of blast-induced brain injury. Brain Inj 2016; 31:120-126. [PMID: 27830938 DOI: 10.1080/02699052.2016.1216603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol. METHODS Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system. Off-line quantitative EEG (qEEG) data analysis was performed to determine qEEG changes. RESULTS Blast induced qEEG changes earlier after blast exposure, including a decrease of mean amplitude (MAMP), an increase of delta band power, a decrease of alpha band root mean square (RMS) and a decrease of 90% spectral edge frequency (SEF90). CONCLUSIONS This study demonstrated that qEEG is sensitive for cerebral injury. The changes of qEEG earlier after the blast indicate the potential of utilization of multiple parameters of qEEG for diagnosis of blast-induced brain injury. Early detection of blast induced brain injury will allow early screening and assessment of brain abnormalities in soldiers to enable timely therapeutic intervention.
Collapse
Affiliation(s)
- Chaoyang Chen
- a Department of Biomedical Engineering , Wayne State University , Detroit , MI , USA
| | - Chengpeng Zhou
- a Department of Biomedical Engineering , Wayne State University , Detroit , MI , USA
| | - John M Cavanaugh
- a Department of Biomedical Engineering , Wayne State University , Detroit , MI , USA
| | - Srinivasu Kallakuri
- a Department of Biomedical Engineering , Wayne State University , Detroit , MI , USA
| | - Alok Desai
- a Department of Biomedical Engineering , Wayne State University , Detroit , MI , USA
| | - Liying Zhang
- a Department of Biomedical Engineering , Wayne State University , Detroit , MI , USA
| | - Albert I King
- a Department of Biomedical Engineering , Wayne State University , Detroit , MI , USA
| |
Collapse
|
6
|
Affiliation(s)
- Joshua B Ewen
- From Neurology and Developmental Medicine, Kennedy Krieger Institute; Department of Neurology, Johns Hopkins University School of Medicine; and Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
7
|
Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J Neurotrauma 2015; 32:1693-721. [PMID: 26176603 PMCID: PMC4651019 DOI: 10.1089/neu.2013.3306] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.
Collapse
Affiliation(s)
- Franck Amyot
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David B. Arciniegas
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, Texas
- Brain Injury Research, TIRR Memorial Hermann, Houston, Texas
| | | | - Kenneth C. Curley
- Combat Casualty Care Directorate (RAD2), U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amir Gandjbakhche
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Sidney R. Hinds
- Defense and Veterans Brain Injury Center, Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Silver Spring, Maryland
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Anthony Pacifico
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | | | - Jason Riley
- Queens University, Kingston, Ontario, Canada
- ArcheOptix Inc., Picton, Ontario, Canada
| | - Wanda Salzer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James G. Smirniotopoulos
- Department of Radiology, Neurology, and Biomedical Informatics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Derek Stocker
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
8
|
Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, Hairston WD, Hughes JD, Krystal A, Nichols AS. Traumatic brain injury detection using electrophysiological methods. Front Hum Neurosci 2015; 9:11. [PMID: 25698950 PMCID: PMC4316720 DOI: 10.3389/fnhum.2015.00011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/07/2015] [Indexed: 11/20/2022] Open
Abstract
Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.
Collapse
Affiliation(s)
- Paul E. Rapp
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | - David O. Keyser
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | | | - Rene Hernandez
- US Navy Bureau of Medicine and Surgery, Frederick, MD, USA
| | | | | | - W. David Hairston
- U. S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | | | | | | |
Collapse
|
9
|
New neurotechnologies for the diagnosis and modulation of brain dysfunctions. HEALTH PSYCHOLOGY REPORT 2014. [DOI: 10.5114/hpr.2014.43913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This is a major review article to acquaint psychologists with new neurotechnologies for the diagnosis and modulation of brain abnormalities. While psychometrics measures brain functions in terms of behavioral parameters, a recently emerged branch of neuroscience called neurometrics relies on measuring the electrophysiological parameters of brain functioning. There are two approaches in neurometrics. The first relies on the spectral characteristics of spontaneous electroencephalograms (EEG) and measures deviations from normality in EEG recorded in the resting state. The second approach relies on event-related potentials (ERPs) that measure the electrical responses of the brain to stimuli and actions in behavioral tasks. The present study reviews recent research on the application of ERPs for the discrimination of different types of brain dysfunction. Attention deficit-hyperactivity disorder (ADHD) is used as an example. It is shown that the diagnostic power of ERPs is enhanced by the recent emergence of new methods of analysis, such as independent component analysis (ICA) and low resolution electromagnetic tomography (LORETA).
Collapse
|
10
|
Falsaperla R, Striano P, Parisi P, Lubrano R, Mahmood F, Pavone P, Vitaliti G. Usefulness of video-EEG in the paediatric emergency department. Expert Rev Neurother 2014; 14:769-785. [PMID: 24917085 DOI: 10.1586/14737175.2014.923757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Over the past two decades the EEG has technically improved from the use of analog to digital machines and more recently to video-EEG systems. Despite these advances, recording a technically acceptable EEG in an electrically hostile environment such as the emergency department (ED) remains a challenge, particularly with infants or young children. In 1996, a meeting of French experts established a set of guidelines for performing an EEG in the ED based on a review of the available literature. The authors highlighted the most suitable indications for an emergency EEG including clinical suspicion of cerebral death, convulsive and myoclonic status epilepticus, focal or generalized relapsing convulsive seizures as well as follow-up of known convulsive patients. They further recommended emergency EEG in the presence of doubt regarding the epileptic nature of the presentation as well as during the initiation or modification of sedation following brain injury. Subsequently, proposals for expanding the use of EEG in emergency patients have been advocated including trauma, vascular and anoxic-ischemic injury due to cardiorespiratory arrest, postinfective encephalopathy and nonconvulsive status epilepticus. The aim of this review is to show the diagnostic importance of video-EEG, as well as highlighting the predictive prognostic factors for positive and negative outcomes, when utilized in the pediatric ED for seizures as well as other neurological presentations.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Pediatric Acute and Emergency Operative Unit and Department, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Via Plebiscito 628, 95124 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Haneef Z, Levin HS, Frost JD, Mizrahi EM. Electroencephalography and quantitative electroencephalography in mild traumatic brain injury. J Neurotrauma 2013; 30:653-6. [PMID: 23249295 DOI: 10.1089/neu.2012.2585] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
12
|
Rajeswaran J, Bennett C, Shereena E. Neuropsychological Rehabilitation. Neuropsychol Rehabil 2013. [DOI: 10.1016/b978-0-12-416046-0.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
EEG Neurofeedback Training in Clinical Conditions. Neuropsychol Rehabil 2013. [DOI: 10.1016/b978-0-12-416046-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Abstract
BACKGROUND Efforts to produce definitions and diagnostic standards for mild traumatic brain injury (TBI) have a long and complex history. The diagnosis of TBI must be considered in the larger context of neuropsychiatric diagnosis. A major reconceptualization of diagnosis is now underway in which the classical syndrome conceptualization is being discarded. We address the question, what are the implications of this revision of thinking in the specific context of TBI? METHODS A recent literature on logical structures for neuropsychiatric disorders was reviewed. The symptom pattern of TBI was identified, and a literature survey determined the frequency of these symptom patterns in other disorders and in healthy control populations. RESULTS The frequency of symptom endorsement in populations without a history of TBI can be equal to endorsement frequencies in populations with a history of mild TBI. In some studies, the frequency of symptom endorsement in healthy controls having no history of head injury actually exceeded the endorsement rates in a comparison group with a history mild TBI. CONCLUSION The heterogeneity of this clinical population and their clinical presentations, the absence of a unitary etiology of postinjury deficits, and the complex idiosyncratic time course of the appearance of these deficits argue against the valid implementation of the classical model of diagnosis. In addition, the accepted criteria of diagnostic utility are not satisfied. TBI is not a disease; it is an event. More precisely, TBI is an event or a sequence of events that can, in some instances, lead to a diagnosable neurological or psychiatric disorder.
Collapse
|
15
|
|
16
|
Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. Int J Psychophysiol 2011; 82:41-52. [PMID: 21419178 DOI: 10.1016/j.ijpsycho.2011.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/23/2022]
Abstract
Conventional and quantitative electroencephalography (EEG and qEEG, respectively) may enhance clinical diagnosis and treatment planning provided to persons with mild traumatic brain injury (mTBI) and postconcussive symptoms. Effective and appropriate use of EEG and qEEG in this context requires expert-level knowledge of these technologies, mTBI, and the differential diagnosis for postconcussive symptoms. A practical and brief review from the perspective of a clinician-scientist engaged principally in the care and study of persons with mTBI therefore may be of use and value to other clinicians and scientists interested in these matters. Toward that end, this article offers an overview of the current applications of conventional EEG and qEEG to the study and clinical evaluation of persons with mTBI. The clinical case definition of TBI, the differential diagnosis of post-injury neuropsychiatric disturbances, and the typical course of recovery following mTBI are reviewed. With this background and context, the strengths and limitations of the literature describing EEG and qEEG studies in this population are considered. The implications of this review on the applications of these electrophysiologic assessments to the clinical evaluation of persons with mTBI and postconcussive symptoms are then considered. Finally, suggestions are offered regarding the design of future studies using these technologies in this population. Although this review may be of interest and value to professionals engaged in clinical or research electrophysiology in their daily work, it is intended to serve more immediately the needs of clinicians less familiar with these types of clinical electrophysiologic assessments.
Collapse
|
17
|
Hargrove JB, Bennett RM, Simons DG, Smith SJ, Nagpal S, Deering DE. Quantitative electroencephalographic abnormalities in fibromyalgia patients. Clin EEG Neurosci 2010; 41:132-9. [PMID: 20722346 DOI: 10.1177/155005941004100305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is increasing acceptance that pain in fibromyalgia (FM) is a result of dysfunctional sensory processing in the spinal cord and brain, and a number of recent imaging studies have demonstrated abnormal central mechanisms. The objective of this report is to statistically compare quantitative electroencephalogram (qEEG) measures in 85 FM patients with age and gender matched controls in a normative database. A statistically significant sample (minimum 60 seconds from each subject) of artifact-free EEG data exhibiting a minimum split-half reliability ratio of 0.95 and test-retest reliability ratio of 0.90 was used as the threshold for acceptable data inclusion. FM subject EEG data was compared to EEGs of age and gender matched healthy subjects in the Lifespan Normative Database and analyzed using NeuroGuide 2.0 software. Analyses were based on spectral absolute power, relative power and coherence. Clinical evaluations included the Fibromyalgia Impact Questionnaire (FIQ), Beck Depression Inventory and Fischer dolorimetry for pain pressure thresholds. Based on Z-statistic findings, the EEGs from FM subjects differed from matched controls in the normative database in three features: (1) reduced EEG spectral absolute power in the frontal International 10-20 EEG measurement sites, particularly in the low- to mid-frequency EEG spectral segments; (2) elevated spectral relative power of high frequency components in frontal/central EEG measurement sites; and (3) widespread hypocoherence, particularly in low- to mid-frequency EEG spectral segments, in the frontal EEG measurement sites. A consistent and significant negative correlation was found between pain severity and the magnitude of the EEG abnormalities. No relationship between EEG findings and medicine use was found. It is concluded that qEEG analysis reveals significant differences between FM patients compared to age and gender matched healthy controls in a normative database, and has the potential to be a clinically useful tool for assessing brain function in FM patients.
Collapse
Affiliation(s)
- Jeffrey B Hargrove
- Department of Medicine, Michigan State University College of Human Medicine, Kettering University, Flint, Michigan 48504, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Thornton KE, Carmody DP. Efficacy of traumatic brain injury rehabilitation: interventions of QEEG-guided biofeedback, computers, strategies, and medications. Appl Psychophysiol Biofeedback 2008; 33:101-24. [PMID: 18551365 DOI: 10.1007/s10484-008-9056-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
Abstract
The onset of cognitive rehabilitation brought with it a hope for an effective treatment for the traumatic brain injured subject. This paper reviews the empirical reports of changes in cognitive functioning after treatment and compares the relative effectiveness of several treatments including computer interventions, cognitive strategies, EEG biofeedback, and medications. The cognitive functions that are reviewed include auditory memory, attention and problem solving. The significance of the change in cognitive function is assessed in two ways that include effect size and longevity of effect. These analyses complement the previously published meta-reviews by adding these two criteria and include reports of EEG biofeedback, which is shown to be an effective intervention for auditory memory.
Collapse
Affiliation(s)
- Kirtley E Thornton
- The Brain Foundation, Ste. 2a, 2509 Park Avenue, South Plainfield, NJ 07080, USA.
| | | |
Collapse
|
19
|
|
20
|
Nuwer MR, Hovda DA, Schrader LM, Vespa PM. Routine and quantitative EEG in mild traumatic brain injury. Clin Neurophysiol 2005; 116:2001-25. [PMID: 16029958 DOI: 10.1016/j.clinph.2005.05.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 05/05/2005] [Accepted: 05/13/2005] [Indexed: 11/18/2022]
Abstract
This article reviews the pathophysiology of mild traumatic brain injury, and the findings from EEG and quantitative EEG (QEEG) testing after such an injury. Research on the clinical presentation and pathophysiology of mild traumatic brain injury is reviewed with an emphasis on details that may pertain to EEG or QEEG and their interpretation. Research reports on EEG and QEEG in mild traumatic brain injury are reviewed in this setting, and conclusions are drawn about general diagnostic results that can be determined using these tests. QEEG strengths and weaknesses are reviewed in the context of factors used to determine the clinical usefulness of proposed diagnostic tests. Clinical signs, symptoms, and the pathophysiologic axonal injury and cytotoxicity tend to clear over weeks or months after a mild head injury. Loss of consciousness might be similar to a non-convulsive seizure and accompanied subsequently by postictal-like symptoms. EEG shows slowing of the posterior dominant rhythm and increased diffuse theta slowing, which may revert to normal within hours or may clear more slowly over many weeks. There are no clear EEG or QEEG features unique to mild traumatic brain injury. Late after head injury, the correspondence is poor between electrophysiologic findings and clinical symptoms. Complicating factors are reviewed for the proposed commercial uses of QEEG as a diagnostic test for brain injury after concussion or mild traumatic brain injury. The pathophysiology, clinical symptoms and electrophysiological features tend to clear over time after mild traumatic brain injury. There are no proven pathognomonic signatures useful for identifying head injury as the cause of signs and symptoms, especially late after the injury.
Collapse
Affiliation(s)
- Marc R Nuwer
- Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
21
|
|
22
|
Duff J. The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of post-concussion syndrome. Clin EEG Neurosci 2004; 35:198-209. [PMID: 15493535 DOI: 10.1177/155005940403500410] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mild traumatic brain injury (TBI) is associated with damage to frontal, temporal and parietal lobes. Post-concussion syndrome has been used to describe a range of residual symptoms that persist 12 months or more after the injury, often despite a lack of evidence of brain abnormalities on MRI and CT scans. The core deficits of post-concussion syndrome are similar to those of ADHD and mood disorders, and sufferers often report memory, socialization problems and frequent headaches. While cognitive rehabilitation and psychological support are widely used, neither has been shown to be effective in redressing the core deficits of post-concussion syndrome. On the other hand, quantitative EEG has been shown to be highly sensitive (96%) in identifying post-concussion syndrome, and neurotherapy has been shown in a number of studies to be effective in significantly improving or redressing the symptoms of post-concussion syndrome, as well as improving similar symptoms in non-TBI patients.
Collapse
Affiliation(s)
- Jacques Duff
- Swinburne University of Technology, Brain Sciences Institute, 400 Burwood Rd, Hawthorn 3122, Australia.
| |
Collapse
|
23
|
Crago BR, Gray MR, Nelson LA, Davis M, Arnold L, Thrasher JD. Psychological, neuropsychological, and electrocortical effects of mixed mold exposure. ACTA ACUST UNITED AC 2004; 58:452-63. [PMID: 15259424 DOI: 10.3200/aeoh.58.8.452-463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The authors assessed the psychological, neuropsychological, and electrocortical effects of human exposure to mixed colonies of toxigenic molds. Patients (N = 182) with confirmed mold-exposure history completed clinical interviews, a symptom checklist (SCL-90-R), limited neuropsychological testing, quantitative electroencephalogram (QEEG) with neurometric analysis, and measures of mold exposure. Patients reported high levels of physical, cognitive, and emotional symptoms. Ratings on the SCL-90-R were "moderate" to "severe," with a factor reflecting situational depression accounting for most of the variance. Most of the patients were found to suffer from acute stress, adjustment disorder, or post-traumatic stress. Differential diagnosis confirmed an etiology of a combination of external stressors, along with organic metabolically based dysregulation of emotions and decreased cognitive functioning as a result of toxic or metabolic encephalopathy. Measures of toxic mold exposure predicted QEEG measures and neuropsychological test performance. QEEG results included narrowed frequency bands and increased power in the alpha and theta bands in the frontal areas of the cortex. These findings indicated a hypoactivation of the frontal cortex, possibly due to brainstem involvement and insufficient excitatory input from the reticular activating system. Neuropsychological testing revealed impairments similar to mild traumatic brain injury. In comparison with premorbid estimates of intelligence, findings of impaired functioning on multiple cognitive tasks predominated. A dose-response relationship between measures of mold exposure and abnormal neuropsychological test results and QEEG measures suggested that toxic mold causes significant problems in exposed individuals. Study limitations included lack of a comparison group, patient selection bias, and incomplete data sets that did not allow for comparisons among variables.
Collapse
Affiliation(s)
- B Robert Crago
- Neurobehavioral Health Services, Tucson, Arizona 85712, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Braverman ER, Blum K. P300 (Latency) Event-Related Potential: An Accurate Predictor of Memory Impairment. ACTA ACUST UNITED AC 2003; 34:124-39. [PMID: 14521274 DOI: 10.1177/155005940303400306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To determine if P300 latency changes precede and correlate with memory and mental status, patients (N=1506 aged 20–100 years) who received medical and psychiatric diagnoses (from 1997 to 2002), were assessed for P300 (N=1496), WMS-III (N=694), and MMSE (N=456). Patient and control groups included, a) normal WMS-III on all 4 subscales (N=36), b) normal WMS-III and MMSE (N=189) with subjective memory/mental status complaints, and c) medical patients with normal WMS-III and no memory complaints (N=205), and d) P300 control group without medical, psychiatric or memory problems for ROC. Patients with impaired/borderline memory had a prolonged P300 latency (P<0.02) compared to age matched non-impaired controls; in patients with normal WMS-III/MMSE, with subjective mild memory/mental status impairment, P300 latency was prolonged compared to controls (P=0.0004). The P300 latency increased by 0.72ms per year (P=7.9×10−65) and voltage decreased by 0.03dV per year (P=6.7×10−10), and both parameters were linearly correlated with the age of the subjects. Male subjects had an average voltage of 6.1dV and female 6.8dV(P=0.00009). Statistically, prolonged latency began at age range 41–50 (P=0.0002); reduced P300 voltage began at age range 51–60 (P=0.003). WMS-III memory decline for all measures began in females at age range 61–70 (P value at least=0.02) and for males at age range 61–80 (P=0.02). Prolonged P300 latency (P≤0.0001) and memory impairment (at least <0.02) were greater for females than males. MMSE memory decline, male and female, began at age range 81–90 (P value of at least 0.00007). In our logistic regression model P300 latency was more predictive of WMS-III impairment than MMSE >24. In patients whose WMS-III score is impaired ≤69, or borderline ≤79 (P at least =0.004), a P300 latency more prolonged than the norm (≥300 + 30 + Age) identifies these patients, whereas a MMSE >24 failed. With the ROC curve, we confirmed that P300 latency could accurately identify borderline/impaired memory.
Collapse
Affiliation(s)
- Eric R Braverman
- Path Medical Clinics and Research Foundation, New York, NY 10016, USA.
| | | |
Collapse
|
25
|
Thatcher RW, Biver CJ, North DM. Quantitative EEG and the Frye and Daubert standards of admissibility. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2003; 34:39-53. [PMID: 12784902 DOI: 10.1177/155005940303400203] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 70-year-old Frye standards of "general acceptance" were replaced by the Supreme Court's 1993 Daubert criteria of the scientific method, which established the standards for admissibility of evidence in Federal Court. The four Daubert criteria were: 1- Hypothesis testing, 2- Estimates of error rates, 3- Peer reviewed publication and 4- General acceptance (Daubert v. Merrell Dow Pharmaceuticals, 61 U.S.LW 4805 (U.S. June 29, 1993)). The present paper starts with the Daubert four factors and then matches them, step by step, to the scientific peer reviewed literature of quantitative EEG (QEEG) in relation to different clinical evaluations. This process shows how the peer reviewed science of the Digital EEG and the Quantitative EEG (QEEG) meet all of the Daubert standards of scientific knowledge. Furthermore, the science and technical aspects of QEEG in measuring the effects of neurological and psychiatric dysfunction also match the recent Supreme Court standards of "technical" and "other specialized" knowledge (General Electric Co v. Joiner, 1997, Kumho Tire Company, Ltd. v. Carmichael, 1999). Finally, it is shown that QEEG scientific knowledge and QEEG "technical" and "other specialized" knowledge meet the trilogy standards of the Supreme Court rulings in support of QEEG's admissibility as a clinically valid method in the evaluation of the nature and extent of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Robert W Thatcher
- NeuroImaging Laboratory, VA Medical Center, Bldg. 23, Room 117, Bay Pines, FL 33744, USA.
| | | | | |
Collapse
|