1
|
Francés-Herrero E, Bueno-Fernandez C, Rodríguez-Eguren A, Gómez-Álvarez M, Faus A, Soto-Prado A, Buigues A, Herraiz S, Pellicer A, Cervelló I. Growth factor-loaded ovarian extracellular matrix hydrogels promote in vivo ovarian niche regeneration and enhance fertility in premature ovarian insufficiency preclinical models. Acta Biomater 2024; 186:125-140. [PMID: 39111680 DOI: 10.1016/j.actbio.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Premature ovarian insufficiency (POI) means menopause before 40 years of age affecting about 1 % of women. Approaches based on cell therapy and the paracrine effects of stem cells or bioproducts such as platelet-rich plasma have been proposed, but concerns remain about undesired systemic effects, as well as the need to optimize delivery methods through bioengineering methods. This study explores the efficacy of decellularized bovine ovarian cortex extracellular matrix (OvaECM) hydrogels alone and as a growth factor (GF) carrier (OvaECM+GF) in a chemotherapy-induced POI murine model. In vitro assays showed a gradual release of GF from the OvaECM sustained for two weeks. Chemotherapy drastically reduced follicle numbers, but OvaECM+GF treatment restored pre-antral follicle development. Moreover, this treatment notably regenerated the ovarian microenvironment by increasing cell proliferation and microvessel density while reducing chemotherapy-induced apoptosis and fibrosis. Whole-ovary RNA sequencing and gene set enrichment analysis revealed an upregulation of regeneration-related genes and a downregulation of apoptotic pathways. The OvaECM+GF treatment also yielded significantly better outcomes following ovarian stimulation and in vitro fertilization. After two consecutive crossbreeding cycles, OvaECM+GF-treated mice showed normal reproductive function. This research showcases the biocompatibility and efficacy of OvaECM to reverse POI in mice, setting a foundation to explore innovative bioengineering-based POI therapies. STATEMENT OF SIGNIFICANCE: Premature ovarian insufficiency (POI) affects about 1 % of women worldwide, causing early menopause before 40 years old. Current treatments alleviate symptoms but do not restore ovarian function. This study explores an innovative approach using ovarian cortex extracellular matrix hydrogels to deliver growth factors into the murine ovarian niche and reverse POI. In vitro release kinetic assays demonstrated a gradual and sustained release of growth factors. In a POI-induced mouse model, intraovarian injections of the hydrogel encapsulating growth factors restored pre-antral follicle development, increased cell proliferation, reduced apoptosis and fibrosis, and improved ovarian response and in vitro fertilization outcomes. Long-term benefits included larger litter sizes. This innovative technique shows promise in regenerating the ovarian environment and improving reproductive outcomes.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Clara Bueno-Fernandez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Alexandra Soto-Prado
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Anna Buigues
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Roma Parioli, 00197 Rome, Italy
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
| |
Collapse
|
2
|
Rieber J, Meier-Bürgisser G, Miescher I, Weber FE, Wolint P, Yao Y, Ongini E, Milionis A, Snedeker JG, Calcagni M, Buschmann J. Bioactive and Elastic Emulsion Electrospun DegraPol Tubes Delivering IGF-1 for Tendon Rupture Repair. Int J Mol Sci 2023; 24:10272. [PMID: 37373418 DOI: 10.3390/ijms241210272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Tendon injuries can result in two major drawbacks. Adhesions to the surrounding tissue may limit the range of motion, while fibrovascular scar formation can lead to poor biomechanical outcomes. Prosthetic devices may help to mitigate those problems. Emulsion electrospinning was used to develop a novel three-layer tube based on the polymer DegraPol (DP), with incorporated insulin-like growth factor-1 (IGF-1) in the middle layer. Scanning electron microscopy was utilized to assess the fiber diameter in IGF-1 containing pure DP meshes. Further characterization was performed with Fourier Transformed Infrared Spectroscopy, Differential Scanning Calorimetry, and water contact angle, as well as through the assessment of mechanical properties and release kinetics from ELISA, and the bioactivity of IGF-1 by qPCR of collagen I, ki67, and tenomodulin in rabbit Achilles tenocytes. The IGF-1-containing tubes exhibited a sustained release of the growth factor up to 4 days and showed bioactivity by significantly upregulated ki67 and tenomodulin gene expression. Moreover, they proved to be mechanically superior to pure DP tubes (significantly higher fracture strain, failure stress, and elastic modulus). The novel three-layer tubes intended to be applied over conventionally sutured tendons after a rupture may help accelerate the healing process. The release of IGF-1 stimulates proliferation and matrix synthesis of cells at the repair site. In addition, adhesion formation to surrounding tissue can be reduced due to the physical barrier.
Collapse
Affiliation(s)
- Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Gabriella Meier-Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Franz E Weber
- Oral Biotechnology & Bioengineering, Center for Dental Medicine, Cranio-Maxillofacial and Oral Surgery, University of Zurich, 8032 Zurich, Switzerland
| | - Petra Wolint
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Yang Yao
- Department of Health Sciences & Technology & Department of Materials, Schmelzbergstrasse 9, LFO, 8092 Zurich, Switzerland
| | - Esteban Ongini
- Orthopaedic Biomechanics, University Clinic Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jess G Snedeker
- Orthopaedic Biomechanics, University Clinic Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
3
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
4
|
Miescher I, Rieber J, Calcagni M, Buschmann J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review. Int J Mol Sci 2023; 24:ijms24032370. [PMID: 36768692 PMCID: PMC9916536 DOI: 10.3390/ijms24032370] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Tendon injuries suffer from a slow healing, often ending up in fibrovascular scar formation, leading to inferior mechanical properties and even re-rupture upon resumption of daily work or sports. Strategies including the application of growth factors have been under view for decades. Insulin-like growth factor-1 (IGF-1) is one of the used growth factors and has been applied to tenocyte in vitro cultures as well as in animal preclinical models and to human patients due to its anabolic and matrix stimulating effects. In this narrative review, we cover the current literature on IGF-1, its mechanism of action, in vitro cell cultures (tenocytes and mesenchymal stem cells), as well as in vivo experiments. We conclude from this overview that IGF-1 is a potent stimulus for improving tendon healing due to its inherent support of cell proliferation, DNA and matrix synthesis, particularly collagen I, which is the main component of tendon tissue. Nevertheless, more in vivo studies have to be performed in order to pave the way for an IGF-1 application in orthopedic clinics.
Collapse
|
5
|
Cai G, Hou Z, Sun W, Li P, Zhang J, Yang L, Chen J. Recent Developments in Biomaterial-Based Hydrogel as the Delivery System for Repairing Endometrial Injury. Front Bioeng Biotechnol 2022; 10:894252. [PMID: 35795167 PMCID: PMC9251415 DOI: 10.3389/fbioe.2022.894252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial injury caused by intrauterine surgery often leads to pathophysiological changes in the intrauterine environment, resulting in infertility in women of childbearing age. However, clinical treatment strategies, especially for moderate to severe injuries, often fail to provide satisfactory therapeutic effects and pregnancy outcomes. With the development of reproductive medicine and materials engineering, researchers have developed bioactive hydrogel materials, which can be used as a physical anti-adhesion barrier alone or as functional delivery systems for intrauterine injury treatment by loading stem cells or various active substances. Studies have demonstrated that the biomaterial-based hydrogel delivery system can provide sufficient mechanical support and improve the intrauterine microenvironment, enhance the delivery efficiency of therapeutic agents, prolong intrauterine retention time, and perform efficiently targeted repair compared with ordinary drug therapy or stem cell therapy. It shows the promising application prospects of the hydrogel delivery system in reproductive medicine. Herein, we review the recent advances in endometrial repair methods, focusing on the current application status of biomaterial-based hydrogel delivery systems in intrauterine injury repair, including preparation principles, therapeutic efficacy, repair mechanisms, and current limitations and development perspectives.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Wei Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Peng Li
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Jinzhe Zhang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Liqun Yang, ; Jing Chen,
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Liqun Yang, ; Jing Chen,
| |
Collapse
|
6
|
Roberts JH, Halper J. Growth Factor Roles in Soft Tissue Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:139-159. [PMID: 34807418 DOI: 10.1007/978-3-030-80614-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Repair and healing of injured and diseased tendons has been traditionally fraught with apprehension and difficulties, and often led to rather unsatisfactory results. The burgeoning research field of growth factors has opened new venues for treatment of tendon disorders and injuries, and possibly for treatment of disorders of the aorta and major arteries as well. Several chapters in this volume elucidate the role of transforming growth factor β (TGFß) in pathogenesis of several heritable disorders affecting soft tissues, such as aorta, cardiac valves, and tendons and ligaments. Several members of the bone morphogenetic group either have been approved by the FDA for treatment of non-healing fractures or have been undergoing intensive clinical and experimental testing for use of healing bone fractures and tendon injuries. Because fibroblast growth factors (FGFs) are involved in embryonic development of tendons and muscles among other tissues and organs, the hope is that applied research on FGF biological effects will lead to the development of some new treatment strategies providing that we can control angiogenicity of these growth factors. The problem, or rather question, regarding practical use of imsulin-like growth factor I (IGF-I) in tendon repair is whether IGF-I acts independently or under the guidance of growth hormone. FGF2 or platelet-derived growth factor (PDGF) alone or in combination with IGF-I stimulates regeneration of periodontal ligament: a matter of importance in Marfan patients with periodontitis. In contrast, vascular endothelial growth factor (VEGF) appears to have rather deleterious effects on experimental tendon healing, perhaps because of its angiogenic activity and stimulation of matrix metalloproteinases-proteases whose increased expression has been documented in a variety of ruptured tendons. Other modalities, such as local administration of platelet-rich plasma (PRP) and/or of mesenchymal stem cells have been explored extensively in tendon healing. Though treatment with PRP and mesenchymal stem cells has met with some success in horses (who experience a lot of tendon injuries and other tendon problems), the use of PRP and mesenchymal stem cells in people has been more problematic and requires more studies before PRP and mesenchymal stem cells can become reliable tools in management of soft tissue injuries and disorders.
Collapse
Affiliation(s)
- Jennifer H Roberts
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
López-Martínez S, Rodríguez-Eguren A, de Miguel-Gómez L, Francés-Herrero E, Faus A, Díaz A, Pellicer A, Ferrero H, Cervelló I. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models. Acta Biomater 2021; 135:113-125. [PMID: 34428563 DOI: 10.1016/j.actbio.2021.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) hydrogels obtained from decellularized tissues are promising biocompatible materials for tissue regeneration. These biomaterials may provide important options for endometrial pathologies such as Asherman's syndrome and endometrial atrophy, which lack effective therapies thus far. First, we performed a proteomic analysis of a decellularized endometrial porcine hydrogel (EndoECM) to describe the specific role of ECM proteins related to regenerative processes. Furthermore, we investigated the ability of a bioengineered system-EndoECM alone or supplemented with growth factors (GFs)-to repair the endometrium in a murine model of endometrial damage. For this model, the uterine horns of female C57BL/6 mice were first injected with 70% ethanol, then four days later, they were treated with: saline (negative control); biotin-labeled EndoECM; or biotin-labeled EndoECM plus platelet-derived GF, basic fibroblast GF, and insulin-like GF 1 (EndoECM+GF). Endometrial regeneration and fertility restoration were evaluated by assessing the number of glands, endometrial area, cell proliferation, neaoangiogenesis, reduction of collagen deposition, and fertility restoration. Interestingly, regenerative effects such as an increased number of endometrial glands, increased area, high cell proliferative index, development of new blood vessels, reduction of collagen deposition, and higher pregnancy rate occurred in mice treated with EndoECM+GF. Thus, a bioengineered system based on EndoECM hydrogel supplemented with GFs may be promising for the clinical treatment of endometrial conditions such as Asherman's syndrome and endometrial atrophy. STATEMENT OF SIGNIFICANCE: In the last years, the bioengineering field has developed new and promising approaches to regenerate tissues or replace damaged and diseased tissues. Bioengineered hydrogels offer an ideal option because these materials can be used not only as treatments but also as carriers of drugs and other therapeutics. The present work demonstrates for the first time how hydrogels derived from pig endometrium loaded with growth factors could treat uterine pathologies in a mouse model of endometrial damage. These findings provide scientific evidence about bioengineered hydrogels based on tissue-specific extracellular matrix offering new options to treat human infertility from endometrial causes such as Asherman's syndrome or endometrial atrophy.
Collapse
Affiliation(s)
- Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Adolfo Rodríguez-Eguren
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Lucía de Miguel-Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Emilio Francés-Herrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Amparo Faus
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Ana Díaz
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Antonio Pellicer
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain; IVIRMA Roma, Largo Ildebrando Pizzetti, 1, Roma 00197, Italy
| | - Hortensia Ferrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain.
| |
Collapse
|
8
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
9
|
Xiao H, Chen Y, Li M, Shi Q, Xu Y, Hu J, Li X, Chen C, Lu H. Cell-Free Book-Shaped Decellularized Tendon Matrix Graft Capable of Controlled Release of BMP-12 to Improve Tendon Healing in a Rat Model. Am J Sports Med 2021; 49:1333-1347. [PMID: 33667134 DOI: 10.1177/0363546521994555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Achilles tendon (AT) defects often occur in traumatic and chronic injuries. Currently, no graft can satisfactorily regenerate parallel tendinous tissue at the defect site to completely restore AT function. PURPOSE To develop a cell-free functional graft by tethering bone morphogenetic protein 12 (BMP-12) on a book-shaped decellularized tendon matrix (BDTM) and to determine whether this graft is more beneficial for AT defect healing than an autograft. STUDY DESIGN Controlled laboratory study. METHODS Canine patellar tendon was sectioned into a book shape and decellularized to fabricate a BDTM. The collagen-binding domain (CBD) was fused into the N-terminus of BMP-12 to synthesize a recombinant BMP-12 (CBD-BMP-12), which was tethered to the BDTM to prepare a cell-free functional graft (CBD-BMP-12/BDTM). After its tensile resistance, tenogenic inducibility, and BMP-12 release dynamics were evaluated, the efficacy of the graft for tendon regeneration was determined in a rat model. A total of 140 mature male Sprague-Dawley rats underwent AT tenotomy. The defect was reconstructed with reversed AT (autograft group), native BMP-12 tethered to an intact decellularized tendon matrix (IDTM; NAT-BMP-12/IDTM group), native BMP-12 tethered to a BDTM (NAT-BMP-12/BDTM group), CBD-BMP-12 tethered on an IDTM (CBD-BMP-12/IDTM group), and CBD-BMP-12 tethered on a BDTM (CBD-BMP-12/BDTM group). The rats were sacrificed 4 or 8 weeks after surgery to harvest AT specimens. Six specimens from each group at each time point were used for histological evaluation; the remaining 8 specimens were used for biomechanical testing. RESULTS In vitro CBD-BMP-12/BDTM was noncytotoxic, showed high biomimetics with native tendons, was suitable for cell adhesion and growth, and had superior tenogenic inducibility. In vivo the defective AT in the CBD-BMP-12/BDTM group regenerated more naturally than in the other groups, as indicated by more spindle-shaped fibroblasts embedded in a matrix of parallel fibers. The biomechanical properties of the regenerated AT in the CBD-BMP-12/BDTM group also increased more significantly than in the other groups. CONCLUSION CBD-BMP-12/BDTM is more beneficial than autograft for healing AT defects in a rat model. CLINICAL RELEVANCE The findings of this study demonstrate that CBD-BMP-12/BDTM can serve as a practical graft for reconstructing AT defects.
Collapse
Affiliation(s)
- Han Xiao
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xing Li
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Central South University, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| |
Collapse
|
10
|
Locke RC, Ford EM, Silbernagel KG, Kloxin AM, Killian ML. Success Criteria and Preclinical Testing of Multifunctional Hydrogels for Tendon Regeneration. Tissue Eng Part C Methods 2020; 26:506-518. [PMID: 32988293 PMCID: PMC7869878 DOI: 10.1089/ten.tec.2020.0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Tendon injuries are difficult to heal, in part, because intrinsic tendon healing, which is dominated by scar tissue formation, does not effectively regenerate the native structure and function of healthy tendon. Further, many current treatment strategies also fall short of producing regenerated tendon with the native properties of healthy tendon. There is increasing interest in the use of cell-instructive strategies to limit the intrinsic fibrotic response following injury and improve the regenerative capacity of tendon in vivo. We have established multifunctional, cell-instructive hydrogels for treating injured tendon that afford tunable control over the biomechanical, biochemical, and structural properties of the cell microenvironment. Specifically, we incorporated integrin-binding domains (RGDS) and assembled multifunctional collagen mimetic peptides that enable cell adhesion and elongation of stem cells within synthetic hydrogels of designed biomechanical properties and evaluated these materials using targeted success criteria developed for testing in mechanically demanding environments such as tendon healing. The in vitro and in situ success criteria were determined based on systematic reviews of the most commonly reported outcome measures of hydrogels for tendon repair and established standards for testing of biomaterials. We then showed, using validation experiments, that multifunctional and synthetic hydrogels meet these criteria. Specifically, these hydrogels have mechanical properties comparable to developing tendon; are noncytotoxic both in two-dimensional bolus exposure (hydrogel components) and three-dimensional encapsulation (full hydrogel); are formed, retained, and visualized within tendon defects over time (2-weeks); and provide mechanical support to tendon defects at the time of in situ gel crosslinking. Ultimately, the in vitro and in situ success criteria evaluated in this study were designed for preclinical research to rigorously test the potential to achieve successful tendon repair before in vivo testing and indicate the promise of multifunctional and synthetic hydrogels for continued translation. Impact statement Tendon healing results in a weak scar that forms due to poor cell-mediated repair of the injured tissue. Treatments that tailor the instructions experienced by cells during healing afford opportunities to regenerate the healthy tendon. Engineered cell-instructive cues, including the biomechanical, biochemical, and structural properties of the cell microenvironment, within multifunctional synthetic hydrogels are promising therapeutic strategies for tissue regeneration. In this article, the preclinical efficacy of multifunctional synthetic hydrogels for tendon repair is tested against rigorous in vitro and in situ success criteria. This study indicates the promise for continued preclinical translation of synthetic hydrogels for tissue regeneration.
Collapse
Affiliation(s)
- Ryan C. Locke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Eden M. Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | | | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
12
|
Liu R, Zhang S, Chen X. Injectable hydrogels for tendon and ligament tissue engineering. J Tissue Eng Regen Med 2020; 14:1333-1348. [PMID: 32495524 DOI: 10.1002/term.3078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 01/14/2023]
Abstract
The problem of tendon and ligament (T/L) regeneration in musculoskeletal diseases has long constituted a major challenge. In situ injection of formable biodegradable hydrogels, however, has been demonstrated to treat T/L injury and reduce patient suffering in a minimally invasive manner. An injectable hydrogel is more suitable than other biological materials due to the special physiological structure of T/L. Most other materials utilized to repair T/L are cell-based, growth factor-based materials, with few material properties. In addition, the mechanical property of the gel cannot reach the normal T/L level. This review summarizes advances in natural and synthetic polymeric injectable hydrogels for tissue engineering in T/L and presents prospects for injectable and biodegradable hydrogels for its treatment. In future T/L applications, it is necessary develop an injectable hydrogel with mechanics, tissue damage-specific binding, and disease response. Simultaneously, the advantages of various biological materials must be combined in order to achieve personalized precision therapy.
Collapse
Affiliation(s)
- Richun Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Chen
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q. From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:131. [PMID: 32175424 DOI: 10.21037/atm.2019.12.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue concerning a single optimal source. In this review, we summarized the development of tendon tissue from the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all procedure. The best cell source for tendon engineering will require a case-based assessment.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tao Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
14
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Rajpar I, Barrett JG. Optimizing growth factor induction of tenogenesis in three-dimensional culture of mesenchymal stem cells. J Tissue Eng 2019; 10:2041731419848776. [PMID: 31205672 PMCID: PMC6535701 DOI: 10.1177/2041731419848776] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Adult tissue stem cells have shown promise for the treatment of debilitating tendon injuries. However, few comparisons of stem cells from different tissue sources have been made to determine the optimum stem cell source for treating tendon. Moreover, it is likely that the application of tenogenic growth factors will improve tendon stem cell treatments further, and a comprehensive comparison of a number of growth factors is needed. Thus far, different types of stem cells cannot be evaluated in a high-throughput manner. To this end, we have developed an approach to culture mesenchymal stem cells isolated from bone marrow in collagen type I hydrogels with tenogenic growth factors using economical, commercially available supplies. To optimize growth factors for this assay, FGF-2, TGF-β1, IGF-1, and/or BMP-12 were tested singly and in novel combinations of (1) BMP-12 and IGF-1, (2) TGF-β1 and IGF-1, and/or (3) BMP-12 and FGF-2 over 10 days. Our data suggest that BMP-12 supplementation alone results in the strongest expression of tendon marker genes, controlled contractility of constructs, a higher degree of cell alignment, and tendon-like tissue morphology. This easy-to-use benchtop assay can be used to screen novel sources of stem cells and cell lines for tissue engineering and tendon healing applications.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, VA, USA
| | - Jennifer G Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, VA, USA
| |
Collapse
|
16
|
Ho TC, Tsai SH, Yeh SI, Chen SL, Tung KY, Chien HY, Lu YC, Huang CH, Tsao YP. PEDF-derived peptide promotes tendon regeneration through its mitogenic effect on tendon stem/progenitor cells. Stem Cell Res Ther 2019; 10:2. [PMID: 30606221 PMCID: PMC6318926 DOI: 10.1186/s13287-018-1110-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
Background Tendon stem/progenitor cells (TSPC) exhibit a low proliferative response to heal tendon injury, leading to limited regeneration outcomes. Exogenous growth factors that activate TSPC proliferation have emerged as a promising approach for treatment. Here, we evaluated the pigment epithelial-derived factor (PEDF)-derived short peptide (PSP; 29-mer) for treating acute tendon injury and to determine the timing and anatomical features of CD146- and necleostemin-positive TSPC in the tendon healing process. Methods Tendon cells were isolated from rabbit Achilles tendons, stimulated by the 29-mer and analyzed for colony-forming capacity. The expression of the TSPC markers CD146, Oct4, and nestin, induced by the 29-mer, was examined by immunostaining and western blotting. Tendo-Achilles injury was induced in rats by full-thickness insertion of an 18-G needle and immediately treated topically with an alginate gel, loaded with 29-mer. The distribution of TSPC in the injured tendon and their proliferation were monitored using immunohistochemistry with antibodies to CD146 and nucleostemin and by BrdU labeling. Results TSPC markers were enriched among the primary tendon cells when stimulated by the 29-mer. The 29-mer also induced the clonogenicity of CD146+ TSPC, implying TSPC stemness was retained during TSPC expansion in culture. Correspondingly, the expanded TSPC differentiated readily into tenocyte-like cells after removal of the 29-mer from culture. 29-mer/alginate gel treatment caused extensive expansion of CD146+ TSPC in their niche on postoperative day 2, followed by infiltration of CD146+/BrdU− TSPC into the injured tendon on day 7. The nucleostemin+ TSPC were located predominantly in the healing region of the injured tendon in the later phase (day 7) and exhibited proliferative capacity. By 3 weeks, 29-mer-treated tendons showed more organized collagen fiber regeneration and higher tensile strength than control tendons. In culture, the mitogenic effect of the 29-mer was found to be mediated by the phosphorylation of ERK2 and STAT3 in nucleostemin+ TSPC. Conclusions The anatomical analysis of TSPC populations in the wound healing process supports the hypothesis that substantial expansion of resident TSPC by exogenous growth factor is beneficial for tendon healing. The study suggests that synthetic 29-mer peptide may be an innovative therapy for acute tendon rupture.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Shawn H Tsai
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.,Department of Optometry, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Shu-I Yeh
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Show-Li Chen
- Department of Microbiology, School of Medicine, National Taiwan University, No. 1 Jen Ai road, section 1, Taipei, 100, Taiwan
| | - Kwang-Yi Tung
- Department of Plastic Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei, 10449, Taiwan
| | - Hsin-Yu Chien
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Yung-Chang Lu
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Chang-Hung Huang
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan. .,Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.
| |
Collapse
|
17
|
Sabol RA, Bowles AC, Côté A, Wise R, Pashos N, Bunnell BA. Therapeutic Potential of Adipose Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1341:15-25. [PMID: 30051318 DOI: 10.1007/5584_2018_248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose stem cells (ASCs) have gained attention in the fields of stem cells regenerative medicine due to their multifaceted therapeutic capabilities. Promising preclinical evidence of ASCs has supported the substantial interest in the use of these cells as therapy for human disease. ASCs are an adult stem cell resident in adipose tissue with the potential to differentiation along mesenchymal lineages. They also are known to be recruited to sites of inflammation where they exhibit strong immunomodulatory capabilities to promote wound healing and regeneration. ASCs can be isolated from adipose tissue at a relatively high yield compared to their mesenchymal cell counterparts: bone marrow-derived mesenchymal stem cells (BM-MSCs). Like BM-MSCs, ASCs are easily culture expanded and have a reduced immunogenicity or are perhaps immune privileged, making them attractive options for cellular therapy. Additionally, the heterogeneous cellular product obtained after digestion of adipose tissue, called the stromal vascular fraction (SVF), contains ASCs and several populations of stromal and immune cells. Both the SVF and culture expanded ASCs have the potential to be therapeutic in various diseases. This review will focus on the preclinical and clinical evidence of SVF and ASCs, which make them potential candidates for therapy in regenerative medicine and inflammatory disease processes.
Collapse
Affiliation(s)
- Rachel A Sabol
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Physician Scientist Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Annie C Bowles
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Alexandra Côté
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Rachel Wise
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Nicholas Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA.
- Department of Pharmacology, Tulane University, New Orleans, LA, USA.
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|