1
|
Emvalomenos GM, Kang JW, Salberg S, Li C, Jupp B, Long M, Haskali MB, Kellapatha S, Davanzo OII, Lim H, Mychasiuk R, Keay KA, Henderson LA. Evidence for glial reactivity using positron-emission tomography imaging of translocator Protein-18 kD [TSPO] in both sham and nerve-injured rats in a preclinical model of orofacial neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100175. [PMID: 39758133 PMCID: PMC11699482 DOI: 10.1016/j.ynpai.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025]
Abstract
Chronic neuropathic pain is a debilitating condition that results from damage to the nervous system. Current treatments are largely ineffective, with limited understanding of the underlying mechanisms hindering development of effective treatments. Preclinical models of neuropathic pain have revealed that non-neural changes are important for the development of neuropathic pain, although these data are derived almost exclusively from post-mortem histological analyses. Although these static snapshots have provided valuable data, they cannot provide insights into non-neural cell changes that could be also assessed in human patients with chronic pain. In this study we used translocator protein 18 kDa (TSPO) PET imaging with [18F]PBR06 to visualise in-vivo, the activity of macrophages and microglia in a rodent preclinical model of trigeminal neuropathic pain. Using chronic constriction injury of the infraorbital nerve (ION-CCI) we compared temporal changes in TSPO binding in male rats, prior to, and up to 28 days after ION-CCI compared with both sham-injured and naïve counterparts. Unexpectedly, we found significant increases in TSPO signal in both ION-CCI and sham-injured rats within the trigeminal ganglion, spinal trigeminal nucleus and paratrigeminal nucleus during the initial phase following surgery and/or nerve injury. This increased TSPO binding returned to control levels by day 28. Qualitative histological appraisal of macrophage accumulation and glial reactivity in both ION-CCI and sham-injured rats indicated macrophage accumulation in the trigeminal ganglion and microglial reactivity in the brainstem trigeminal complex. These findings show, glial changes in the peripheral nerve and brain in both nerve-injured and sham-injured rats in a preclinical model of neuropathic pain which provides a platform for translation into human patients.
Collapse
Affiliation(s)
- Gaelle M. Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - James W.M. Kang
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Matthew Long
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Mohammad B. Haskali
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Sunil Kellapatha
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - OIivia I. Davanzo
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Hyunsol Lim
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kevin A. Keay
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Luke A. Henderson
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Ujita T, Yamamoto T, Sato-Yamada Y, Kishimoto N, Maeda T, Seo K. Optical Imaging of Trigeminal Ganglion Excitation Evoked by Electrical Stimulation of the Trigeminal Nerve. Cureus 2024; 16:e75522. [PMID: 39803155 PMCID: PMC11723772 DOI: 10.7759/cureus.75522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Background There are many reports of anatomical and physiological studies on trigeminal ganglion neurons, but few studies have analyzed temporal changes in the excitation of the trigeminal ganglion. This study aimed to establish an experimental system for spatial and temporal imaging analysis of the excitatory dynamics of trigeminal ganglion cells evoked by stimulation of a peripheral branch of the trigeminal nerve. Methods After excision of the trigeminal ganglion with the inferior alveolar nerve (IAN) from Sprague Dawley rats (seven to nine weeks old), 400-µm-thick slices of the trigeminal ganglion with the IAN were prepared. Real-time optical imaging was performed using cell membrane voltage-sensitive dye, Di4-ANEPPS, and changes in fluorescence intensity ratio (ΔF/F) were analyzed. Results Electrical stimulation of the IAN evoked the excitation of the trigeminal ganglion at the lateral surface area first, followed by expansion to the inner area. The calculated conduction velocity was 0.72 ± 0.49 m/s. This response was diminished by tetrodotoxin perfusion, but it was not observed in the C fiber-deficient rats. Conclusions A real-time optical imaging system can visualize the excitation of the trigeminal ganglion evoked by C-fiber stimulation.
Collapse
Affiliation(s)
- Tomoaki Ujita
- Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN
| | - Toru Yamamoto
- Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN
| | - Yurie Sato-Yamada
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, JPN
| | - Naotaka Kishimoto
- Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, JPN
| | - Kenji Seo
- Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN
| |
Collapse
|
3
|
Goto T, Kuramoto E, Iwai H, Yamanaka A. Cytoarchitecture and intercellular interactions in the trigeminal ganglion: Associations with neuropathic pain in the orofacial region. J Oral Biosci 2024; 66:485-490. [PMID: 39032827 DOI: 10.1016/j.job.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Disorders of the trigeminal nerve, a sensory nerve of the orofacial region, often lead to complications in dental practice, including neuropathic pain, allodynia, and ectopic pain. Management of these complications requires an understanding of the cytoarchitecture of the trigeminal ganglion, where the cell bodies of the trigeminal nerve are located, and the mechanisms of cell-cell interactions. HIGHLIGHTS In the trigeminal ganglion, ganglion, satellite, Schwann, and immune cells coexist and interact. Cell-cell interactions are complex and occur through direct contact via gap junctions or through mediators such as adenosine triphosphate, nitric oxide, peptides, and cytokines. Interactions between the nervous and immune systems within the trigeminal ganglion may have neuroprotective effects during nerve injury or may exacerbate inflammation and produce chronic pain. Under pathological conditions of the trigeminal nerve, cell-cell interactions can cause allodynia and ectopic pain. Although cell-cell interactions that occur via mediators can act at some distance, they are more effective when the cells are close together. Therefore, information on the three-dimensional topography of trigeminal ganglion cells is essential for understanding the pathophysiology of ectopic pain. CONCLUSIONS A three-dimensional map of the somatotopic localization of trigeminal ganglion neurons revealed that ganglion cells innervating distant orofacial regions are often apposed to each other, interacting with and potentially contributing to ectopic pain. Elucidation of the complex network of mediators and their receptors responsible for intercellular communication within the trigeminal ganglion is essential for understanding ectopic pain.
Collapse
Affiliation(s)
- Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|
5
|
Qiu X, Yang Y, Da X, Wang Y, Chen Z, Xu C. Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms. Neural Regen Res 2024; 19:1056-1063. [PMID: 37862208 PMCID: PMC10749601 DOI: 10.4103/1673-5374.382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 10/22/2023] Open
Abstract
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons. An increasing body of evidence suggests that in the presence of inflammation and nerve damage, a significant number of satellite glial cells become activated, thus triggering a series of functional changes. This suggests that satellite glial cells are closely related to the occurrence of chronic pain. In this review, we first summarize the morphological structure, molecular markers, and physiological functions of satellite glial cells. Then, we clarify the multiple key roles of satellite glial cells in chronic pain, including gap junction hemichannel Cx43, membrane channel Pannexin1, K channel subunit 4.1, ATP, purinergic P2 receptors, and a series of additional factors and their receptors, including tumor necrosis factor, glutamate, endothelin, and bradykinin. Finally, we propose that future research should focus on the specific sorting of satellite glial cells, and identify genomic differences between physiological and pathological conditions. This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Kuramoto E, Fukushima M, Sendo R, Ohno S, Iwai H, Yamanaka A, Sugimura M, Goto T. Three-dimensional topography of rat trigeminal ganglion neurons using a combination of retrograde labeling and tissue-clearing techniques. J Comp Neurol 2024; 532:e25584. [PMID: 38341648 DOI: 10.1002/cne.25584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The trigeminal nerve is the sensory afferent of the orofacial regions and divided into three major branches. Cell bodies of the trigeminal nerve lie in the trigeminal ganglion and are surrounded by satellite cells. There is a close interaction between ganglion cells via satellite cells, but the function is not fully understood. In the present study, we clarified the ganglion cells' three-dimensional (3D) localization, which is essential to understand the functions of cell-cell interactions in the trigeminal ganglion. Fast blue was injected into 12 sites of the rat orofacial regions, and ganglion cells were retrogradely labeled. The labeled trigeminal ganglia were cleared by modified 3DISCO, imaged with confocal laser-scanning microscopy, and reconstructed in 3D. Histograms of the major axes of the fast blue-positive somata revealed that the peak major axes of the cells innervating the skin/mucosa were smaller than those of cells innervating the deep structures. Ganglion cells innervating the ophthalmic, maxillary, and mandibular divisions were distributed in the anterodorsal, central, and posterolateral portions of the trigeminal ganglion, respectively, with considerable overlap in the border region. The intermingling in the distribution of ganglion cells within each division was also high, in particular, within the mandibular division. Specifically, intermingling was observed in combinations of tongue and masseter/temporal muscles, maxillary/mandibular molars and masseter/temporal muscles, and tongue and mandibular molars. Double retrograde labeling confirmed that some ganglion cells innervating these combinations were closely apposed. Our data provide essential information for understanding the function of ganglion cell-cell interactions via satellite cells.
Collapse
Grants
- JP23H03119 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23K09316 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K10058 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K10336 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19KK0419 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H05162 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22K09916 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Fukushima
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryozo Sendo
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
7
|
Lisboa MRP, Pereira AF, Alves BWDF, Dias DBS, Alves LCV, da Silva CMP, Lima-Júnior RCP, Gondim DV, Vale ML. Blockage of the fractalkine pathway reduces hyperalgesia and prevents morphological glial alterations-Comparison between inflammatory and neuropathic orofacial pain in male rats. J Neurosci Res 2024; 102:e25269. [PMID: 38284851 DOI: 10.1002/jnr.25269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 01/30/2024]
Abstract
This study aimed to evaluate the effects of inhibitors of the fractalkine pathway in hyperalgesia in inflammatory and neuropathic orofacial pain in male rats and the morphological changes in microglia and satellite glial cells (SGCs). Rats were submitted to zymosan-induced arthritis of the temporomandibular joint or infraorbital nerve constriction, and treated intrathecally with a P2 X7 antagonist, a cathepsin S inhibitor or a p-38 mitogen-activated protein kinase (MAPK) inhibitor. Mechanical hyperalgesia was evaluated 4 and 6 h following arthritis induction or 7 and 14 days following nerve ligation. The expression of the receptor CX3 CR1 , phospho-p-38 MAPK, ionized calcium-binding adapter molecule-1 (Iba-1), and glutamine synthetase and the morphological changes in microglia and SGCs were evaluated by confocal microscopy. In both inflammatory and neuropathic models, untreated animals presented a higher expression of CX3 CR1 and developed hyperalgesia and up-regulation of phospho-p-38 MAPK, which was prevented by all drugs (p < .05). The number of microglial processes endpoints and the total branch length were lower in the untreated animals, but the overall immunolabeling of Iba-1 was altered only in neuropathic rats (p < .05). The mean area of SGCs per neuron was significantly altered only in the inflammatory model (p < .05). All morphological alterations were reverted by modulating the fractalkine pathway (p < .05). In conclusion, the blockage of the fractalkine pathway seemed to be a possible therapeutic strategy for inflammatory and neuropathic orofacial pain, reducing mechanical hyperalgesia by impairing the phosphorylation of p-38 MAPK and reverting morphological alterations in microglia and SGCs.
Collapse
Affiliation(s)
- Mario Roberto Pontes Lisboa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduation in Dentistry, Christus University Center, Fortaleza, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Diego Bernarde Souza Dias
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Delane Viana Gondim
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Mariana Lima Vale
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
8
|
Iida M, Hitomi S, Hayashi Y, Shibuta I, Tsuboi Y, Ueda K, Iwata K, Shinoda M. Analgesic effect of linalool odor on oral ulcerative mucositis-induced pain in rats. Brain Res Bull 2024; 206:110844. [PMID: 38096923 DOI: 10.1016/j.brainresbull.2023.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023]
Abstract
Oral ulcerative mucositis (OUM) induces severe pain, leading to a low quality of life. Linalool odor exposure has recently been reported to suppress inflammatory pain in the hind paws. However, the analgesic effect of linalool odor on orofacial pain remains unclear. In this study, we examined the mechanism underlying the analgesic effect of linalool odor on oral pain caused by OUM using nocifensive behavioral and immunohistochemical analyses in rats. OUM was developed by treating the labial fornix region of the inferior incisors with acetic acid. Linalool at 1% was exposed for 5 min at 30 min before nocifensive behavioral measurements. OUM induced spontaneous pain and mechanical allodynia, which were suppressed by the linalool odor. Mechanical allodynia in the hind paw following the injection of complete Freund's adjuvant was also suppressed by linalool odor. Application of lidocaine to the olfactory bulb attenuated the inhibition of spontaneous pain and hyperactivation of trigeminal spinal nucleus caudalis neurons in OUM model rats. Linalool odor exposure-induced neuronal activation in the locus coeruleus (LC) of OUM model rats was decreased by lidocaine application to the olfactory bulb. The decrease in neuronal activation in the LC was attenuated by the administration of orexin 1 receptor (OX-1) antagonist to the LC. These results suggest that linalool odor stimulation through the olfactory pathway activates LC neurons via OX-1 signaling, leading to the suppression of OUM-induced oral pain.
Collapse
Affiliation(s)
- Masato Iida
- Department of Dysphagia Rehabilitation, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yoshiyuki Tsuboi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Koichiro Ueda
- Department of Dysphagia Rehabilitation, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
9
|
Jia S, Mai L, Yang H, Huang F, He H, Fan W. Cross-species gene expression patterns of purinergic signaling in the human and mouse trigeminal ganglion. Life Sci 2023; 332:122130. [PMID: 37769809 DOI: 10.1016/j.lfs.2023.122130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Purinergic signaling system plays a pivotal role in the trigeminal ganglion (TG) which is a primary sensory tissue in vertebrate nervous systems involving orofacial nociception and peripheral sensitization. Despite previous efforts to reveal the expression patterns of purinergic components in the mouse TG, it is still unknown the interspecies differences between human and mouse. In this study, we provide a comprehensive transcriptome profile of the purinergic signaling system across diverse cell types and neuronal subpopulations within the human TG, systematically comparing it with mouse TG. In addition, the evolutionary conservation and species-specific expression patterns of the purinergic components are also discussed. We propose that the data can improve our understanding of purinergic signaling in the peripheral nervous system and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hui Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
10
|
Soma K, Hitomi S, Hayashi Y, Soma C, Otsuji J, Shibuta I, Furukawa A, Urata K, Kurisu R, Yonemoto M, Hojo Y, Shirakawa T, Iwata K, Shinoda M. Neonatal injury modulates incisional pain sensitivity in adulthood: An animal study. Neuroscience 2023; 519:60-72. [PMID: 36958596 DOI: 10.1016/j.neuroscience.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Neonatal pain experiences including traumatic injury influences negatively on development of nociceptive circuit developments, resulting in persistent pain hypersensitivity in adults. However, the detailed mechanism is not yet well understood. In the present study, to clarify the pathogenesis of orofacial pain hypersensitivity associated with neonatal injury, the involvement of the voltage-gated sodium channel (Nav) 1.8 and the C-C chemokine ligand 2 (CCL2)/C-C chemokine receptor 2 (CCR2) signaling in the trigeminal ganglion (TG) in facial skin incisional pain hypersensitivity was examined in 190 neonatal facial-injured and sham male rats. The whisker pad skin was incised on postnatal day 4 and week 7 (Incision-Incision group). Compared to the group without neonatal incision (Sham-Incision group), mechanical hypersensitivity in the whisker pad skin was enhanced in Incision-Incision group. The number of Nav1.8-immunoreactive TG neurons and the amount of CCL2 expressed in the macrophages and satellite glial cells in the TG were increased on day 14 after re-incision in the Incision-Incision group, compared with Sham-Incision group. Blockages of Nav1.8 in the incised region and CCR2 in the TG suppressed the enhancement of mechanical hypersensitivity in the Incision-Incision group. Administration of CCL2 into the TG enhanced mechanical hypersensitivity in the Sham-Sham, Incision-Sham and Sham-Incision group. Our results suggest that neonatal facial injury accelerates the TG neuronal hyperexcitability following orofacial skin injury in adult in association with Nav1.8 overexpression via CCL2 signaling, resulting in the enhancement of orofacial incisional pain hypersensitivity in the adulthood.
Collapse
Affiliation(s)
- Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Chihiro Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Jo Otsuji
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Akihiko Furukawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ryoko Kurisu
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Orofacial Pain Clinic, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mamiko Yonemoto
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Yasushi Hojo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
11
|
Li YK, Zhang YY, Lin J, Liu YJ, Li YL, Feng YH, Zhao JS, Zhou C, Liu F, Shen JF. Metabotropic glutamate receptor 5-mediated inhibition of inward-rectifying K + channel 4.1 contributes to orofacial ectopic mechanical allodynia following inferior alveolar nerve transection in male mice. J Neurosci Res 2023; 101:1170-1187. [PMID: 36807930 DOI: 10.1002/jnr.25181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/20/2023]
Abstract
Inward-rectifying K+ channel 4.1 (Kir4.1), which regulates the electrophysiological properties of neurons and glia by affecting K+ homeostasis, plays a critical role in neuropathic pain. Metabotropic glutamate receptor 5 (mGluR5) regulates the expression of Kir4.1 in retinal Müller cells. However, the role of Kir4.1 and its expressional regulatory mechanisms underlying orofacial ectopic allodynia remain unclear. This study aimed to investigate the biological roles of Kir4.1 and mGluR5 in the trigeminal ganglion (TG) in orofacial ectopic mechanical allodynia and the role of mGluR5 in Kir4.1 regulation. An animal model of nerve injury was established via inferior alveolar nerve transection (IANX) in male C57BL/6J mice. Behavioral tests indicated that mechanical allodynia in the ipsilateral whisker pad lasted at least 14 days after IANX surgery and was alleviated by the overexpression of Kir4.1 in the TG, as well as intraganglionic injection of an mGluR5 antagonist (MPEP hydrochloride) or a protein kinase C (PKC) inhibitor (chelerythrine chloride); Conditional knockdown of the Kir4.1 gene downregulated mechanical thresholds in the whisker pad. Double immunostaining revealed that Kir4.1 and mGluR5 were co-expressed in satellite glial cells in the TG. IANX downregulated Kir4.1 and upregulated mGluR5 and phosphorylated PKC (p-PKC) in the TG; Inhibition of mGluR5 reversed the changes in Kir4.1 and p-PKC that were induced by IANX; Inhibition of PKC activation reversed the downregulation of Kir4.1 expression caused by IANX (p < .05). In conclusion, activation of mGluR5 in the TG after IANX contributed to orofacial ectopic mechanical allodynia by suppressing Kir4.1 via the PKC signaling pathway.
Collapse
Affiliation(s)
- Yi-Ke Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Shuo Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Age-Related Changes in Neurons and Satellite Glial Cells in Mouse Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24032677. [PMID: 36769006 PMCID: PMC9916822 DOI: 10.3390/ijms24032677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The effects of aging on the nervous system are well documented. However, most previous studies on this topic were performed on the central nervous system. The present study was carried out on the dorsal root ganglia (DRGs) of mice, and focused on age-related changes in DRG neurons and satellite glial cells (SGCs). Intracellular electrodes were used for dye injection to examine the gap junction-mediated coupling between neurons and SGCs, and for intracellular electrical recordings from the neurons. Tactile sensitivity was assessed with von Frey hairs. We found that 3-23% of DRG neurons were dye-coupled to SGCs surrounding neighboring neurons in 8-24-month (Mo)-old mice, whereas in young adult (3 Mo) mice, the figure was 0%. The threshold current for firing an action potential in sensory neurons was significantly lower in DRGs from 12 Mo mice compared with those from 3 Mo mice. The percentage of neurons with spontaneous subthreshold membrane potential oscillation was greater by two-fold in 12 Mo mice. The withdrawal threshold was lower by 22% in 12 Mo mice compared with 3 Mo ones. These results show that in the aged mice, a proportion of DRG neurons is coupled to SGCs, and that the membrane excitability of the DRG neurons increases with age. We propose that augmented neuron-SGC communications via gap junctions are caused by low-grade inflammation associated with aging, and this may contribute to pain behavior.
Collapse
|
13
|
FUJIWARA SHINTARO, URATA KENTARO, OTO TATSUKI, HAYASHI YOSHINORI, HITOMI SUZURO, IWATA KOICHI, IINUMA TOSHIMITSU, SHINODA MASAMICHI. Age-related Changes in Trigeminal Ganglion Macrophages Enhance Orofacial Ectopic Pain After Inferior Alveolar Nerve Injury. In Vivo 2023; 37:132-142. [PMID: 36593019 PMCID: PMC9843755 DOI: 10.21873/invivo.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM The ectopic pain associated with inferior alveolar nerve (IAN) injury has been reported to involve macrophage expression in the trigeminal ganglion (TG). However, the effect of age-related changes on this abnormal pain conditions are still unknown. This study sought to clarify the involvement of age-related changes in macrophage expression and phenotypic conversion in the TG and how these changes enhance ectopic mechanical allodynia after IAN transection (IANX). MATERIALS AND METHODS We used senescence-accelerated mouse (SAM)-prone 8 (SAMP8) and SAM-resistance 1 (SAMR1) mice, which are commonly used to study ageing-related changes. Mechanical stimulation was applied to the whisker pad skin under light anaesthesia; the mechanical head withdrawal threshold (MHWT) was measured for 21 d post-IANX. We subsequently counted the numbers of Iba1 (macrophage marker)-immunoreactive (IR) cells, Iba1/CD11c (M1-like inflammatory macrophage marker)-co-IR cells, and Iba1/CD206 (M2-like anti-inflammatory macrophage marker)-co-IR cells in the TG innervating the whisker pad skin. After continuous intra-TG administration of liposomal clodronate Clophosome®-A (LCCA) to IANX-treated SAMP8-mice, the MHWT values of the whisker pad skin were examined. RESULTS Five days post-IANX, the MHWT had significantly decreased in SAMP8 mice compared to SAMR1-mice. Iba1-IR and Iba1/CD11c-co-IR cell counts were significantly increased in SAMP8 mice compared to SAMR1 mice 5 d post-IANX. LCCA administration significantly restored MHWT compared to control-LCCA administration. CONCLUSION Ectopic mechanical allodynia of whisker pad skin after IANX is exacerbated by ageing, which involves increases in M1-like inflammatory macrophages in the TG.
Collapse
Affiliation(s)
- SHINTARO FUJIWARA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - KENTARO URATA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - TATSUKI OTO
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - YOSHINORI HAYASHI
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - SUZURO HITOMI
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - KOICHI IWATA
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - TOSHIMITSU IINUMA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - MASAMICHI SHINODA
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
14
|
Zhang YY, Liu F, Fang ZH, Li YL, Liao HL, Song QX, Zhou C, Shen JF. Differential roles of NMDAR subunits 2A and 2B in mediating peripheral and central sensitization contributing to orofacial neuropathic pain. Brain Behav Immun 2022; 106:129-146. [PMID: 36038077 DOI: 10.1016/j.bbi.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
The spinal N-methyl-d-aspartate receptor (NMDAR), particularly their subtypes NR2A and NR2B, plays pivotal roles in neuropathic and inflammatory pain. However, the roles of NR2A and NR2B in orofacial pain and the exact molecular and cellular mechanisms mediating nervous system sensitization are still poorly understood. Here, we exhaustively assessed the regulatory effect of NMDAR in mediating peripheral and central sensitization in orofacial neuropathic pain. Von-Frey filament tests showed that the inferior alveolar nerve transection (IANX) induced ectopic allodynia behavior in the whisker pad of mice. Interestingly, mechanical allodynia was reversed in mice lacking NR2A and NR2B. IANX also promoted the production of peripheral sensitization-related molecules, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, brain-derived neurotrophic factor (BDNF), and chemokine upregulation (CC motif) ligand 2 (CCL2), and decreased the inward potassium channel (Kir) 4.1 on glial cells in the trigeminal ganglion, but NR2A conditional knockout (CKO) mice prevented these alterations. In contrast, NR2B CKO only blocked the changes of Kir4.1, IL-1β, and TNF-α and further promoted the production of CCL2. Central sensitization-related c-fos, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) were promoted and Kir4.1 was reduced in the spinal trigeminal caudate nucleus by IANX. Differential actions of NR2A and NR2B in mediating central sensitization were also observed. Silencing of NR2B was effective in reducing c-fos, GFAP, and Iba-1 but did not affect Kir4.1. In contrast, NR2A CKO only altered Iba-1 and Kir4.1 and further increased c-fos and GFAP. Gain-of-function and loss-of-function approaches provided insight into the differential roles of NR2A and NR2B in mediating peripheral and central nociceptive sensitization induced by IANX, which may be a fundamental basis for advancing knowledge of the neural mechanisms' reaction to nerve injury.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Jia S, Liu J, Chu Y, Liu Q, Mai L, Fan W. Single-cell RNA sequencing reveals distinct transcriptional features of the purinergic signaling in mouse trigeminal ganglion. Front Mol Neurosci 2022; 15:1038539. [PMID: 36311028 PMCID: PMC9606672 DOI: 10.3389/fnmol.2022.1038539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Trigeminal ganglion (TG) is the first station of sensory pathways in the orofacial region. The TG neurons communicate with satellite glial cells (SGCs), macrophages and other cells forming a functional unit that is responsible for processing of orofacial sensory information. Purinergic signaling, one of the most widespread autocrine and paracrine pathways, plays a crucial role in intercellular communication. The multidirectional action of purinergic signaling in different cell types contributes to the neuromodulation and orofacial sensation. To fully understand the purinergic signaling in these processes, it is essential to determine the shared and unique expression patterns of genes associated with purinergic signaling in different cell types. Here, we performed single-cell RNA sequencing of 22,969 cells isolated from normal mouse TGs. We identified 18 distinct cell populations, including 6 neuron subpopulations, 3 glial subpopulations, 7 immune cell subpopulations, fibroblasts, and endothelial cells. We also revealed the transcriptional features of genes associated with purinergic signaling, including purinergic receptors, extracellular adenosine triphosphate (eATP) release channels, eATP metabolism-associated enzymes, and eATP transporters in each cell type. Our results have important implications for understanding and predicting the cell type-specific roles of the purinergic signaling in orofacial signal processing in the trigeminal primary sensory system.
Collapse
Affiliation(s)
- Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - JinYue Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qing Liu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lijia Mai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- *Correspondence: Wenguo Fan,
| |
Collapse
|
16
|
Zhang YY, Liu F, Lin J, Li YL, Fang ZH, Zhou C, Li CJ, Shen JF. Activation of the N-methyl-D-aspartate receptor contributes to orofacial neuropathic and inflammatory allodynia by facilitating calcium-calmodulin-dependent protein kinase II phosphorylation in mice. Brain Res Bull 2022; 185:174-192. [DOI: 10.1016/j.brainresbull.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022]
|
17
|
Satellite Glial Cells and Neurons in Trigeminal Ganglia Are Altered in an Itch Model in Mice. Cells 2022; 11:cells11050886. [PMID: 35269508 PMCID: PMC8909456 DOI: 10.3390/cells11050886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Itch (pruritus) is a common chronic condition with a lifetime prevalence of over 20%. The mechanisms underlying itch are poorly understood, and its therapy is difficult. There is recent evidence that following nerve injury or inflammation, intercellular communications in sensory ganglia are augmented, which may lead to abnormal neuronal activity, and hence to pain, but there is no information whether such changes take place in an itch model. We studied changes in neurons and satellite glial cells (SGCs) in trigeminal ganglia in an itch model in mice using repeated applications of 2,4,6-trinitro-1-chlorobenzene (TNCB) to the external ear over a period of 11 days. Treated mice showed augmented scratching behavior as compared with controls during the application period and for several days afterwards. Immunostaining for the activation marker glial fibrillary acidic protein in SGCs was greater by about 35% after TNCB application, and gap junction-mediated coupling between neurons increased from about 2% to 13%. The injection of gap junction blockers reduced scratching behavior, suggesting that gap junctions contribute to itch. Calcium imaging studies showed increased responses of SGCs to the pain (and presumed itch) mediator ATP. We conclude that changes in both neurons and SGCs in sensory ganglia may play a role in itch.
Collapse
|
18
|
Kurisu R, Saigusa T, Aono Y, Hayashi Y, Hitomi S, Shimada M, Iwata K, Shinoda M. Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injury-induced mechanical allodynia. Oral Dis 2022; 29:1770-1781. [PMID: 35029007 DOI: 10.1111/odi.14129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The detailed pathological mechanism of orofacial neuropathic pain remains unknown. We aimed to examine the pannexin 1 (Panx1) signaling in the trigeminal ganglion (TG) involvement in infraorbital nerve injury (IONI)-induced orofacial neuropathic pain. MATERIALS AND METHODS Mechanical head-withdrawal threshold (MHWT) was measured in IONI-treated rats receiving intra-TG Panx1 inhibitor or metabotropic glutamate receptor 5 (mGluR5) antagonist administration and MHWTs in naive rats receiving intra-TG mGluR5 agonist administration post-IONI. Glutamate and Panx1 in the TG were measured post-IONI. Panx1, mGluR5, and glutamine synthetase expression in TG were immunohistochemically identified, and changes in the number of mGluR5-P2X3 -expressed TG neurons were examined. RESULTS MHWT was significantly decreased post-IONI, and this decrease was reversed by Panx1 inhibition or mGluR5 antagonism. mGluR5 agonism induced a decrease in the MHWT. IONI increased extracellular glutamate in TG. Panx1 was expressed in satellite glial cells and TG neurons, and intra-TG mGluR5 antagonism decreased the number of mGluR5 and P2X3 positive TG neurons post-IONI. CONCLUSIONS IONI facilitates glutamate release via Panx1 that activates mGluR5 which was expressed in the nociceptive TG neurons innervating the orofacial region. In turn, P2X3 receptor-expressed TG neurons is enhanced via mGluR5 signaling, resulting in orofacial neuropathic pain.
Collapse
Affiliation(s)
- Ryoko Kurisu
- Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yuri Aono
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiko Shimada
- Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
19
|
Ahmed F, Rahman M, Thompson R, Bereiter DA. Role of Connexin 43 in an Inflammatory Model for TMJ Hyperalgesia. FRONTIERS IN PAIN RESEARCH 2021; 2:715871. [PMID: 35295418 PMCID: PMC8915650 DOI: 10.3389/fpain.2021.715871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Temporomandibular joint disorders (TMD) consist of a heterogeneous group of conditions that present with pain in the temporomandibular joint (TMJ) region and muscles of mastication. This project assessed the role of connexin 43 (Cx43), a gap junction protein, in the trigeminal ganglion (TG) in an animal model for persistent inflammatory TMJ hyperalgesia. Experiments were performed in male and female rats to determine if sex differences influence the expression and/or function of Cx43 in persistent TMJ hyperalgesia. Intra-TMJ injection of Complete Freund's Adjuvant (CFA) caused a significant increase in Cx43 expression in the TG at 4 days and 10 days post-injection in ovariectomized (OvX) female rats and OvX females treated with estradiol (OvXE), while TG samples in males revealed only marginal increases. Intra-TG injection of interference RNA for Cx43 (siRNA Cx43) 3 days prior to recording, markedly reduced TMJ-evoked masseter muscle electromyographic (MMemg) activity in all CFA-inflamed rats, while activity in sham animals was not affected. Western blot analysis revealed that at 3 days after intra-TG injection of siRNA Cx43 protein levels for Cx43 were significantly reduced in TG samples of all CFA-inflamed rats. Intra-TG injection of the mimetic peptide GAP19, which inhibits Cx43 hemichannel formation, greatly reduced TMJ-evoked MMemg activity in all CFA-inflamed groups, while activity in sham groups was not affected. These results revealed that TMJ inflammation caused a persistent increase in Cx43 protein in the TG in a sex-dependent manner. However, intra-TG blockade of Cx43 by siRNA or by GAP19 significantly reduced TMJ-evoked MMemg activity in both males and females following TMJ inflammation. These results indicated that Cx43 was necessary for enhanced jaw muscle activity after TMJ inflammation in males and females, a result that could not be predicted on the basis of TG expression of Cx43 alone.
Collapse
|
20
|
Shinoda M, Imamura Y, Hayashi Y, Noma N, Okada-Ogawa A, Hitomi S, Iwata K. Orofacial Neuropathic Pain-Basic Research and Their Clinical Relevancies. Front Mol Neurosci 2021; 14:691396. [PMID: 34295221 PMCID: PMC8291146 DOI: 10.3389/fnmol.2021.691396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Trigeminal nerve injury is known to cause severe persistent pain in the orofacial region. This pain is difficult to diagnose and treat. Recently, many animal studies have reported that rewiring of the peripheral and central nervous systems, non-neuronal cell activation, and up- and down-regulation of various molecules in non-neuronal cells are involved in the development of this pain following trigeminal nerve injury. However, there are many unknown mechanisms underlying the persistent orofacial pain associated with trigeminal nerve injury. In this review, we address recent animal data regarding the involvement of various molecules in the communication of neuronal and non-neuronal cells and examine the possible involvement of ascending pathways in processing pathological orofacial pain. We also address the clinical observations of persistent orofacial pain associated with trigeminal nerve injury and clinical approaches to their diagnosis and treatment.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Noboru Noma
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
21
|
Inada T, Sato H, Hayashi Y, Hitomi S, Furukawa A, Ando M, Oshima E, Otsuji J, Taguchi N, Shibuta I, Tsuda H, Iwata K, Shirota T, Shinoda M. Rapamycin Accelerates Axon Regeneration Through Schwann Cell-mediated Autophagy Following Inferior Alveolar Nerve Transection in Rats. Neuroscience 2021; 468:43-52. [PMID: 34102263 DOI: 10.1016/j.neuroscience.2021.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Sensory disturbance in the orofacial region owing to trigeminal nerve injury is caused by dental treatment or accident. Commercially available therapeutics are ineffective for the treatment of sensory disturbance. Additionally, the therapeutic effects of rapamycin, an allosteric inhibitor of mammalian target of rapamycin (mTOR), which negatively regulates autophagy, on the sensory disturbance are not fully investigated. Thus, we investigated the therapeutic effects of rapamycin on the sensory disturbance in the mandibular region caused by inferior alveolar nerve (IAN) transection (IANX) in rats. The expression levels of the phosphorylated p70S6K, a downstream molecule of mTOR, in the proximal and distal stumps of the transected IAN were significantly reduced by rapamycin administration to the injured site. Conversely, the increments of both Beclin 1 and microtubule-associated protein-1 light chain 3-II protein levels in the proximal and distal stumps of the transected IAN was induced by rapamycin administration. Immunohistochemical analyses revealed that Beclin 1 was located in Schwann cells in the proximal stump of the IAN. Accumulation of myelin protein zero and myelin basic protein in the proximal and distal stumps of the IAN was significantly reduced by rapamycin administration. Rapamycin administration facilitated axon regeneration after IANX and increased the number of brain-derived neurotrophic factor positive neurons in the trigeminal ganglion. Thus, recovery from sensory disturbance in the lower lip caused by IANX was markedly facilitated by rapamycin. These findings suggest that rapamycin administration is a promising treatment for the sensory disturbance caused by IANX.
Collapse
Affiliation(s)
- Takanobu Inada
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Hitoshi Sato
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8310, Japan.
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8310, Japan
| | - Akihiko Furukawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8310, Japan
| | - Masatoshi Ando
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8310, Japan
| | - Eri Oshima
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Jo Otsuji
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8310, Japan
| | - Naoto Taguchi
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8310, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8310, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, 101-8310, Japan
| |
Collapse
|
22
|
Koizumi M, Asano S, Furukawa A, Hayashi Y, Hitomi S, Shibuta I, Hayashi K, Kato F, Iwata K, Shinoda M. P2X 3 receptor upregulation in trigeminal ganglion neurons through TNFα production in macrophages contributes to trigeminal neuropathic pain in rats. J Headache Pain 2021; 22:31. [PMID: 33902429 PMCID: PMC8077728 DOI: 10.1186/s10194-021-01244-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Trigeminal neuralgia is a characteristic disease that manifests as orofacial phasic or continuous severe pain triggered by innocuous orofacial stimulation; its mechanisms are not fully understood. In this study, we established a new animal model of trigeminal neuralgia and investigated the role of P2X3 receptor (P2X3R) alteration in the trigeminal ganglion (TG) via tumor necrosis factor alpha (TNFα) signaling in persistent orofacial pain. METHODS Trigeminal nerve root compression (TNC) was performed in male Sprague-Dawley rats. Changes in the mechanical sensitivity of whisker pad skin, amount of TNFα in the TG, and number of P2X3R and TNF receptor-2 (TNFR2)-positive TG neurons were assessed following TNC. The effects of TNFR2 antagonism in TG and subcutaneous P2X3R antagonism on mechanical hypersensitivity following TNC were examined. RESULTS TNC induced unilateral continuous orofacial mechanical allodynia, which was depressed by carbamazepine. The accumulation of macrophages showing amoeboid-like morphological changes and expression of TNFα in the TG was remarkably increased following TNC treatment. The number of P2X3R- and TNFR2-positive TG neurons innervating the orofacial skin was significantly increased following TNC. TNFα was released from activated macrophages that occurred in the TG following TNC, and TNFR2 antagonism in the TG significantly diminished the TNC-induced increase in P2X3R-immunoreactive TG neurons. Moreover, subcutaneous P2X3R antagonism in the whisker pad skin significantly depressed TNC-induced mechanical allodynia. CONCLUSIONS Therefore, it can be concluded that the signaling of TNFα released from activated macrophages in the TG induces the upregulation of P2X3R expression in TG neurons innervating the orofacial region, resulting in orofacial mechanical allodynia following TNC.
Collapse
Affiliation(s)
- Momoko Koizumi
- Department of Dentistry, Jikei University School of Medicine, Tokyo, Japan
| | - Sayaka Asano
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Akihiko Furukawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Katsuhiko Hayashi
- Department of Dentistry, Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai Chiyoda-ku, 101-8310, Tokyo, Japan.
| |
Collapse
|
23
|
Fu M, Liu F, Zhang YY, Lin J, Huang CL, Li YL, Wang H, Zhou C, Li CJ, Shen JF. The α2δ-1-NMDAR1 interaction in the trigeminal ganglion contributes to orofacial ectopic pain following inferior alveolar nerve injury. Brain Res Bull 2021; 171:162-171. [PMID: 33811955 DOI: 10.1016/j.brainresbull.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
Orofacial ectopic pain can often arise following nerve injury. However, the exact mechanism responsible for orofacial ectopic pain induced by trigeminal nerve injury remains unknown. The α2δ-1 and glutamate N-methyl-d-aspartic acid receptor (NMDAR) interactions have been demonstrated to participate in neuropathic pain regulation in the spinal cord. In this study, a rat model of inferior alveolar nerve transection (IANX) was used to investigate the role of α2δ-1-NMDAR1 interaction in the trigeminal ganglion (TG) in regard to the regulation of orofacial ectopic pain. Western blot (WB) analysis indicated that α2δ-1 and NMDAR1 in the TG were substantially higher in IANX rats than they were in sham/naive rats. Additionally, immunofluorescence (IF) results revealed that α2δ-1 and NMDAR1 were co-expressed and distributed within neurons and activated satellite glial cells in the TG. Co-immunoprecipitation (Co-IP) results indicated that α2δ-1-NMDAR1 complex levels in the TG were higher in IANX rats than they were in sham rats. Furthermore, the results of behavioral tests demonstrated that intra-TG injection of gabapentin (α2δ-1 inhibitory ligand) or memantine hydrochloride (NMDAR antagonist) reversed the decrease in mechanical head-withdrawal threshold (HWT) in IANX rats. Moreover, inhibition of α2δ-1 by intra-TG administration of gabapentin suppressed the upregulation of the NMDAR1 protein, and the inhibition of NMDAR by intra-TG administration of memantine hydrochloride inhibited the increased expression of α2δ-1 protein induced by IANX. In conclusion, the physical and functional interaction between α2δ-1 and NMDAR1 is critical for the development of orofacial ectopic pain, indicating that α2δ-1, NMDAR1, and the α2δ-1-NMDAR1 complex may represent potential targets for the treatment of orofacial ectopic pain.
Collapse
Affiliation(s)
- Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Hanani M, Verkhratsky A. Satellite Glial Cells and Astrocytes, a Comparative Review. Neurochem Res 2021; 46:2525-2537. [PMID: 33523395 DOI: 10.1007/s11064-021-03255-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Astroglia are neural cells, heterogeneous in form and function, which act as supportive elements of the central nervous system; astrocytes contribute to all aspects of neural functions in health and disease. Through their highly ramified processes, astrocytes form close physical contacts with synapses and blood vessels, and are integrated into functional syncytia by gap junctions. Astrocytes interact among themselves and with other cells types (e.g., neurons, microglia, blood vessel cells) by an elaborate repertoire of chemical messengers and receptors; astrocytes also influence neural plasticity and synaptic transmission through maintaining homeostasis of neurotransmitters, K+ buffering, synaptic isolation and control over synaptogenesis and synaptic elimination. Satellite glial cells (SGCs) are the most abundant glial cells in sensory ganglia, and are believed to play major roles in sensory functions, but so far research into SGCs attracted relatively little attention. In this review we compare SGCs to astrocytes with the purpose of using the vast knowledge on astrocytes to explore new aspects of SGCs. We survey the main properties of these two cells types and highlight similarities and differences between them. We conclude that despite the much greater diversity in morphology and signaling mechanisms of astrocytes, there are some parallels between them and SGCs. Both types serve as boundary cells, separating different compartments in the nervous system, but much more needs to be learned on this aspect of SGCs. Astrocytes and SGCs employ chemical messengers and calcium waves for intercellular signaling, but their significance is still poorly understood for both cell types. Both types undergo major changes under pathological conditions, which have a protective function, but an also contribute to disease, and chronic pain in particular. The knowledge obtained on astrocytes is likely to benefit future research on SGCs.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain
| |
Collapse
|
25
|
Huang CL, Liu F, Zhang YY, Lin J, Fu M, Li YL, Zhou C, Li CJ, Shen JF. Activation of oxytocin receptor in the trigeminal ganglion attenuates orofacial ectopic pain attributed to inferior alveolar nerve injury. J Neurophysiol 2020; 125:223-231. [PMID: 33326336 DOI: 10.1152/jn.00646.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide (CGRP), IL-1β, and TNFα in the TG and spinal trigeminal nucleus caudalis (SpVc) of rats with inferior alveolar nerve transection. OXTR, a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist oxytocin (OXT) in the dorsal root ganglion. However, the role of OXTR in the trigeminal nervous system on the orofacial neuropathic pain is still little known. In the present study, we aimed to investigate the regulation effect and mechanism of OXTR in the TG) and SpVc) on orofacial ectopic pain induced by trigeminal nerve injury. The inferior alveolar nerve (IAN) was transected to establish a ectopic pain model. A behavioral test with electronic von Frey filament demonstrated IAN transection (IANX) evoked mechanical hypersensitivity in the whisker pad from day 1 to at least day 14 after surgery. In addition, administration of OXT (50 and 100 μM) into the TG attenuated the mechanical hypersensitivity induced by IANX, which was reversed by pretreatment with L-368,899 (a selective antagonist of OXTR) into the TG. In addition, immunofluorescence showed the expression of OXTR in neurons in the TG and SpVc. Furthermore, Western blot analysis indicated that the upregulated expression of OXTR, CGRP, IL-1β, and TNFα in the TG and SpVc after IANX was inhibited by the administration of OXT into the TG. And the inhibition effect of OXT on the expression of CGRP, IL-1β, and TNFα was abolished by preapplication of OXTR antagonist L-368,899 into the TG.NEW & NOTEWORTHY This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide, IL-1β, and TNF-α in the TG and spinal trigeminal nucleus caudalis of rats with inferior alveolar nerve transection.
Collapse
Affiliation(s)
- Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Li Q, Ma TL, Qiu YQ, Cui WQ, Chen T, Zhang WW, Wang J, Mao-Ying QL, Mi WL, Wang YQ, Chu YX. Connexin 36 Mediates Orofacial Pain Hypersensitivity Through GluK2 and TRPA1. Neurosci Bull 2020; 36:1484-1499. [PMID: 33067780 PMCID: PMC7719140 DOI: 10.1007/s12264-020-00594-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Trigeminal neuralgia is a debilitating condition, and the pain easily spreads to other parts of the face. Here, we established a mouse model of partial transection of the infraorbital nerve (pT-ION) and found that the Connexin 36 (Cx36) inhibitor mefloquine caused greater alleviation of pT-ION-induced cold allodynia compared to the reduction of mechanical allodynia. Mefloquine reversed the pT-ION-induced upregulation of Cx36, glutamate receptor ionotropic kainate 2 (GluK2), transient receptor potential ankyrin 1 (TRPA1), and phosphorylated extracellular signal regulated kinase (p-ERK) in the trigeminal ganglion. Cold allodynia but not mechanical allodynia induced by pT-ION or by virus-mediated overexpression of Cx36 in the trigeminal ganglion was reversed by the GluK2 antagonist NS102, and knocking down Cx36 expression in Nav1.8-expressing nociceptors by injecting virus into the orofacial skin area of Nav1.8-Cre mice attenuated cold allodynia but not mechanical allodynia. In conclusion, we show that Cx36 contributes greatly to the development of orofacial pain hypersensitivity through GluK2, TRPA1, and p-ERK signaling.
Collapse
Affiliation(s)
- Qian Li
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Tian-Le Ma
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - You-Qi Qiu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Wen-Qiang Cui
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- Department of Pain Management, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250000, China
| | - Teng Chen
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Wen-Wen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Jing Wang
- Department of Nephropathy, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen, 518001, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
27
|
Oxytocin-Dependent Regulation of TRPs Expression in Trigeminal Ganglion Neurons Attenuates Orofacial Neuropathic Pain Following Infraorbital Nerve Injury in Rats. Int J Mol Sci 2020; 21:ijms21239173. [PMID: 33271955 PMCID: PMC7731199 DOI: 10.3390/ijms21239173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
We evaluated the mechanisms underlying the oxytocin (OXT)-induced analgesic effect on orofacial neuropathic pain following infraorbital nerve injury (IONI). IONI was established through tight ligation of one-third of the infraorbital nerve thickness. Subsequently, the head withdrawal threshold for mechanical stimulation (MHWT) of the whisker pad skin was measured using a von Frey filament. Trigeminal ganglion (TG) neurons innervating the whisker pad skin were identified using a retrograde labeling technique. OXT receptor-immunoreactive (IR), transient receptor potential vanilloid 1 (TRPV1)-IR, and TRPV4-IR TG neurons innervating the whisker pad skin were examined on post-IONI day 5. The MHWT remarkably decreased from post-IONI day 1 onward. OXT application to the nerve-injured site attenuated the decrease in MHWT from day 5 onward. TRPV1 or TRPV4 antagonism significantly suppressed the decrement of MHWT following IONI. OXT receptors were expressed in the uninjured and Fluoro-Gold (FG)-labeled TG neurons. Furthermore, there was an increase in the number of FG-labeled TRPV1-IR and TRPV4-IR TG neurons, which was inhibited by administering OXT. This inhibition was suppressed by co-administration with an OXT receptor antagonist. These findings suggest that OXT application inhibits the increase in TRPV1-IR and TRPV4-IR TG neurons innervating the whisker pad skin, which attenuates post-IONI orofacial mechanical allodynia.
Collapse
|
28
|
Kuebart A, Wollborn V, Huhn R, Hermanns H, Werdehausen R, Brandenburger T. Intraneural Application of microRNA-1 Mimetic Nucleotides Does Not Resolve Neuropathic Pain After Chronic Constriction Injury in Rats. J Pain Res 2020; 13:2907-2914. [PMID: 33223847 PMCID: PMC7671483 DOI: 10.2147/jpr.s266937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background Alterations of the expression of microRNAs (miRNAs) in chronic pain models seem to play a crucial role in the development of neuropathic pain, with microRNA-1 (miR-1) being of particular interest. Recently, we were able to show that decreased miR-1 levels were associated with increased expression of brain-derived neurotrophic factor (BDNF) and Connexin 43 (Cx43). We hypothesized that miR-1 mimetic nucleotides could alleviate neuropathic pain caused by chronic constriction injury in rats. Methods MiR-1 mimetic nucleotides were evaluated for effectiveness, functionality, and intracellular stability by transfecting human glioblastoma cells (U-87 MG). In vivo transfection with miR-1 mimics and corresponding scrambled miRNAs serving as control was performed by repetitive injection (days 0, 3, and 7) into the sciatic nerve following chronic constriction injury (CCI) in rats. Quantitative PCR was used to measure miR-1 content. Cx43 expression was determined by Western blot analysis. Effects on neuropathic pain were assessed by detecting paw withdrawal thresholds using an automated filament application. Results Transfection of miR-1 mimics was confirmed in U-87 MG cells, with miR-1 content being increased significantly after 48 h and after 96 h (p<0.05). Effective downregulation of Cx43 expression was observed 48 and 96 h after transfection (−44 ± 0.07% and −40 ± 0.11%; p<0.05). In vivo, repetitive transfection with miR-1 mimetic nucleotides led to a 17.9-fold (± 14.2) increase of miR-1 in the sciatic nerve. However, the protein expression of Cx43 in sciatic nerves as well as paw withdrawal thresholds for mechanical stimulation was not significantly increased 10 days after chronic constriction injury. Conclusion While transfection with miR-1 mimics effective reduces Cx43 expression in vitro and restores miR-1 after CCI, we did neither observe altered levels of Cx43 protein level in nerves nor a beneficial effect on mechanical allodynia in vivo, most likely caused by insufficient Cx43 suppression.
Collapse
Affiliation(s)
- Anne Kuebart
- Department of Anesthesiology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf 40225, Germany
| | - Verena Wollborn
- Department of Anesthesiology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf 40225, Germany
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf 40225, Germany
| | - Henning Hermanns
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Robert Werdehausen
- Department of Anesthesiology and Intensive Care, University of Leipzig, Medical Faculty, Leipzig 04103, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf 40225, Germany
| |
Collapse
|
29
|
Li Q, Wang YQ, Chu YX. The role of connexins and pannexins in orofacial pain. Life Sci 2020; 258:118198. [PMID: 32758624 DOI: 10.1016/j.lfs.2020.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Trigeminal neuralgia is characterized by extensive spreading of pain, referred to as ectopic pain, which describes the phenomenon of the pain passing from the injured regions to uninjured regions. Patients with orofacial pain often show no response to commonly used analgesics, and the exact mechanism of ectopic pain remains unclear, which restricts the development of specific drugs. The present review aims to summarize the contribution of the two families of transmembrane proteins, connexins (Cxs) and pannexins (Panxs), to the induction and spreading of orofacial pain and to provide potential targets for orofacial pain treatment. Cxs and Panxs have recently been shown to play essential roles in intercellular signal propagation in sensory ganglia, and previous studies have provided evidence for the contribution of several subtypes of Cxs and Panxs in various orofacial pain models. Upregulation of the expression of Cxs and Panxs in the trigeminal ganglia is observed in most cases after trigeminal injury, and regulating their expression or activity can improve pain-like behaviors in animals. It is speculated that after trigeminal injury, pain-related signals are transmitted to adjacent neurons and satellite glial cells in the trigeminal ganglia directly through gap junctions and simultaneously through hemichannels and pannexons through both autocrine and paracrine mechanisms. This review highlights recent discoveries in the regulation of Cxs and Panxs in different orofacial pain models and presents a hypothetical mechanism of ectopic pain in trigeminal neuralgia. In addition, the existing problems in current research are discussed.
Collapse
Affiliation(s)
- Qian Li
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Dai WL, Zhang L, Han L, Yang X, Hu L, Miao C, Song L, Xiao H, Liu JH, Liu WT. Regulation of the K ATP-JNK gap junction signaling pathway by immunomodulator astragaloside IV attenuates neuropathic pain. Reg Anesth Pain Med 2020; 45:955-963. [PMID: 32963077 DOI: 10.1136/rapm-2020-101411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Gap junctions play a pivotal role in contributing to the formation of astroglial networks and in chronic pain. However, the mechanisms underlying the dysfunction of astroglial gap junctions in chronic pain have not been fully elucidated. METHODS Chronic constriction injury (CCI) of the sciatic nerve was used to establish rat neuropathic pain model. C6 cells were used to perform experiments in vitro. Von Frey hairs and Hargreave's method were used to determine the withdrawal threshold of rats. Protein expression was detected by immunofluorescence and western blotting. RESULTS Astragaloside IV (AST IV) significantly attenuated neuropathic pain and suppressed the excitation of spinal astrocytes in rats with CCI. The antinociceptive effect of AST IV was reversed by the gap junction decoupler carbenoxolone (CBX). AST IV inhibited the high expression of phosphorylated connexin 43 (p-Cx43) and p-c-Jun N-terminal kinase (p-JNK) in spinal cord of rats with CCI. JNK inhibitor alleviated neuropathic pain, which was reversed by CBX. JNK inhibitor decreased the high expression of p-Cx43 in both rats with CCI and tumor necrosis factor-alpha (TNF-α)-treated C6 cells. Additionally, the analgesic effect of AST IV was reversed by the adenosine triphosphate-sensitive potassium (KATP) channel blocker, glibenclamide (Glib). Glib abolished the inhibitory effects of AST IV on p-JNK and p-Cx43 both in vivo and in vitro. KATP channel opener (KCO) mimicked the inhibitory effects of AST IV on p-JNK and p-Cx43 in TNF-α-treated C6 cells. CONCLUSION Our results indicate that the sciatic nerve CCI induces the dysfunction of gap junctions in the spinal cord by activating KATP/JNK signaling to contribute to neuropathic pain. AST IV attenuates neuropathic pain via regulating the KATP-JNK gap junction axis.
Collapse
Affiliation(s)
- Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Han
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Miao
- Department of pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China .,Institute of Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Are glia targets for neuropathic orofacial pain therapy? J Am Dent Assoc 2020; 152:774-779. [PMID: 32921390 DOI: 10.1016/j.adaj.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/06/2023]
|
32
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
33
|
Iwata K, Sessle BJ. The Evolution of Neuroscience as a Research Field Relevant to Dentistry. J Dent Res 2020; 98:1407-1417. [PMID: 31746682 DOI: 10.1177/0022034519875724] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The field of neuroscience did not exist as such when the Journal of Dental Research was founded 100 y ago. It has emerged as an important scientific field relevant to dentistry in view of the many neurally based functions manifested in the orofacial area (e.g., pain, taste, chewing, swallowing, salivation). This article reviews many of the novel insights that have been gained through neuroscience research into the neural basis of these functions and their clinical relevance to the diagnosis and management of pain and sensorimotor disorders. These include the neural pathways and brain circuitry underlying each of these functions and the role of nonneural as well as neural processes and their "plasticity" in modulating these functions and allowing for adaptation to tissue injury and pain and for learning or rehabilitation of orofacial functions.
Collapse
Affiliation(s)
- K Iwata
- Department of Physiology, Nihon University, School of Dentistry, Tokyo, Japan
| | - B J Sessle
- Faculty of Dentistry and Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Shinoda M, Hayashi Y, Kubo A, Iwata K. Pathophysiological mechanisms of persistent orofacial pain. J Oral Sci 2020; 62:131-135. [PMID: 32132329 DOI: 10.2334/josnusd.19-0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Nociceptive stimuli to the orofacial region are typically received by the peripheral terminal of trigeminal ganglion (TG) neurons, and noxious orofacial information is subsequently conveyed to the trigeminal spinal subnucleus caudalis and the upper cervical spinal cord (C1-C2). This information is further transmitted to the cortical somatosensory regions and limbic system via the thalamus, which then leads to the perception of pain. It is a well-established fact that the presence of abnormal pain in the orofacial region is etiologically associated with neuroplastic changes that may occur at any point in the pain transmission pathway from the peripheral to the central nervous system (CNS). Recently, several studies have reported that functional plastic changes in a large number of cells, including TG neurons, glial cells (satellite cells, microglia, and astrocytes), and immune cells (macrophages and neutrophils), contribute to the sensitization and disinhibition of neurons in the peripheral and CNS, which results in orofacial pain hypersensitivity.
Collapse
Affiliation(s)
| | | | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
35
|
Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 2020; 127:431-444. [PMID: 32088764 PMCID: PMC7148261 DOI: 10.1007/s00702-020-02161-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
The trigeminal ganglion with its three trigeminal nerve tracts consists mainly of clusters of sensory neurons with their peripheral and central processes. Most neurons are surrounded by satellite glial cells and the axons are wrapped by myelinating and non-myelinating Schwann cells. Trigeminal neurons express various neuropeptides, most notably, calcitonin gene-related peptide (CGRP), substance P, and pituitary adenylate cyclase-activating polypeptide (PACAP). Two types of CGRP receptors are expressed in neurons and satellite glia. A variety of other signal molecules like ATP, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion neurons and signal to neighboring neurons or satellite glial cells, which can signal back to neurons with same or other mediators. This potential cross-talk of signals involves intracellular mechanisms, including gene expression, that can modulate mediators of sensory information, such as neuropeptides, receptors, and neurotrophic factors. From the ganglia cell bodies, which are outside the blood–brain barrier, the mediators are further distributed to peripheral sites and/or to the spinal trigeminal nucleus in the brainstem, where they can affect neural transmission. A major question is how the sensory neurons in the trigeminal ganglion differ from those in the dorsal root ganglion. Despite their functional overlap, there are distinct differences in their ontogeny, gene expression, signaling pathways, and responses to anti-migraine drugs. Consequently, drugs that modulate cross-talk in the trigeminal ganglion can modulate both peripheral and central sensitization, which may potentially be distinct from sensitization mediated in the dorsal root ganglion.
Collapse
|
36
|
Lee J, Ohara K, Shinoda M, Hayashi Y, Kubo A, Sugawara S, Asano S, Soma K, Kanno K, Ando M, Koyama R, Kimura Y, Sakanashi K, Iinuma T, Iwata K. Involvement of Satellite Cell Activation via Nitric Oxide Signaling in Ectopic Orofacial Hypersensitivity. Int J Mol Sci 2020; 21:ijms21041252. [PMID: 32070010 PMCID: PMC7072927 DOI: 10.3390/ijms21041252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 12/03/2022] Open
Abstract
The mechanical head-withdrawal threshold (MHWT) was significantly reduced following inferior alveolar nerve transection (IANX) in rats. Nitrate and nitrite synthesis was dramatically increased in the trigeminal ganglion (TG) at 6 h after the IANX. The relative number of neuronal nitric oxide synthase (nNOS)-immunoreactive (IR) cells was significantly higher in IANX rats compared to sham-operated and N-propyl-L-arginine (NPLA)-treated IANX rats. On day 3 after NPLA administration, the MHWT recovered considerably in IANX rats. Following L-arginine injection into the TG, the MHWT was significantly reduced within 15 min, and the mean number of TG cells encircled by glial fibrillary acidic protein (GFAP)-IR cells was substantially higher. The relative number of nNOS-IR cells encircled by GFAP-IR cells was significantly increased in IANX rats. In contrast, after NPLA injection into the TG, the relative number of GFAP-IR cells was considerably reduced in IANX rats. Fluorocitrate administration into the TG significantly reduced the number of GFAP-IR cells and prevented the MHWT reduction in IANX rats. The present findings suggest that following IANX, satellite glial cells are activated via nitric oxide (NO) signaling from TG neurons. The spreading satellite glial cell activation within the TG results in mechanical hypersensitivity of face regions not directly associated with the trigeminal nerve injury.
Collapse
Affiliation(s)
- Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan;
- Correspondence: (J.L.); (K.I.); Tel.: +81-3-3219-8122 (J.L.); +81-3-3219-8122 (K.I.); Fax: +81-3-3219-8341 (J.L.); +81-3-3219-8341 (K.I.)
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (K.O.); (K.K.)
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Sayaka Asano
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
- Department of Oral Diagnosis, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan;
| | - Kohei Kanno
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (K.O.); (K.K.)
| | - Masatoshi Ando
- Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.A.); (R.K.); (Y.K.)
| | - Ryo Koyama
- Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.A.); (R.K.); (Y.K.)
| | - Yuki Kimura
- Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.A.); (R.K.); (Y.K.)
| | - Kousuke Sakanashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan;
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
- Correspondence: (J.L.); (K.I.); Tel.: +81-3-3219-8122 (J.L.); +81-3-3219-8122 (K.I.); Fax: +81-3-3219-8341 (J.L.); +81-3-3219-8341 (K.I.)
| |
Collapse
|
37
|
Soma K, Shinoda M, Hayashi Y, Kanno K, Shirakwa T, Iwata K. Involvement of TNFα in the enhancement of hypersensitivity in the adulthood-injured face associated with facial injury in infancy. Neurosci Res 2020; 161:18-23. [PMID: 31917166 DOI: 10.1016/j.neures.2019.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/28/2023]
Abstract
To evaluate the mechanisms underlying acceleration of hypersensitivity in the adulthood-injured face following facial injury in infants, we developed the rats model with facial skin injury in infants and adulthoods (incision + incision), and facial skin suture in infants and facial skin injury in adulthoods (sham + incision), and analyzed the mechanical head-withdrawal threshold (MHWT) of the facial skin, immunohistochemical analysis of trigeminal ganglion (TG) and the effects of intra-ganglionic administration of neutralizing ant-TNFα antibody and recombinant TNFα on nocifensive behavior. The MHWT became considerably lower in incision + incision rats than in sham + incision rats at 10-14 days after the surgery. We observed many TG neurons encircled by glial fibrillary acidic protein-immunoreactive (GFAP-IR) cells and those exhibited TNFα immunoreactivity. TNFα was also expressed in GFAP-IR cells in incision + inicision TG. TNFα protein levels and the relative number of TNFα-IR cells were significantly higher in incision + incision rats than in sham + incision rats. The MHWT was significantly recovered during the intra-ganglionic administration of neutralizing anti-TNFα antibody 4-14 days after the incision. Furthermore, the MHWT was significantly decreased in sham + incision rats following the intra-ganglionic administration of recombinant TNFα. The present findings suggest that the neuron-satellite glial cell communication via TNFα is a critical mechanism in the enhancement of mechanical hypersensitivity in the adulthood-injured face following facial injury in infants.
Collapse
Affiliation(s)
- Kumi Soma
- Departments of Pediatric Dentistry, School of Dentistry, Nihon University, Tokyo Japan
| | - Masamichi Shinoda
- Departments of Physiology, School of Dentistry, Nihon University, Tokyo Japan
| | - Yoshinori Hayashi
- Departments of Physiology, School of Dentistry, Nihon University, Tokyo Japan
| | - Kohei Kanno
- Departments of Endodontics, School of Dentistry, Nihon University, Tokyo Japan
| | - Tetsuo Shirakwa
- Departments of Pediatric Dentistry, School of Dentistry, Nihon University, Tokyo Japan
| | - Koichi Iwata
- Departments of Physiology, School of Dentistry, Nihon University, Tokyo Japan.
| |
Collapse
|
38
|
Increase in IGF-1 Expression in the Injured Infraorbital Nerve and Possible Implications for Orofacial Neuropathic Pain. Int J Mol Sci 2019; 20:ijms20246360. [PMID: 31861182 PMCID: PMC6940743 DOI: 10.3390/ijms20246360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is upregulated in the injured peripheral nerve bundle and controls nociceptive neuronal excitability associated with peripheral nerve injury. Here, we examined the involvement of IGF-1 signaling in orofacial neuropathic pain following infraorbital nerve injury (IONI) in rats. IONI promoted macrophage accumulation in the injured ION, as well as in the ipsilateral trigeminal ganglion (TG), and induced mechanical allodynia of the whisker pad skin together with the enhancement of neuronal activities in the subnucleus caudalis of the spinal trigeminal nucleus and in the upper cervical spinal cord. The levels of IGF-1 released by infiltrating macrophages into the injured ION and the TG were significantly increased. The IONI-induced the number of transient receptor potential vanilloid (TRPV) subfamily type 4 (TRPV4) upregulation in TRPV subfamily type 2 (TRPV2)-positive small-sized, and medium-sized TG neurons were inhibited by peripheral TRPV2 antagonism. Furthermore, the IONI-induced mechanical allodynia was suppressed by TRPV4 antagonism in the whisker pad skin. These results suggest that IGF-1 released by macrophages accumulating in the injured ION binds to TRPV2, which increases TRPV4 expression in TG neurons innervating the whisker pad skin, ultimately resulting in mechanical allodynia of the whisker pad skin.
Collapse
|
39
|
Morioka N, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Role of Connexins in Chronic Pain and Their Potential as Therapeutic Targets for Next-Generation Analgesics. Biol Pharm Bull 2019; 42:857-866. [PMID: 31155584 DOI: 10.1248/bpb.b19-00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pain, including inflammatory, neuropathic pain, is a serious clinical issue. There are increasing numbers of patients with chronic pain due to the growing number of elderly and it is estimated that about 25% of the global population will develop chronic pain. Chronic pain patients are refractory to medications used to treat acute pain such as opioids and non-steroidal anti-inflammatory drugs. Furthermore, the complexity and diversity of chronic pain mechanisms hinder the development of new analgesics. Thus, a better understanding of the mechanism of chronic pain is needed, which would facilitate the development of novel analgesics based on novel mechanisms. With this goal, connexins (Cxs) could be targeted for the development of new analgesics. Connexins are proteins with 20 subtypes, and function as channels, gap junctions between cells, and hemichannels that sample the extracellular space and release molecules such as neurotransmitters. Furthermore, Cxs could have functions independent of channel activity. Recent studies have shown that Cxs could be crucial in the induction and maintenance of chronic pain, and modulation of the activity or the expression of Cxs ameliorates nociceptive hypersensitivity in multiple chronic pain models. This review will cite novel findings on the role of of Cxs in the nociceptive transduction pathway under the chronic pain state and antinociceptive effects of various molecules modulating activity or expression of Cxs. Also, the potential of Cx modulation as a therapeutic strategy for intractable chronic pain will be discussed.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences.,Institute of Pharmacology, Taishan Medical University
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| |
Collapse
|
40
|
Shinoda M, Kubo A, Hayashi Y, Iwata K. Peripheral and Central Mechanisms of Persistent Orofacial Pain. Front Neurosci 2019; 13:1227. [PMID: 31798407 PMCID: PMC6863776 DOI: 10.3389/fnins.2019.01227] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Neuroplastic changes in the neuronal networks involving the trigeminal ganglion (TG), trigeminal spinal subnucleus caudalis (Vc), and upper cervical spinal cord (C1/C2) are considered the mechanisms underlying the ectopic orofacial hypersensitivity associated with trigeminal nerve injury or orofacial inflammation. It has been reported that peripheral nerve injury causes injury discharges in the TG neurons, and a barrage of action potentials is generated in TG neurons and conveyed to the Vc and C1/C2 after trigeminal nerve injury. Long after trigeminal nerve injury, various molecules are produced in the TG neurons, and these molecules are released from the soma of TG neurons and are transported to the central and peripheral terminals of TG neurons. These changes within the TG cause neuroplastic changes in TG neurons and they become sensitized. The neuronal activity of TG neurons is further accelerated, and Vc and C1/C2 neurons are also sensitized. In addition to this cascade, non-neuronal glial cells are also involved in the enhancement of the neuronal activity of TG, Vc, and C1/C2 neurons. Satellite glial cells and macrophages are activated in the TG after trigeminal nerve injury and orofacial inflammation. Microglial cells and astrocytes are also activated in the Vc and C1/C2 regions. It is considered that functional interaction between non-neuronal cells and neurons in the TG, Vc, and C1/C2 regions is a key mechanism involved in the enhancement of neuronal excitability after nerve injury or inflammation. In this article, the detailed mechanisms underlying ectopic orofacial hyperalgesia associated with trigeminal nerve injury and orofacial inflammation are addressed.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
41
|
Bista P, Imlach WL. Pathological Mechanisms and Therapeutic Targets for Trigeminal Neuropathic Pain. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E91. [PMID: 31443547 PMCID: PMC6789505 DOI: 10.3390/medicines6030091] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Trigeminal neuropathic pain is a chronic pain condition caused by damage or inflammation of the trigeminal nerve or its branches, with both peripheral and central nervous system dysfunction contributing to the disorder. Trigeminal pain conditions present with diagnostic and therapeutic challenges to healthcare providers and often require multiple therapeutic approaches for pain reduction. This review will provide the overview of pathophysiology in peripheral and central nociceptive circuits that are involved in neuropathic pain conditions involving the trigeminal nerve and the current therapeutics that are used to treat these disorders. Recent advances in treatment of trigeminal pain, including novel therapeutics that target ion channels and receptors, gene therapy and monoclonal antibodies that have shown great promise in preclinical studies and clinical trials will also be described.
Collapse
Affiliation(s)
- Pawan Bista
- Department of Physiology & Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Wendy L Imlach
- Department of Physiology & Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
42
|
Samiei M, Ahmadian E, Eftekhari A, Eghbal MA, Rezaie F, Vinken M. Cell junctions and oral health. EXCLI JOURNAL 2019; 18:317-330. [PMID: 31338005 PMCID: PMC6635732 DOI: 10.17179/excli2019-1370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
The oral cavity and its appendices are exposed to considerable environmental and mechanical stress. Cell junctions play a pivotal role in this context. Among those, gap junctions permit the exchange of compounds between cells, thereby controlling processes such as cell growth and differentiation. Tight junctions restrict paracellular transportation and inhibit movement of integral membrane proteins between the different plasma membrane poles. Adherens junctions attach cells one to another and provide a solid backbone for resisting to mechanistical stress. The integrity of oral mucosa, normal tooth development and saliva secretion depend on the proper function of all these types of cell junctions. Furthermore, deregulation of junctional proteins and/or mutations in their genes can alter tissue functioning and may result in various human disorders, including dental and periodontal problems, salivary gland malfunction, hereditary and infectious diseases as well as tumorigenesis. The present manuscript reviews the role of cell junctions in the (patho)physiology of the oral cavity and its appendices, including salivary glands.
Collapse
Affiliation(s)
- Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Pharmacology and Toxicology department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Eghbal
- Drug Applied Research Center and Pharmacology and Toxicology department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshte Rezaie
- General Practitioner, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
43
|
Jin YZ, Zhang P, Hao T, Wang LM, Guo MD, Gan YH. Connexin 43 contributes to temporomandibular joint inflammation induced-hypernociception via sodium channel 1.7 in trigeminal ganglion. Neurosci Lett 2019; 707:134301. [PMID: 31152853 DOI: 10.1016/j.neulet.2019.134301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023]
Abstract
We previously demonstrated that sodium channel 1.7 (Nav1.7) in trigeminal ganglion (TG) was a critical factor in temporomandibular joint (TMJ) inflammation-induced hypernociception, but the mechanism underlying inflammation-induced upregulation of Nav1.7 remained unclear. Glial-neuron interaction plays a critical role in pain process and connexin 43 (Cx43), a gap junction protein expressed in satellite glial cells (SGCs) has been shown to play an important role in several pain models. In the present study, we investigate the role of Cx43 in TMJ inflammation-induced hypernociception and its possible impact on neuronal Nav1.7. We induced TMJ inflammation in rats by injecting complete Freund's adjuvant (CFA) into TMJ and observed a decrease in head withdraw threshold after 24 h. Electron microscopy showed morphological alterations of SGCs in TMJ-inflamed rats. The expression of Cx43, glial fibrillary acidic protein (GFAP), and Nav1.7 increased greatly compared with controls. In addition, pretreatment with Cx43 blockers in TMJ-inflamed rats could alleviate mechanical hypernociception, inhibit SGCs activation and IL-1βrelease, and thus block the upregulation of Nav1.7. These findings indicate that the propagation of SGCs activation via Cx43 plays a critical role in Nav1.7-involved mechanical hypernociception induced by TMJ inflammation.
Collapse
Affiliation(s)
- Yi-Zhou Jin
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Peng Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China; Department of Oral and Maxillofacial Surgery, Qingdao Municipal Hospital, Shandong, PR China
| | - Ting Hao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Lu-Ming Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Mu-Di Guo
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China.
| |
Collapse
|
44
|
Chen SJ, Lee CJ, Lin TB, Peng HY, Liu HJ, Chen YS, Tseng KW. Protective Effects of Fucoxanthin on Ultraviolet B-Induced Corneal Denervation and Inflammatory Pain in a Rat Model. Mar Drugs 2019; 17:md17030152. [PMID: 30841522 PMCID: PMC6471339 DOI: 10.3390/md17030152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/04/2023] Open
Abstract
Fucoxanthin is a carotenoid with many pharmaceutical properties that is found in brown seaweed. However, the effects of fucoxanthin on corneal innervation and intense eye pain have not been extensively examined. To clarify the protective roles and underlying mechanisms of fucoxanthin on ocular lesions, we investigated the beneficial effects and mechanisms by which fucoxanthin ameliorates ultraviolet B (UVB)-induced corneal denervation and trigeminal pain. Treatment with fucoxanthin enhanced the expression of nuclear factor erythroid 2-related factor 2 in the cornea. Inhibition of typical denervation and epithelial exfoliation in the cornea were observed in rats treated with fucoxanthin following UVB-induced nerve disorders. Moreover, the active phosphorylated form of p38 MAP kinase (pp38) and the number of glial fibrillary acidic protein (GFAP)-positive neural cells were significantly reduced. Decreased expression of neuron-selective transient receptor potential vanilloid type 1 (TRPV1) in the trigeminal ganglia neurons was also demonstrated in rats treated with fucoxanthin after UVB-induced keratitis. Symptoms of inflammatory pain, including difficulty in opening the eyes and eye wipe behaviour, were also reduced in fucoxanthin-treated groups. Pre-treatment with fucoxanthin may protect the eyes from denervation and inhibit trigeminal pain in UVB-induced photokeratitis models.
Collapse
Affiliation(s)
- Shiu-Jau Chen
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan.
| | - Ching-Ju Lee
- Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei 24213, Taiwan.
- Department of Business Administration, National Taipei University, New Taipei 24741, Taiwan.
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11049, Taiwan.
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan.
| | - Hsiang-Jui Liu
- Department of Optometry, Mackay Junior College of Medicine, Nursing and Management, New Taipei 11260, Taiwan.
| | - Yu-Shan Chen
- Department of Business Administration, National Taipei University, New Taipei 24741, Taiwan.
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan.
- School of Life Science, National Taiwan Normal University, Taipei 10610, Taiwan.
| |
Collapse
|
45
|
Xing L, Yang T, Cui S, Chen G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front Mol Neurosci 2019; 12:23. [PMID: 30787868 PMCID: PMC6372977 DOI: 10.3389/fnmol.2019.00023] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
In the central nervous system (CNS), astrocytes form networks interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. When unopposed by an adjoining hemichannel, astrocytic connexins can act as hemichannels to control the release of small molecules such as ATP and glutamate into the extracellular space. Accruing evidence indicates that astrocytic connexins are crucial for the coordination and maintenance of physiologic CNS activity. Here we provide an update on the role of astrocytic connexins in neurodegenerative disorders, glioma, and ischemia. In addition, we address the regulation of Cx43 in chronic pain.
Collapse
Affiliation(s)
- LingYan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
46
|
Trigeminal Nerve Transection-Induced Neuroplastic Changes in the Somatosensory and Insular Cortices in a Rat Ectopic Pain Model. eNeuro 2019; 6:eN-NWR-0462-18. [PMID: 30693315 PMCID: PMC6348450 DOI: 10.1523/eneuro.0462-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 11/21/2022] Open
Abstract
The primary sensory cortex processes competitive sensory inputs. Ablation of these competitive inputs induces neuroplastic changes in local cortical circuits. However, information concerning cortical plasticity induced by a disturbance of competitive nociceptive inputs is limited. Nociceptive information from the maxillary and mandibular molar pulps converges at the border between the ventral secondary somatosensory cortex (S2) and insular oral region (IOR); therefore, S2/IOR is a suitable target for examining the cortical changes induced by a disturbance of noxious inputs, which often causes neuropathic pain and allodynia. We focused on the plastic changes in S2/IOR excitation in a model of rats subjected to inferior alveolar nerve transection (IANX). Our optical imaging using a voltage-sensitive dye (VSD) revealed that the maxillary molar pulp stimulation-induced excitatory propagation was expanded one to two weeks after IANX at the macroscopic level. At the cellular level, based on Ca2+ imaging using two-photon microscopy, the amplitude of the Ca2+ responses and the number of responding neurons in S2/IOR increased in both excitatory and inhibitory neurons. The in vitro laser scanning photostimulation (LSPS) revealed that Layer II/III pyramidal and GABAergic fast-spiking neurons in S2/IOR received larger excitatory inputs from Layer IV in the IANX models, which supports the findings obtained by the macroscopic and microscopic optical imaging. Furthermore, the inhibitory postsynaptic inputs to the pyramidal neurons were decreased in the IANX models, suggesting suppression of inhibitory synaptic transmission onto excitatory neurons. These results suggest that IANX induces plastic changes in S2/IOR by changing the local excitatory and inhibitory circuits.
Collapse
|
47
|
Fan W, Zhu X, He Y, Zhu M, Wu Z, Huang F, He H. The role of satellite glial cells in orofacial pain. J Neurosci Res 2018; 97:393-401. [PMID: 30450738 DOI: 10.1002/jnr.24341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/29/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
Some chronic pain conditions in the orofacial region are common, the mechanisms underlying which are unresolved. Satellite glial cells (SGCs) are the glial cells of the peripheral nervous system. In the sensory ganglia, each neuronal body is surrounded by SGCs forming distinct functional units. The unique structural organization enables SGCs to communicate with each other and with their enwrapped neurons via a variety of ways. There is a growing body of evidence that SGCs can influence the level of neuronal excitability and are involved in the development and/or maintenance of pain. The aim of this review was to summarize the latest advances made about the implication of SGCs in orofacial pain. It may offer new targets for the development of orofacial pain treatment.
Collapse
Affiliation(s)
- Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China.,Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yifan He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Mengzhu Zhu
- Department of Rheumatology, Chinese Medicine Hospital in Linyi City, Shandong, China
| | - Zhi Wu
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Iwata K, Katagiri A, Shinoda M. Neuron-glia interaction is a key mechanism underlying persistent orofacial pain. J Oral Sci 2018. [PMID: 28637974 DOI: 10.2334/josnusd.16-0858] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Excitability of neurons in the trigeminal ganglion (TG), trigeminal spinal subnucleus caudalis (Vc), and upper cervical spinal cord (C1-C2) is greatly enhanced after orofacial inflammation and trigeminal nerve injury, and TG, Vc, and C1-C2 neurons remain sensitized long after such episodes. Sensitized neurons generate various molecules, which are released from nociceptive neurons in these areas and are involved in modulating the excitability of TG, Vc, and C1-C2 nociceptive neurons. Hyperexcitable nociceptive neurons also activate satellite glial cells in the TG and microglial cells and astrocytes in the Vc and C1-C2. Glial cell activation spreads throughout the TG, Vc, and C1-C2 and triggers the release of various molecules involved in modulating nociceptive neurons in TG, Vc, and C1-C2 neurons. These findings suggest that functional interaction between neurons and glial cells is critical in persistent orofacial pain associated with orofacial inflammation and trigeminal nerve injury.
Collapse
Affiliation(s)
- Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry
| | | |
Collapse
|
49
|
Pérez Armendariz EM, Norcini M, Hernández-Tellez B, Castell-Rodríguez A, Coronel-Cruz C, Alquicira RG, Sideris A, Recio-Pinto E. Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36. Acta Histochem 2018; 120:168-178. [PMID: 29224922 DOI: 10.1016/j.acthis.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury.
Collapse
Affiliation(s)
- E Martha Pérez Armendariz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Monica Norcini
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA.
| | - Beatriz Hernández-Tellez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Cristina Coronel-Cruz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Raquel Guerrero Alquicira
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Alexandra Sideris
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA.
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA; Departments of Anesthesiology, Biochemistry & Molecular Pharmacology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014 USA.
| |
Collapse
|
50
|
Komiya H, Shimizu K, Ishii K, Kudo H, Okamura T, Kanno K, Shinoda M, Ogiso B, Iwata K. Connexin 43 expression in satellite glial cells contributes to ectopic tooth-pulp pain. J Oral Sci 2018; 60:493-499. [DOI: 10.2334/josnusd.17-0452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hiroki Komiya
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Kohei Shimizu
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Kae Ishii
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Hiroshi Kudo
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Teinosuke Okamura
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Kohei Kanno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|