1
|
Yi-Fan K, Jian-Rong L. Research mechanism of DBP and DEHP in the development of PCOS based on network toxicology and molecular docking. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04173-0. [PMID: 40274621 DOI: 10.1007/s00210-025-04173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Polycystic ovary syndrome (PCOS) constitutes a prevalent endocrine disorder among females, exhibiting a significant incidence rate. The etiology of PCOS predominantly attributes to environmental determinants. Phthalate esters, including dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), have been demonstrated to exert detrimental effects on reproductive function. However, the effects of these plasticizers on female reproductive health have not been clearly investigated. In the present investigation, we employed network toxicological methodologies to delineate the pivotal genes and associated pathways that are implicated in the pathogenesis of PCOS induced by DBP and DEHP. Molecular docking methodologies were employed to ascertain the interaction between the investigational compound and the designated target protein. The present study delineates pivotal targets, namely AKT1, SRC, PIK3R1, EGFR, ESR1, and STAT3, which are instrumental in the mediation of PCOS. The genes predominantly participate in the EGFR pathway, insulin signaling pathway, and oocyte damage, significantly compromising female ovarian functionality. This investigation underscores the integration of network toxicology, molecular docking, and cell experiment methodologies to elucidate the toxicological properties and underlying molecular mechanisms of plasticizers in the context of PCOS. This study provides a prospective therapeutic target to mitigate the harmful effects of plasticizers on female reproductive health.
Collapse
Affiliation(s)
- Kang Yi-Fan
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Provincial People's Hospital , Taiyuan, 030001, China
| | - Liu Jian-Rong
- Shanxi Provincial People's Hospital, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Wang Z, Fleisch A, Rifas-Shiman SL, Calafat AM, James-Todd T, Coull BA, Chavarro JE, Hivert MF, Whooten RC, Perng W, Oken E, Mahalingaiah S. Associations of maternal per- and polyfluoroalkyl substance plasma concentrations during pregnancy with offspring polycystic ovary syndrome and related characteristics in project viva. ENVIRONMENTAL RESEARCH 2025; 268:120786. [PMID: 39798662 PMCID: PMC11839318 DOI: 10.1016/j.envres.2025.120786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) may impact ovarian folliculogenesis and steroidogenesis, but whether prenatal exposure may impact offspring reproductive health is unknown. This study examines the extent to which maternal PFAS plasma concentrations during pregnancy are associated with polycystic ovary syndrome (PCOS) and related characteristics in female offspring. METHODS We studied 322 mother-daughter pairs in Project Viva, a Boston-area longitudinal pre-birth cohort enrolled 1999-2002. We examined associations of maternal prenatal (median: 9.6 weeks gestation) plasma concentrations of six PFAS (log2 transformed) with PCOS and related characteristics among daughters during mid-to-late adolescence. We estimated the associations of single PFAS and PFAS as a mixture with each outcome, using logistic regression and quantile g-computation, respectively, adjusting for parity, and maternal sociodemographic and other lifestyle/health factors. RESULTS Among the 322 mother-daughter pairs, the majority of mothers identified as non-Hispanic White and had a college degree, and 13% of daughters had either self-reported PCOS or probable PCOS based on irregular menstrual cycles and clinical or biochemical markers of hyperandrogenism. Among all daughters, there were 27% with irregular menstrual cycles, 34% with hirsutism, and 6% with moderate-to-severe acne. When fully adjusted for confounders, per doubling of maternal 2-(N-ethyl-perfluorooctane sulfonamido) acetate (EtFOSAA) concentration was associated with higher odds of self-reported PCOS [OR (95% CI) = 2.66 (1.18, 5.99)], and per doubling of maternal perfluorononanoate (PFNA) concentration was associated with higher odds of moderate-to-severe acne [OR (95% CI) = 2.33 (1.09, 4.99)] in daughters with or without irregular menstrual cycles. We found no associations of the mixture of six PFAS with PCOS or related traits. CONCLUSION Our findings suggest a positive association between maternal concentrations of EtFOSAA and PCOS in their daughters during mid-to-late adolescence, although future studies with larger sample size and extended follow-up across the reproductive life-course are needed.
Collapse
Affiliation(s)
- Zifan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Abby Fleisch
- Center for Interdisciplinary Population and Health Research, MaineHealth Institute for Research, Westbrook, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel C Whooten
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Wei Perng
- Department of Epidemiology and the Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shruthi Mahalingaiah
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Li X, Lin S, Yang X, Chen C, Cao S, Zhang Q, Ma J, Zhu G, Zhang Q, Fang Q, Zheng C, Liang W, Wu X. When IGF-1 Meets Metabolic Inflammation and Polycystic Ovary Syndrome. Int Immunopharmacol 2024; 138:112529. [PMID: 38941670 DOI: 10.1016/j.intimp.2024.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder associated with insulin resistance (IR) and hyperandrogenaemia (HA). Metabolic inflammation (MI), characterized by a chronic low-grade inflammatory state, is intimately linked with chronic metabolic diseases such as IR and diabetes and is also considered an essential factor in the development of PCOS. Insulin-like growth factor 1 (IGF-1) plays an essential role in PCOS pathogenesis through its multiple functions in regulating cell proliferation metabolic processes and reducing inflammatory responses. This review summarizes the molecular mechanisms by which IGF-1, via MI, participates in the onset and progression of PCOS, aiming to provide insights for studies and clinical treatment of PCOS.
Collapse
Affiliation(s)
- Xiushen Li
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China; Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Sailing Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Xiaolu Yang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Can Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Shu Cao
- Xin'an Academy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qi Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Jingxin Ma
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Guli Zhu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Qi Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Qiongfang Fang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Xueqing Wu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Shi J, Hu KL, Li XX, Ge YM, Yu XJ, Zhao J. Bisphenol a downregulates GLUT4 expression by activating aryl hydrocarbon receptor to exacerbate polycystic ovary syndrome. Cell Commun Signal 2024; 22:28. [PMID: 38200540 PMCID: PMC10782693 DOI: 10.1186/s12964-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) levels are high in women with polycystic ovary syndrome (PCOS). The mechanism by which BPA induces abnormal glucose metabolism in PCOS patients is largely unknown. METHODS Serum and urine samples were collected from women with and without PCOS (control) at the reproductive medicine center with informed consent. Non-PCOS patients who received in vitro fertilization were recruited for collection of ovarian follicular fluid and granular cells. Wild-type C57BL/6 and AhR -/- mice were used to verify the effects of BPA on PCOS. Real-time PCR, western blotting, and ELISA were conducted to analyze the function of BPA. Chip-qPCR verified the role of AhR in GLUT4 transcription. Flow cytometry was performed to determine glucose uptake. RESULTS A positive correlation was observed between BPA concentration and serum BPA levels in PCOS patients. BPA aggravated the changes in PCOS with abnormal glucose metabolism, impaired fertility, and increased body fat. Mechanistically, we showed that BPA activated AhR and led to decreased glucose transport via GLUT4 downregulation in ovarian granular cells. Therefore, the use of inhibitors or knockout of AhR could effectively rescue BPA-induced metabolic disorders in PCOS mice. CONCLUSIONS Our results revealed that BPA suppressed GLUT4 expression and induced abnormal glucose metabolism by activating AhR, causing insulin resistance, and is thus a potential contributor to the development of PCOS. Therefore, AhR could be a potential new therapeutic target for PCOS. Video Abstract.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiao-Xue Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Yi-Meng Ge
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Xiao-Jun Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
5
|
Gautam R, Prambil AM, Patel AK, Arora T. Emerging pollutants in etiology and pathophysiology of polycystic ovary syndrome. Reprod Toxicol 2024; 123:108515. [PMID: 38000646 DOI: 10.1016/j.reprotox.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial endocrine disorder affecting reproductive-aged women worldwide. Although genetic and lifestyle factors have been implicated in its etiology, emerging evidence suggests that exposure to environmental pollutants may also contribute significantly to the development and pathophysiology of PCOS. This review article aims to provide a comprehensive overview of the potential role of emerging pollutants, including pharmaceuticals and personal care products (PPCPs), microplastics, endocrine disruptors, and nanoparticles, in PCOS development. The article summarizes the current understanding of PCOS pathogenesis and its clinical manifestations. Subsequently, it delves into the mechanisms of action of the emerging pollutants, exploring how they may disrupt the endocrine system, interfere with hormonal regulation, and contribute to the manifestation of PCOS symptoms. Moreover, the potential for cumulative effects and synergistic interactions between these pollutants demands a cautious approach when considering their role in PCOS etiology.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of Reproductive, Child Health & Nutrition, Indian Council of Medical Research, New Delhi 110029, India
| | - Ajith Manayil Prambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Taruna Arora
- Division of Reproductive, Child Health & Nutrition, Indian Council of Medical Research, New Delhi 110029, India.
| |
Collapse
|
6
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Awonuga AO, Camp OG, Abu-Soud HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21:111. [PMID: 37996893 PMCID: PMC10666387 DOI: 10.1186/s12958-023-01159-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA.
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
8
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Xiao H, Yin T, Diao L, Zhang Y, Huang C. Association between immunity and different clinical symptoms in patients with polycystic ovary syndrome. Am J Reprod Immunol 2023; 90:e13780. [PMID: 37766399 DOI: 10.1111/aji.13780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a disease with endocrine and metabolic disorders. The main symptoms are hyperandrogenemia (HA), insulin resistance (IR), and ovulation disorder. However, the pathogenesis and pathophysiological process of these major symptoms in PCOS are still not well defined. In recent studies, the chronic low-grade inflammatory state has become one of the factors affecting PCOS. Some alterable immune factors in PCOS, such as interleukin-15 and interleukin-1, have been identified to be related to androgen synthesis and insulin resistance in PCOS. In addition, a disturbed immune microenvironment in the ovary leads to impaired follicular growth and ovulation. Previous studies have roughly reviewed the relationship between immunity and PCOS. However, the link between the different clinical manifestations of PCOS and immunity has not been well explored and analyzed. The clinical presentation of each patient is diverse, and symptomatic treatment is mainly used. Therefore, this article reviews several representative immunological factors that affect these three symptoms to explore the underlying mechanism, which will be beneficial for developing new treatment strategies.
Collapse
Affiliation(s)
- Huan Xiao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life (Basel) 2023; 13:life13041056. [PMID: 37109585 PMCID: PMC10145572 DOI: 10.3390/life13041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is increasingly being characterized as an evolutionary mismatch disorder that presents with a complex mixture of metabolic and endocrine symptoms. The Evolutionary Model proposes that PCOS arises from a collection of inherited polymorphisms that have been consistently demonstrated in a variety of ethnic groups and races. In utero developmental programming of susceptible genomic variants are thought to predispose the offspring to develop PCOS. Postnatal exposure to lifestyle and environmental risk factors results in epigenetic activation of developmentally programmed genes and disturbance of the hallmarks of health. The resulting pathophysiological changes represent the consequences of poor-quality diet, sedentary behaviour, endocrine disrupting chemicals, stress, circadian disruption, and other lifestyle factors. Emerging evidence suggests that lifestyle-induced gastrointestinal dysbiosis plays a central role in the pathogenesis of PCOS. Lifestyle and environmental exposures initiate changes that result in disturbance of the gastrointestinal microbiome (dysbiosis), immune dysregulation (chronic inflammation), altered metabolism (insulin resistance), endocrine and reproductive imbalance (hyperandrogenism), and central nervous system dysfunction (neuroendocrine and autonomic nervous system). PCOS can be a progressive metabolic condition that leads to obesity, gestational diabetes, type two diabetes, metabolic-associated fatty liver disease, metabolic syndrome, cardiovascular disease, and cancer. This review explores the mechanisms that underpin the evolutionary mismatch between ancient survival pathways and contemporary lifestyle factors involved in the pathogenesis and pathophysiology of PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
11
|
Polycystic Ovary Syndrome and Endocrine Disruptors (Bisphenols, Parabens, and Triclosan)-A Systematic Review. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010138. [PMID: 36676087 PMCID: PMC9864804 DOI: 10.3390/life13010138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Exposure to endocrine disrupting chemicals (EDCs) can result in alterations of the female reproductive system, including polycystic ovary syndrome (PCOS). The aim of this review was to summarize the knowledge about the association of EDCs (bisphenols, parabens, and triclosan) with PCOS. We conducted an electronic literature search using PubMed for studies published between January 2007 and October 2022 on EDCs related to PCOS, and evaluated the association of PCOS with bisphenols, parabens and triclosan in 15 articles. Most studies revealed significantly higher plasma, urinary or follicular fluid levels of bisphenol A (BPA) in women with PCOS, and some showed a positive correlation of BPA with insulin resistance, polycystic morphology on ultrasound, hepatic steatosis, bilirubin levels, as well as free androgen index, androstenedione and testosterone serum levels, and markers of low-grade chronic inflammation. There was a negative correlation of BPA with markers of ovarian reserve, sex hormone binding globulin and vitamin D-binding protein. Parabens and triclosan have been studied in only one study each, with no significant associations with PCOS observed. Our review revealed an association of BPA with PCOS and negative effects of BPA on human ovaries; more research is needed to assess the potential associations of parabens and triclosan with PCOS.
Collapse
|
12
|
Sharma D, Bhartiya D. Dysfunctional Ovarian Stem Cells Due to Neonatal Endocrine Disruption Result in PCOS and Ovarian Insufficiency in Adult Mice. Stem Cell Rev Rep 2022; 18:2912-2927. [PMID: 35834052 DOI: 10.1007/s12015-022-10414-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a common global cause of anovulatory infertility but underlying etiology leading to PCOS still remains elusive. Fetal and perinatal endocrine disruption reportedly affects germ cell nests (GCN) breakdown, meiosis, and primordial follicle (PF) assembly with unassembled oocytes in neonatal ovaries. We recently reported that very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) express ERα, ERβ and FSHR, undergo distinct cyclic changes and neo-oogenesis encompassing GCN formation, meiosis, and primordial follicle (PF) assembly on regular basis in adult mice ovaries and these GCN are arrested in pre-meiotic or early meiotic stage in aged ovaries. Present study was undertaken to evaluate whether neonatal exposure to endocrine disruption (estradiol E2 or diethylstilbestrol DES) affects ovarian stem cells and their differentiation (neo-oogenesis) and PF assembly in adult 100 days old ovaries. Neonatal exposure to E2 resulted in typical features of PCOS including hyperandrogenism, infertility, increased stromal compartment, absent corpus lutea, and cystic follicles whereas DES treated ovaries showed rapid recruitment of follicles in young ovaries and multi-ovular/cystic follicles. Ovary surface epithelial cells smears showed large numbers of growth-arrested GCN in zygotene/pachytene with increased expression of Mlh-1 and Scp-1 suggesting defects at synapsis and recombination stages during prophase-1 of meiosis. Being immortal and expression of ERα and ERβ makes VSELs directly vulnerable to carry developmental endocrine insults to adult life. Dysfunction of VSELs/OSCs possibly results in oocyte defects observed in our study in PCOS/POI besides the widely reported defects in granulosa cells.
Collapse
Affiliation(s)
- Diksha Sharma
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, 400 012, Mumbai, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, 400 012, Mumbai, India.
| |
Collapse
|
13
|
Ma X, Wang Z, Zhang C, Bian Y, Zhang X, Liu X, Cao Y, Zhao Y. Association of SNPs in the FK-506 binding protein (FKBP5) gene among Han Chinese women with polycystic ovary syndrome. BMC Med Genomics 2022; 15:149. [PMID: 35787810 PMCID: PMC9254403 DOI: 10.1186/s12920-022-01301-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrine disorder in premenopausal women, whose etiology remains uncertain, although it is known to be highly heterogeneous and genetically complex. PCOS often presents with hyperandrogenism symptoms. The present study aimed to determine whether polymorphisms in the FK-506 binding protein 5 (FKBP5) gene (androgen target gene) are associated with an association for PCOS and hyperandrogenism. Methods This is a case–control study, and association analyses were conducted. A total of 13 single-nucleotide polymorphisms (SNPs) in the FKBP5 gene were evaluated in 775 PCOS patients who were diagnosed based on the Rotterdam Standard and 783 healthy Chinese Han women. Associations between FKBP5 SNPs and hormone levels were investigated. These 13 SNPs were genotyped using the Sequenom MassARRAY system, and an association analysis between the phenotype and alleles and genotypes were conducted. Results The genotype frequencies for the rs1360780 and rs3800373 SNPs differed significantly between the PCOS cases and healthy controls (p = 0.025, OR is 1.63 (1.05–2.53) and p = 0.029, OR is 1.59 (1.03–2.45) respectively under co-dominant model). Moreover, the genotype frequencies and genetic model analysis for the SNPs rs1360780, rs9470080, rs9296158, rs1043805 and rs7757037 differed significantly between the hyperandrogenism and non-hyperandrogenism groups of PCOS patients. The TT genotype of rs1360780, the TT genotype of rs9470080, the TT genotype of rs1043805 or the GG genotype of rs7705037 (ORs are 2.13 (1.03–4.39), 1.81 (1.03–3.17), 2.94 (1.32–6.53) and 1.72 (1.04–2.84) respectively) were correlated with androgen level of PCOS patients. Conclusion Our study showed that FKBP5 gene polymorphisms are associated with PCOS generally (rs1360780 and rs3800373) and with the hyperandrogenism subtype specifically (rs1360780, rs9470080, rs9296158, rs1043805 and rs7757037).
Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01301-0.
Collapse
Affiliation(s)
- Xinyue Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Zhao Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Changming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Xin Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Xin Liu
- Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
| | - Yueran Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China. .,Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
14
|
Mina A, Boutzios G, Papoutsis I, Kaparos G, Christopoulos P, Kousta E, Mastrominas M, Athanaselis S, Mastorakos G. Bisphenol A correlates with fewer retrieved oocytes in women with tubal factor infertility. Hormones (Athens) 2022; 21:305-315. [PMID: 35524040 DOI: 10.1007/s42000-022-00370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Serum and urinary bisphenol A (BPA) concentrations have been associated negatively with the number of retrieved oocytes after in vitro fertilization (IVF). The impact of BPA upon women with polycystic ovary syndrome (PCOS) and women with tubal factor infertility (TFI), following IVF, was investigated. To this purpose, associations among serum and urinary and follicular fluid (FF) BPA concentrations and the number of retrieved and fertilized oocytes and comparisons between pregnancy rates were evaluated. METHODS This was a cross-sectional study conducted at a university-affiliated assisted conception unit between January and November 2019, including 93 women of reproductive age (PCOS: 45; TFI: 48) following IVF. Unconjugated FF and serum BPA concentrations and total urinary BPA concentration were measured using a novel gas chromatography-mass spectrometry method. The number of retrieved and fertilized oocytes and pregnancy rate were documented and evaluated. RESULTS The number of oocytes retrieved from PCOS women was greater than that of 21 TFI women, independently of BMI. Lower FF BPA concentrations were found in all PCOS women and in overweight/obese PCOS compared to TFI women (0.50, 0.38, and 1.13 ng/mL, respectively). In TFI women, FF BPA concentrations correlated negatively with the number of retrieved oocytes. Serum and FF and urinary BPA concentrations did not significantly affect the number of fertilized oocytes and pregnancy rate in both groups. CONCLUSION FF BPA concentrations were lower in all PCOS women and in overweight/obese PCOS than in TFI women. In TFI women, FF BPA concentrations correlated negatively with retrieved oocytes. Confirmation of these findings might lead to moderation of use of BPA-containing products by women undergoing IVF.
Collapse
Affiliation(s)
- Areti Mina
- Endocrine Unit, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Str, PO Box 11528, Athens, Greece
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, PO Box 11527, Athens, Greece
| | - Georgios Boutzios
- Endocrine Unit, Department of Pathophysiology, Medical School, Laiko University Hospital, National and Kapodistrian University of Athens, 75 Mikras Asias Str, PO Box 11527, Athens, Greece
| | - Ioannis Papoutsis
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, PO Box 11527, Athens, Greece
| | - George Kaparos
- Hormonal and Biochemical Laboratory, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Str, PO Box 11528, Athens, Greece
| | - Panagiotis Christopoulos
- Endocrine Unit, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Str, PO Box 11528, Athens, Greece
| | - Eleni Kousta
- Endocrine Unit, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Str, PO Box 11528, Athens, Greece
| | - Minas Mastrominas
- Embryogenesis Assisted Conception Unit, Kifisias 49 Avenue, PO Box 15123, Athens, Greece
| | - Sotirios Athanaselis
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, PO Box 11527, Athens, Greece
| | - George Mastorakos
- Endocrine Unit, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Str, PO Box 11528, Athens, Greece.
| |
Collapse
|
15
|
Liu YN, Qin Y, Wu B, Peng H, Li M, Luo H, Liu LL. DNA Methylation in Polycystic Ovary Syndrome:Emerging Evidence and Challenges. Reprod Toxicol 2022; 111:11-19. [PMID: 35562068 DOI: 10.1016/j.reprotox.2022.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/09/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a disease related to reproductive endocrine abnormalities in women of reproductive age, often accompanied by metabolic diseases such as hyperandrogenemia, insulin resistance and dyslipidemia. However, the etiology and mechanism of PCOS are still unclear. In recent years, more and more studies have found that epigenetic factors play an important role in PCOS. DNA methylation is the most widely studied epigenetic modification. At present, changes of DNA methylation have been found in serum, ovarian, hypothalamus, skeletal muscle, adipose tissue of PCOS patients, and these changes are closely related to insulin resistance, lipid metabolism and follicular development of PCOS. Although the current research on DNA methylation in PCOS is not in-depth, it indicated up a good direction for future research on the etiology and mechanism of PCOS. This review discussed the relationship between DNA methylation and PCOS. It is expected to help accelerate the application of DNA methylation in the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Yan-Nan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Yi Qin
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China
| | - Bin Wu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hui Peng
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Ming Li
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hai Luo
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China.
| | - Lin-Lin Liu
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China.
| |
Collapse
|
16
|
Basso CG, de Araujo-Ramos AT, Martino-Andrade AJ. Exposure to phthalates and female reproductive health: a literature review. Reprod Toxicol 2022; 109:61-79. [DOI: 10.1016/j.reprotox.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
17
|
Parker J, O’Brien C, Hawrelak J, Gersh FL. Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031336. [PMID: 35162359 PMCID: PMC8835454 DOI: 10.3390/ijerph19031336] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
Polycystic ovary syndrome (PCOS) is increasingly recognized as a complex metabolic disorder that manifests in genetically susceptible women following a range of negative exposures to nutritional and environmental factors related to contemporary lifestyle. The hypothesis that PCOS phenotypes are derived from a mismatch between ancient genetic survival mechanisms and modern lifestyle practices is supported by a diversity of research findings. The proposed evolutionary model of the pathogenesis of PCOS incorporates evidence related to evolutionary theory, genetic studies, in utero developmental epigenetic programming, transgenerational inheritance, metabolic features including insulin resistance, obesity and the apparent paradox of lean phenotypes, reproductive effects and subfertility, the impact of the microbiome and dysbiosis, endocrine-disrupting chemical exposure, and the influence of lifestyle factors such as poor-quality diet and physical inactivity. Based on these premises, the diverse lines of research are synthesized into a composite evolutionary model of the pathogenesis of PCOS. It is hoped that this model will assist clinicians and patients to understand the importance of lifestyle interventions in the prevention and management of PCOS and provide a conceptual framework for future research. It is appreciated that this theory represents a synthesis of the current evidence and that it is expected to evolve and change over time.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong 2500, Australia
- Correspondence:
| | - Claire O’Brien
- Faculty of Science and Technology, University of Canberra, Bruce 2617, Australia;
| | - Jason Hawrelak
- College of Health and Medicine, University of Tasmania, Hobart 7005, Australia;
| | - Felice L. Gersh
- College of Medicine, University of Arizona, Tucson, AZ 85004, USA;
| |
Collapse
|
18
|
Dos Santos Cavaleiro RM, da Silva Arouche T, Martins Tanoue PS, Sá Pereira TS, de Carvalho Junior RN, Paranhos Costa FL, de Andrade Filho TS, Dos Santos Borges R, de Jesus Chaves Neto AM. Hormones Nanofiltration in Carbon Nanotubes and Boron Nitride Nanotubes Using Uniform External Electric Field Through Molecular Dynamics. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5499-5509. [PMID: 33980360 DOI: 10.1166/jnn.2021.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hormones are a dangerous group of molecules that can cause harm to humans. This study based on classical molecular dynamics proposes the nanofiltration of wastewater contaminated by hormones from a computer simulation study, in which the water and the hormone were filtered in two single-walled nanotube compositions. The calculations were carried out by changing the intensities of the electric field that acted as a force exerting pressure on the filtration along the nanotube, in the simulation time of 100 ps. The hormones studied were estrone, estradiol, estriol, progesterone, ethinylestradiol, diethylbestrol, and levonorgestrel in carbon nanotubes (CNTs) and boron nitride (BNNTs). The most efficient nanofiltrations were for fields with low intensities in the order of 10-8 au and 10-7 au. The studied nanotubes can be used in membranes for nanofiltration in water treatment plants due to the evanescent field potential caused by the action of the electric field inside. Our data showed that the action of EF in conjunction with the van der Walls forces of the nanotubes is sufficient to generate the attractive potential. Evaluating the transport of water molecules in CNTs and BNNTs, under the influence of the electric field, a sequence of simulations with the same boundary conditions was carried out, seeking to know the percentage of water molecules filtered in the nanotubes.
Collapse
Affiliation(s)
| | - Tiago da Silva Arouche
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | - Phelipe Seiichi Martins Tanoue
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | - Tais Souza Sá Pereira
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | | | - Fabio Luiz Paranhos Costa
- Federal University of Goiás, Campus Jataí. Rodovia BR-364, Setor Francisco Antônio, 75801615 - Jataí, GO - Brazil
| | - Tarciso Silva de Andrade Filho
- Federal University of the South and Southeast of Pará, Campus de Marabá. FL 17, QD 04, LT Especial Nova Marabá 68505080 - Maraba, PA - Brazil
| | - Rosivaldo Dos Santos Borges
- Federal University of Pará, Department of Pharmacy. Rua Augusto Correa, SN Pharmaceutical Chemistry Laboratory Guarna 66075-110 - Belem, PA - Brazil
| | | |
Collapse
|
19
|
Zulkifli S, Rahman AA, Kadir SHSA, Nor NSM. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 2021; 180:3111-3127. [PMID: 33893858 DOI: 10.1007/s00431-021-04085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children's health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans. What is known: • Very limited reviews are available on how BPA adversely affects children's health. • Previous papers mainly covered two systems in children. What is new: • Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives. • Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia. .,Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| |
Collapse
|
20
|
Parker J, O'Brien C, Gersh FL. Developmental origins and transgenerational inheritance of polycystic ovary syndrome. Aust N Z J Obstet Gynaecol 2021; 61:922-926. [PMID: 34403138 DOI: 10.1111/ajo.13420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND There has been increasing awareness that polycystic ovary syndrome (PCOS) phenotypes may represent a mismatch between ancient genetically programmed metabolic and reproductive survival mechanisms and modern lifestyle practices. In-utero developmental programming of metabolic and endocrine pathways may play an important role in activating gene variants that predispose the offspring to develop PCOS when exposed to specific postnatal conditions. Postnatal exposure to lifestyle factors such as poor-quality diet and endocrine disrupting chemicals may modulate epigenetically programmed pathways that result in the observed pathophysiological changes and clinical features seen in women with PCOS. AIM To review the developmental origins and transgenerational transmission of PCOS and the impact of lifestyle, androgens and endocrine disrupting chemicals on fetal epigenetic programming. MATERIALS AND METHODS The literature was reviewed using Google, Google Scholar, Medline and PubMed databases. The results are presented as a narrative review. RESULTS Human observational and animal experimental data support the hypothesis that PCOS is an inherited condition that arises as a result of developmental programming of normal gene variants. It is likely that these genes can be amplified by in-utero androgen exposure and activated by a range of postnatal lifestyle and environmental factors. Endocrine disrupting chemicals have the potential to influence developmental programming of PCOS susceptibility genes. CONCLUSIONS The current evidence suggests that developmental epigenetic programming following exposure to an adverse maternal metabolic and endocrine environment contributes to the pathogenesis of PCOS. Lifestyle interventions, as recommended by the International Guidelines, have the potential to reduce both symptoms and transgenerational transmission of PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Claire O'Brien
- Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Felice L Gersh
- Internal Medicine, University of Arizona College of Medicine, Irvine, CA, USA
| |
Collapse
|
21
|
Lazúrová Z, Figurová J, Hubková B, Mašlanková J, Lazúrová I. Urinary bisphenol A in women with polycystic ovary syndrome - a possible suppressive effect on steroidogenesis? Horm Mol Biol Clin Investig 2021; 42:303-309. [PMID: 34118794 DOI: 10.1515/hmbci-2020-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/08/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVES There is a growing evidence indicating an impact of endocrine distrupting chemicals such as bisphenol A (BPA) on human reproduction. Its higher levels in serum or urine have been documented in women with polycystic ovary syndrome (PCOS), however the relationship to ovarian steroidogenesis remains unclear.Aim of the study was to compare urinary BPA (U-BPA) concentrations among PCOS women and control group. Second aim was to assess the relationship of U-BPA to ovarian steroidogenesis in the group with PCOS. METHODS Eighty six Caucasian women (age 28.5 ± 5.1 years) diagnosed with PCOS and 32 controls of age 24.9 ± 4.4 years were included in the study. Fasting blood samples were analyzed for biochemical parameters and steroid hormones. U-BPA was measured in the morning urine sample using high pressure liquid chromatography. RESULTS PCOS women had significantly higher U-BPA as compared with control group (p=0.0001). Those with high levels of U-BPA (U-BPA ≥2.14 ug/g creatinine) demonstrated higher serum insulin (p=0.029) and HOMA IR (p=0.037), lower serum estrone (p=0.05), estradiol (p=0.0126), FSH (p=0.0056), and FAI (p=0.0088), as compared with low-BPA group (U- BPA <2.14 ug/g creatinine). In PCOS women, U-BPA positively correlated with age (p=0.0026; R2=0.17), negatively with estradiol (p=0.0001, R2=0.5), testosterone (p=0.0078, R2=0.15), free-testosterone (p=0.0094, R2=0.12) and FAI (p=0.0003, R2=0.32), respectively. CONCLUSIONS PCOS women have significantly higher U-BPA concentrations than healthy controls. U-BPA positively correlates with age and negatively with ovarian steroid hormones suggesting a possible suppressive effect of bisphenol A on ovarian steroidogenesis.
Collapse
Affiliation(s)
- Zora Lazúrová
- Fourth Department of Internal Medicine, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| | - Jana Figurová
- First Department of Internal Medicine, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| | - Beáta Hubková
- Department of Clinical Biochemistry, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| | - Jana Mašlanková
- Department of Clinical Biochemistry, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| | - Ivica Lazúrová
- First Department of Internal Medicine, Medical Faculty, P.J. Šafárik University, Košice, Slovakia
| |
Collapse
|
22
|
Hall JM, Korach KS. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:191-235. [PMID: 34452687 DOI: 10.1016/bs.apha.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.
Collapse
Affiliation(s)
- Julianne M Hall
- Quinnipiac University Frank H. Netter MD School of Medicine, Hamden, CT, United States.
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
23
|
Rotem RS, Nguyen VT, Chodick G, Davidovitch M, Shalev V, Hauser R, Coull BA, Bellavia A, Weisskopf MG. Associations of Maternal Androgen-Related Conditions With Risk of Autism Spectrum Disorder in Progeny and Mediation by Cardiovascular, Metabolic, and Fertility Factors. Am J Epidemiol 2021; 190:600-610. [PMID: 33521821 PMCID: PMC8024051 DOI: 10.1093/aje/kwaa219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Fetal exposure to elevated androgens is thought to contribute to autism spectrum disorder (ASD) risk. However, data rely heavily on in utero androgens measurements, which also reflect fetal secretions. Thus, in utero hyperandrogenemia might indicate adverse autism-related neurogenesis that has already occurred affecting fetal androgen homeostasis, rather than being a cause of the disorder. Associations between maternal androgen-related conditions and ASD could more directly implicate androgens' etiological role. We examined the association between maternal hyperandrogenemia-related conditions, focusing primarily on polycystic ovarian syndrome (PCOS), and progeny ASD, in an Israeli cohort of 437,222 children born in 1999-2013. Odds ratios and 95% confidence intervals were estimated using generalized estimating equations. Multiple mediation analyses using natural effect models were conducted to evaluate combined mediation of the PCOS effect by androgen-related cardiovascular, metabolic, and fertility factors. Results indicated that children of mothers with PCOS had higher ASD odds compared with children of mothers without PCOS (odds ratio = 1.42, 95% confidence interval: 1.24,1.64), and this effect was only partly mediated by the factors considered. Elevated odds were also observed for other hyperandrogenemia-related conditions. Findings provide support for direct involvement of maternal hyperandrogenemia in ASD etiology. Alternatively, findings might reflect shared genetic and/or environmental factors independently affecting maternal androgen homeostasis and fetal neurodevelopment.
Collapse
Affiliation(s)
- Ran S Rotem
- Correspondence to Dr. Ran S. Rotem, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ding H, Zhang J, Zhang F, Zhang S, Chen X, Liang W, Xie Q. Resistance to the Insulin and Elevated Level of Androgen: A Major Cause of Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:741764. [PMID: 34745009 PMCID: PMC8564180 DOI: 10.3389/fendo.2021.741764] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023] Open
Abstract
PCOS has a wide range of negative impacts on women's health and is one of the most frequent reproductive systemic endocrine disorders. PCOS has complex characteristics and symptom heterogeneity due to the several pathways that are involved in the infection and the absence of a comm14on cause. A recent study has shown that the main etiology and endocrine aspects of PCOS are the increased level of androgen, which is also known as "hyperandrogenemia (HA)" and secondly the "insulin resistance (IR)". The major underlying cause of the polycystic ovary is these two IR and HA, by initiating the disease and its severity or duration. As a consequence, study on Pathogenesis is crucial to understand the effect of "HA" and "IR" on the pathophysiology of numerous symptoms linked to PCOS. A deep understanding of the pattern of the growth in PCOS for HA and IR can help ameliorate the condition, along with adjustments in nutrition and life, as well as the discovery of new medicinal products. However, further research is required to clarify the mutual role of IR and HA on PCOS development.
Collapse
Affiliation(s)
- Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qiong Xie, ; Wenqing Liang,
| | - Qiong Xie
- Department of Gynecology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qiong Xie, ; Wenqing Liang,
| |
Collapse
|
25
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
26
|
Zeng Z, Lin X, Xia T, Liu W, Tian X, Li M. Identification of Crucial lncRNAs, miRNAs, mRNAs, and Potential Therapeutic Compounds for Polycystic Ovary Syndrome by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1817094. [PMID: 33224973 PMCID: PMC7666708 DOI: 10.1155/2020/1817094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study was aimed at mining crucial long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) for the development of polycystic ovary syndrome (PCOS) based on the coexpression and the competitive endogenous RNA (ceRNA) theories and investigating the underlying therapeutic drugs that may function by reversing the expression of lncRNAs, miRNAs, and mRNAs. METHODS RNA (GSE106724, GSE114419, GSE137684, and GSE138518) or miRNA (GSE84376 and GSE138572) expression profile datasets of PCOS patients were downloaded from the Gene Expression Omnibus database. The weighted gene coexpression network analysis (WGCNA) using four RNA datasets was conducted to construct the lncRNA-mRNA coexpression networks, while the common differentially expressed miRNAs in two miRNA datasets and module RNAs were used to establish the ceRNA network. A protein-protein interaction (PPI) network was created to explore the potential interactions between genes. Gene Ontology and KEGG pathway enrichment analyses were performed to explore the functions of genes in networks. Connectivity Map (CMap) and Comparative Toxicogenomics Database (CTD) analyses were performed to identify potential therapeutic agents for PCOS. RESULTS Three modules (black, magenta, and yellow) were identified to be PCOS-related after WGCNA analysis, in which KLF3-AS1-PLCG2, MAPKAPK5-AS1-MAP3K14, and WWC2-AS2-TXNIP were important coexpression relationship pairs. WWC2-AS2-hsa-miR-382-PLCG2 was a crucial ceRNA loop in the ceRNA network. The PPI network showed that MAP3K14 and TXNIP could interact with hub genes PLK1 (degree = 21) and TLR1 (degree = 18), respectively. These genes were enriched into mitosis (PLK1), immune response (PLCG2 and TLR1), and cell cycle (TXNIP and PLK1) biological processes. Ten small molecule drugs (especially quercetin) were considered to be therapeutical for PCOS. CONCLUSION Our study may provide a novel insight into the mechanisms and therapy for PCOS.
Collapse
Affiliation(s)
- Zhi Zeng
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xia Lin
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tingting Xia
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wenxiu Liu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiaohui Tian
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Manchao Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| |
Collapse
|
27
|
Pia Dima A, De Santis L, Verlengia C, Lombardo F, Lenzi A, Mazzarino M, Botrè F, Paoli D. Development and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous determination of phthalates and bisphenol a in serum, urine and follicular fluid. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:54-65. [PMID: 34820526 PMCID: PMC8601017 DOI: 10.1016/j.clinms.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
Phthalates and bisphenol A interfere with the synthesis, secretion, transport, binding, metabolism, and excretion of endogenous hormones and, for this reason, are classified as endocrine disruptors. We are here presenting an analytical method for the simultaneous detection of six phthalates metabolites and bisphenol A in different biological fluids (urine, serum and follifular fluid) by liquid chromatography coupled to tandem mass spectrometry. The quantification was carried out in negative electrospray ionization mode using selected reaction monitoring as acquisition mode. Different extraction protocols, using either solid phase or liquid/liquid extraction, were comparatively evaluated to optimize the sample preparation procedure. Solid-phase extraction was chosen as it ensured the best recovery and overall sensitivity. The method was successfully validated: recovery varying in the range 71 ± 2%-107 ± 6% depending on the target analyte and the matrix considered, intra-assay and inter-assay precision ≤ 12% for follicular fluid, ≤11% for serum and ≤ 10% for urine and accuracy ≤ 115% for follicular fluid, ≤113% for serum ≤ 115% for urine , linearity with R2 > 0.99, with the exception of MEP (recovery 64 ± 8%, intra-assay precision ≤ 20%, inter-assay precision ≤ 16% for follicular fluid). The actual applicability of the method developed and validated in this study was assessed by the analysis of real samples, including 10 specimens of follicular fluid, serum and urine samples, that showed the presence of phthalates metabolites and Bisphenol A, and confirming that the newly developed method can be applied in the routine clinical laboratory for the identification and quantitation of these endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Anna Pia Dima
- Laboratory of Seminology – Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Italy
| | - Lucia De Santis
- IVF Unit, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Francesco Lombardo
- Laboratory of Seminology – Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Italy
| | - Andrea Lenzi
- Laboratory of Seminology – Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Italy
| | - Monica Mazzarino
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy
- Department of Experimental Medicine, “Sapienza” University of Rome, Italy
- REDS – Research and Expertise on AntiDoping Science, ISSUL – Institute des Sciences du Sport, Université de Lausanne, Synathlon – Quartier Centre, 1015 Lausanne, Switzerland
| | - Donatella Paoli
- Laboratory of Seminology – Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Italy
| | - on behalf of the Italian Society of Embryology, Reproduction, Research (SIERR)
- Laboratory of Seminology – Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, Italy
- IVF Unit, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
- UOSD Centro PMA Sant’ Anna – ASL, Roma 1. Rome, Italy
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy
- Department of Experimental Medicine, “Sapienza” University of Rome, Italy
- REDS – Research and Expertise on AntiDoping Science, ISSUL – Institute des Sciences du Sport, Université de Lausanne, Synathlon – Quartier Centre, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Wawrzkiewicz-Jałowiecka A, Kowalczyk K, Trybek P, Jarosz T, Radosz P, Setlak M, Madej P. In Search of New Therapeutics-Molecular Aspects of the PCOS Pathophysiology: Genetics, Hormones, Metabolism and Beyond. Int J Mol Sci 2020; 21:ijms21197054. [PMID: 32992734 PMCID: PMC7582580 DOI: 10.3390/ijms21197054] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
In a healthy female reproductive system, a subtle hormonal and metabolic dance leads to repetitive cyclic changes in the ovaries and uterus, which make an effective ovulation and potential implantation of an embryo possible. However, that is not so in the case of polycystic ovary syndrome (PCOS), in which case the central mechanism responsible for entraining hormonal and metabolic rhythms during the menstrual cycle is notably disrupted. In this review we provide a detailed description of the possible scenario of PCOS pathogenesis. We begin from the analysis of how a set of genetic disorders related to PCOS leads to particular malfunctions at a molecular level (e.g., increased enzyme activities of cytochrome P450 (CYP) type 17A1 (17α-hydroxylase), 3β-HSD type II and CYP type 11A1 (side-chain cleavage enzyme) in theca cells, or changes in the expression of aquaporins in granulosa cells) and discuss further cellular- and tissue-level consequences (e.g., anovulation, elevated levels of the advanced glycation end products in ovaries), which in turn lead to the observed subsequent systemic symptoms. Since gene-editing therapy is currently out of reach, herein special emphasis is placed on discussing what kinds of drug targets and which potentially active substances seem promising for an effective medication, acting on the primary causes of PCOS on a molecular level.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-32-237-12-85
| | - Karolina Kowalczyk
- Department of Obstetrics and Gynecology, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.K.); (P.R.); (P.M.)
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland;
| | - Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Patrycja Radosz
- Department of Obstetrics and Gynecology, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.K.); (P.R.); (P.M.)
| | - Marcin Setlak
- Department of Neurosurgery, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Paweł Madej
- Department of Obstetrics and Gynecology, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.K.); (P.R.); (P.M.)
| |
Collapse
|
29
|
Pivonello C, Muscogiuri G, Nardone A, Garifalos F, Provvisiero DP, Verde N, de Angelis C, Conforti A, Piscopo M, Auriemma RS, Colao A, Pivonello R. Bisphenol A: an emerging threat to female fertility. Reprod Biol Endocrinol 2020; 18:22. [PMID: 32171313 PMCID: PMC7071611 DOI: 10.1186/s12958-019-0558-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Bisphenol-A (BPA) has been reported to be associated to female infertility. Indeed, BPA has been found to be more frequently detected in infertile women thus leading to hypothesize a possible effect of BPA on natural conception and spontaneous fecundity. In addition, in procedures of medically assisted reproduction BPA exposure has been found to be negatively associated with peak serum estradiol levels during gonadotropin stimulation, number of retrieved oocytes, number of normally fertilized oocytes and implantation. BPA deleterious effects are more critical during perinatal exposure, causing dysregulation of hypothalamic-pituitary-ovarian axis in pups and adults, with a precocious maturation of the axis through a damage of GnRH pulsatility, gonadotropin signaling and sex steroid hormone production. Further, BPA exposure during early lifestage may have a transgenerational effect predisposing the subsequent generations to the risk of developing BPA related disease. Experimental studies suggested that prenatal, perinatal and postnatal exposure to BPA can impair several steps of ovarian development, induce ovarian morphology rearrangement and impair ovarian function, particularly folliculogenesis, as well as can impair uterus morphology and function, in female adult animal and offspring. Finally, studies carried out in animal models have been reported the occurrence of endometriosis-like lesions after BPA exposure. Moreover, BPA exposure has been described to encourage the genesis of PCOS-like abnormalities through the impairment of the secretion of sex hormones affecting ovarian morphology and functions, particularly folliculogenesis. The current manuscript summarizes the evidence regarding the association between BPA exposure and female infertility, reviewing both clinical and preclinical studies.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy.
| | - Antonio Nardone
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
| | - Donatella Paola Provvisiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
- I.O.S. & COLEMAN Srl, Naples, Italy
| | - Nunzia Verde
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- I.O.S. & COLEMAN Srl, Naples, Italy
| | - Alessandro Conforti
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università "Federico II" di Napoli, Naples, Italy
| | - Mariangela Piscopo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Laboratory of Seminology-sperm bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università "Federico II" di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università "Federico II" di Napoli, Naples, Italy
| |
Collapse
|
30
|
Farook FF, Ng KT, MNM N, Koh WJ, Teoh WY. Association of Periodontal Disease and Polycystic Ovarian Syndrome: A Systematic Review and Meta-analysis with Trial Sequential Analysis. Open Dent J 2019. [DOI: 10.2174/1874210601913010478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Several articles have suggested a potential synergistic relationship between periodontal disease and systemic inflammatory diseases, such as Polycystic Ovarian Syndrome (PCOS) and diabetes mellitus. However, the associations between periodontal disease and PCOS population remain unclear in the literature.
Objective:
The primary aim of this review is to examine the associations between periodontal disease and PCOS with different scoring methods, namely clinical attachment loss, probing depth, gingival index, percentage of bleeding on probing and plaque index.
Methods:
MEDLINE, EMBASE and CENTRAL were systematically searched for observational studies and case-control studies from its inception until 2nd June, 2019. Case reports, case series, non-systematic reviews and trials published as abstracts were excluded.
Results:
Four articles (614 subjects) were included for analysis. Out of 614 subjects, 329 PCOS patients were compared to 285 healthy subjects. In comparison to healthy cohort, women with PCOS had a statistically significant increase in clinical attachment loss (MD: 0.34, 95% CI: 0.13-0.55, ρ=0.002), probing depth (MD: 0.35, 95%CI: 0.21-0.48, ρ<0.001), gingival index (MD: 0.70, 95% CI: 0.70-1.11, ρ<0.001) and percentage of bleeding on probing (MD: 34.41, 95% CI: 20.23-48.59, ρ<0.001). No difference was demonstrated in plaque index (MD: 0.42, 95% CI: -0.29-1.12, ρ=0.24) for both PCOS and healthy cohort.
Conclusion:
PCOS is significantly associated with a higher severity of the periodontal disease. This association should be emphasized during the management of PCOS patients, by including referral to dentists or periodontists for regular mechanical debridement of plaque and periodontal maintenance.
Collapse
|
31
|
Nonpersistent endocrine disrupting chemicals and reproductive health of women. Obstet Gynecol Sci 2019; 63:1-12. [PMID: 31970122 PMCID: PMC6962585 DOI: 10.5468/ogs.2020.63.1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Nonpersistent endocrine disrupting chemicals (npEDCs) are exogenous chemicals or mixtures of industrial agents that can interfere with the normal action of hormone with a shorter half-life and lower liposolubility. These are commonly found in plastics, medical equipment, detergents, and cosmetics. Recently, role of npEDCs on the changes of ovary and/or uterus development and alterations in hormonal signaling has been emphasized. However, many controversial results exist on the effects of npEDCs and reproductive health of women. Thus, we have focused to review the scientific evidence of a causal relationship between exposure to npEDCs and representative female reproductive issues such as menstrual cycle, endometriosis, uterine fibroids, polycystic ovarian syndrome and infertility/subfertility. Though not all studies indicated a positive correlation of npEDCs with female reproductive issues, the reviewed data illustrated that the majority of the available data strengthen the evidence of reproductive health-related actions of npEDCs. In future, recommendations should be made in order to reduce human exposure to npEDCs and to protect from steadily increasing reproductive health risks.
Collapse
|
32
|
Hall JM, Greco CW. Perturbation of Nuclear Hormone Receptors by Endocrine Disrupting Chemicals: Mechanisms and Pathological Consequences of Exposure. Cells 2019; 9:cells9010013. [PMID: 31861598 PMCID: PMC7016921 DOI: 10.3390/cells9010013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Much of the early work on Nuclear Hormone Receptors (NHRs) focused on their essential roles as mediators of sex steroid hormone signaling in reproductive development and function, and thyroid hormone-dependent formation of the central nervous system. However, as NHRs display tissue-specific distributions and activities, it is not surprising that they are involved and vital in numerous aspects of human development and essential for homeostasis of all organ systems. Much attention has recently been focused on the role of NHRs in energy balance, metabolism, and lipid homeostasis. Dysregulation of NHR function has been implicated in numerous pathologies including cancers, metabolic obesity and syndrome, Type II diabetes mellitus, cardiovascular disease, hyperlipidemia, male and female infertility and other reproductive disorders. This review will discuss the dysregulation of NHR function by environmental endocrine disrupting chemicals (EDCs), and the associated pathological consequences of exposure in numerous tissues and organ systems, as revealed by experimental, clinical, and epidemiological studies.
Collapse
|
33
|
Jin Y, Zhang Q, Pan JX, Wang FF, Qu F. The effects of di(2-ethylhexyl) phthalate exposure in women with polycystic ovary syndrome undergoing in vitro fertilization. J Int Med Res 2019; 47:6278-6293. [PMID: 31709857 PMCID: PMC7045688 DOI: 10.1177/0300060519876467] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objectives Di(2-ethylhexyl) phthalate (DEHP) is a common endocrine-disrupting chemical,
which has potential reproductive toxicity. This study aimed to explore the
effects of DEHP exposure in women with polycystic ovary syndrome (PCOS)
undergoing in vitro fertilization. Methods In this case-control study, DEHP levels in follicular fluid (FF) of women
with PCOS (n = 56) and controls (n = 51) were measured. The in
vitro effects of DEHP exposure on primary-cultured human
granulosa cells (GCs) and a steroidogenic human granulosa-like tumor cell
line (KGN cells) were analyzed. Results Concentrations of DEHP in FF were significantly higher in women with PCOS
than in controls. The clinical pregnancy rate was significantly lower in
women with PCOS with high levels of DEHP than in controls. The levels of
androgens produced by human GCs were significantly increased following DEHP
exposure. Compared with controls, DEHP-treated human GCs and KGN cells
showed significantly lower viability, cell cycle arrest, higher apoptosis,
and altered expression of apoptosis-related genes. Conclusion Women with PCOS are exposed to increased levels of DEHP in follicles, which
may be associated with pregnancy loss following in vitro
fertilization. DEHP may disrupt steroid production, balance in cellular
proliferation, and apoptosis in human granulosa cells.
Collapse
Affiliation(s)
- Yue Jin
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie-Xue Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang-Fang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Wang J, Wu D, Guo H, Li M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci 2019; 236:116940. [PMID: 31604107 DOI: 10.1016/j.lfs.2019.116940] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common systemic reproductive endocrine diseases, which has a variety of effects on a woman's health. Because of the involvement of multiple pathways and the lack of common clues, PCOS demonstrates multifactorial properties and heterogeneity of symptoms. Recent studies have demonstrated that the core etiology and primary endocrine characteristics of PCOS are hyperandrogenemia (HA) and insulin resistance (IR). HA and IR are the main causes of PCOS and they can interplay each other in the occurrence and development of PCOS. Just because of this, the study about the effects of HA and IR on pathophysiology of various related symptoms of PCOS is very important to understand the pathogenesis of PCOS. This paper reviews the main symptoms of PCOS, including neuroendocrine disorders, reproductive processes, dyslipidemia, obesity, hypertension, nonalcoholic fatty liver disease (NAFLD), and sleep disordered breathing, which seriously affect the physical and mental health of PCOS women. The increasing knowledge of the development pattern of HA and IR in PCOS suggests that changes in diet and lifestyle, and the discovery of potential therapeutic agents may improve PCOS. However, further studies are needed to clarify the mutual influence and relation of HA and IR in development of PCOS. This review provides an overview of the current knowledge about the effects of HA and IR on PCOS.
Collapse
Affiliation(s)
- Juan Wang
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Hui Guo
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China.
| |
Collapse
|
35
|
Yang Z, Shi J, Guo Z, Chen M, Wang C, He C, Zuo Z. A pilot study on polycystic ovarian syndrome caused by neonatal exposure to tributyltin and bisphenol A in rats. CHEMOSPHERE 2019; 231:151-160. [PMID: 31129395 DOI: 10.1016/j.chemosphere.2019.05.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The development of polycystic ovary syndrome (PCOS) could be caused by exposure to environmental endocrine disrupting chemicals (EDCs). In the current study, two commonly found EDCs, bisphenol A (BPA) and tributyltin (TBT), were investigated for their effects on PCOS occurrence in neonatal female rats. TBT (10 and 100 ng kg-1 d-1), BPA (50 μg kg-1 d-1), and a mixture of the two (TBT 100 ng kg-1 d-1 with BPA 50 μg kg-1 d-1) were administered to female rats from postnatal day 1-16. TBT, BPA, and TBT + BPA treatment resulted in an irregular estrus cycle and disturbed ovarian development, with less corpora lutea and antral follicles, but more atretic follicles and cysts. In addition, serum testosterone and luteinizing hormone levels were significantly elevated, whereas a reduced level of serum sex hormone-binding globulin was observed after TBT100, BPA50, and TBT + BPA treatments. Moreover, gene expression analyses identified significant differential expression of the genes involved in a variety of biological pathways, such as lipid transport and steroidogenesis. Moreover, the expression level of proteins regulating lipid and androgen biosynthesis was elevated after the treatments. In conclusion, this study demonstrated that exposure to TBT, BPA, and a mixture of the two in newborn rats could contribute to a PCOS-like syndrome. The mechanism of PCOS pathogenesis caused by exposure to TBT and BPA is likely to be mediated by the lipid metabolism and steroidogenesis pathways. Our results provide novel insight into female reproduction affected by EDCs, which may be helpful for revealing the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhibing Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Junxia Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhizhun Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingyue Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
36
|
Mathew H, Mahalingaiah S. Do prenatal exposures pose a real threat to ovarian function? Bisphenol A as a case study. Reproduction 2019; 157:R143-R157. [PMID: 30689546 DOI: 10.1530/rep-17-0734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/28/2019] [Indexed: 01/02/2023]
Abstract
Fetal development represents a time of potential vulnerability due to rapid cell division, organ development and limited fetal kidney/liver activity for detoxification and metabolism of exposures. Health effects of prenatal toxicant exposure have previously been described, but there is little cohesive evidence surrounding effects on ovarian function. Using bisphenol A (BPA) as a case study, we seek to examine whether a prominent prenatal environmental exposure can pose a real threat to human ovarian function. To do so, we broadly review human oogenesis and menstrual cycle biology. We then present available literature addressing prenatal bisphenol A and diverse outcomes at the level of the ovary. We highlight relevant human cohorts and mammalian models to review the existing data on prenatal exposures and ovarian disruption. Doing so suggests that while current exposures to BPA have not shown marked or consistent results, there is data sufficient to raise concerns regarding ovarian function. Challenges in the examination of this question suggest the need for additional models and pathways by which to expand these examinations in humans.
Collapse
Affiliation(s)
- Hannah Mathew
- Circle Health Diabetes and Endocrine Center, Dracut, Massachusetts, USA.,Department of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center/Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shruthi Mahalingaiah
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA.,Department of Obstetrics and Gynecology, Boston Medical Center/Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Kshetrimayum C, Sharma A, Mishra VV, Kumar S. Polycystic ovarian syndrome: Environmental/occupational, lifestyle factors; an overview. J Turk Ger Gynecol Assoc 2019; 20:255-263. [PMID: 30821135 PMCID: PMC6883751 DOI: 10.4274/jtgga.galenos.2019.2018.0142] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted disease of women with infertility that has diverse etiologic factors. Some women may have only a few PCOS-linked symptoms or mild symptoms, whereas others will have severe or all PCOS-linked symptoms. Therefore, PCOS symptoms can differ among women. PCOS is a state of hormonal imbalance, excess terminal hair (hirsutism), hair loss (alopecia), menstruation impairments, metabolic disorders, and cystic appearance on the ovaries. The cysts hamper ovulation, thus reducing the ability of women to become pregnant and result in infertility. The available data suggest that PCOS might originate in utero and the phenotypic appearance of PCOS symptoms may be developed in later life, which could be linked with host factors (endogenous) and exogenous factors like lifestyle, and dietary, environmental or occupational factors. Based upon the available information, it can be postulated that prenatal exposure to excessive androgens might be responsible for androgenization of the fetus, which in turn may alter the program of differentiating target tissues and the phenotypic characteristics of PCOS can be persuaded by exposure of female offspring to various endogenous and exogenous factors at later life. Genetic/host and environmental/lifestyle factors might be related to the pathophysiology of PCOS after prenatal exposure to androgen. Additional studies are necessary to understand the exact mechanism responsible for the manifestation of PCOS because it is a very important issue in female reproduction.
Collapse
Affiliation(s)
- Chaoba Kshetrimayum
- Department of Reproductive and Cytotoxicology, ICMR-National Institute of Occupational Health, Ahmedabad, India,PhD Scholar, Life Science, Gujarat University, Ahmedabad, India
| | - Anupama Sharma
- Department of Reproductive and Cytotoxicology, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | | | - Sunil Kumar
- Former, Scientist G & Director-in-Charge NIOH (ICMR), Ahmedabad, India
| |
Collapse
|
38
|
Mahalingaiah S, Missmer SE, Cheng JJ, Chavarro J, Laden F, Hart JE. Perimenarchal air pollution exposure and menstrual disorders. Hum Reprod 2019; 33:512-519. [PMID: 29377993 DOI: 10.1093/humrep/dey005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/14/2018] [Indexed: 01/21/2023] Open
Abstract
STUDY QUESTION What is the association between perimenarchal exposure to total suspended particulate (TSP) in air, menstrual irregularity phenotypes and time to menstrual cycle regularity? SUMMARY ANSWER Exposures to TSP during high school are associated with slightly increased odds of menstrual irregularity and longer time to regularity in high school and early adulthood. WHAT IS KNOWN ALREADY The menstrual cycle is responsive to hormonal regulation. Particulate matter air pollution has demonstrated hormonal activity. However, it is not known if air pollution is associated with menstrual cycle regularity. STUDY DESIGN, SIZE, DURATION Cross sectional study of 34 832 of the original 116 430 women (29.91%) enrolled in 1989 from the Nurses' Health Study II (NHSII). The follow-up rate for this analytic sample was 97.76% at the 1991 survey. PARTICIPANTS/MATERIALS, SETTING, METHODS Annual averages of TSP were available for each year of high school attendance. We created three case definitions including high school menstrual irregularity and androgen excess. The time to menstrual cycle regularity was reported by participants as <1 year, 1-2 years, 3-4 years, 5 years or longer, or never on the baseline questionnaire. Odds ratios and 95% confidence intervals (CI) were calculated for 45 μg/m3 increases in TSP exposure, adjusted for risk factors for menstrual irregularity. MAIN RESULTS AND THE ROLE OF CHANCE In multivariable adjusted models, we observed that for every 45 μg/m3 increase in average high school TSP there was an increased odds (95%CI) of 1.08 (1.03-1.14), 1.08 (1.02-1.15) and 1.10 (0.98-1.25) for moderate, persistent, and persistent with androgen excess irregularity phenotypes, respectively. TSP was also associated with a longer time to cycle regularity, with stronger results among women with older ages at menarche and those living in the Northeast or the West. LIMITATIONS, REASONS FOR CAUTION The outcomes of menstrual regularity and time to cycle regularity were retrospectively assessed outcomes and may be susceptible to recall bias. There is also the potential for selection bias, as women had to live until 2011 to provide addresses. WIDER IMPLICATIONS OF THE FINDINGS Temporal exposure to air pollution in the adolescent and early adulthood window may be especially important, given its association with phenotypes of menstrual irregularity. The data from this study agrees with existing literature regarding air pollution and reproductive tract diseases. STUDY FUNDING/COMPETING INTEREST(S) Shruthi Mahalingaiah: Reproductive Scientist Development Program HD000849, and a research grant from the Boston University Department of Obstetrics and Gynecology, Stacey Missmer: R01HD57210 from the National Institute of Child Health and Human Development and the Massachusetts Institute of Technology Center for Environmental Health Sciences Translational Pilot Project Program, R01CA50385 from the National Cancer Institute, Jaime Hart and Francine Laden: 5R01ES017017 from the National Institute for Environmental Health Sciences, Jaime Hart: P30 ES00002 from the National Institute for Environmental Health Sciences at the National Institute of Health, The Nurses' Health Study II is supported by infrastructure grant UM1CA176726 from the National Cancer Institute, NIH, U.S. Department of Health and Human Services The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- S Mahalingaiah
- Obstetrics and Gynecology, Boston University Medical Campus, 85 E Concord St. 6F, Boston, MA 02118, USA.,Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA.,Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St, Boston, MA 02118, USA
| | - S E Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Secchia Center, 15 Michigan St. NE, Michigan State University, Grand Rapids, MI, USA
| | - J J Cheng
- Obstetrics and Gynecology, Boston University Medical Campus, 85 E Concord St. 6F, Boston, MA 02118, USA
| | - J Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - F Laden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.,Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Landmark Center, 401 Park Drive, 3rd F West, Boston, MA 02115, USA.,Department of Environmental Health, Exposure, Epidemiology, and Risk Program, Harvard T.H. Chan School of Public Health, Landmark Center, 401 Park Drive, 3rd F West, Boston, MA 02115, USA
| | - J E Hart
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Landmark Center, 401 Park Drive, 3rd F West, Boston, MA 02115, USA.,Department of Environmental Health, Exposure, Epidemiology, and Risk Program, Harvard T.H. Chan School of Public Health, Landmark Center, 401 Park Drive, 3rd F West, Boston, MA 02115, USA
| |
Collapse
|
39
|
|
40
|
Maas K, Mirabal S, Penzias A, Sweetnam PM, Eggan KC, Sakkas D. Hippo signaling in the ovary and polycystic ovarian syndrome. J Assist Reprod Genet 2018; 35:1763-1771. [PMID: 30120633 DOI: 10.1007/s10815-018-1235-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/08/2018] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To provide a commentary on our understanding of the role that the Hippo signaling pathway may play in patients with polycystic ovarian syndrome (PCOS) and how this understanding may impact the diagnosis of PCOS. METHODS We assessed publications discussing the role of the Hippo signaling pathway in the ovary. In particular, we discuss how Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, has been used in treatment of patients with primary ovarian insufficiency. Furthermore, we discuss our own data on variations in Hippo signaling pathway gene expression in cumulus cells isolated from women undergoing IVF with a previous diagnosis of PCOS. RESULTS AND CONCLUSIONS Aberrant Hippo signaling in PCOS patients is likely a contributing mechanism to the multifactorial etiology of the disease. Given the challenge of discerning the underlying etiology of oligo-ovulation in some patients, especially those with normal body mass indices, and the need for customized stimulation protocols for PCOS patients who have an increased risk of over-response and higher percentage of immature oocyte yield, it is important to identify these patients prior to treatment. Hippo gene expression fingerprints could potentially be used to more accurately define patients with PCOS. Additionally, targeting this pathway with pharmacologic agents could lead to non-surgical therapeutic options for PCOS.
Collapse
Affiliation(s)
- Kristi Maas
- Boston IVF, 130 Second Ave., Waltham, MA, 02451, USA.,OB/GYN, REI Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Fertility Specialists Medical Group, 8010 Frost Street Suite P, San Diego, CA, 92123, USA
| | - Sheyla Mirabal
- CellBridge LLC, Salem, MA, USA.,Nano Terra Inc, Cambridge, MA, USA
| | - Alan Penzias
- Boston IVF, 130 Second Ave., Waltham, MA, 02451, USA.,OB/GYN, REI Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Paul M Sweetnam
- CellBridge LLC, Salem, MA, USA.,Nano Terra Inc, Cambridge, MA, USA
| | | | - Denny Sakkas
- Boston IVF, 130 Second Ave., Waltham, MA, 02451, USA.
| |
Collapse
|
41
|
Maduro MR. Developmental Programming and Polycystic Ovarian Syndrome. Reprod Sci 2018; 25:801. [DOI: 10.1177/1933719118777352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Abstract
After a brief review of current restorative materials and classifications, this article discusses the latest developments in polymer-based direct filling materials, with emphasis on products and studies available in the last 10 years. This will include the more recent bulk fill composites and self-adhesive materials, for which clinical evidence of success, albeit somewhat limited, is already available. The article also introduces the latest cutting edge research topics on new materials for composite restorations, and an outlook for the future of how those may help to improve the service life of dental composite restorations.
Collapse
Affiliation(s)
- Carmem S Pfeifer
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University, 2730 Southwest Moody Avenue, Room 6N036, Portland, OR 97201, USA.
| |
Collapse
|
43
|
Hakim C, Padmanabhan V, Vyas AK. Gestational Hyperandrogenism in Developmental Programming. Endocrinology 2017; 158:199-212. [PMID: 27967205 PMCID: PMC5413081 DOI: 10.1210/en.2016-1801] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
Androgen excess (hyperandrogenism) is a common endocrine disorder affecting women of reproductive age. The potential causes of androgen excess in women include polycystic ovary syndrome, congenital adrenal hyperplasia (CAH), adrenal tumors, and racial disparity among many others. During pregnancy, luteoma, placental aromatase deficiency, and fetal CAH are additional causes of gestational hyperandrogenism. The present report reviews the various phenotypes of hyperandrogenism during pregnancy and its origin, pathophysiology, and the effect of hyperandrogenism on the fetal developmental trajectory and offspring consequences.
Collapse
Affiliation(s)
- Christopher Hakim
- College of Human Medicine, Michigan State University, East Lansing, Michigan 48824
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109; and
| | - Arpita K. Vyas
- College of Human Medicine, Michigan State University, East Lansing, Michigan 48824
- Department of Pediatrics, Texas Tech University Health Sciences Center, Permian Basin Campus, Odessa, Texas 79763
| |
Collapse
|
44
|
Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril 2016; 106:948-58. [PMID: 27559705 DOI: 10.1016/j.fertnstert.2016.08.031] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common, heterogeneous, and multifactorial endocrine disorder in premenopausal women. The pathophysiology of this endocrinopathy is still unclear; however, the heterogeneity of its features within ethnic races, geographic location, and families suggests that environment and lifestyle are of prime importance. This work is mainly focused on the possible role of the most common and studied environmental toxins for this syndrome in the pathogenesis of PCOS. Plasticizers, such as bisphenol A (BPA) or phthalates, which belong to the categories of endocrine disrupting chemicals (EDCs) and advanced glycation end products (AGEs), affect humans' health in everyday, industrialized life; therefore special attention should be paid to such exposure. Timing of exposure to EDCs is crucial for the intensity of adverse health effects. It is now evident that fetuses, infants, and/or young children are the most susceptible groups, especially in the early development periods. Prenatal exposure to EDCs that mimic endogenous hormones may contribute to the altered fetal programming and in consequence lead to PCOS and other adverse health effects, potentially transgenerationally. Acute or prolonged exposure to EDCs and AGEs through different life cycle stages may result in destabilization of the hormonal homeostasis and lead to disruption of reproductive functions. They may also interfere with metabolic alterations such as obesity, insulin resistance, and compensatory hyperinsulinemia that can exacerbate the PCOS phenotype and contribute to PCOS consequences such as type 2 diabetes and cardiovascular disease. Since wide exposure to environmental toxins and their role in the pathophysiology of PCOS are supported by extensive data derived from diverse scientific models, protective strategies and strong recommendations should be considered to reduce human exposure to protect present and future generations from their adverse health effects.
Collapse
Affiliation(s)
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes Center of Excellence, Medical School University of Athens, EUROCLINIC, Athens, Greece.
| |
Collapse
|