1
|
Ouyang L, Gao X, Yang R, Zhou P, Cai H, Tian Y, Wang H, Kong S, Lu Z. SHP2 regulates the HIF-1 signaling pathway in the decidual human endometrial stromal cells†. Biol Reprod 2025; 112:743-753. [PMID: 39893623 DOI: 10.1093/biolre/ioaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
The decidual endometrial stromal cells play a critical role in the establishment of uterine receptivity and pregnancy in human. Our previous studies demonstrate that protein tyrosine phosphatase 2 SHP2 is highly expressed in decidualized cells and governs the decidualization progress. However, the role and mechanism of SHP2 in the function of decidual cells remain unclear. Here, we screened proteins interacting with SHP2 in decidual hTERT-immortalized human endometrial stromal cells (T-HESCs) and identified Hypoxia-inducible factor-1 (HIF-1) signaling pathway as a potential SHP2-mediated signaling pathway through proximity-dependent biotinylation (BioID) analysis. Immunoprecipitation (Co-IP) revealed an interaction between SHP2 and HIF-1α, which colocalized to the nucleus in decidual cells. Furthermore, the SHP2 expression correlated with the transcriptional activation of HIF-1α and its downstream genes Beta-enolase (Eno3), Pyruvate kinase 2 (Pkm2), Aldolase C (Aldoc), and Facilitative glucose transporter 1 (Glut1). Knockdown or inhibition of SHP2 significantly reduced the mRNA and protein levels of HIF-1α and its downstream genes, as well as lactate production in decidual cells. We also established a hypoxia model of T-HESCs and 293 T cells and found that hypoxic treatment induced the expression of SHP2 and HIF-1α, which colocalized in the nucleus. SHP2 forced-expression rescued the inhibitory effects of SHP2 deficiency on HIF-1α expression and lactate production. Finally, SHP2 binds to the promoter regions of HIF-1α and its target genes (Eno3, Pkm2, Aldoc, and Glut1). Collectively, our results suggest that SHP2 influences the function of decidual cells by HIF-1α signaling and provide a novel function mechanism of decidual stromal cells.
Collapse
Affiliation(s)
- Liqun Ouyang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Xia Gao
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Rongyu Yang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Peiyi Zhou
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Han Cai
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Yingpu Tian
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Zhongxian Lu
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Stadtmauer DJ, Basanta Martínez S, Maziarz JD, Cole AG, Dagdas G, Smith GR, van Breukelen F, Pavličev M, Wagner GP. Cell type and cell signaling innovations underlying mammalian pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591945. [PMID: 38746137 PMCID: PMC11092578 DOI: 10.1101/2024.05.01.591945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
How fetal and maternal cell types have co-evolved to enable mammalian placentation poses a unique evolutionary puzzle. Here, we present a multi-species atlas integrating single-cell transcriptomes from six species bracketing therian mammal diversity. We find that invasive trophoblasts share a gene-expression signature across eutherians, and evidence that endocrine decidual cells evolved stepwise from an immunomodulatory cell type retained in Tenrec with affinity to human decidua of menstruation. We recover evolutionary patterns in ligand-receptor signaling: fetal and maternal cells show a pronounced tendency towards disambiguation, but a predicted arms race dynamic between them is limited. We reconstruct cell communication networks of extinct mammalian ancestors, finding strong integration of fetal trophoblast into maternal networks. Together, our results reveal a dynamic history of cell type and signaling evolution. Synopsis The fetal-maternal interface is one of the most intense loci of cell-cell signaling in the human body. Invasion of cells from the fetal placenta into the uterus, and the corresponding transformation of maternal tissues called decidualization, first evolved in the stem lineage of eutherian mammals( 1 , 2 ). Single-cell studies of the human fetal-maternal interface have provided new insight into the cell type diversity and cell-cell interactions governing this chimeric organ( 3-5 ). However, the fetal-maternal interface is also one of the most rapidly evolving, and hence most diverse, characters among mammals( 6 ), and an evolutionary analysis is missing. Here, we present and compare single-cell data from the fetal-maternal interface of species bracketing key events in mammal phylogeny: a marsupial (opossum, Monodelphis domestica ), the afrotherian Tenrec ecaudatus, and four Euarchontoglires - guinea pig and mouse (Rodentia) together with recent macaque and human data (primates) ( 4 , 5 , 7 ). We infer cell type homologies, identify a gene-expression signature of eutherian invasive trophoblast conserved over 99 million years, and discover a predecidual cell in the tenrec which suggests stepwise evolution of the decidual stromal cell. We reconstruct ancestral cell signaling networks, revealing the integration of fetal cell types into the interface. Finally, we test two long-standing theoretical predictions, the disambiguation hypothesis( 8 ) and escalation hypothesis( 9 ), at transcriptome-wide scale, finding divergence between fetal and maternal signaling repertoires but arms race dynamics restricted to a small subset of ligand-receptor pairs. In so doing, we trace the co-evolutionary history of cell types and their signaling across mammalian viviparity.
Collapse
|
3
|
Tomizawa Y, Wali KH, Surti M, Suhail Y, Kshitiz, Hoshino K. Lightsheet microscopy integrates single-cell optical visco-elastography and fluorescence cytometry of 3D live tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590392. [PMID: 38766194 PMCID: PMC11100606 DOI: 10.1101/2024.04.20.590392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Most common cytometry methods, including flow cytometry, observe suspended or fixed cells and cannot evaluate their structural roles in 3D tissues. However, cellular physical interactions are critical in physiological, developmental, and pathological processes. Here, we present a novel optical visco-elastography that characterizes single-cellular physical interactions by applying in-situ micro-mechanical perturbation to live microtissues under 3D lightsheet microscopy. The 4D digital image correlation (DIC) analysis of ~20,000 nodes tracked the compressive deformation of 3D tissues containing ~500 cells. The computational 3D image segmentation allowed cell-by-cell qualitative observation and statistical analysis, directly correlating multi-channel fluorescence and viscoelasticity. To represent epithelia-stroma interactions, we used a 3D organoid model of maternal-fetal interface and visualized solid-like, well-aligned displacement and liquid-like random motion between individual cells. The statistical analysis through our unique cytometry confirmed that endometrial stromal fibroblasts stiffen in response to decidualization. Moreover, we demonstrated in the 3D model that interaction with placental extravillous trophoblasts partially reverses the attained stiffness, which was supported by the gene expression analysis. Placentation shares critical cellular and molecular significance with various fundamental biological events such as cancer metastasis, wound healing, and gastrulation. Our analysis confirmed existing beliefs and discovered new insights, proving the broad applicability of our method.
Collapse
Affiliation(s)
- Yuji Tomizawa
- Department of Biomedical Engineering, University of Connecticut, CT
| | - Khadija H Wali
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
| | - Manav Surti
- Department of Biomedical Engineering, University of Connecticut, CT
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
- Systems Biology Institute, Yale University, West Haven, CT
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, CT
| |
Collapse
|
4
|
James DW, Quintela M, Lucini L, Al Kafri NAA, Healey GD, Jones N, Younas K, Bunkheila A, Margarit L, Francis LW, Gonzalez D, Conlan RS. Homeobox regulator Wilms Tumour 1 is displaced by androgen receptor at cis-regulatory elements in the endometrium of PCOS patients. Front Endocrinol (Lausanne) 2024; 15:1368494. [PMID: 38745948 PMCID: PMC11091321 DOI: 10.3389/fendo.2024.1368494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.
Collapse
Affiliation(s)
- David W. James
- Swansea University Medical School, Swansea, United Kingdom
| | | | - Lisa Lucini
- Swansea University Medical School, Swansea, United Kingdom
| | | | | | - Nicholas Jones
- Swansea University Medical School, Swansea, United Kingdom
| | - Kinza Younas
- Swansea University Medical School, Swansea, United Kingdom
- Swansea Bay University Health Board, Swansea, United Kingdom
| | - Adnan Bunkheila
- Swansea University Medical School, Swansea, United Kingdom
- Swansea Bay University Health Board, Swansea, United Kingdom
| | - Lavinia Margarit
- Swansea University Medical School, Swansea, United Kingdom
- Cwm Taf Morgannwg University Health Board, Bridgend, United Kingdom
| | | | | | | |
Collapse
|
5
|
De Geyter I, Kowalewski MP, Tavares Pereira M. Applying a novel kinomics approach to study decidualization and the effects of antigestagens using a canine model†. Biol Reprod 2024; 110:583-598. [PMID: 38079525 PMCID: PMC10941090 DOI: 10.1093/biolre/ioad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 03/16/2024] Open
Abstract
Maternal decidual cells are crucial for the maintenance of canine pregnancy as they are the only cells expressing the nuclear progesterone (P4) receptor (PGR) in the placenta. Interfering with P4/PGR signaling adversely affects decidual cells and terminates pregnancy. Although immortalized dog uterine stromal (DUS) cells can be decidualized in vitro using cAMP, the involvement of cAMP-dependent kinases in canine decidualization had not been investigated. Therefore, the present project investigated changes in the kinome of DUS cells following in vitro decidualization, using the serine/threonine kinase (STK) PamChip assay (PamGene). Decidualization led to a predicted activation of 85 STKs in DUS cells, including protein kinase (PK) A, PKC, extracellular signal-regulated kinase (ERK)1/2 and other mitogen-activated protein kinases (MAPKs), calcium/calmodulin-dependent protein kinases (CAMKs), and Akt1/2. In addition, blocking PGR with type 2 antigestagens (aglepristone or mifepristone) decreased the activity of virtually all kinases modulated by decidualization. The underlying transcriptional effects were inferred from comparison with available transcriptomic data on antigestagen-mediated effects in DUS cells. In targeted studies, interfering with PKA or MAPK kinase (MEK)1/2 resulted in downregulation of important decidualization markers (e.g., insulin-like growth factor 1 (IGF1), prostaglandin E2 synthase (PTGES), prolactin receptor (PRLR), PGR, and prostaglandin-endoperoxide synthase 2 (PTGS2/COX2)). Conversely, blocking of PKC decreased the mRNA availability of IGF1, PGR, and PTGS2, but not of PTGES and PRLR. Moreover, suppressing PKA decreased the phosphorylation of the transcription factors cJUN and CREB, whereas blocking of PKC affected only cJUN. This first kinomics analysis to target decidualization showed an increased activity of a wide range of STKs, which could be hindered by disrupting P4/PGR signaling. Decidualization appears to be regulated in a kinase-dependent manner, with PKA and PKC evoking different effects.
Collapse
Affiliation(s)
- Isabelle De Geyter
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Retis-Resendiz AM, Cid-Cruz Y, Velázquez-Hernández DM, Romero-Reyes J, León-Juárez M, García-Gómez E, Camacho-Arroyo I, Vázquez-Martínez ER. cAMP regulates the progesterone receptor gene expression through the protein kinase A pathway during decidualization in human immortalized endometrial stromal cells. Steroids 2024; 203:109363. [PMID: 38182066 DOI: 10.1016/j.steroids.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Decidualization, a crucial process for successful pregnancy establishment and maintenance, involves endometrial stromal cell differentiation. This process is orchestrated by estradiol (E2), progesterone, and other stimuli that increase intracellular cyclic adenosine monophosphate (cAMP) levels. The intracellular progesterone receptor (PR), encoded by the PGR gene, has a key role in decidualization. This study aimed to understand the role of sex steroids and cAMP in regulating PGR expression during the in vitro decidualization of the human immortalized endometrial stromal cell line, T-HESC. We subjected the cells to individual and combined treatments of E2, medroxyprogesterone (MPA), and cAMP. Additionally, we treated cells with PR and estrogen receptor antagonists and a protein kinase A (PKA) inhibitor. We evaluated the expression of PGR isoforms and decidualization-associated genes by RT-qPCR. Our findings revealed that cAMP induced PGR-B and PGR-AB expression by activating the PKA signaling pathway, while MPA downregulated their expression through the PR. Furthermore, downstream genes involved in decidualization, such as those coding for prolactin (PRL), insulin-like growth factor-binding protein-1 (IGFBP1), and Dickkopf-1 (DKK1), exhibited positive regulation via the cAMP-PKA pathway. Remarkably, MPA-activated PR signaling induced the expression of IGFBP1 and DKK1 but inhibited that of PRL. In conclusion, we have demonstrated that the PKA signaling pathway induces PGR gene expression during in vitro decidualization of the T-HESC human endometrial stromal cell line. This study has unraveled some of the intricate regulatory mechanisms governing PGR expression during this fundamental process for implantation and pregnancy maintenance.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Yesenia Cid-Cruz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Dora María Velázquez-Hernández
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico
| | - Elizabeth García-Gómez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico.
| |
Collapse
|
7
|
Liao Z, Tang S, Jiang P, Geng T, Cope DI, Dunn TN, Guner J, Radilla LA, Guan X, Monsivais D. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. Commun Biol 2024; 7:227. [PMID: 38402336 PMCID: PMC10894266 DOI: 10.1038/s42003-024-05898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor β (TGFβ) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFβ signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFβ family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings reveal dysfunction of BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I Cope
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy N Dunn
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology & Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joie Guner
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, 90033, USA
| | - Linda Alpuing Radilla
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Vrljicak P, Lucas ES, Tryfonos M, Muter J, Ott S, Brosens JJ. Dynamic chromatin remodeling in cycling human endometrium at single-cell level. Cell Rep 2023; 42:113525. [PMID: 38060448 DOI: 10.1016/j.celrep.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Estrogen-dependent proliferation followed by progesterone-dependent differentiation of the endometrium culminates in a short implantation window. We performed single-cell assay for transposase-accessible chromatin with sequencing on endometrial samples obtained across the menstrual cycle to investigate the regulation of temporal gene networks that control embryo implantation. We identify uniquely accessible chromatin regions in all major cellular constituents of the endometrium, delineate temporal patterns of coordinated chromatin remodeling in epithelial and stromal cells, and gain mechanistic insights into the emergence of a receptive state through integrated analysis of enriched transcription factor (TF) binding sites in dynamic chromatin regions, chromatin immunoprecipitation sequencing analyses, and gene expression data. We demonstrate that the implantation window coincides with pervasive cooption of transposable elements (TEs) into the regulatory chromatin landscape of decidualizing cells and expression of TE-derived transcripts in a spatially defined manner. Our data constitute a comprehensive map of the chromatin changes that control TF activities in a cycling endometrium at cellular resolution.
Collapse
Affiliation(s)
- Pavle Vrljicak
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK; The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - Emma S Lucas
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK
| | - Maria Tryfonos
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Sascha Ott
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK; The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK.
| |
Collapse
|
9
|
Thapa R, Druessel L, Ma L, Torry DS, Bany BM. ATOH8 Expression Is Regulated by BMP2 and Plays a Key Role in Human Endometrial Stromal Cell Decidualization. Endocrinology 2023; 165:bqad188. [PMID: 38060684 PMCID: PMC10729865 DOI: 10.1210/endocr/bqad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/21/2023]
Abstract
During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Logan Druessel
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63018, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
10
|
Monsivais D, Liao Z, Tang S, Jiang P, Geng T, Cope D, Dunn T, Guner J, Radilla LA, Guan X. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. RESEARCH SQUARE 2023:rs.3.rs-3471243. [PMID: 37986901 PMCID: PMC10659538 DOI: 10.21203/rs.3.rs-3471243/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor β (TGFβ) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFβ signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFβ family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings unveil a previously unidentified dysfunction in BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.
Collapse
|
11
|
Pathare ADS, Loid M, Saare M, Gidlöf SB, Zamani Esteki M, Acharya G, Peters M, Salumets A. Endometrial receptivity in women of advanced age: an underrated factor in infertility. Hum Reprod Update 2023; 29:773-793. [PMID: 37468438 PMCID: PMC10628506 DOI: 10.1093/humupd/dmad019] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Modern lifestyle has led to an increase in the age at conception. Advanced age is one of the critical risk factors for female-related infertility. It is well known that maternal age positively correlates with the deterioration of oocyte quality and chromosomal abnormalities in oocytes and embryos. The effect of age on endometrial function may be an equally important factor influencing implantation rate, pregnancy rate, and overall female fertility. However, there are only a few published studies on this topic, suggesting that this area has been under-explored. Improving our knowledge of endometrial aging from the biological (cellular, molecular, histological) and clinical perspectives would broaden our understanding of the risks of age-related female infertility. OBJECTIVE AND RATIONALE The objective of this narrative review is to critically evaluate the existing literature on endometrial aging with a focus on synthesizing the evidence for the impact of endometrial aging on conception and pregnancy success. This would provide insights into existing gaps in the clinical application of research findings and promote the development of treatment options in this field. SEARCH METHODS The review was prepared using PubMed (Medline) until February 2023 with the keywords such as 'endometrial aging', 'receptivity', 'decidualization', 'hormone', 'senescence', 'cellular', 'molecular', 'methylation', 'biological age', 'epigenetic', 'oocyte recipient', 'oocyte donation', 'embryo transfer', and 'pregnancy rate'. Articles in a language other than English were excluded. OUTCOMES In the aging endometrium, alterations occur at the molecular, cellular, and histological levels suggesting that aging has a negative effect on endometrial biology and may impair endometrial receptivity. Additionally, advanced age influences cellular senescence, which plays an important role during the initial phase of implantation and is a major obstacle in the development of suitable senolytic agents for endometrial aging. Aging is also accountable for chronic conditions associated with inflammaging, which eventually can lead to increased pro-inflammation and tissue fibrosis. Furthermore, advanced age influences epigenetic regulation in the endometrium, thus altering the relation between its epigenetic and chronological age. The studies in oocyte donation cycles to determine the effect of age on endometrial receptivity with respect to the rates of implantation, clinical pregnancy, miscarriage, and live birth have revealed contradictory inferences indicating the need for future research on the mechanisms and corresponding causal effects of women's age on endometrial receptivity. WIDER IMPLICATIONS Increasing age can be accountable for female infertility and IVF failures. Based on the complied observations and synthesized conclusions in this review, advanced age has been shown to have a negative impact on endometrial functioning. This information can provide recommendations for future research focusing on molecular mechanisms of age-related cellular senescence, cellular composition, and transcriptomic changes in relation to endometrial aging. Additionally, further prospective research is needed to explore newly emerging therapeutic options, such as the senolytic agents that can target endometrial aging without affecting decidualization. Moreover, clinical trial protocols, focusing on oocyte donation cycles, would be beneficial in understanding the direct clinical implications of endometrial aging on pregnancy outcomes.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Marina Loid
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Sebastian Brusell Gidlöf
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Masoud Zamani Esteki
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ganesh Acharya
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Medicine, Women’s Health and Perinatology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maire Peters
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Jiang Y, He Y, Liu S, Li G, Chen D, Deng W, Li P, Zhang Y, Wu J, Li J, Wang L, Lin J, Wang H, Kong S, Shi G. Gαq-PKD/PKCμ signal regulating the nuclear export of HDAC5 to induce the IκB expression and limit the NF-κB-mediated inflammatory response essential for early pregnancy. eLife 2023; 12:e83083. [PMID: 37498654 PMCID: PMC10374280 DOI: 10.7554/elife.83083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Decidualization, denoting the transformation of endometrial stromal cells into specialized decidual cells, is a prerequisite for normal embryo implantation and a successful pregnancy in human. Here, we demonstrated that knockout of Gαq lead to an aberrantly enhanced inflammatory state during decidualization. Furthermore, we showed that deficiency of Gαq resulted in over-activation of nuclear factor (NF)-κB signaling, due to the decreased expression of NFκBIA, which encode the IκB protein and is the negative regulator for NF-κB. Mechanistically, Gαq deficiency decreased the Protein kinase D (PKD, also called PKCμ) phosphorylation levels, leading to attenuated HDAC5 phosphorylation and thus its nuclear export. Aberrantly high level of nuclear HDAC5 retarded histone acetylation to inhibit the induced NFκBIA transcription during decidualization. Consistently, pharmacological activation of the PKD/PKCμ or inhibition of the HDAC5 restored the inflammatory state and proper decidual response. Finally, we disclosed that over-active inflammatory state in Gαq-deficient decidua deferred the blastocyst hatching and adhesion in vitro, and the decidual expression of Gαq was significantly lower in women with recurrent pregnancy loss compared with normal pregnancy. In brief, we showed here that Gαq as a key regulator of the inflammatory cytokine's expression and decidual homeostasis in response to differentiation cues, which is required for successful implantation and early pregnancy.
Collapse
Affiliation(s)
- Yufei Jiang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yan He
- Xiamen Key Library of Rheumatology and Clinical Immunology, Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Songting Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dunjin Chen
- Department of Pathology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ping Li
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinxiang Wu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianing Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Longmei Wang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guixiu Shi
- Xiamen Key Library of Rheumatology and Clinical Immunology, Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Wang L, Rossi RM, Chen X, Chen J, Runyon J, Chawla M, Miller D, Forney C, Lynch A, Zhang X, Kong F, Jacobsson B, Kottyan LC, Weirauch MT, Zhang G, Muglia LJ. A functional mechanism for a non-coding variant near AGTR2 associated with risk for preterm birth. BMC Med 2023; 21:258. [PMID: 37455310 PMCID: PMC10351137 DOI: 10.1186/s12916-023-02973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Preterm birth (PTB), defined as delivery before 37 gestational weeks, imposes significant public health burdens. A recent maternal genome-wide association study of spontaneous PTB identified a noncoding locus near the angiotensin II receptor type 2 (AGTR2) gene. Genotype-Tissue Expression data revealed that alleles associated with decreased AGTR2 expression in the uterus were linked to an increased risk of PTB and shortened gestational duration. We hypothesized that a causative variant in this locus modifies AGTR2 expression by altering transcription factor (TF) binding. METHODS To investigate this hypothesis, we performed bioinformatics analyses and functional characterizations at the implicated locus. Potential causal single nucleotide polymorphisms (SNPs) were prioritized, and allele-dependent binding of TFs was predicted. Reporter assays were employed to assess the enhancer activity of the top PTB-associated non-coding variant, rs7889204, and its impact on TF binding. RESULTS Our analyses revealed that rs7889204, a top PTB-associated non-coding genetic variant is one of the strongest eQTLs for the AGTR2 gene in uterine tissue samples. We observed differential binding of CEBPB (CCAAT enhancer binding protein beta) and HOXA10 (homeobox A10) to the alleles of rs7889204. Reporter assays demonstrated decreased enhancer activity for the rs7889204 risk "C" allele. CONCLUSION Collectively, these results demonstrate that decreased AGTR2 expression caused by reduced transcription factor binding increases the risk for PTB and suggest that enhancing AGTR2 activity may be a preventative measure in reducing PTB risk.
Collapse
Affiliation(s)
- Li Wang
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA.
- Present Address: Department of Biology, Xavier University, OH, Cincinnati, USA.
| | - Robert M Rossi
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiaoting Chen
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jing Chen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jilian Runyon
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mehak Chawla
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arthur Lynch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuzhe Zhang
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Fansheng Kong
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Louis J Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Zhang H, Wang Z, Zhou Q, Cao Z, Jiang Y, Xu M, Liu J, Zhou J, Yan G, Sun H. Downregulated INHBB in endometrial tissue of recurrent implantation failure patients impeded decidualization through the ADCY1/cAMP signalling pathway. J Assist Reprod Genet 2023; 40:1135-1146. [PMID: 36913138 PMCID: PMC10239411 DOI: 10.1007/s10815-023-02762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
PURPOSE This study aims to identify the mechanism of Inhibin Subunit Beta B (INHBB), a member of the transforming growth factor-β (TGF-β) family involved in the regulation of human endometrial stromal cells (HESCs) decidualization in recurrent implantation failure (RIF). METHODS RNA-seq was conducted to identify the differentially expressed genes in the endometria from control and RIF patients. RT-qPCR, WB, and immunohistochemistry were performed to analyse the expression levels of INHBB in endometrium and decidualised HESCs. RT-qPCR and immunofluorescence were used to detect changes in the decidual marker genes and cytoskeleton after knockdown INHBB. Then, RNA-seq was used to dig out the mechanism of INHBB regulating decidualization. The cAMP analogue (forskolin) and si-INHBB were used to investigate the involvement of INHBB in the cAMP signalling pathway. The correlation of INHBB and ADCY expression was analysed by Pearson's correlation analysis. RESULTS Our results showed significantly reduced expression of INHBB in endometrial stromal cells of women with RIF. In addition, INHBB was increased in the endometrium of the secretory phase and significantly induced in in-vitro decidualization of HESCs. Notably, with RNA-seq and siRNA-mediated knockdown approaches, we demonstrated that the INHBB-ADCY1-mediated cAMP signalling pathway regulates the reduction of decidualization. We found a positive association between the expression of INHBB and ADCY1 in endometria with RIF (R2 = 0.3785, P = 0.0005). CONCLUSIONS The decline of INHBB in HESCs suppressed ADCY1-induced cAMP production and cAMP-mediated signalling, which attenuated decidualization in RIF patients, indicating that INHBB is an essential component in the decidualization process.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhilong Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Quan Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Manlin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jingyu Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Haixiang Sun
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Žukauskaitė D, Vitkevičienė A, Žlibinaitė A, Baušytė R, Ramašauskaitė D, Navakauskienė R. Histone H4 hyperacetylation but not DNA methylation regulates the expression of decidualization-associated genes during induced human endometrial stromal cells decidualization. Int J Biochem Cell Biol 2023; 156:106362. [PMID: 36621666 DOI: 10.1016/j.biocel.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The efficiency of endometrial stromal cells (ESC) decidualization is a critical player in successful embryo implantation and further pregnancy development. Epigenetic mechanisms strictly regulate massive changes that affect endometrium in each cycle, so investigating epigenetic patterns could help identify endometrial targets for infertility treatment solutions. The aim of our study was to analyze the changes in epigenetic modulators, histone modifications, and DNA methylation during induced human ESC in vitro decidualization. Decidualization markers and epigenetic factors' gene and protein expression levels were assessed during ESC cells in vitro decidualization, performing RT-qPCR and immunoblot tests. Furthermore, chromatin immunoprecipitation (ChIP) and methylated DNA immunoprecipitation (MeDIP) analysis by the following qPCR were conducted to evaluate the level of H4hyperAc and 5-methylcytosine in the decidualization-associated gene promoter and exon regions accordingly. Our results revealed that ESC decidualization caused the down-regulation of HDAC2 and subunits of PRC2. We observed the increased global level of H4hyperAc and H3K27me3. We also demonstrated that H4hyperAc was specifically enriched in the decidualization-associated genes (WNT4, HAND2, STAT5A) promoter regions during ESC decidualization. In contrast, the DNA methylation level in these promoter regions was relatively low before ESC induction and did not vary through ESC decidualization. Our findings demonstrate that specific gene promoters' histone acetylation increases during the induced ESC decidualization, which indicates the importance of epigenetic regulation in endometrial decidualization.
Collapse
Affiliation(s)
- Deimantė Žukauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Aida Vitkevičienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Akvilė Žlibinaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Raminta Baušytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania
| | - Diana Ramašauskaitė
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
16
|
Li WN, Dickson MJ, DeMayo FJ, Wu SP. The role of progesterone receptor isoforms in the myometrium. J Steroid Biochem Mol Biol 2022; 224:106160. [PMID: 35931328 PMCID: PMC9895129 DOI: 10.1016/j.jsbmb.2022.106160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023]
Abstract
Myometrial contraction is stringently controlled throughout pregnancy and parturition. Progesterone signaling, effecting through the progesterone receptor (PR), is pivotal in modulating uterine activity. Evidence has shown that two major PR isoforms, PR-A and PR-B, have distinct activities on gene regulation, and the ratio between these isoforms determines the contractility of the myometrium at different gestational stages. Herein, we focus on the regulation of PR activity in the myometrium, especially the differential actions of the two PR isoforms, which maintain uterine quiescence during pregnancy and regulate the switch to a contractile state at the onset of labor. To demonstrate the PR regulatory network and its mechanisms of actions on myometrial activity, we summarized the findings into three parts: Regulation of PR Expression and Isoform Levels, Progesterone Receptor Interacting Factors, and Biological Processes Regulated by Myometrial Progesterone Receptor Isoforms. Recent genomic and epigenomic data, from human specimens and mouse models, are recruited to support the existing knowledge and offer new insights and future directions in myometrial biology.
Collapse
Affiliation(s)
- Wan-Ning Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mackenzie J Dickson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
17
|
Intrachromosomal Looping and Histone K27 Methylation Coordinately Regulates the lncRNA H19-Fetal Mitogen IGF2 Imprinting Cluster in the Decidual Microenvironment of Early Pregnancy. Cells 2022; 11:cells11193130. [PMID: 36231092 PMCID: PMC9563431 DOI: 10.3390/cells11193130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a highly heterogeneous complication of pregnancy with the underlying mechanisms remaining uncharacterized. Dysregulated decidualization is a critical contributor to the phenotypic alterations related to pregnancy complications. To understand the molecular factors underlying RSA, we explored the role of longnoncoding RNAs (lncRNAs) in the decidual microenvironment where the crosstalk at the fetal–maternal interface occurs. By exploring RNA-seq data from RSA patients, we identified H19, a noncoding RNA that exhibits maternal monoallelic expression, as one of the most upregulated lncRNAs associated with RSA. The paternally expressed fetal mitogen IGF2, which is reciprocally coregulated with H19 within the same imprinting cluster, was also upregulated. Notably, both genes underwent loss of imprinting, as H19 and IGF2 were actively transcribed from both parental alleles in some decidual tissues. This loss of imprinting in decidual tissues was associated with the loss of the H3K27m3 repressive histone marker in the IGF2 promoter, CpG hypomethylation at the central CTCF binding site in the imprinting control center (ICR), and the loss of CTCF-mediated intrachromosomal looping. These data suggest that dysregulation of the H19/IGF2 imprinting pathway may be an important epigenetic factor in the decidual microenvironment related to poor decidualization.
Collapse
|
18
|
Shih AJ, Adelson RP, Vashistha H, Khalili H, Nayyar A, Puran R, Herrera R, Chatterjee PK, Lee AT, Truskinovsky AM, Elmaliki K, DeFranco M, Metz CN, Gregersen PK. Single-cell analysis of menstrual endometrial tissues defines phenotypes associated with endometriosis. BMC Med 2022; 20:315. [PMID: 36104692 PMCID: PMC9476391 DOI: 10.1186/s12916-022-02500-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Endometriosis is a common, complex disorder which is underrecognized and subject to prolonged delays in diagnosis. It is accompanied by significant changes in the eutopic endometrial lining. METHODS We have undertaken the first single-cell RNA-sequencing (scRNA-Seq) comparison of endometrial tissues in freshly collected menstrual effluent (ME) from 33 subjects, including confirmed endometriosis patients (cases) and controls as well as symptomatic subjects (who have chronic symptoms suggestive of endometriosis but have not been diagnosed). RESULTS We identify a unique subcluster of proliferating uterine natural killer (uNK) cells in ME-tissues from controls that is almost absent from endometriosis cases, along with a striking reduction of total uNK cells in the ME of cases (p < 10-16). In addition, an IGFBP1+ decidualized subset of endometrial stromal cells are abundant in the shed endometrium of controls when compared to cases (p < 10-16) confirming findings of compromised decidualization of cultured stromal cells from cases. By contrast, endometrial stromal cells from cases are enriched in cells expressing pro-inflammatory and senescent phenotypes. An enrichment of B cells in the cases (p = 5.8 × 10-6) raises the possibility that some may have chronic endometritis, a disorder which predisposes to endometriosis. CONCLUSIONS We propose that characterization of endometrial tissues in ME will provide an effective screening tool for identifying endometriosis in patients with chronic symptoms suggestive of this disorder. This constitutes a major advance, since delayed diagnosis for many years is a major clinical problem in the evaluation of these patients. Comprehensive analysis of ME is expected to lead to new diagnostic and therapeutic approaches to endometriosis and other associated reproductive disorders such as female infertility.
Collapse
Affiliation(s)
- Andrew J Shih
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Robert P Adelson
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Himanshu Vashistha
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Houman Khalili
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ashima Nayyar
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Radha Puran
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Rixsi Herrera
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Prodyot K Chatterjee
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Annette T Lee
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA
| | - Alexander M Truskinovsky
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA
- Department of Pathology, North Shore University Hospital, Northwell Health, 300 Community Drive, Manhasset, NY, USA
| | - Kristine Elmaliki
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Margaret DeFranco
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Christine N Metz
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA.
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA.
| |
Collapse
|
19
|
Li J, Wang L, Ding J, Cheng Y, Diao L, Li L, Zhang Y, Yin T. Multiomics Studies Investigating Recurrent Pregnancy Loss: An Effective Tool for Mechanism Exploration. Front Immunol 2022; 13:826198. [PMID: 35572542 PMCID: PMC9094436 DOI: 10.3389/fimmu.2022.826198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Patients with recurrent pregnancy loss (RPL) account for approximately 1%-5% of women aiming to achieve childbirth. Although studies have shown that RPL is associated with failure of endometrial decidualization, placental dysfunction, and immune microenvironment disorder at the maternal-fetal interface, the exact pathogenesis remains unknown. With the development of high-throughput technology, more studies have focused on the genomics, transcriptomics, proteomics and metabolomics of RPL, and new gene mutations and new biomarkers of RPL have been discovered, providing an opportunity to explore the pathogenesis of RPL from different biological processes. Bioinformatics analyses of these differentially expressed genes, proteins and metabolites also reflect the biological pathways involved in RPL, laying a foundation for further research. In this review, we summarize the findings of omics studies investigating decidual tissue, villous tissue and blood from patients with RPL and identify some possible limitations of current studies.
Collapse
Affiliation(s)
- Jianan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jinli Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Ma W, Cao M, Bi S, Du L, Chen J, Wang H, Jiang Y, Wu Y, Liao Y, Kong S, Liu J. MAX deficiency impairs human endometrial decidualization through down-regulating OSR2 in women with recurrent spontaneous abortion. Cell Tissue Res 2022; 388:453-469. [PMID: 35146559 PMCID: PMC9035420 DOI: 10.1007/s00441-022-03579-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Human uterine stromal cell undergoes decidualization for pregnancy establishment and maintenance, which involved extensive proliferation and differentiation. Increasing studies have suggested that recurrent spontaneous abortion (RSA) may result from defective endometrial stromal decidualization. However, the critical molecular mechanisms underlying impaired decidualization during RSA are still elusive. By using our recently published single-cell RNA sequencing (scRNA-seq) atlas, we found that MYC-associated factor X (MAX) was significantly downregulated in the stromal cells derived from decidual tissues of women with RSA, followed by verification with immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). MAX knockdown significantly impairs human endometrial stromal cells (HESCs) proliferation as determined by MTS assay and Ki67 immunostaining, and decidualization determined by F-actin, and decidualization markers. RNA-seq together with chromatin immunoprecipitation sequencing (ChIP-seq) and cleavage under targets and release using nuclease sequencing (CUT&RUN-seq) analysis were applied to explore the molecular mechanisms of MAX in regulation of decidualization, followed by dual-luciferase reporter assay to verify that MAX targets to (odd-skipped related transcription factor 2) OSR2 directly. Reduced expression of OSR2 was also confirmed in decidual tissues in women with RSA by IHC and qRT-PCR. OSR2 knockdown also significantly impairs HESCs decidualization. OSR2-overexpression could at least partly rescue the downregulated insulin-like growth factor binding protein 1 (IGFBP1) expression level in response to MAX knockdown. Collectively, MAX deficiency observed in RSA stromal cells not only attenuates HESCs proliferation but also impairs HESCs decidualization by downregulating OSR2 expression at transcriptional level directly.
Collapse
Affiliation(s)
- Weixu Ma
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Haibin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yufei Jiang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yixuan Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yixin Liao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuangbo Kong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China.
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Dickson MJ, Bishop JV, Hansen TR, Sheldon IM, Bromfield JJ. The endometrial transcriptomic response to pregnancy is altered in cows after uterine infection. PLoS One 2022; 17:e0265062. [PMID: 35358206 PMCID: PMC8970397 DOI: 10.1371/journal.pone.0265062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Pregnancy induces changes in the transcriptome of the bovine endometrium from 15 days after insemination. However, pregnancy is less likely to occur if cows had a postpartum bacterial infection of the uterus, even after the resolution of disease. We hypothesized that uterine bacterial infection alters the endometrial transcriptomic signature of pregnancy after the resolution of disease. To examine the endometrial transcriptomic signature of pregnancy, cows were inseminated 130 days after intrauterine infusion of pathogenic Escherichia coli and Trueperella pyogenes, subsequently endometrium was collected 16 days after insemination for RNA sequencing. We found 171 pregnancy regulated genes in cows 146 days after bacterial infection. When comparing our findings with previous studies that described the endometrial transcriptomic signature of pregnancy in healthy cows, 24 genes were consistently differentially expressed in pregnancy, including MX1, MX2 and STAT1. However, 12 pregnancy regulated genes were found only in the endometrium of healthy cows, including ISG15 and TRANK1. Furthermore, 28 pregnancy regulated genes were found only in the endometrium of cows following bacterial infection and these were associated with altered iNOS, TLR, and IL-7 signaling pathways. Although 94 predicted upstream regulators were conserved amongst the studies, 14 were found only in the endometrium of pregnant healthy cows, and 5 were found only in cows following bacterial infection, including AIRE, NFKBIA, and DUSP1. In conclusion, there were both consistent and discordant features of the endometrial transcriptomic signature of pregnancy 146 days after intrauterine bacterial infusion. These findings imply that there is an essential transcriptomic signature of pregnancy, but that infection induces long-term changes in the endometrium that affect the transcriptomic response to pregnancy.
Collapse
Affiliation(s)
- Mackenzie J. Dickson
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | | | - John J. Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
22
|
|
23
|
Gordon SM. Interleukin-15 in Outcomes of Pregnancy. Int J Mol Sci 2021; 22:11094. [PMID: 34681751 PMCID: PMC8541205 DOI: 10.3390/ijms222011094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that classically acts to support the development, maintenance, and function of killer lymphocytes. IL-15 is abundant in the uterus prior to and during pregnancy, but it is subject to tight spatial and temporal regulation. Both mouse models and human studies suggest that homeostasis of IL-15 is essential for healthy pregnancy. Dysregulation of IL-15 is associated with adverse outcomes of pregnancy. Herein, we review producers of IL-15 and responders to IL-15, including non-traditional responders in the maternal uterus and fetal placenta. We also review regulation of IL-15 at the maternal-fetal interface and propose mechanisms of action of IL-15 to facilitate additional study of this critical cytokine in the context of pregnancy.
Collapse
Affiliation(s)
- Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Stadtmauer DJ, Wagner GP. Single-cell analysis of prostaglandin E2-induced human decidual cell in vitro differentiation: a minimal ancestral deciduogenic signal†. Biol Reprod 2021; 106:155-172. [PMID: 34591094 PMCID: PMC8757638 DOI: 10.1093/biolre/ioab183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/31/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
The decidua is a hallmark of reproduction in many placental mammals. Differentiation of decidual stromal cells is known to be induced by progesterone and the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Several candidates have been identified as the physiological stimulus for adenylyl cyclase activation, but their relative importance remains unclear. To bypass this uncertainty, the standard approach for in vitro experiments uses membrane-permeable cAMP and progestin. We phylogenetically infer that prostaglandin E2 (PGE2) likely was the signal that ancestrally induced decidualization in conjunction with progesterone. This suggests that PGE2 and progestin should be able to activate the core gene regulatory network of decidual cells. To test this prediction, we performed a genome-wide study of gene expression in human endometrial fibroblasts decidualized with PGE2 and progestin. Comparison to a cAMP-based protocol revealed shared activation of core decidual genes and decreased induction of senescence-associated genes. Single-cell transcriptomics of PGE2-mediated decidualization revealed a distinct, early-activated state transitioning to a differentiated decidual state. PGE2-mediated decidualization was found to depend upon progestin-dependent induction of PGE2 receptor 2 (PTGER2) which in turn leads to PKA activation upon PGE2 stimulation. Progesterone-dependent induction of PTGER2 is absent in opossum, an outgroup taxon of placental mammals which is incapable of decidualization. Together, these findings suggest that the origin of decidualization involved the evolution of progesterone-dependent activation of the PGE2/PTGER2/PKA axis, facilitating entry into a PKA-dominant rather than AKT-dominant cellular state. We propose the use of PGE2 for in vitro decidualization as an alternative to 8-Br-cAMP.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Correspondence: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3091; E-mail: (Günter P. Wagner); Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3092; E-mail: (Daniel J. Stadtmauer)
| | - Günter P Wagner
- Correspondence: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3091; E-mail: (Günter P. Wagner); Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3092; E-mail: (Daniel J. Stadtmauer)
| |
Collapse
|
25
|
Salsano S, González-Martín R, Quiñonero A, Pérez-Debén S, Domínguez F. Deciphering the Role of PGRMC1 During Human Decidualization Using an In Vitro Approach. J Clin Endocrinol Metab 2021; 106:2313-2327. [PMID: 33955452 DOI: 10.1210/clinem/dgab303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Non-classical membrane progesterone receptor (mPRs) and progesterone receptor membrane component 1 (PGRMC1) expression have been detected in endometrium, but their role in decidualization had not yet been investigated. We previously demonstrated PGRMC1 downregulation in receptive endometrium and that its overexpression inhibits decidualization. Furthermore, during decidualization, PGRMC1 mainly interacts with proteins involved in biosynthesis, intracellular transport, and mitochondrial activity. OBJECTIVE To determine PGRMC1 and mPRs signaling role during decidualization. METHODS Isolated primary endometrial stromal cells (EnSC) were decidualized in vitro in the presence of classic stimuli (E2 + P4), PGRMC1 inhibitor (AG205), or membrane-impermeable P4 (P4-BSA). Endometrial biopsies were obtained from 19 fertile oocyte donors attending the IVI-Valencia in vitro fertilization (IVF) clinic. EnSC decidualization was evaluated by prolactin ELISA and F-actin immunostaining. Progesterone receptor localization was evaluated by immunofluorescence. EnSC transcriptomic profiles were analyzed by microarray technology. RESULTS PGRMC1 inhibition during EnSC decidualization (AG205dEnSC) does not interfere with EnSC cytoskeletal rearrangements and prolactin secretion. However, global transcriptional profiling revealed more differentially expressed genes in AG205dEnSC than in dEnSC, compared with nondecidualized EnSC (ndEnSC). In silico analysis showed that PGRMC1 inhibition upregulated more genes related to metabolism, molecular transport, and hormonal biosynthesis compared with control dEnSC. EnSC decidualized in the presence of P4-BSA showed a similar behavior as ndEnSC in terms of morphological features, absence of prolactin secretion, and transcriptomic pattern. CONCLUSION Our findings associate PGRMC1 to hormonal biosynthesis, metabolism, and vesicular transport-important cellular functions for dEnSC supporting pregnancy. Activation of membrane P4 receptor signaling alone was unable to induce downstream effects needed for proper decidualization.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Domínguez
- IVI Foundation-RMA Global, 46026, Valencia, Spain
- IIS La Fe, 46026, Valencia, Spain
| |
Collapse
|
26
|
Santos ED, Moindjie H, Sérazin V, Arnould L, Rodriguez Y, Fathallah K, Barnea ER, Vialard F, Dieudonné MN. Preimplantation factor modulates trophoblastic invasion throughout the decidualization of human endometrial stromal cells. Reprod Biol Endocrinol 2021; 19:96. [PMID: 34176510 PMCID: PMC8237507 DOI: 10.1186/s12958-021-00774-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Successful human embryo implantation requires the differentiation of endometrial stromal cells (ESCs) into decidual cells during a process called decidualization. ESCs express specific markers of decidualization, including prolactin, insulin-like growth factor-binding protein-1 (IGFBP-1), and connexin-43. Decidual cells also control of trophoblast invasion by secreting various factors, such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases. Preimplantation factor (PIF) is a recently identified, embryo-derived peptide with activities at the fetal-maternal interface. It creates a favorable pro-inflammatory environment in human endometrium and directly controls placental development by increasing the human trophoblastic cells' ability to invade the endometrium. We hypothesized that PIF's effects on the endometrium counteract its pro-invasive effects. METHODS We tested sPIF effect on the expression of three decidualization markers by RT-qPCR and/or immunochemiluminescence assay. We examined sPIF effect on human ESC migration by performing an in vitro wound healing assay. We analyzed sPIF effect on endometrial control of human trophoblast invasion by performing a zymography and an invasion assay. RESULTS Firstly, we found that a synthetic analog of PIF (sPIF) significantly upregulates the mRNA expression of IGFBP-1 and connexin-43, and prolactin secretion in ESCs - suggesting a pro-differentiation effect. Secondly, we showed that the HTR-8/SVneo trophoblastic cell line's invasive ability was low in the presence of conditioned media from ESCs cultured with sPIF. Thirdly, this PIF's anti-invasive action was associated with a specifically decrease in MMP-9 activity. CONCLUSION Taken as a whole, our results suggest that PIF accentuates the decidualization process and the production of endometrial factors that limit trophoblast invasion. By controlling both trophoblast and endometrial cells, PIF therefore appears to be a pivotal player in the human embryo implantation process.
Collapse
Affiliation(s)
- Esther Dos Santos
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300, Poissy, France
| | - Hadia Moindjie
- INSERM- UMR 981 Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie. Bâtiment Médecine Moléculaire (B2M), 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Valérie Sérazin
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300, Poissy, France
| | - Lucie Arnould
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Yoann Rodriguez
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Khadija Fathallah
- Département de Biologie de la Reproduction, Cytogénétique, Gynécologie et Obstétrique, Centre Hospitalier de Poissy-Saint Germain, F-78300, Poissy, France
| | - Eytan R Barnea
- Society for the Investigation of Early Pregnancy, Cherry Hill, NJ, USA
- BioIncept, LLC, Cherry Hill, NJ, USA
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300, Poissy, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France.
- UMR 1198 BREED-RHuMA, Université de Versailles-Saint Quentin en Yvelines - Université Paris Saclay, UFR des Sciences de la Santé Simone Veil, 2 Avenue de la Source de la Bièvre, F-78180, Montigny-le-Bretonneux, France.
| |
Collapse
|
27
|
Ticconi C, Di Simone N, Campagnolo L, Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell 2021; 72:101586. [PMID: 34217128 DOI: 10.1016/j.tice.2021.101586] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Decidualization is characterized by a series of genetic, metabolic, morphological, biochemical, vascular and immune changes occurring in the endometrial stroma in response to the implanting embryo or even before conception and involves the stromal cells of the endometrium. It is a fundamental reproductive event occurring in mammalian species with hemochorial placentation. A growing body of experimental and clinical evidence strongly suggests that defective or disrupted decidualization contributes to the establishment of an inappropriate maternal-fetal interface. This has relevant clinical consequences, ranging from recurrent implantation failure and recurrent pregnancy loss in early pregnancy to several significant complications of advanced gestation. Moreover, recent evidence indicates that selected diseases of the endometrium, such as chronic endometritis and endometriosis, can have a detrimental impact on the decidualization response in the endometrium and may help explain some aspects of the reduced reproductive outcome associated with these conditions. Further research efforts are needed to fully understand the biomolecular mechanisms ans events underlying an abnormal decidualization response. This will permit the development of new diagnostic and therapeutic strategies aimed to improve the likelihood of achieveing a successful pregnancy.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
28
|
Transcription factors regulated by cAMP in smooth muscle of the myometrium at human parturition. Biochem Soc Trans 2021; 49:997-1011. [PMID: 33860781 PMCID: PMC8106496 DOI: 10.1042/bst20201173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) contributes to maintenance of a quiescent (relaxed) state in the myometrium (i.e. uterine smooth muscle) during pregnancy, which most commonly has been attributed to activation of protein kinase A (PKA). PKA-mediated phosphorylation of cytosolic contractile apparatus components in myometrial smooth muscle cells (mSMCs) are known to promote relaxation. Additionally, PKA also regulates nuclear transcription factor (TF) activity to control expression of genes important to the labour process; these are mostly involved in actin-myosin interactions, cell-to-cell connectivity and inflammation, all of which influence mSMC transition from a quiescent to a contractile (pro-labour) phenotype. This review focuses on the evidence that cAMP modulates the activity of TFs linked to pro-labour gene expression, predominantly cAMP response element (CRE) binding TFs, nuclear factor κB (NF-κB), activator protein 1 (AP-1) family and progesterone receptors (PRs). This review also considers the more recently described exchange protein directly activated by cAMP (EPAC) that may oppose the pro-quiescent effects of PKA, as well as explores findings from other cell types that have the potential to be of novel relevance to cAMP action on TF function in the myometrium.
Collapse
|
29
|
Wang Z, Liu Y, Liu J, Kong N, Jiang Y, Jiang R, Zhen X, Zhou J, Li C, Sun H, Yan G. ATF3 deficiency impairs the proliferative-secretory phase transition and decidualization in RIF patients. Cell Death Dis 2021; 12:387. [PMID: 33846304 PMCID: PMC8041902 DOI: 10.1038/s41419-021-03679-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022]
Abstract
Decidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma and is required to establish and support pregnancy. Dysregulated decidualization has been reported to be a critical cause of recurrent implantation failure (RIF). In this study, we found that Activating transcription factor 3 (ATF3) expression was significantly downregulated in the endometrium of RIF patients. Knockdown of ATF3 in human endometrium stromal cells (hESCs) hampers decidualization, while overexpression could trigger the expression of decidual marker genes, and ameliorate the decidualization of hESCs from RIF patients. Mechanistically, ATF3 promotes decidualization by upregulating FOXO1 via suppressing miR-135b expression. In addition, the endometrium of RIF patients was hyperproliferative, while overexpression of ATF3 inhibited the proliferation of hESCs through CDKN1A. These data demonstrate the critical roles of endometrial ATF3 in regulating decidualization and proliferation, and dysregulation of ATF3 in the endometrium may be a novel cause of RIF and therefore represent a potential therapeutic target for RIF.
Collapse
Affiliation(s)
- Zhilong Wang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Yang Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Na Kong
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Jidong Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Chaojun Li
- Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China.
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China.
| |
Collapse
|
30
|
Chavan AR, Griffith OW, Stadtmauer DJ, Maziarz J, Pavlicev M, Fishman R, Koren L, Romero R, Wagner GP. Evolution of Embryo Implantation Was Enabled by the Origin of Decidual Stromal Cells in Eutherian Mammals. Mol Biol Evol 2021; 38:1060-1074. [PMID: 33185661 PMCID: PMC7947829 DOI: 10.1093/molbev/msaa274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.
Collapse
Affiliation(s)
- Arun R Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Oliver W Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Ruth Fishman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
31
|
Deryabin P, Domnina A, Gorelova I, Rulev M, Petrosyan M, Nikolsky N, Borodkina A. "All-In-One" Genetic Tool Assessing Endometrial Receptivity for Personalized Screening of Female Sex Steroid Hormones. Front Cell Dev Biol 2021; 9:624053. [PMID: 33659249 PMCID: PMC7917288 DOI: 10.3389/fcell.2021.624053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
Endometrium is the uterine lining that undergoes hundreds of cycles of proliferation, differentiation, and desquamation throughout a woman's reproductive life. Recently, much attention is paid to the appropriate endometrial functioning, as decreased endometrial receptivity is stated to be one of the concerns heavily influencing successes of embryo implantation rates and the efficacy of in vitro fertilization (IVF) treatment. In order to acquire and maintain the desired endometrial receptivity during IVF cycles, luteal phase support by various progestagens or other hormonal combinations is generally recommended. However, today, the selection of the specific hormonal therapy during IVF seems to be empirical, mainly due to a lack of appropriate tools for personalized approach. Here, we designed the genetic tool for patient-specific optimization of hormonal supplementation schemes required for the maintenance of endometrial receptivity during luteal phase. We optimized and characterized in vitro endometrial stromal cell (ESC) decidualization model as the adequate physiological reflection of endometrial sensitivity to steroid hormones. Based on the whole transcriptome RNA sequencing and the corresponding bioinformatics, we proposed that activation of the decidual prolactin (PRL) promoter containing ancient transposons MER20 and MER39 may reflect functioning of the core decidual regulatory network. Furthermore, we cloned the sequence of decidual PRL promoter containing MER20 and part of MER39 into the expression vector to estimate the effectiveness of ESC decidual response and verified sensitivity of the designed system. We additionally confirmed specificity of the generated tool using human diploid fibroblasts and adipose-derived human mesenchymal stem cells. Finally, we demonstrated the possibility to apply our tool for personalized hormone screening by comparing the effects of natural progesterone and three synthetic analogs (medroxyprogesterone 17-acetate, 17α-hydroxyprogesterone caproate, dydrogesterone) on decidualization of six ESC lines obtained from patients planning to undergo the IVF procedure. To sum up, we developed the "all-in-one" genetic tool based on the MER20/MER39 expression cassette that provides the ability to predict the most appropriate hormonal cocktail for endometrial receptivity maintenance specifically and safely for the patient, and thus to define the personal treatment strategy prior to the IVF procedure.
Collapse
Affiliation(s)
- Pavel Deryabin
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alisa Domnina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Inga Gorelova
- Department of the Assisted Reproductive Technologies, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Maxim Rulev
- Department of the Assisted Reproductive Technologies, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Mariya Petrosyan
- Pharmacology Group of D.O. Ott Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russia.,The Laboratory of Myocardial Metabolism, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Aleksandra Borodkina
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
32
|
Harden SL, Zhou J, Gharanei S, Diniz-da-Costa M, Lucas ES, Cui L, Murakami K, Fang J, Chen Q, Brosens JJ, Lee YH. Exometabolomic Analysis of Decidualizing Human Endometrial Stromal and Perivascular Cells. Front Cell Dev Biol 2021; 9:626619. [PMID: 33585482 PMCID: PMC7876294 DOI: 10.3389/fcell.2021.626619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Differentiation of endometrial fibroblasts into specialized decidual cells controls embryo implantation and transforms the cycling endometrium into a semi-permanent, immune-protective matrix that accommodates the placenta throughout pregnancy. This process starts during the midluteal phase of the menstrual cycle with decidual transformation of perivascular cells (PVC) surrounding the terminal spiral arterioles and endometrial stromal cells (EnSC) underlying the luminal epithelium. Decidualization involves extensive cellular reprogramming and acquisition of a secretory phenotype, essential for coordinated placental trophoblast invasion. Secreted metabolites are an emerging class of signaling molecules, collectively known as the exometabolome. Here, we used liquid chromatography-mass spectrometry to characterize and analyze time-resolved changes in metabolite secretion (exometabolome) of primary PVC and EnSC decidualized over 8 days. PVC were isolated using positive selection of the cell surface marker SUSD2. We identified 79 annotated metabolites differentially secreted upon decidualization, including prostaglandin, sphingolipid, and hyaluronic acid metabolites. Secreted metabolites encompassed 21 metabolic pathways, most prominently glycerolipid and pyrimidine metabolism. Although temporal exometabolome changes were comparable between decidualizing PVC and EnSC, 32 metabolites were differentially secreted across the decidualization time-course. Further, targeted metabolomics demonstrated significant differences in secretion of purine pathway metabolites between decidualized PVC and EnSC. Taken together, our findings indicate that the metabolic footprints generated by different decidual subpopulations encode spatiotemporal information that may be important for optimal embryo implantation.
Collapse
Affiliation(s)
- Sarah L. Harden
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jieliang Zhou
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Seley Gharanei
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Maria Diniz-da-Costa
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Emma S. Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Liang Cui
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
| | - Keisuke Murakami
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Jinling Fang
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jan J. Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Obstetrics and Gynaecology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
33
|
Li J, Qi J, Yao G, Zhu Q, Li X, Xu R, Zhu Z, Zhao H, Wang Y, Ding Y, Sun Y. Deficiency of Sirtuin 1 Impedes Endometrial Decidualization in Recurrent Implantation Failure Patients. Front Cell Dev Biol 2021; 9:598364. [PMID: 33585475 PMCID: PMC7876093 DOI: 10.3389/fcell.2021.598364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Decidualization is driven by differentiation of human endometrial stromal cells (ESCs), and is a prerequisite for successful implantation and establishment of pregnancy. The critical role of impaired decidualization in women suffered recurrent implantation failure (RIF) has been established, while the underlying mechanism is poorly understood. In the present study, we verified the essential role of Sirtuin1 (SIRT1) in regulating differentiation and maintaining reactive oxygen species (ROS) homeostasis of human ESCs during decidualization. The abundance of SIRT1 was decreased in RIF patients both in the endometria during window of implantation phase and in the decidualized ESCs. Downregulation of SIRT1 disrupted the intracellular ROS homeostasis during decidualization of ESC, manifested as the accumulation of intracellular ROS level and the reduction of antioxidant stress molecules. Elimination of ROS with N-acetyl-L-cysteine (NAC) could rescued the decidualization inhibition caused by SIRT1 knockdown. Further, we explored the insufficient expression of SIRT1 in ESC affected the deacetylation of forkhead box O1 (FOXO1), and thus inhibited the transcriptional activity of FOXO1. This could account for the dysregulation of intracellular ROS homeostasis during decidualization and decreased expression of decidual markers. Collectively, our findings provided insight into the role of down-regulated SIRT1 in the poor decidual response of ESCs in RIF patients.
Collapse
Affiliation(s)
- Jiaxing Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jia Qi
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Guangxin Yao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qinling Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xinyu Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Rui Xu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zhenyi Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hanting Zhao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yuan Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ying Ding
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
34
|
Abstract
Recurrent pregnancy loss is a distressing pregnancy disorder experienced by ~2.5% of women trying to conceive. Recurrent pregnancy loss is defined as the failure of two or more clinically recognized pregnancies before 20-24 weeks of gestation and includes embryonic and fetal losses. The diagnosis of an early pregnancy loss is relatively straightforward, although progress in predicting and preventing recurrent pregnancy loss has been hampered by a lack of standardized definitions, the uncertainties surrounding the pathogenesis and the highly variable clinical presentation. The prognosis for couples with recurrent pregnancy loss is generally good, although the likelihood of a successful pregnancy depends on maternal age and the number of previous losses. Recurrent pregnancy loss can be caused by chromosomal errors, anatomical uterine defects, autoimmune disorders and endometrial dysfunction. Available treatments target the putative risk factors of pregnancy loss, although the effectiveness of many medical interventions is controversial. Regardless of the underlying aetiology, couples require accurate information on their chances of having a baby and appropriate support should be offered to reduce the psychological burden associated with multiple miscarriages. Future research must investigate the pathogenesis of recurrent pregnancy loss and evaluate novel diagnostic tests and treatments in adequately powered clinical trials.
Collapse
|
35
|
Role of Slit2 upregulation in recurrent miscarriage through regulation of stromal decidualization. Placenta 2020; 103:1-9. [PMID: 33068960 DOI: 10.1016/j.placenta.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Knockout mouse model has shown a relationship between Slit2/Robo1 signalling and altered fertility. Altered expression by endometrial epithelium and trophoblast and is associated with the pathogenesis of pregnancy complications but few studies have investigated the expression of decidual Slit2 in miscarriage. METHODS Expression profiles of Slit2 and Robo1 were measured in human endometrial tissues during the menstrual cycle phases (n = 30), in decidua tissues from recurrent miscarriage (n = 20) and healthy control (n = 20) at 6-8 weeks of gestation. The hormonal regulation of Slit2/Robo1 expression and the role of Slit2/Robo1 signalling in decidualization was investigated in vitro, along with its effects on β-catenin and MET expression. RESULTS In human endometrium, Slit2 and Robo1 protein expression in stromal cells were decreased between the late-proliferative and early-secretory phase. In recurrent miscarriage patients, decidual expression Slit2 was increased and associated with lower expression of E-cadherin and higher level vimentin compared to controls. In vitro, the expression of Slit2 was downregulated by cAMP and progesterone in hESCs. Upregulation of Slit2 resulted in inhibition of cell decidualization and β-catenin translocation to nucleus. DISCUSSION This study indicates a functional role for Slit2 in endometrial stromal cell decidualization and the pathogenesis of recurrent miscarriage. Aberrant Increase in Slit2 expression may impairs decidualization of endometrial stromal cells leading to recurrent in recurrent miscarriage.
Collapse
|
36
|
Wagner GP, Erkenbrack EM, Love AC. Stress-Induced Evolutionary Innovation: A Mechanism for the Origin of Cell Types. Bioessays 2019; 41:e1800188. [PMID: 30919472 PMCID: PMC7202399 DOI: 10.1002/bies.201800188] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/31/2019] [Indexed: 12/16/2022]
Abstract
Understanding the evolutionary role of environmentally induced phenotypic variation (i.e., plasticity) is an important issue in developmental evolution. A major physiological response to environmental change is cellular stress, which is counteracted by generic stress reactions detoxifying the cell. A model, stress-induced evolutionary innovation (SIEI), whereby ancestral stress reactions and their corresponding pathways can be transformed into novel structural components of body plans, such as new cell types, is described. Previous findings suggest that the cell differentiation cascade of a cell type critical to pregnancy in humans, the decidual stromal cell, evolved from a cellular stress reaction. It is hypothesized that the stress reaction in these cells was elicited ancestrally via inflammation caused by embryo attachment. The present study proposes that SIEI is a distinct form of plasticity-based evolutionary change leading to the origin of novel structures rather than adaptive transformation of pre-existing characters.
Collapse
Affiliation(s)
- Günter P. Wagner
- Yale Systems Biology Institute, West Haven, CT 06516
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, CT 06510
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Eric M. Erkenbrack
- Yale Systems Biology Institute, West Haven, CT 06516
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| | - Alan C. Love
- Department of Philosophy, University of Minnesota, Minneapolis, MN 55455
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis,MN 55455
| |
Collapse
|
37
|
Maduro MR. A Deeper Look Into the Decidualization of Human Endometrial Stromal Fibroblasts. Reprod Sci 2019; 26:313-314. [PMID: 30764735 DOI: 10.1177/1933719119830167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|