1
|
Martiniakova M, Sarocka A, Penzes N, Biro R, Kovacova V, Mondockova V, Sevcikova A, Ciernikova S, Omelka R. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients 2025; 17:275. [PMID: 39861406 PMCID: PMC11767469 DOI: 10.3390/nu17020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers. Polyphenols such as flavonoids, phenolic acids, stilbenes, tannins, and lignans constitute an extensive and heterogeneous group of phytochemicals in fresh fruits, vegetables and their products. Various in vitro studies, animal model studies and available clinical trials revealed that flavonoids (e.g., quercetin, kaempferol, rutin, epicatechin, genistein, daidzein, anthocyanins), phenolic acids (e.g., chlorogenic, caffeic, ellagic, gallic acids, curcumin), stilbenes (e.g., resveratrol), tannins (e.g., procyanidin B2, seaweed phlorotannins), lignans (e.g., pinoresinol) have the ability to lower hyperglycemia, enhance insulin sensitivity and improve insulin secretion, scavenge reactive oxygen species, reduce chronic inflammation, modulate gut microbiota, and alleviate secondary complications of T2DM. The interaction between polyphenols and conventional antidiabetic drugs offers a promising strategy in the management and treatment of T2DM, especially in advanced disease stages. Synergistic effects of polyphenols with antidiabetic drugs have been documented, but also antagonistic interactions that may impair drug efficacy. Therefore, additional research is required to clarify mutual interactions in order to use the knowledge in clinical applications. Nevertheless, dietary polyphenols can be successfully applied as part of supportive treatment for T2DM, as they reduce both obvious clinical symptoms and secondary complications.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| |
Collapse
|
2
|
Díaz-Román MA, Acevedo-Fernández JJ, Ávila-Villarreal G, Negrete-León E, Aguilar-Guadarrama AB. Phytochemical analysis and antihyperglycemic activity of Castilleja arvensis. Fitoterapia 2024; 174:105839. [PMID: 38296169 DOI: 10.1016/j.fitote.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Castilleja genus comprises approximately 211 species, some of them exhibiting potential in treating various diseases. Remarkably, despite its abundance, there is a significant lack of scientific studies that explore the chemical composition and/or therapeutic activity of this genus. In this work, the chemical composition of Castilleja arvensis was determined, and its antihyperglycemic activity was evaluated in vivo, in vitro, and ex vivo. Hydroalcoholic extract of C. arvensis (HECa) was obtained from the maceration of aerial parts. HECa was fractionated by liquid-liquid extractions to obtain the CH2Cl2 fraction (DF), EtOAc fraction (EF), n-BuOH fraction (BF) and aqueous residue (AR). The antihyperglycemic activity was determined in vivo through oral glucose and sucrose tolerance tests in normoglycemic CD-1 mice. Ex vivo assays were performed to determine intestinal glucose absorption, muscular glucose uptake and hepatic glucose production. α-glucosidase inhibitory activity was evaluated in vitro. Phytochemical screening was carried out through conventional chromatography techniques. Structure elucidation of the isolated compounds was performed by GC-MS and NMR experiments. HECa, its fractions and AR showed significant antihyperglycemic activity in vivo. According to the in vitro and ex vivo assays, this effect can be attributed to different mechanisms of action, including a delay in intestinal glucose absorption, an improvement in insulin sensitivity, and the regulation of hepatic glucose production. These effects may be due to different metabolites identified in fractions from the HECa, including genkwanin, acacetin, verbascoside and ipolamiide. Thus, current research shows that C. arvensis is an important source of bioactive compounds for the management of glycemia.
Collapse
Affiliation(s)
- Mónica Aideé Díaz-Román
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Mexico.
| | | | - Gabriela Ávila-Villarreal
- Centro Nayarita de Innovación y Transferencia de Tecnología A. C. "Unidad Especializada en I+D+i en Calidad de Alimentos y Productos Naturales, Universidad Autónoma de Nayarit, Tepic 630000, Mexico; Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic 63000, Mexico.
| | | | - A Berenice Aguilar-Guadarrama
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico.
| |
Collapse
|
3
|
Abu-Khudir R, Badr GM, Abd El-Moaty HI, Hamad RS, Al Abdulsalam NK, Abdelrahem ASA, Alqarni S, Alkuwayti MA, Salam SA, Abd El-Kareem HF. Garden Cress Seed Oil Abrogates Testicular Oxidative Injury and NF-kB-Mediated Inflammation in Diabetic Mice. Int J Mol Sci 2023; 24:15478. [PMID: 37895159 PMCID: PMC10607464 DOI: 10.3390/ijms242015478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder associated with various complications encompassing male reproductive dysfunction. The present study aimed to investigate the therapeutic potential of biologically active Lepidium sativum seed oil (LSO) against the testicular dysfunction associated with streptozotocin (STZ)-induced diabetes. Male adults (n = 24) were divided into four groups: control, LSO-administered, diabetic (D), and LSO-treated diabetic (D+LSO) groups. LSO was extracted from L. sativum seeds, and its chemical composition was determined using GC-MS. Serum testosterone levels, testicular enzymatic antioxidants (catalase (CAT) and superoxide dismutase (SOD)), an oxidative stress (OS) biomarker, malondialdehyde (MDA), pro-inflammatory markers (NF-kB, IL-1, IL-6, and TNF-α), and the expression level of NF-kB were assessed. In addition, histopathological changes were evaluated in testicular tissues. The results obtained showed that the chemical composition of LSO indicated its enrichment mainly with γ-tocopherol (62.1%), followed by 2-methylhexacosane (8.12%), butylated hydroxytoluene (8.04%), 10-Methylnonadecane (4.81%), and δ-tocopherol (3.91%). Moreover, LSO administration in the D+LSO mice significantly increased testosterone levels and ameliorated the observed testicular oxidative damage, inflammatory response, and reduced NF-kB expression compared to the diabetic mice. Biochemical and molecular analyses confirmed the histological results. In conclusion, LSO may prevent the progression of diabetes-induced impairment in the testes through inhibition of the OS- and NF-kB-mediated inflammatory response.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan M. Badr
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (G.M.B.); (H.F.A.E.-K.)
| | - Heba Ibrahim Abd El-Moaty
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.I.A.E.-M.); (R.S.H.); (N.K.A.A.); (M.A.A.)
- Medicinal and Aromatic Plants Department, Desert Research Center El-Mataria, Cairo 11753, Egypt
| | - Rabab S. Hamad
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.I.A.E.-M.); (R.S.H.); (N.K.A.A.); (M.A.A.)
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Najla K. Al Abdulsalam
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.I.A.E.-M.); (R.S.H.); (N.K.A.A.); (M.A.A.)
| | - Aml Sayed Ali Abdelrahem
- Department of Nursing, College of Applied Medical Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia;
| | - Saleha Alqarni
- Department of Clinical Nutrition, College of Applied Medical Science King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia;
| | - Mayyadah Abdullah Alkuwayti
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.I.A.E.-M.); (R.S.H.); (N.K.A.A.); (M.A.A.)
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Hanaa F. Abd El-Kareem
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (G.M.B.); (H.F.A.E.-K.)
| |
Collapse
|
4
|
Essghaier B, Hannachi H, Nouir R, Mottola F, Rocco L. Green Synthesis and Characterization of Novel Silver Nanoparticles Using Achillea maritima subsp. maritima Aqueous Extract: Antioxidant and Antidiabetic Potential and Effect on Virulence Mechanisms of Bacterial and Fungal Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1964. [PMID: 37446480 DOI: 10.3390/nano13131964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Novel silver nanoparticles were synthesized based on a simple and non-toxic method by applying the green synthesis technique, using, for the first time, the aqueous extract of an extremophile plant belonging to the Achillea maritima subsp. maritima species. AgNP characterization was performed via UV-Visible, front-face fluorescence spectroscopy, and FTIR and XRD analyses. AgNP formation was immediately confirmed by a color change from yellow to brown and by a surface plasmon resonance peak using UV-Vis spectroscopy at 420 nm. The biosynthesized AgNPs were spherical in shape with a size ranging from approximatively 14.13 to 21.26 nm. The presented silver nanoparticles exhibited strong antioxidant activity following a DPPH assay compared to ascorbic acid, with IC50 values of about 0.089 µg/mL and 22.54 µg/mL, respectively. The AgNPs showed higher antidiabetic capacities than acarbose, by inhibiting both alpha amylase and alpha glucosidase. The silver nanoparticles could affect various bacterial mechanisms of virulence, such as EPS production, biofilm formation and DNA damage. The silver nanoparticles showed no lysozyme activity on the cell walls of Gram-positive bacteria. The AgNPs also had a strong inhibitory effect on the Candida albicans virulence factor (extracellular enzymes, biofilm formation). The microscopic observation showed abnormal morphogenesis and agglomeration of Candida albicans exposed to AgNPs. The AgNPs showed no cytotoxic effect on human cells in an MTT assay. The use of novel silver nanoparticles is encouraged in the formulation of natural antimicrobial and antidiabetic agents.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Laboratory of Biochemistry and Biotechnology LR01ES05, Department of Biology, Faculty of Sciences of Tunis, University Tunis El-Manar, Tunis 2092, Tunisia
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint LR18ES04, Department of Biology, Faculty of Sciences, University Tunis El-Manar II, Tunis 2092, Tunisia
| | - Rihem Nouir
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications (LSAMA), Faculty of Sciences, University Tunis El-Manar, Tunis 2092, Tunisia
- Higher Institute of Medical Technologies of Tunis, University Tunis El-Manar, Tunis 2092, Tunisia
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
5
|
Jini D, Sharmila S, Anitha A, Pandian M, Rajapaksha RMH. In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes. Sci Rep 2022; 12:22109. [PMID: 36543812 PMCID: PMC9772310 DOI: 10.1038/s41598-022-24818-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the present study, the silver nanoparticles (AgNPs) were synthesized from the bulbs of Allium sativum, characterized by UV-visible spectroscopy, FT-IR, SEM, HR-TEM, EDAX analysis and investigated its action on the inhibition of starch digestion. The results proved that the biosynthesized nanoparticles were uniformly dispersed, spherical shaped with the size ranging from 10 to 30 nm. The phytochemical and FT-IR analysis showed the presence of phenols, terpenoids, and amino acids in the synthesized AgNPs. The cytotoxicity analysis revealed that the synthesized AgNPs were non-toxic to the normal cells. The synthesized AgNPs exhibited significant free radical scavenging activity. The in vitro antidiabetic activity showed that the synthesized AgNPs increased glucose utilization, decreased hepatic glucose production, inhibited the activity of starch digestive enzymes such as α-amylase and α-glucosidase, and were not involved in the stimulation of pancreatic cells for the secretion of insulin. The in silico antidiabetic activity analysis (molecular docking) also revealed that the silver atoms of the AgNPs interacted with the amino acid residues of α-amylase, α-glucosidase, and insulin. The present study proved that the AgNPs synthesized from A. sativum have prominent antidiabetic activity in terms of reducing the hyperglycemia through the increased glucose utilization, decreased hepatic glucose production, and the inhibition of α-amylase and α-glucosidase enzymes. So it can be used as a promising nanomedicine for the treatment of diabetes.
Collapse
Affiliation(s)
- D Jini
- Department of Biotechnology, Malankara Catholic College, Mariagiri, Kanyakumari, Tamil Nadu, India.
| | - S Sharmila
- Department of Chemical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - A Anitha
- Department of Chemical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - Mahalakshmi Pandian
- Center for Nanosciencesand Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R M H Rajapaksha
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| |
Collapse
|
6
|
Antidiabetic Potential of Commonly Available Fruit Plants in Bangladesh: Updates on Prospective Phytochemicals and Their Reported MoAs. Molecules 2022; 27:molecules27248709. [PMID: 36557843 PMCID: PMC9782115 DOI: 10.3390/molecules27248709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.
Collapse
|
7
|
Kaur J, Gulati M, Famta P, Corrie L, Awasthi A, Saini S, Khatik GL, Bettada VG, Madhunapantula SV, Paudel KR, Gupta G, Chellappan DK, Arshad MF, Adams J, Gowthamarajan K, Dua K, Hansbro PM, Singh SK. Polymeric micelles loaded with glyburide and vanillic acid: I. Formulation development, in-vitro characterization and bioavailability studies. Int J Pharm 2022; 624:121987. [PMID: 35878873 DOI: 10.1016/j.ijpharm.2022.121987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
The co-formulation of glyburide (Gly) and vanillic acid (VA) as such in the form of nanomedicine has never been explored to treat metabolic diseases including type 2 diabetes mellitus. Both the drugs possess dissolution rate-limited oral bioavailability leading to poor therapeutic efficacy. Hence, co-loading these drugs into a nanocarrier could overcome their poor oral bioavailability related challenges. Owing to this objective, both drugs were co-loaded in amphiphilic polymeric micelles (APMs) and evaluated for their biopharmaceutical outcomes. The APMs were prepared using mPEG-b-PCL/CTAB as a copolymer-surfactant system via the liquid antisolvent precipitation (LAP) method. The design of these APMs were optimized using Box Behnken Design by taking various process/formulation based variables to achieve the desired micellar traits. The release of both the drugs from the optimized co-loaded APMs was compared in different media and displayed a remarkable sustained release profile owing to their hydrophobic interactions with the PCL core. The in vitro cytotoxicity study of co-loaded APMs on Caco-2 cells revealed 70 % cell viability in a concentration-dependent manner. The preventive effects of Gly and VA co-loaded in APMs on glucose uptake was studied in insulin-responsive human HepG2 cells treated with high glucose. The co-loading of both the drugs in optimized APMs exhibited synergistic glucose-lowering activity (p < 0.001) than raw drugs with low cytotoxicity on HepG2 cells within the test concentration. This could be attributed to an increase in the relative oral bioavailability of both the drugs in APMs i.e., 868 % for Gly and 87 % for VA respectively.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Gopal L Khatik
- National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Vidya G Bettada
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Mohammed F Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, New Delhi 110044, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
8
|
Surface Functionalized Magnetic Nanoparticles as a Selective Sorbent for Affinity Fishing of PPAR-γ Ligands from Choerospondias axillaris. Molecules 2022; 27:molecules27103127. [PMID: 35630609 PMCID: PMC9144117 DOI: 10.3390/molecules27103127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/25/2023] Open
Abstract
Coronary heart disease (CHD), which has developed into one of the major diseases, was reported to be treated by the target of peroxisome proliferators-activate receptor γ (PPAR-γ). As a natural medicine long used in the treatment of CHD, there are few studies on how to screen the target active compounds with high specific activity from Choerospondias axillaris. To advance the pace of research on target-specific active compounds in natural medicines, we have combined magnetic ligand fishing and functionalized nano-microspheres to investigate the active ingredients of PPAR-γ targets in Choerospondias axillaris. The PPAR-γ functionalized magnetic nano-microspheres have been successfully synthesized and characterized by vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The specificity, reusability, and reproducibility of the nano-microspheres were investigated with the help of the specific binding of rosiglitazone to PPAR-γ. In addition, the incubation temperature and the pH of the buffer solution in the magnetic ligand fishing were optimized to improve the specific adsorption efficiency of the analytes. Finally, with the aid of ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS/MS), the 16 active ligands including 9 organic acids, 5 flavonoids, and 2 phenols were found in the ethanolic extracts of Choerospondias axillaris. Therefore, the study can provide a successful precedent for realizing the designated extraction and rapid isolation of target-specific active ingredient groups in the complex mixtures.
Collapse
|
9
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
10
|
Kaur J, Gulati M, Singh SK, Kuppusamy G, Kapoor B, Mishra V, Gupta S, Arshad MF, Porwal O, Jha NK, Chaitanya M, Chellappan DK, Gupta G, Gupta PK, Dua K, Khursheed R, Awasthi A, Corrie L. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Santos ADS, Pimentel AL, Oliveira JVLD, Silva MTD, Silva FGC, Borges ALTF, Moura MAFBD, Silva SASD, Nascimento TGD. Phytochemical and pharmacological reports of the hypoglycemic activity of the Moringa oleifera extracts. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Moringa oleifera is an arboreal plant belonging to the family Moringaceae distributed in tropical areas and has gained enormous attention in the last decades. This research is a review on the association between aqueous extracts of M. oleifera leaves and diabetes mellitus and understanding its pharmacological functions and underlying mechanisms. The research refinement demonstrated the pharmaceutical potential of M. oleifera and its phytochemicals, given its antidiabetic effect. The prospective analysis showed the amount of application within IPC A61K in health area. The secondary metabolites present in M. oleifera, glucosinolates, flavonoids, and phenolic compounds may be responsible, in part, for the disease control hypoglycemic actions. Glucosinolates, when metabolized by salivary enzymes, give rise to sulforaphanes that act in preventing type 2 diabetes and in reducing insulin resistance. Flavonoids interact with intestinal enzymes by modifying carbohydrate metabolism by regulating glycemic levels, in addition to increasing insulin sensitivity. Phenolic compounds increase the expression of glucose transporters (GLUT4) and reduce the synthesis of fatty acids and cholesterol, contributing to the reduction of glucose resistance and blood sugar control. Moringa oleifera can be used as complementary therapy of the type-2 diabetes.
Collapse
|
12
|
Oke IM, Ramorobi LM, Mashele SS, Bonnet SL, Makhafola TJ, Eze KC, Noreljaleel AEM, Chukwuma CI. Vanillic acid-Zn(II) complex: a novel complex with antihyperglycaemic and anti-oxidative activity. J Pharm Pharmacol 2021; 73:1703-1714. [PMID: 34109975 DOI: 10.1093/jpp/rgab086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/15/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Our aim was to synthesize, characterize and evaluate the antihyperglycaemic and anti-oxidative properties of a new Zn(II) complex of vanillic acid. METHODS The complex was synthesized using ZnSO4.7H2O and vanillic acid as precursors. NMR and FTIR techniques were used to characterize the synthesized complex. The cytotoxicity of the complex was measured. The antihyperglycemic and anti-oxidative properties of the complex were evaluated using in vitro, cell-based and ex vivo models and compared with those of its precursors. KEY FINDINGS Zn(II) coordinated with vanillic acid via a Zn(O6) coordination, with the complex having three moieties of vanillic acid. The radical scavenging, Fe3+ reducing and hepatic antilipid peroxidative activity of the complex were, respectively, 2.3-, 1.8- and 9.7-folds more potent than vanillic acid. Complexation increased the α-glucosidase and glycation inhibitory activity of vanillic acid by 3- and 2.6-folds, respectively. Zn(II) conferred potent L-6 myotube (EC50 = 20.4 μm) and muscle tissue (EC50 = 612 μm) glucose uptake effects on vanillic acid. Cytotoxicity evaluation showed that the complex did not reduce the viability of L-6 myotubes and Chang liver cells. CONCLUSIONS The data suggest that Zn(II)-vanillic acid complex had improved bioactivity relative to vanillic acid. Thus, Zn(II) may be further studied as an antihyperglycaemic and anti-oxidative adjuvant for bioactive phenolic acids.
Collapse
Affiliation(s)
- Ifedolapo M Oke
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| | - Limpho M Ramorobi
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| | - Samson S Mashele
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| | - Susanna L Bonnet
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Tshepiso J Makhafola
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| | - Kenneth C Eze
- Faculty of Medicine, Nnamdi Azikiwe University, Awka (Nnewi Campus), Anambra State, Nigeria
| | - Anwar E M Noreljaleel
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| |
Collapse
|
13
|
Design, Synthesis and Molecular Docking of Vanillic Acid Derivatives as Amylolytic Enzyme Inhibitors. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02439-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Samir SM, Elalfy M, Nashar EME, Alghamdi MA, Hamza E, Serria MS, Elhadidy MG. Cardamonin exerts a protective effect against autophagy and apoptosis in the testicles of diabetic male rats through the expression of Nrf2 via p62-mediated Keap-1 degradation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:341-354. [PMID: 34187951 PMCID: PMC8255125 DOI: 10.4196/kjpp.2021.25.4.341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/08/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
Cardamonin (CARD) is a chalconoid with anti-inflammatory and antioxidant properties, and it is present in several plants. We sought to explore whether CARD exerts any positive effects against hyperglycemia-induced testicular dysfunction caused by type 2 diabetes and aimed to identify its possible intracellular pathways. Adult male rats were subdivided into six groups: control, CARD, diabetic (DM), DM + glibenclamide (GLIB), DM + CARD and DM + GLIB + CARD. Type 2 DM induced a significant increase in blood glucose and insulin resistance, along with diminished serum insulin, testosterone and gonadotropins levels, which were associated with the impairment of key testicular androgenic enzymes and cellular redox balance. Administration of CARD at a dose of 80 mg/kg for 4 weeks effectively normalized all of these alterations, and the improvement was confirmed by epididymal sperm analysis. After treatment with CARD, the pathological changes in spermatogenic tubules were markedly improved. Significantly, CARD upregulated testicular glucose transporter-8 (GLUT-8) expression and had inhibitory effects on elevated autophagy markers and caspase-3 immunoreactive cells. Furthermore, our results revealed that CARD was able to attenuate damage via activation of Nrf2 through the p62-dependent degradation of testicular anti-Kelch-like ECH-associated protein-1 (Keap-1). In conclusion, this study suggests that CARD provides protection against diabetic stress-mediated testicular damage. The use of CARD with conventional anti-diabetic therapy was associated with improved efficacy compared with conventional therapy alone.
Collapse
Affiliation(s)
- Shereen M Samir
- Department of Medical Physiology, College of Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Mahmoud Elalfy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, Faculty of Medicine, King Khalid University, Abha 61421, Saudi Arabia.,Department of Histology and Cell Biology, College of Medicine, Benha University, Benha 13511, Egypt
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Eman Hamza
- Medical Biochemistry Department, College of Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Mohamed Saad Serria
- Medical Biochemistry Department, College of Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Mona G Elhadidy
- Department of Medical Physiology, College of Medicine, Mansoura University, Mansoura 35511, Egypt.,Department of Medical Physiology, College of Medicine, Al-Baha University, Al-Baha 65525, Saudi Arabia
| |
Collapse
|
15
|
Kumar R, Sharma A, Iqbal MS, Srivastava JK. Therapeutic Promises of Chlorogenic Acid with Special Emphasis on its Anti-Obesity Property. Curr Mol Pharmacol 2021; 13:7-16. [PMID: 31333144 DOI: 10.2174/1874467212666190716145210] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Chlorogenic acid (CGA) is a quinic acid conjugate of caffeic acid. It is an ester formed between caffeic acid and the 3-hydroxyl of L-quinic acid. This polyphenol is naturally present in substantial amount in the green coffee beans. Minor quantities of CGA are also reported in apples, eggplant, blueberries, tomatoes, strawberries and potatoes. CGA is reported to be beneficial in hypertension, hyperglycemia, antimicrobial, antitumor, memory enhancer, weight management etc. Further, it is also reported to have anticancer, antioxidant and anti-inflammatory activities. Since the last decade, CGA drew public attention for its widely recommended use as a medicine or natural food additive supplement for the management of obesity. OBJECTIVE The current review explores the medicinal promises of CGA and emphasizes on its antiobese property as reported by various scientific reports and publication. CONCLUSION CGA shows promises as an antioxidant, glycemic control agent, anti-hypertensive, antiinflammatory, antimicrobial, neuro-protective and anti-obesity agent. It primarily activates the AMPactivated protein kinase, inhibits 3-hydroxy 3-methylglutaryl coenzyme-A reductase and strengthens the activity of carnitine palmitoyltransferase to control the obesity.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| | - Anju Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India.,Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Mohammed Shariq Iqbal
- Amity Research Cell, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| | - Janmejai K Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| |
Collapse
|
16
|
Kamga-Simo FDY, Kamatou GP, Ssemakalu C, Shai LJ. Cassia Abbreviata Enhances Glucose Uptake and Glucose Transporter 4 Translocation in C2C12 Mouse Skeletal Muscle Cells. J Evid Based Integr Med 2021; 26:2515690X211006333. [PMID: 33788626 PMCID: PMC8020231 DOI: 10.1177/2515690x211006333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background. This study aim at assessing C. abbreviata aqueous extracts for its potential to exhibit anti-diabetic activity in skeletal muscle cells. In addition to the toxicological and glucose absorption studies, the action of C. abbreviata extracts on some major genes involved in the insulin signaling pathway was established. Methods. The in vitro cytotoxic effects C. abbreviata was evaluated on muscle cells using the MTT assay and the in vitro glucose uptake assay conducted using a modified glucose oxidase method described by Van de Venter et al. (2008). The amount of GLUT-4 on cell surfaces was estimated quantitatively using the flow cytometry technique. Real time quantitative PCR (RT-qPCR) was used to determine the expression of GLUT-4, IRS-1, PI3 K, Akt1, Akt2, PPAR-γ. Results. Cytotoxicity tests revealed that all extracts tested at various concentrations were non-toxic (LC50 > 5000). Aqueous extracts of leaves, bark and seeds resulted in a dose-dependent increase in glucose absorption by cells, after 1 h, 3 h and 6 h incubation period. Extracts of all three plant parts had the best effect after 3 h incubation, with the leaf extract showing the best activity across time (Glucose uptake of 29%, 56% and 42% higher than untreated control cells after treatment with 1 mg/ml extract at 1 h, 3 h and 6 h, respectively). All extracts, with the exception 500 µg/ml seed extract, induced a two-fold increase in GLUT-4 translocation while marginally inducing GLUT-10 translocation in the muscle cells. The indirect immunofluorescence confirmed that GLUT-4 translocation indeed occurred. There was an increased expression of GLUT-4, IRS1 and PI3 K in cells treated with insulin and bark extract as determined by the RT-qPCR. Conclusion. The study reveals that glucose uptake involves GLUT-4 translocation through a mechanism that is likely to involve the upstream effectors of the PI3-K/Akt pathway.
Collapse
Affiliation(s)
- F D Y Kamga-Simo
- Department of Biomedical Sciences, Tshwane University of Technology, Private Bag Pretoria, South Africa
| | - G P Kamatou
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag, Pretoria, South Africa
| | - C Ssemakalu
- Cell Biology Research Unit, Department of Biotechnology, Vaal University of Technology, Private Bag, Pretoria, South Africa
| | - L J Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Private Bag Pretoria, South Africa
| |
Collapse
|
17
|
Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2021; 48:743-761. [PMID: 33275195 DOI: 10.1007/s11033-020-06036-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
18
|
MIRZA AC, PANCHAL SS. Safety Assessment of Vanillic Acid: Subacute Oral Toxicity Studies in Wistar Rats. Turk J Pharm Sci 2020; 17:432-439. [PMID: 32939140 PMCID: PMC7489355 DOI: 10.4274/tjps.galenos.2019.92678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Vanillic acid (VA) is a flavoring agent, a phenolic acid, and an intermediary by-product formed during transformation of ferulic acid to vanillin. It has been investigated for diverse pharmacological actions and used in Chinese medicine for decades. However, there is no information in the literature about its mechanism of toxicity or safety with long-term use. The present study will not only supply information on its pharmacological profile but also encourage evidence-based pharmacotherapeutic use. Hence, we performed a subacute toxicity study. MATERIALS AND METHODS According to the Organisation for Economic Co-operation and Development Test Guideline 407 (2008), 3 groups of rats were formed consisting of 12 rats (6 male and 6 female) in each group. For the subacute toxicity, the dose was chosen after a limit test was conducted. VA (1000 mg/kg/day) was orally administered for 2 weeks to the treatment group, whereas the control group received an equivalent volume of the vehicle. To assess reversibility, VA (1000 mg/kg/day, p.o.) was administered to the satellite group for 2 weeks and animals were observed for an additional 2 weeks after treatment. The adverse signs, variation in body weight, and mortality were evaluated throughout the study period. On days 15 and 29, blood was collected to evaluate essential biochemical and hematological parameters. The animals were subsequently weighed and sacrificed. The weights of internal organs were recorded; gross necroscopy and histopathological studies were performed. RESULTS The hematological parameters of the satellite group increased and the serum sodium level decreased after the treatment. Satellite groups showed no other major change in biochemical parameters when compared to the control group. In addition, relative organ weights, gross necropsy examinations and histopathological structure of the internal organs showed no major alterations. CONCLUSION VA showed no adverse effect on the process of leukopoiesis, erythropoiesis or on internal organs, as verified by hematological and biochemical evaluations, gross necropsy, and histopathological studies. The decrease in serum sodium is not considered as a major toxic effect.
Collapse
Affiliation(s)
- Anwarbaig Chandbaig MIRZA
- Anjuman-i-Islams’s Kalsekar Technical Campus, School of Pharmacy, Department of Pharmacology, Navi Mumbai, India
| | | |
Collapse
|
19
|
Induction of peroxisome proliferator activated receptor γ (PPARγ) mediated gene expression and inhibition of induced nitric oxide production by Maerua subcordata (Gilg) DeWolf. BMC Complement Med Ther 2020; 20:80. [PMID: 32164648 PMCID: PMC7076844 DOI: 10.1186/s12906-020-2856-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The health benefits of botanicals is linked to their phytochemicals that often exert pleiotropic effects via targeting multiple molecular signaling pathways such as the peroxisome proliferator-activated receptors (PPARs) and the nuclear factor kappaB (NFκB). The PPARs are transcription factors that control metabolic homeostasis and inflammation while the NF-κB is a master regulator of inflammatory genes such as the inducible nitric-oxide synthase that result in nitric oxide (NO) overproduction. METHODS Extracts of Maerua subcordata (MS) and selected candidate constituents thereof, identified by liquid chromatography coupled to mass spectroscopy, were tested for their ability to induce PPARγ mediated gene expression in U2OS-PPARγ cells using luciferase reporter gene assay and also for their ability to inhibit lipopolysaccharide (LPS) induced NO production in RAW264.7 macrophages. While measuring the effect of test samples on PPARγ mediated gene expression, a counter assay that used U2OS-Cytotox cells was performed to monitor cytotoxicity or any non-specific changes in luciferase activity. RESULTS The results revealed that the fruit, root, and seed extracts were non-cytotoxic up to a concentration of 30 g dry weight per litre (gDW/L) and induced PPARγ mediated gene expression but the leaf extract showed some cytotoxicity and exhibited minimal induction. Instead, all extracts showed concentration (1-15 gDW/L) dependent inhibition of LPS induced NO production. The root extract showed weaker inhibition. Among the candidate constituents, agmatine, stachydrine, trigonelline, indole-3-carboxyaldehyde, plus ethyl-, isobutyl-, isopropyl, and methyl-isothiocyanates showed similar inhibition, and most showed increased inhibition with increasing concentration (1-100 μM) although to a lesser potency than the positive control, aminoguanidine. CONCLUSION The present study demonstrated for the first time the induction of PPARγ mediated gene expression by MS fruit, root, and seed extracts and the inhibition of LPS induced NO production by MS fruit, leaf, root, and seed extracts and some candidate constituents thereof.
Collapse
|
20
|
Huh HW, Na YG, Bang KH, Kim SJ, Kim M, Kim KT, Kang JS, Kim YH, Baek JS, Lee HK, Cho CW. Extended Intake of Mulberry Leaf Extract Delayed Metformin Elimination via Inhibiting the Organic Cation Transporter 2. Pharmaceutics 2020; 12:pharmaceutics12010049. [PMID: 31936070 PMCID: PMC7022228 DOI: 10.3390/pharmaceutics12010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 01/28/2023] Open
Abstract
Diabetes mellitus (DM) has become a major health problem in most countries of the world. DM causes many complications, including hyperglycemia, diabetic ketoacidosis, and death. In Asia, mulberry has been used widely in the treatment of DM. Combination of drugs with herbal medicine may reduce the unwanted side effects caused by drugs. In this study, the influence of extended mulberry leaves extract (MLE) intake on metformin (Met) was evaluated in terms of pharmacokinetics and pharmacodynamics in DM-induced rats. Three week-treatment of MLE alone produced the anti-hyperglycemic effect (around 24%) if compared to the control. Interestingly, Met administration after MLE treatment for 3 weeks enhanced about 49% of the anti-hyperglycemic effect of Met. In addition, the extended intake of MLE potentiated the anti-hyperglycemic effect of Met on various concentrations. This potentiated anti-hyperglycemic effect of Met appears to be due to the pharmacokinetic change of Met. In this study, 3 week-treatment of MLE reduced the elimination of Met in DM-induced rats. In addition, MLE reduced the human organic cation transporter 2 (hOCT2) activity in a concentration-dependent manner. Thus, these findings suggest that MLE lowered the elimination of Met via inhibiting the hOCT2.
Collapse
Affiliation(s)
- Hyun Wook Huh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
| | - Young-Guk Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
| | - Ki-Hyun Bang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
| | - Sung-Jin Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
| | - Minki Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
| | - Kyung-Tae Kim
- Food Science and Technology Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Korea;
| | - Jong-Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
| | - Young-Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
| | - Jong-Suep Baek
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Korea;
| | - Hong-Ki Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
- Correspondence: (H.-K.L.); (C.-W.C.); Tel.: +82-42-821-7301 (H.-K.L.); +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (H.-K.L. & C.-W.C.)
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (H.W.H.); (Y.-G.N.); (K.-H.B.); (S.-J.K.); (M.K.); (J.-S.K.); (Y.-H.K.)
- Correspondence: (H.-K.L.); (C.-W.C.); Tel.: +82-42-821-7301 (H.-K.L.); +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (H.-K.L. & C.-W.C.)
| |
Collapse
|
21
|
Al-Saud NBS. Impact of curcumin treatment on diabetic albino rats. Saudi J Biol Sci 2019; 27:689-694. [PMID: 32210689 PMCID: PMC6997849 DOI: 10.1016/j.sjbs.2019.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
The current study was aimed to study the effect of curcumin on the expression levels of brain glucose transporter 1 protein (GLUT1) and femoral muscle glucose transporter 4 protein (GLUT4), in addition to study its possible therapeutic role in ameliorating insulin resistance and the metabolic disturbance in the obese and type 2 diabetic male albino Wistar rat model. Diabetes was induced by a high-fat (HF) diet with low dose streptozotocin (STZ). Curcumin was administered intragastrically for 8 weeks (80 mg/kg BW/day). The HF-diet group developed obesity, hyperglycemia, hyperinsulinemia, reduced liver glycogen content with significant dyslipidemia. In the diabetic control group, hyperglycemia and insulin resistance high calculated homeostasis model assessment (HOMA-IR-index score) were pronounced, with reductions in liver and muscle glycogen contents, concomitant with dyslipidemia and significantly elevated malondialdehyde levels in liver and pancreas. GLUT1 and GLUT4 were down-regulated in the obese and the diabetic control groups, respectively. Curcumin, showed glucose-lowering effect and decreased insulin resistance, dyslipidemia and malondialdehyde levels in both tissues, it increased liver & muscle glycogen contents, compared to the diabetic control. Curcumin significantly up-regulated GLUT4 gene expression, compared to the diabetic control group. In conclusions, these results indicate a therapeutic role of curcumin in improving the diabetic status, obesity and enhancing the expression of GLUT4 gene.
Collapse
Affiliation(s)
- Najlaa Bint Saud Al-Saud
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Khanal P, Patil BM, Mandar BK, Dey YN, Duyu T. Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0131-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tinospora cordifolia is used traditionally for the treatment of diabetes and is used in various formulations. Scientific evidence is also available for its anti-diabetic potency under various animal models. However, the probable molecular mechanism of Tinospora cordifolia in the treatment of diabetes has not been illuminated yet. Hence, the present study dealt to elucidate the probable molecular mechanism of anti-diabetic effect of Tinospora cordifolia using network pharmacology approach.
Methods
The structural information of bioactive phytoconstituents was retrieved from different open source databases. Compounds were then predicted for their hits with the probable targets involved in the diabetes mellitus. Phytoconstituents were also predicted for their druglikeness score, probable side effects, and ADMET profile. The modulated protein pathways were identified by using the Kyoto Encyclopedia of Genes and Genomes pathway analysis. The interaction between the compounds, proteins, and pathways was interpreted based on the edge count. The docking study was performed using Autodock4.0.
Results
Nine phytoconstituents from Tinospora cordifolia were identified to modulate the pathogenic protein molecules involved in diabetes mellitus. Among them, tembetarine scored highest druglikeness hit and had the maximum interaction with proteins involved in diabetes. Further, neuroactive ligand-receptor interaction was predicted as majorly modulated pathway.
Conclusion
The current study identified an important antidiabetic constituent, tembetarine which modulated the majority of diabetic proteins majorly modulating neuroactive ligand-receptor interaction.
Collapse
|
23
|
Grebinyk A, Prylutska S, Buchelnikov A, Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov V, Prylutskyy Y, Yashchuk V, Naumovets A, Ritter U, Dandekar T, Frohme M. C 60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells. Pharmaceutics 2019; 11:pharmaceutics11110586. [PMID: 31717305 PMCID: PMC6920783 DOI: 10.3390/pharmaceutics11110586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle-C60 fullerene (C60)-for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anatoliy Buchelnikov
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Nina Tverdokhleb
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
| | - Maxim Evstigneev
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
- Laboratory of Organic Synthesis and NMR Spectroscopy, Belgorod State University, 308015 Belgorod, Russia
| | - Olga Matyshevska
- Palladin Institute of Biochemistry, NAS of Ukraine, Leontovicha Str. 9, 01030 Kyiv, Ukraine;
| | - Vsevolod Cherepanov
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Valeriy Yashchuk
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anton Naumovets
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, University of Technology Ilmenau, Weimarer Straße 25 (Curiebau), 98693 Ilmenau, Germany;
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Correspondence: ; Tel.: +49-(0)-3375-508-249
| |
Collapse
|
24
|
Sekar V, Mani S, Malarvizhi R, Nithya P, Vasanthi HR. Antidiabetic effect of mangiferin in combination with oral hypoglycemic agents metformin and gliclazide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152901. [PMID: 30981189 DOI: 10.1016/j.phymed.2019.152901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes mellitus poses serious threat to the global population due to the alarming diabetic complications it leads to. The current therapeutic options available can be improved for better efficiency and maximum benefits. Combination therapy has been commonly used to improve the efficacy and to minimize the side effects of drugs in current clinical use. PURPOSE The present study aims to assess the interaction between a natural molecule mangiferin with the commercially available oral hypoglycemic drugs metformin and gliclazide in diabetic rats. METHODS In this study, the in vitro cytotoxicity and glucose uptake studies were performed in HepG2 cells. Based on experimental data, the combination index of the hypoglycemic drugs like metformin and gliclazide in combination with different doses of mangiferin was determined using COMPUSYN software. Further, in vivo studies were performed in HFD + STZ induced diabetic male Sprague Dawley rats. Serum parameters, enzyme markers, hepatic oxidative stress markers, gene and protein expression studies and histopathological analyses were performed in rat liver to identify the mode of action of the combination drug administration. RESULTS The in vitro studies on HepG2 cells suggest a positive interaction of mangiferin with both metformin and gliclazide at specific concentrations as evidenced by glucose uptake. The hepatic enzymes, oxidative stress markers, carbohydrate metabolizing enzymes, gene (AMPK, Akt, ACC β and Glut-2) and protein (PPARα, PPARγ) expression confirmed the results of the in vitro studies. Both the combinations of mangiferin with metformin and mangiferin with gliclazide exhibited potent antidiabetic effect. The combination of mangiferin with metformin was insulin dependent (Akt pathway) whereas the combination of mangiferin and gliclazide was insulin independent (AMPK pathway). CONCLUSION The overall results suggest that combination of mangiferin with both metformin and gliclazide alleviates diabetic conditions potentially at specific doses and modulates the adverse effect of high dose of commonly used OHD's. This combination therapy can be translated for its clinical use as a diabetes management strategy.
Collapse
Affiliation(s)
- Vidhushini Sekar
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sugumar Mani
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - R Malarvizhi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - P Nithya
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Hannah R Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
25
|
Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019; 24:molecules24061045. [PMID: 30884812 PMCID: PMC6470710 DOI: 10.3390/molecules24061045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPARγ. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - David Navarro-Herrera
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Zabala
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Itziar Miguéliz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Miguel López-Yoldi
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Fermín I Milagro
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | | |
Collapse
|
26
|
Tian ZH, Weng JT, Shih LJ, Siao AC, Chan TY, Tsuei YW, Kuo YC, Wang TS, Kao YH. Arecoline inhibits the growth of 3T3-L1 preadipocytes via AMP-activated protein kinase and reactive oxygen species pathways. PLoS One 2018; 13:e0200508. [PMID: 30011295 PMCID: PMC6047799 DOI: 10.1371/journal.pone.0200508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
The present study was designed to investigate the pathways involved in the effect of betel nut arecoline on cell viability in 3T3-L1 preadipocytes. Arecoline, but not arecaidine or guvacine, inhibited preadipocyte viability in a concentration- and time-dependent manner. Arecoline arrested preadipocyte growth in the G2/M phase of the cell cycle; decreased the total levels of cyclin-dependent kinase 1 (CDK1), p21, and p27 proteins; increased p53 and cyclin B1 protein levels; and had no effect on CDK2 protein levels. These results suggested that arecoline selectively affected a particular CDK subfamily. Arecoline inhibited AMP-activated protein kinase (AMPK) activity; conversely, the AMPK activator, AICAR, blocked the arecoline-induced inhibition of cell viability. Pre-treatment with the antioxidant, N-acetylcysteine, prevented the actions of arecoline on cell viability, G2/M growth arrest, reactive oxygen species (ROS) production, and the levels of CDK1, p21, p27, p53, cyclin B1, and phospho-AMPK proteins. These AMPK- and ROS-dependent effects of arecoline on preadipocyte growth may be related to the mechanism underlying the modulatory effect of arecoline on body weight.
Collapse
Affiliation(s)
- Zi-Han Tian
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan
| | - Jueng-Tsueng Weng
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan
- Chung Shan Hospital, Taipei, Taiwan
| | - Li-Jane Shih
- Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - An-Ci Siao
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan
| | - Tsai-Yun Chan
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Wei Tsuei
- Department of Emergency, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- * E-mail: (YHK); (YWT)
| | - Yow-Chii Kuo
- Department of Gastroenterology, Taiwan Landseed Hospital, Taoyuan City, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, Taiwan
- * E-mail: (YHK); (YWT)
| |
Collapse
|
27
|
Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4) Protein Translocation. Molecules 2018; 23:molecules23020258. [PMID: 29382104 PMCID: PMC6017132 DOI: 10.3390/molecules23020258] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4) from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.
Collapse
|
28
|
Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacol Res 2016; 113:636-674. [DOI: 10.1016/j.phrs.2016.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
29
|
Biomolecular Characterization of Putative Antidiabetic Herbal Extracts. PLoS One 2016; 11:e0148109. [PMID: 26820984 PMCID: PMC4731058 DOI: 10.1371/journal.pone.0148109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.
Collapse
|
30
|
Bhasker S, Madhav H, Chinnamma M. Molecular evidence of insulinomimetic property exhibited by steviol and stevioside in diabetes induced L6 and 3T3L1 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1037-1044. [PMID: 26407946 DOI: 10.1016/j.phymed.2015.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/13/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The defective responsiveness of body tissues to insulin involves the insulin receptors of cell membranes. The binding of insulin to its receptor induce an increase of high affinity glucose transporter molecules in target cell surface that enhance the uptake of glucose in to these cells. The WHO expert committee recommended the importance to investigate the hypoglycemic agents from plant origin, which are used in traditional medicine for the treatment of diabetes. Stevioside, a natural sweetener and a diterpene glycoside extracted from Stevia rebaudiana (Bertoni) has been used as an anti-hyperglycemic agent for the treatment of diabetes for decades. HYPOTHESIS To reveal the molecular mechanism underlying the insulinomimetic activity of stevioside and its aglycone metabolite, steviol using cell line models. STUDY DESIGN Efficacy of stevioside and steviol in inducing glucose absorption was studied at transcript level, protein level and by measuring glucose absorption in the cell using in-vitro cell line studies. METHOD Quantification of glucose transporter (GLUT4) transcript was done in 3T3-L1 adipocytes and L6 myotubes by qPCR using RPL23 as the internal control. GLUT4 protein was quantified using anti GLUT4 antibody by ELISA and radioactive glucose uptake studies were done to measure the rate of glucose absorption. RESULTS The absolute and relative quantitation of GLUT4 gene by qPCR showed the activation of GLUT4 transcript at lower concentration of steviol (1 µM) and higher concentration of stevioside (100 µM) in both L6 myotubes and 3T3-L1 adipocytes. The increased level of glut4 protein and the glucose uptake in both the cell lines using the same concentration of steviol and stevioside further supports the qPCR data. The copy number and the expression level of GLUT4 gene, the amount of GLUT4 protein and the glucose uptake efficacy support the insulinomimetic effect of steviol and stevioside. CONCLUSION The results of the study clearly demonstrate the functional similarity of steviol and stevioside with that of insulin in controlling the level of glucose in both the cell lines. In other words, the insulinomimetic property of stevioside and steviol was evident from the data.
Collapse
Affiliation(s)
- Salini Bhasker
- SCMS Institute of Bioscience and Biotechnology Research and Development, South Kalamassery, Cochin, 682033, Kerala, India
| | - Harish Madhav
- SCMS Institute of Bioscience and Biotechnology Research and Development, South Kalamassery, Cochin, 682033, Kerala, India
| | - Mohankumar Chinnamma
- SCMS Institute of Bioscience and Biotechnology Research and Development, South Kalamassery, Cochin, 682033, Kerala, India.
| |
Collapse
|
31
|
Gavillán-Suárez J, Aguilar-Perez A, Rivera-Ortiz N, Rodríguez-Tirado K, Figueroa-Cuilan W, Morales-Santiago L, Maldonado-Martínez G, Cubano LA, Martínez-Montemayor MM. Chemical profile and in vivo hypoglycemic effects of Syzygium jambos, Costus speciosus and Tapeinochilos ananassae plant extracts used as diabetes adjuvants in Puerto Rico. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26198986 PMCID: PMC4511456 DOI: 10.1186/s12906-015-0772-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The increasing numbers of people who use plant-based remedies as alternative or complementary medicine call for the validation of less known herbal formulations used to treat their ailments. Since Puerto Rico has the highest rate of Type 2 diabetes within all the states and territories of the United States, and Puerto Ricans commonly use plants as diabetes adjuvants, it is important to study the plants' physiological effects, and identify their bioactive compounds to understand their role in modulation of blood glucose levels. We present the phytochemical profiles and hypoglycemic effects of Tapeinochilus ananassae, Costus speciosus and Syzygium jambos. METHODS Phytochemicals in methanolic and aqueous extracts were analyzed by thin layer chromatography (TLC). Alkaloids (Bromocresol green, λ=470 nm), flavonoids (AlCl3, λ=415 nm), saponins (DNS, λ=760 nm), tannins (FeCl3/K4Fe(CN)6, λ=395 nm) and phenolics (Folin-Ciocalteau, λ=765 nm) were quantified. Male C57BLKS/J (db/db) and C57BL/J (ob/ob) genetically obese mice were orally gavaged with aqueous extracts of lyophilized plant decoctions for 10 wks. RESULTS Our results show that T. ananassae had significantly greater amounts of flavonoids and tannins, while S. jambos showed the greatest concentration of phenolics and C. speciosus exhibited higher amounts of alkaloids. C57BLKS/J db/db treated with plant extracts show better glucose modulation when the extracts are administered in complement with an insulin injection. Finally, C57BL/J ob/ob mice on T. ananassae and S. jambos treatments show better blood glucose modulation over time. CONCLUSION These results document for the first time the chemical profile of T. ananassae and provide evidence for a potential anti-diabetic efficacy of T. ananassae and S. jambos.
Collapse
|
32
|
|
33
|
Transportation of berberine into HepG2, HeLa and SY5Y cells: a correlation to its anti-cancer effect. PLoS One 2014; 9:e112937. [PMID: 25402492 PMCID: PMC4234535 DOI: 10.1371/journal.pone.0112937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/17/2014] [Indexed: 12/13/2022] Open
Abstract
The anti-cancer activities of berberine (BBR) have been reported extensively in various cancer cell lines. However, the minimal inhibitory concentrations of BBR varied greatly among different cell lines and very few studies have been devoted to elucidate this aspect. In this study, we employed three cancer cell lines, HepG2, HeLa and SY5Y, to compare the transportation and distribution of BBR. HPLC results demonstrated that BBR was capable of penetrating all the cell lines whereas the cumulative concentrations were significantly different. HepG2 cells accumulated higher level of BBR for longer duration than the other two cell lines. Molecular docking studies revealed the BBR binding site on P-glycoprotein 1 (P-gp). In addition, we elucidated that BBR regulated P-gp at both mRNA and protein levels. BBR induced the transcription and translation of P-gp in HeLa and SY5Y cells, whereas BBR inhibited P-gp expression in HepG2 cells. Further study showed that BBR regulates P-gp expression depending on different mechanisms (or affected by different factors) in different cell lines. To summarize, our study has revealed several mechanistic aspects of BBR regulation on P-gp in different cancer cell lines and might shed some useful insights into the use of BBR in the anti-cancer drug development.
Collapse
|
34
|
Li Y, Teng Z, Parkin KL, Wang Q, Zhang Q, Luo W, Ma D, Zhao M. Identification of bioactive metabolites dihydrocanadensolide, Kojic acid, and vanillic acid in soy sauce using GC-MS, NMR spectroscopy, and single-crystal X-ray diffraction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8392-8401. [PMID: 25090452 DOI: 10.1021/jf502159m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial transformations of intrinsic substrates offer immense potential for generating new bioactive compounds in fermented food products. The aim of this work was to characterize the secondary metabolites in soy sauce, one of the oldest fermented condiments. Ethyl acetate extract (EAE) of soy sauce was separated using flash column chromatography, crystallized, and analyzed by nuclear magnetic resonance (NMR), single-crystal X-ray diffraction (SC-XRD), and mass spectroscopy. Dihydrocanadensolide (DHC), an antiulcer agent, was identified in a food for the first time. The natural stereostructure of DHC, which remained controversial for several decades, was determined as (3S,3aS,6R,6aR)-6-butyl-3-methyltetrahydrofuro[3,4-b]furan-2,4-dione using SC-XRD analysis. Kojic acid (KA) and vanillic acid (VA) were also identified from EAE as bioactive metabolic products of fungi and yeasts. Moreover, a new polymorphic form of KA was determined by SC-XRD.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Food Science, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Prabhakar PK, Kumar A, Doble M. Combination therapy: a new strategy to manage diabetes and its complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:123-130. [PMID: 24074610 DOI: 10.1016/j.phymed.2013.08.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/18/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Diabetes mellitus is the most common metabolic disorder. The major cause of mortality and morbidity here is due to the complications caused by increased glucose concentrations. All the available commercial antidiabetic drugs are associated with side effects. The combination therapy could be a new and highly effective therapeutic strategy to manage hyperglycemia. Combination of commercial drugs with phytochemicals may reduce the side effects caused by these synthetic drugs. Herbal products have been thought to be inherently safe, because of their natural origin and traditional use rather than based on systemic studies. New formulation and cocrystallisation strategies need to be adopted to match the bioavailability of the drug and the phytochemical. This review describes in detail, the observed synergy and mechanism of action between phytochemicals and synthetic drugs in effectively combating. The mode of action of combination differs significantly than that of the drugs alone; hence isolating a single component may lose its importance thereby simplifying the task of pharma industries.
Collapse
Affiliation(s)
- P K Prabhakar
- Lovely Faculty of Applied Medical Sciences, LPU, Phagwara, Punjab, India
| | - Anil Kumar
- Tata Chemicals Ltd., Innovation Centre, Pirangut, Pune 412108, India
| | - Mukesh Doble
- Department of Biotechnology, IIT Madras, Chennai, Tamilnadu, India.
| |
Collapse
|
36
|
Prabhakar PK, Prasad R, Ali S, Doble M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:488-494. [PMID: 23490007 DOI: 10.1016/j.phymed.2012.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/10/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disorder characterized by increased blood glucose level. The available commercial oral antidiabetic drugs have some serious side effects; hence there is a need for new hypoglycemic agents which will have therapeutic efficacy as well as less side effects. Ferulic acid, a phytochemical, might be a good supplement to manage diabetes. We investigated the antidiabetic and antilipidemic effect of ferulic acid alone and in combination with oral antidiabetic drugs (metformin and Thiazolidinedione (THZ)). Blood glucose, plasma lipid profiles levels, liver function and kidney function markers were measured in control and streptozotocin induced diabetic rats three weeks after administrating ferulic acid and OHDs (oral hypoglycemic drugs) alone and in combinations. The histopathological analysis of the pancreas was also carried out. Ferulic acid and OHDs significantly reduced the blood glucose, lipid profile, urea, creatinine, serum glutamic pyruvic transaminases (SGPT) and serum glutamic oxaloacetate transaminases (SGOT) in diabetic rats. Same level of reduction in blood glucose levels was achieved when ferulic acid was used in combination with even reduced amounts of OHDs. It decreased most of the side effects when used in combination with THZ. Histopathological analysis showed that combinations increased the number of islets. Ferulic acid interacts synergistically with both the drugs. It might be a good supplement with the OHDs to manage diabetic complications as well as reduces the use of the later.
Collapse
|