1
|
Luo L, Liu Q, Zhang Y, Yu X, Wang L, Sun W, Li T, Xu B, Zhang K, Yu Y, Cui C, Li C, Mei L. Precisely edited gut microbiota by tungsten-doped Prussian blue nanoparticles for the treatment of inflammatory bowel disease. J Control Release 2025; 382:113755. [PMID: 40258476 DOI: 10.1016/j.jconrel.2025.113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Inflammatory bowel disease (IBD) is characterized by recurring gastrointestinal inflammation, accompanied by a significant rise in global prevalence and disease severity. The overaccumulation of reactive oxygen and nitrogen species (RONS) in the intestinal environment disrupts redox homeostasis and drives pathological overgrowth of Escherichia coli, which are central to IBD pathogenesis. Herein, we designed a multifunctional nanozyme (W-PB) to enable sustained and targeted regulation of intestinal homeostasis through dual mechanisms: specific inhibition of E. coli overgrowth during colitis and efficient RONS clearance. To ensure colon-specific delivery, W-PB was encapsulated in an electrostatically crosslinked hydrogel composed of alginate and chitosan. This formulation protects W-PB from degradation in harsh gastrointestinal conditions and releases the nanoparticles selectively under weakly alkaline intestinal pH. The released tungsten ions suppress E. coli growth via competitive displacement of molybdenum in the molybdopterin cofactor, while W-PB simultaneously neutralizes excess RONS to shield intestinal cells from oxidative damage. In DSS-induced colitis models, the W-PB gel demonstrated significant therapeutic efficacy, achieved through intestinal microbiota remodeling and oxidative stress mitigation.
Collapse
Affiliation(s)
- Lingpeng Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Qingyun Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Yushi Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Xuya Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Ling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
| | - Weiting Sun
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Tingxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Bin Xu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yongkang Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.
| | - Chen Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China; Furong Laboratory, Central South University, Changsha 410008, PR China.
| |
Collapse
|
2
|
Karaca NB, Kahraman A, Buran S, Tüfekçi O, Kumbaroğlu FB, Bulut Zİ, Bulut S, Barlak A, Doğru A, Kalyoncu U, Akdoğan A, Apraş Bilgen Ş, Kiraz S, Ünal E. Comparison of functionality, mood, and biopsychosocial status in rheumatic patients with and without self-reported bowel problems and the evaluation of BETY's impact on these factors: a retrospective study. Curr Med Res Opin 2025:1-7. [PMID: 40151068 DOI: 10.1080/03007995.2025.2486164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE This retrospective study aimed to evaluate the comparison of functionality, mood, and biopsychosocial status in rheumatic patients with and without self-reported bowel problems and the evaluation of Bilişsel Egzersiz Terapi Yaklaşımı (BETY) - (Cognitive Exercise Therapy Approach in English)'s impact on these factors. METHODS The study included 718 patients with eight different diagnoses of rheumatism. The presence of self-reported bowel problems in rheumatic patients was assessed with item 10 of the BETY-Biopsychosocial Questionnaire (BETY-BQ), functionality with the Health Assessment Questionnaire (HAQ), emotional status with the Hospital Anxiety and Depression Scale (HADS), and biopsychosocial status (BPS) with the BETY-BQ. Sixty-five rheumatic patients were included in BETY group exercise sessions for 3 months, 3 days a week. RESULTS The rate of self-reporting bowel problems in the total cohort was 61.6%. Among all BPS parameters examined, a significant difference was found in favor of rheumatic individuals who did not report bowel symptoms (p <.005). All patients included in the BETY sessions achieved improvement in all parameters, including bowel symptoms (p <.005). CONCLUSIONS Many patients suffered from bowel problems. The investigated parameters of rheumatic patients with bowel symptoms were negatively affected. BETY improved all parameters, including bowel symptoms. BPS features should be considered in disease management in rheumatic patients reporting bowel problems. BETY should be used as an exercise intervention based on the BPS model in these patients.
Collapse
Affiliation(s)
- Nur Banu Karaca
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Aysu Kahraman
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Sinan Buran
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Orkun Tüfekçi
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | | | - Zeynep İrem Bulut
- Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Senem Bulut
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Aysima Barlak
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Atalay Doğru
- Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Süleyman Demirel University, Isparta, Turkey
| | - Umut Kalyoncu
- Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Hacettepe University, Ankara, Turkey
| | - Ali Akdoğan
- Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Hacettepe University, Ankara, Turkey
| | - Şule Apraş Bilgen
- Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Hacettepe University, Ankara, Turkey
| | - Sedat Kiraz
- Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Hacettepe University, Ankara, Turkey
| | - Edibe Ünal
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Parekh Z, Xiao J, Mani A, Evans Q, Phung C, Barba HA, Xie B, Sidebottom AM, Sundararajan A, Lin H, Ramaswamy R, Dao D, Gonnah R, Yehia M, Hariprasad SM, D'Souza M, Sulakhe D, Chang EB, Skondra D. Fecal Microbial Profiles and Short-Chain Fatty Acid/Bile Acid Metabolomics in Patients With Age-Related Macular Degeneration: A Pilot Study. Invest Ophthalmol Vis Sci 2025; 66:21. [PMID: 40202735 PMCID: PMC11993127 DOI: 10.1167/iovs.66.4.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Age-related macular degeneration (AMD) is a multifactorial disease, and studies have implicated the role of gut microbiota in its pathogenesis. However, characterization of microbiome dysbiosis and associated microbial-derived metabolomic profiles across AMD stages remains unknown. In this pilot study, we explored how gut microbiome composition and gut-derived metabolites differ in AMD. Methods Our pilot study analyzed fasted stool samples that were collected from 22 patients at a tertiary academic center. Subjects were classified as control, intermediate AMD, or advanced AMD based on clinical presentation. 16S rRNA amplicon sequencing and standard chromatography-mass spectrometry methods were used to identify bacterial taxonomy composition and abundance of short-chain fatty acids (SCFAs) and bile acids (BAs), respectively. Genetic testing was used to investigate the frequency of 14 high-risk single nucleotide polymorphisms (SNPs) associated with AMD in the AMD cohort. Results Forty-three differentially abundant genera were present among the control, intermediate, and advanced groups. Taxa with known roles in immunologic pathways, such as Desulfovibrionales (q = 0.10) and Terrisporobacter (q = 1.16e-03), were in greater abundance in advanced AMD patients compared to intermediate. Advanced AMD patients had decreased abundance of 12 SCFAs, including acetate (P = 0.002), butyrate (P = 0.04), and propionate (P = 0.01), along with 12 BAs, including taurocholic acid (P = 0.02) and tauroursodeoxycholic acid (P = 0.04). Frequencies of high-risk SNPs were not significantly different between the intermediate and advanced AMD groups. Conclusions This pilot study identifies distinct gut microbiome compositions and metabolomic profiles associated with AMD and its stages, providing preliminary evidence of a potential link between gut microbiota and AMD pathogenesis. To validate these findings and elucidate the underlying mechanisms, future research with larger cohorts and more comprehensive sampling is strongly recommended.
Collapse
Affiliation(s)
- Zaid Parekh
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jason Xiao
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Amir Mani
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Quadis Evans
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Christopher Phung
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Hugo A. Barba
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Bingqing Xie
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Ashley M. Sidebottom
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Anitha Sundararajan
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Huaiying Lin
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - David Dao
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Reem Gonnah
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Madeleine Yehia
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Mark D'Souza
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Dinanath Sulakhe
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Eugene B. Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
4
|
Ding H, Li M, Ma N, Rajput SA, Almutairi MH, Almutairi BO, Han Z, Ma A, Shiau D. Microbiome and metabolomic changes in rabbits induced by Folium sennae. PLoS One 2025; 20:e0320496. [PMID: 40163454 PMCID: PMC11957369 DOI: 10.1371/journal.pone.0320496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Diarrhea is a serious health concern in livestock, affecting productivity and animal welfare. However, it remains a significant threat. Various practical therapies are being explored, such as prebiotics, probiotics, and organic acids, as well as chemical treatments including antibiotics, to combat this disorder. This study aims to explore the microbiome and metabolomic changes in rabbits with diarrhea. In the present study, diarrhea was induced in rabbits via oral gavage of Folium Sennae (FSAE), to assess body weights, diarrhea index, serum biochemical indicators, histopathology, microbiota, and metabolomics changes. Our study provides new insights into the mechanism of FSAE-induced diarrhea in rabbits and offers a novel mechanism for the interaction between gut microbiota, metabolomics, and gastrointestinal (GIT) dysfunction. Our results revealed that rabbits receiving FSAE showed a markedly higher diarrhea index and reduced body weight. Notably, levels of somatostatin, substance P, cholecystokinin, 5-hydroxytryptamine, vasoactive intestinal peptide, and acetylcholinesterase were significantly increased compared to control (P < 0.01). However, the levels of gastrin, motilin, enkephalin, and β-Endorphins were significantly decreased (P < 0.01). Microbial analysis revealed a significant reduction in microbial diversity (Shannon, Simpson, ACE, and chao1) and a decrease in Firmicutes, Campilobacterota, and Proteobacteria populations in FSAE-exposed rabbits. Additionally, 13 key metabolites associated with taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism, starch and sucrose metabolism, histidine metabolism, and citrate cycle were identified in the colonic tissues. The present study concludes that FSAE-induced diarrhea in rabbits is associated with significant histopathological alterations in the colon, dysregulation of serum biochemical markers, and dysbiosis in metabolomics and gut microbiota. Our findings offer a novel model for investigating GIT dysfunction and its potential treatments.
Collapse
Affiliation(s)
- Houkang Ding
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Ming Li
- Department of Animal Engineering, Yancheng Bioengineering Branch, Jiangsu Union Technical Institute, Yancheng, Jiangsu, China
| | - Ning Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Shahid Ali Rajput
- Department of Animal and Dairy Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhaoqing Han
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, PR China
| | - Aituan Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Dengshan Shiau
- Department of Graduate Studies, Chi University, Reddick, Florida, United States of America
| |
Collapse
|
5
|
Wang S, Liu Y, Zou X, Pan M, Wan Q, Chu X. Exploring the pathogenesis of RA through the gut-articular axis-dysbiosis a potential factor. Clin Anat 2025; 38:134-145. [PMID: 39189295 DOI: 10.1002/ca.24215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with a complex etiology. It has been suggested that the pathogenesis of RA begins in the mucosa and then transitions to the joints when many factors interact, including microbial dysbiosis, inflammatory responses, and immune abnormalities at the mucosal site. Data from RA animals and patients suggest there are changes in the mucosal microflora before the onset of RA, and that dysbiosis of the mucosal ecology continues to play a role in the development of arthritis. Microbial dysbiosis of the mucosa reduces the normal barrier function of the intestinal tract, promotes inflammatory reactions in the mucosal areas of the intestines, and then activates the intestinal immune cells abnormally to produce a large number of auto-reactive antibodies that exacerbate arthritis. Current findings do not clarify whether dysbiosis is only a potential trigger for the development of RA. If it is possible to intervene in such microbial changes before the onset of RA, could the clinical symptoms of arthritis be prevented or reduced? Finding new ways to regulate gut flora composition to maintain gut barrier function is an ongoing challenge for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengjun Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, China
| |
Collapse
|
6
|
Li J, Chen J, Shao X, Zhang N, Wang Y, Li Y. Flaxseed Linusorb Alleviates Collagen-Induced Rheumatoid Arthritis in Rats via Inhibiting the TLR4/NF-κb/MAPK Signal Pathway and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27991-28004. [PMID: 39639764 DOI: 10.1021/acs.jafc.4c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Flaxseed linusorb (FL) has gradually garnered widespread attention in recent years because of its intriguing bioactivities like anti-inflammation, antimelanogenesis, and even anticancer effects. Based on its proven in vitro anti-inflammatory activity and mechanism, it is supposed that FL may also exhibit an in vivo effect in treating and preventing rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) rat models were established to investigate the potential therapeutic effect of FL, which were intervened with FL via gavage (50 and 100 mg/kg B.W.) and intraperitoneal injection (10 and 20 mg/kg B.W.). After FL treatment, RA clinical symptoms were significantly alleviated, including reduced toe swelling volume and mitigated bone damage in CIA rats. Moreover, a decline in the expression of pro-inflammatory factors (i.e., TNF-α, IL-1β, and IL-6) and RA-related proteins (i.e., MMP-3, COX-2, and 5-LOX) was observed to effectively block the TLR4/NF-κB/MAPK signaling pathway. In addition, FL was discovered to modulate the diversity and composition of intestinal microbiota in CIA rats, where the level of g_Parvibacte, g_Allobaculum, g_Enterococcus, and unclassified_o_Lactobacillales could be significantly increased, whereas the level of Gram-negative bacteria g_Parabacteroides, g_Parasutterella, and g_Paludicola was notably reduced. In conclusion, FL shows promise in RA treatment by inhibiting inflammatory pathways and regulating the gut microbiota.
Collapse
Affiliation(s)
- Jialong Li
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Xin Shao
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming 512500, China
| | - Ning Zhang
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Zhu X, Long W, Zhang J, Jian C, Chen J, Huang J, Li S, Zhang J, Wang L, Chen Y, Wu J, Wang T, Zou Q, Zhu J, Zeng F. Integrated multi-omics revealed that dysregulated lipid metabolism played an important role in RA patients with metabolic diseases. Arthritis Res Ther 2024; 26:188. [PMID: 39482717 PMCID: PMC11529425 DOI: 10.1186/s13075-024-03423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVES Patients with rheumatoid arthritis (RA) commonly experience a high prevalence of multiple metabolic diseases (MD), leading to higher morbidity and premature mortality. Here, we aimed to investigate the pathogenesis of MD in RA patients (RA_MD) through an integrated multi-omics approach. METHODS Fecal and blood samples were collected from a total of 181 subjects in this study for multi-omics analyses, including 16S rRNA and internally transcribed spacer (ITS) gene sequencing, metabolomics, transcriptomics, proteomics and phosphoproteomics. Spearman's correlation and protein-protein interaction networks were used to assess the multi-omics data correlations. The Least Absolute Shrinkage and Selection Operator (LASSO) machine learning algorithm were used to identify disease-specific biomarkers for RA_MD diagnosis. RESULTS Our results found that RA_MD was associated with differential abundance of gut microbiota such as Turicibacter and Neocosmospora, metabolites including decreased unsaturated fatty acid, genes related to linoleic acid metabolism and arachidonic acid metabolism, as well as downregulation of proteins and phosphoproteins involved in cholesterol metabolism. Furthermore, a multi-omics classifier differentiated RA_MD from RA with high accuracy (AUC: 0.958). Compared to gouty arthritis and systemic lupus erythematosus, dysregulation of lipid metabolism showed disease-specificity in RA_MD. CONCLUSIONS The integration of multi-omics data demonstrates that lipid metabolic pathways play a crucial role in RA_MD, providing the basis and direction for the prevention and early diagnosis of MD, as well as new insights to complement clinical treatment options.
Collapse
Affiliation(s)
- Xiaoting Zhu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Wubin Long
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Congcong Jian
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianghua Chen
- School of Basic Medical Science, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiaxin Huang
- School of Basic Medical Science, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Liang Wang
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Chen
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jianhong Wu
- Department of Rheumatology and Immunology, Dazhou Central Hospital, Dazhou, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, Dazhou Central Hospital, Dazhou, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, Chengdu, China.
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China.
| |
Collapse
|
8
|
Kalashnikova IG, Nekrasova AI, Korobeynikova AV, Bobrova MM, Ashniev GA, Bakoev SY, Zagainova AV, Lukashina MV, Tolkacheva LR, Petryaikina ES, Nekrasov AS, Mitrofanov SI, Shpakova TA, Frolova LV, Bulanova NV, Snigir EA, Mukhin VE, Yudin VS, Makarov VV, Keskinov AA, Yudin SM. The Association between Gut Microbiota and Serum Biomarkers in Children with Atopic Dermatitis. Biomedicines 2024; 12:2351. [PMID: 39457662 PMCID: PMC11505256 DOI: 10.3390/biomedicines12102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy. However, it remains unclear how the bacterial imbalance disrupts the function of the immune response in AD. Objectives. We attempted to determine the role of gut bacteria in modulating cytokine pathways and their role in atopic inflammation. Methods. We sequenced the 16S rRNA gene from 50 stool samples of children aged 3-12 years who had confirmed atopic dermatitis, and 50 samples from healthy children to serve as a control group. To evaluate the immune status, we conducted a multiplex immunofluorescence assay and measured the levels of 41 cytokines and chemokines in the serum of all participants. Results. To find out whether changes in the composition of the gut microbiota were significantly associated with changes in the level of inflammatory cytokines, a correlation was calculated between each pair of bacterial family and cytokine. In the AD group, 191 correlations were significant (Spearman's correlation coefficient, p ≤ 0.05), 85 of which were positive and 106 which were negative. Conclusions. It has been demonstrated that intestinal dysbiosis is associated with alterations in cytokine profiles, specifically an increase in proinflammatory cytokine concentrations. This may indicate a systemic impact of these conditions, leading to an imbalance in the immune system's response to the Th2 type. As a result, atopic conditions may develop. Additionally, a correlation between known AD biomarkers (IL-5, IL-8, IL-13, CCL22, IFN-γ, TNF-α) and alterations in the abundance of bacterial families (Pasteurellaceae, Barnesiellaceae, Eubacteriaceae) was observed.
Collapse
Affiliation(s)
- Irina G. Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.I.N.); (A.V.K.); (M.M.B.); (G.A.A.); (S.Y.B.); (A.V.Z.); (M.V.L.); (L.R.T.); (E.S.P.); (A.S.N.); (S.I.M.); (T.A.S.); (L.V.F.); (N.V.B.); (E.A.S.); (V.E.M.); (V.S.Y.); (V.V.M.); (A.A.K.); (S.M.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Quesada S, Rosso AD, Mascardi F, Soler-Rivero V, Aguilera P, Mascuka SN, Boiro A, Arenielo E, Vijoditz G, Ferreyra-Mufarregue LR, Caputo MF, Cimolai MC, Coluccio Leskow F, Penas-Steinhardt A, Belforte FS. Integrative analysis of systemic lupus erythematosus biomarkers: Role of fecal hsa-mir-223-3p and gut microbiota in transkingdom dynamics. Mol Immunol 2024; 171:77-92. [PMID: 38795687 DOI: 10.1016/j.molimm.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Systemic lupus erythematosus (SLE) involves a florid set of clinical manifestations whose autoreactive origin is characterized by an overactivation of the immune system and the production of a large number of autoantibodies. Because it is a complex pathology with an inflammatory component, its pathogenesis is not yet fully understood, assuming both genetic and environmental predisposing factors. Currently, it is known that the role of the human microbiome is crucial in maintaining the transkingdom balance between commensal microorganisms and the immune system. In the present work we study the intestinal microbiota of Argentine patients with different stages of SLE receiving or not different treatments. Microbiota composition and fecal miRNAs were assessed by 16 S sequencing and qPCR. hsa-miR-223-3p, a miRNA involved in several inflammation regulation pathways, was found underexpressed in SLE patients without immunosuppressive treatment. In terms of microbiota there were clear differences in population structure (Weighted and Unweighted Unifrac distances, p-value <0.05) and core microbiome between cases and controls. In addition, Collinsella, Bifidobacterium, Streptococcus genera and aromatics degradation metabolisms were overrepresented in the SLE group. Medical treatment was also determinant as several microbial metabolic pathways were influenced by immunosuppressive therapy. Particularly, allantoin degradation metabolism was differentially expressed in the group of patients receiving immunosuppressants. Finally, we performed a logistic regression model (LASSO: least absolute shrinkage and selection operator) considering the expression levels of the fecal hsa-miR223-3p; the core microbiota; the differentially abundant bacterial taxa and the differentially abundant metabolic pathways (p<0.05). The model predicted that SLE patients could be associated with greater relative abundance of the formaldehyde oxidation pathway (RUMP_PWY). On the contrary, the preponderance of the ketodeoxyoctonate (Kdo) biosynthesis and activation route (PWY_1269) and the genera Lachnospiraceae_UCG_004, Lachnospira, Victivallis and UCG_003 (genus belonging to the family Oscillospiraceae of the class Clostridia) were associated with a control phenotype. Overall, the present work could contribute to the development of integral diagnostic tools for the comprehensive phenotyping of patients with SLE. In this sense, studying the commensal microbial profile and possible pathobionts associated with SLE in our population proposes more effective and precise strategies to explore possible treatments based on the microbiota of SLE patients.
Collapse
Affiliation(s)
- Sofía Quesada
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ayelén Daiana Rosso
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Florencia Mascardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Valeria Soler-Rivero
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Pablo Aguilera
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sebastian Nicolas Mascuka
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Andrea Boiro
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Evangelina Arenielo
- Sección Inmunología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gustavo Vijoditz
- Sección Inmunología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | | | - Marina Flavia Caputo
- Sección Inmunología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - María Cecilia Cimolai
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Federico Coluccio Leskow
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alberto Penas-Steinhardt
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fiorella Sabrina Belforte
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina.
| |
Collapse
|
10
|
Kedia S, Virmani S, Bajaj A, Markandey M, Singh N, Madan D, Kaushal K, Sahu P, Vuyyuru SK, Kante B, Kumar P, Thomas DM, Mundhra SK, Singh MK, Verma M, Sharma R, Das P, Dash NR, Monga N, Awasthi A, Makharia G, Ahuja V. Coconut Water Induces Clinical Remission in Mild to Moderate Ulcerative Colitis: Double-blind Placebo-controlled Trial. Clin Gastroenterol Hepatol 2024; 22:1295-1306.e7. [PMID: 38278200 DOI: 10.1016/j.cgh.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND & AIMS Coconut water (CW) is anti-inflammatory, can manipulate the gut microbiome, and is a rich source of potassium. Gut microbiome modulation improves outcomes in ulcerative colitis (UC), and potassium possesses in vitro anti-inflammatory property. We evaluated the effect of CW as an adjunct therapy for patients with mild-moderate UC. METHODS This single-center, double-blind, placebo-controlled trial randomized patients with mild to moderate (Simple Clinical Colitis Activity Index [SCCAI]: 3-9) endoscopically active UC (Ulcerative Colitis Endoscopic Index of Severity [UCEIS] >1) in 1:1 ratio to CW + standard medical therapy (SMT) vs placebo + SMT. Four hundred mL of CW was administered for 8 weeks. Primary outcome measure was clinical remission (SCCAI ≤2), and secondary outcome measures were clinical response (SCCAI decline ≥3) and adverse events at 8 weeks. Microbiome was analyzed at baseline and 8 weeks. RESULTS Of 121 patients screened, 95 were included for modified intention to treat analysis (CW, n = 49; placebo, n = 46) (mean age, 37.2 ± 11.2 years; males, 54.1%; disease duration, 48 months [interquartile range (IQR), 24-90 months]; pancolitis, 26.1%; SCCAI, 5 [IQR, 4-6]; UCEIS, 4 [IQR, 3-5]). Clinical response (57.1% vs 28.3%; odds ratio [OR], 3.4; 95% confidence interval [CI], 1.4-7.9; P = .01), remission (53.1% vs 28.3%; OR, 2.9; 95% CI, 1.2-6.7; P = .02), and proportion of patients with fecal calprotectin (FCP) <150 μg/g (30.6% vs 6.5%; OR, 6.3; 95% CI, 1.7-23.6; P = .003) were significantly higher in CW. The relative abundance of bacterial taxa that had a significant or trend towards negative correlation with SCCAI, UCEIS, or FCP increased at 8 weeks in CW, and this effect was independent of disease activity and dietary fiber. Adverse events were comparable, and no patient developed hyperkalemia. CONCLUSIONS CW was more effective than placebo for induction of clinical remission in patients with mild to moderate UC. The trial was prospectively registered on Clinical Trials Registry of India (ctri.nic.in, Number: CTRI/2019/03/01827).
Collapse
Affiliation(s)
- Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shubi Virmani
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Bajaj
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Manasvini Markandey
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Singh
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Divya Madan
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanav Kaushal
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Pabitra Sahu
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Sudheer Kumar Vuyyuru
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhaskar Kante
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Peeyush Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - David Mathew Thomas
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Kumar Mundhra
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar Singh
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahak Verma
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Raju Sharma
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Ranjan Dash
- Department of GI Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Nitika Monga
- Non-communicable Disease Division, Indian Council of Medical Research, New Delhi, India
| | - Amit Awasthi
- Department of Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Govind Makharia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Lee JH, Shin JH, Kim JY, Ju HJ, Kim GM. Exploring the Role of Gut Microbiota in Patients with Alopecia Areata. Int J Mol Sci 2024; 25:4256. [PMID: 38673841 PMCID: PMC11050148 DOI: 10.3390/ijms25084256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalances in gut microbiota reportedly contribute to the development of autoimmune diseases, but the association between the etiopathogenesis of alopecia areata (AA) and gut microbial dysbiosis remains unclear. This cross-sectional study was conducted to identify and compare the composition of the gut microbiome in patients affected by AA and those in a healthy control (HC) group, and to investigate possible bacterial biomarkers for the disease. Fecal samples were collected from 19 AA patients and 20 HCs to analyze the relationship with fecal bacteria. The three major genera constituting the gut microbiome of AA patients were Bacteroides, Blautia, and Faecalibacterium. The alpha diversity of the AA group was not statistically significant different from that of the HC group. However, bacterial community composition in the AA group was significantly different from that of HC group according to Jensen-Shannon dissimilarities. In patients with AA, we found an enriched presence of the genera Blautia and Eubacterium_g5 compared to the HC group (p < 0.05), whereas Bacteroides were less prevalent (p < 0.05). The gut microbiota of AA patients was distinct from those of the HC group. Our findings suggest a possible involvement of gut microbiota in in the as-yet-undefined pathogenesis of AA.
Collapse
Affiliation(s)
- Ji Hae Lee
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (J.H.S.); (J.Y.K.); (H.J.J.); (G.M.K.)
| | | | | | | | | |
Collapse
|
12
|
Peng J, Cai K, Chen G, Liu L, Peng L. Genetic evidence strengthens the bidirectional connection between gut microbiota and Shigella infection: insights from a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1361927. [PMID: 38495509 PMCID: PMC10941758 DOI: 10.3389/fmicb.2024.1361927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Background In recent investigations, substantial strides have been made in the precise modulation of the gut microbiota to prevent and treat a myriad of diseases. Simultaneously, the pressing issue of widespread antibiotic resistance and multidrug resistance resulting from Shigella infections demands urgent attention. Several studies suggest that the antagonistic influence of the gut microbiota could serve as a novel avenue for impeding the colonization of pathogenic microorganisms or treating Shigella infections. However, conventional research methodologies encounter inherent challenges in identifying antagonistic microbial agents against Shigella, necessitating a comprehensive and in-depth analysis of the causal relationship between Shigella infections and the gut microbiota. Materials and methods Utilizing the aggregated summary statistics from Genome-Wide Association Studies (GWAS), we conducted Mendelian Randomization (MR) analyses encompassing 18,340 participants to explore the interplay between the gut microbiota and Shigella infections. This investigation also involved 83 cases of Shigella infection patients and 336,396 control subjects. In the positive strand of our findings, we initially performed a preliminary analysis using the Inverse Variance Weighting (IVW) method. Subsequently, we undertook sensitivity analyses to assess the robustness of the results, addressing confounding factors' influence. This involved employing the Leave-One-Out method and scrutinizing funnel plots to ensure the reliability of the MR analysis outcomes. Conclusively, a reverse MR analysis was carried out, employing the Wald ratio method due to the exposure of individual Single Nucleotide Polymorphisms (SNPs). This was undertaken to explore the plausible associations between Shigella infections and genetically predicted compositions of the gut microbiota. Results In this study, we employed 2,818 SNPs associated with 211 species of gut microbiota as instrumental variables (IVs). Through IVW analysis, our positive MR findings revealed a significant negative correlation between the occurrence of Shigella infections and the phylum Tenericutes (OR: 0.18, 95% CI: 0.04-0.74, p = 0.02), class Mollicutes (OR: 0.18, 95% CI: 0.04-0.74, p = 0.02), genus Intestinimonas (OR: 0.16, 95% CI: 0.04-0.63, p = 0.01), genus Gordonibacter (OR: 0.39, 95% CI: 0.16-0.93, p = 0.03), and genus Butyrivibrio (OR: 0.44, 95% CI: 0.23-0.87, p = 0.02). Conversely, a positive correlation was observed between the occurrence of Shigella infections and genus Sutterella (OR: 10.16, 95% CI: 1.87-55.13, p = 0.01) and genus Alistipes (OR: 12.24, 95% CI: 1.71-87.34, p = 0.01). In sensitivity analyses, utilizing MR-Egger regression analysis and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) detection, all outcomes demonstrated robust stability. Simultaneously, in the reverse MR analysis, Shigella infections resulted in an upregulation of four bacterial genera and a downregulation of three bacterial genera. Conclusion In summation, the MR analysis outcomes corroborate the presence of bidirectional causal relationships between the gut microbiota and Shigella infections. This study not only unveils novel perspectives for the prevention and treatment of Shigella infections but also furnishes fresh insights into the mechanistic underpinnings of how the gut microbiota contributes to the pathogenesis of Shigella infections. Consequently, the established dual causal association holds promise for advancing our understanding and addressing the complexities inherent in the interplay between the gut microbiota and Shigella infections, thereby paving the way for innovative therapeutic interventions and preventive strategies in the realm of Shigella-related diseases.
Collapse
Affiliation(s)
- Jingyi Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Kun Cai
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Linxiao Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lili Peng
- The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Wang X, Li D, Ma C, Hu X, Chen F. Gut Microbiome and Metabolome Modulation by High-Hydrostatic-Pressure-Processed Tomato Juice. Nutrients 2024; 16:710. [PMID: 38474836 DOI: 10.3390/nu16050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/14/2024] Open
Abstract
High hydrostatic pressure (HHP) is a non-thermal pasteurization technology for the enhancement of food products' safety and quality. The components of tomato juice can be affected by HHP processing. Little is known about the effects of HHP-processed tomato juice on the gut microbiome and metabolism. Here, we performed high-throughput sequencing and metabolomics profiling to determine the critical differences in gut microbiota structure and metabolic profiles in mice administered with HHP-processed tomato juice. Tomato juice administration significantly increased the gut bacterial alpha diversity and the relative abundance of Bacteroides. The mice administered with HHP-processed tomato juice were characterized by the enrichment of Bacteroidetes, Alistieps, and Faecalibaculum compared with those administered with HTST-processed tomato juice. Moreover, HHP-processed tomato juice promoted SCFA levels, which were positively correlated with the enriched Alistieps. Our results show that HHP-processed tomato juice may drive healthy gut microbes and metabolites.
Collapse
Affiliation(s)
- Xuehua Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
| | - Chen Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
| |
Collapse
|
14
|
Alizadeh M, Wong U, Siaton BC, Patil SA, George L, Raufman JP, Scott WH, von Rosenvinge EC, Ravel J, Cross RK. ExpLOring the role of the intestinal MiCrobiome in InflammATory bowel disease-AssocIated SpONdylarthritis (LOCATION-IBD). Heliyon 2024; 10:e26571. [PMID: 38420375 PMCID: PMC10900801 DOI: 10.1016/j.heliyon.2024.e26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/12/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Background Inflammatory Bowel Disease (IBD)-associated arthritis is a frequent and potentially debilitating complication of IBD, that can affect those with or without active intestinal disease, and is often difficult to treat. The microbiome is known to play a role in IBD development and has been shown to be associated with inflammatory arthritis without concomitant IBD, but its role in IBD-associated arthritis is still unexplored. Further, disease localization is associated with development of IBD-associated arthritis, and stool compositional profiles are predictive of disease localization, yet mucosal location-specific microbiomes have not been well characterized. To address this gap in understanding, we designed a study (LOCATION-IBD) to characterize the mucosa-associated intestinal microbiome and metabolome in IBD-associated arthritis. Methods Adults with an established diagnosis of IBD undergoing clinical colonoscopy between May of 2021 and February of 2023 were invited to participate in this study; those interested in participation who met inclusion criteria were enrolled. Prior to enrollment, participants were stratified into those with or without IBD-associated arthritis. All participants were interviewed and had clinical and demographic data collected, and 97.8% completed clinical colonoscopy with biopsy collection. Results and conclusion A total of 182 participants, 53 with confirmed IBD-associated arthritis, were enrolled in this study, resulting in 1151 biopsies obtained for microbiome and metabolome analysis (median 6, mean 6.3 per participant). Clinical and demographic data obtained from the study population will be analyzed with microbiome and metabolome data obtained from biopsies, with the goal of better understanding the mechanisms underpinning the host-microbiome relationship associated the development of IBD-associated arthritis.
Collapse
Affiliation(s)
- Madeline Alizadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Uni Wong
- Department of Veterans Affairs, Washington DC Veterans Health Administration, Washington DC, USA
| | - Bernadette C Siaton
- Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seema A Patil
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Lauren George
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - William H Scott
- Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Erik C von Rosenvinge
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond K Cross
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Wang D, Russel WA, Macdonald KM, De Leon VM, Ay A, Belanger KD. Analysis of the gut microbiome in sled dogs reveals glucosamine- and activity-related effects on gut microbial composition. Front Vet Sci 2024; 11:1272711. [PMID: 38384960 PMCID: PMC10879321 DOI: 10.3389/fvets.2024.1272711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
The composition of the microbiome influences many aspects of physiology and health, and can be altered by environmental factors, including diet and activity. Glucosamine is a dietary supplement often administered to address arthritic symptoms in humans, dogs, and other mammals. To investigate how gut microbial composition varies with glucosamine supplementation, we performed 16S rRNA sequence analysis of fecal samples from 24 Alaskan and Inuit huskies and used mixed effects models to investigate associations with activity, age, and additional factors. Glucosamine ingestion, age, activity, sex, and diet were correlated with differences in alpha-diversity, with diversity decreasing in dogs consuming glucosamine. Beta-diversity analysis revealed clustering of dogs based on glucosamine supplementation status. Glucosamine supplementation and exercise-related activity were associated with greater inter-individual pairwise distances. At the family level, Lactobacillaceae and Anaerovoracaceae relative abundances were lower in supplemented dogs when activity was accounted for. At the genus level, Eubacterium [brachy], Sellimonus, Parvibacter, and an unclassified genus belonging to the same family as Parvibacter (Eggerthellaceae) all were lower in supplemented dogs, but only significantly so post-activity. Our findings suggest that glucosamine supplementation alters microbiome composition in sled dogs, particularly in the context of exercise-related activity.
Collapse
Affiliation(s)
- Dong Wang
- Department of Computer Science, Colgate University, Hamilton, NY, United States
- Department of Mathematics, Colgate University, Hamilton, NY, United States
| | - William A. Russel
- Department of Biology, Colgate University, Hamilton, NY, United States
| | | | | | - Ahmet Ay
- Department of Mathematics, Colgate University, Hamilton, NY, United States
- Department of Biology, Colgate University, Hamilton, NY, United States
| | | |
Collapse
|
16
|
Huynh D, Khaing MM. Exploring the Interconnections of Functional Gut Disorders and Inflammatory Bowel Disease: A Narrative Review Article. Cureus 2024; 16:e53699. [PMID: 38322093 PMCID: PMC10846347 DOI: 10.7759/cureus.53699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 02/08/2024] Open
Abstract
This review reveals details of the interaction between disorders of gut-brain interaction (DGBI) and inflammatory bowel disease (IBD) by providing an in-depth review of that relationship. The review provides a nuanced understanding of this multifaceted dynamic by spanning shared symptomatology, the impact of inflammation on functional aspects, and addressing diagnostic challenges, psychological influences, treatment strategies, and emerging research directions. By synthesizing current knowledge and identifying gaps in understanding, this article aims to contribute to the evolving discourse surrounding the interplay between IBD and DGBI, offering valuable insights for clinicians, researchers, and healthcare professionals navigating the complexities of gastrointestinal health.
Collapse
Affiliation(s)
- David Huynh
- Gastroenterology and Hepatology, The Prince Charles Hospital, Brisbane, AUS
| | - Myat Myat Khaing
- Gastroenterology and Hepatology, The Prince Charles Hospital, Brisbane, AUS
| |
Collapse
|
17
|
Souza CE, Jacobson NE, An MA, Droit L, Vega AA, Rosales M, Mihindukulasuriya KA, Pastrana K, Handley SA, Parkes M, Rimmer J, Wang D, Dinsdale EA, A. Edwards R, Segall AM. Draft genomes of 12 Bifidobacterium isolates from human IBD fecal samples. Microbiol Resour Announc 2024; 13:e0013023. [PMID: 38099679 PMCID: PMC10793331 DOI: 10.1128/mra.00130-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/19/2023] [Indexed: 01/18/2024] Open
Abstract
Twelve Bifidobacterium strains were isolated from fecal samples of inflammatory bowel disease patients and matched "household control" individuals. These include the species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum.
Collapse
Affiliation(s)
- Cole E. Souza
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Nicole E. Jacobson
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Michelle A. An
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alejandro A. Vega
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Mariel Rosales
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Kathie A. Mihindukulasuriya
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Karina Pastrana
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Miles Parkes
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, Division of Gastroenterology, Addenbrooke's NHS Trust Hospital, Cambridge, United Kingdom
| | - Joanna Rimmer
- Department of Medicine, Division of Gastroenterology, Addenbrooke's NHS Trust Hospital, Cambridge, United Kingdom
- Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration (FAME), College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration (FAME), College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Anca M. Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
18
|
Wang Z, Jiang D, Zhang M, Teng Y, Huang Y. Causal association between gut microbiota and fibromyalgia: a Mendelian randomization study. Front Microbiol 2024; 14:1305361. [PMID: 38260871 PMCID: PMC10800605 DOI: 10.3389/fmicb.2023.1305361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Background Fibromyalgia (FM) is a syndrome characterized by chronic and widespread musculoskeletal pain. A number of studies have implied a potential association between gut microbiota and FM. However, the casual association between gut microbiota and FM remains unknown. Method Mendelian randomization (MR) study was conducted using the summary statistics of genetic variants from the genome-wide association study (GWAS). Inverse variance weighted (IVW), combined with MR-Egger and weighted median were used to investigate the causal association between 119 gut microbiota genera and FM. Sensitivity analyses were performed on the MR results, including heterogeneity test, leave-one-out test and pleiotropy test. Results A total of 1,295 single nucleotide polymorphism (SNPs) were selected as instrumental variables (IVs), with no significant heterogeneity and pleiotropy according to the sensitivity analyses. Five gut microbiota genera were found to have significant casual association with FM. Coprococcus2 (OR = 2.317, p-value = 0.005, 95% CI: 1.289-4.167), Eggerthella (OR = 1.897, p-value = 0.001, 95% CI: 1.313-2.741) and Lactobacillus (OR = 1.576, p-value =0.020, 95% CI: 1.073-2.315) can increase the risk of FM. FamillyXIIIUCG001 (OR = 0.528, p-value = 0.038, 95% CI: 0.289-0.964) and Olsenella (OR = 0.747, p-value = 0.050, 95% CI: 0.557-1.000) can decrease the risk of FM. Conclusion This MR study found that gut microbiota is casually associated with FM. New insights into the mechanisms of FM mediated by gut microbiota are provided.
Collapse
Affiliation(s)
- Zhaohua Wang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
- College of life and Environmental Science, Minzu University of China, Beijing, China
| | - Dan Jiang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Min Zhang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
- College of life and Environmental Science, Minzu University of China, Beijing, China
| | - Yu Teng
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
- College of life and Environmental Science, Minzu University of China, Beijing, China
| | - Yaojiang Huang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
- College of life and Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
19
|
Essex M, Rios Rodriguez V, Rademacher J, Proft F, Löber U, Markó L, Pleyer U, Strowig T, Marchand J, Kirwan JA, Siegmund B, Forslund SK, Poddubnyy D. Shared and Distinct Gut Microbiota in Spondyloarthritis, Acute Anterior Uveitis, and Crohn's Disease. Arthritis Rheumatol 2024; 76:48-58. [PMID: 37471465 DOI: 10.1002/art.42658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE Spondyloarthritis (SpA) is a group of immune-mediated diseases highly concomitant with nonmusculoskeletal inflammatory disorders, such as acute anterior uveitis (AAU) and Crohn's disease (CD). The gut microbiome represents a promising avenue to elucidate shared and distinct underlying pathophysiology. METHODS We performed 16S ribosomal RNA sequencing on stool samples of 277 patients (72 CD, 103 AAU, and 102 SpA) included in the German Spondyloarthritis Inception Cohort and 62 back pain controls without any inflammatory disorder. Discriminatory statistical methods were used to disentangle microbial disease signals from one another and a wide range of potential confounders. Patients were naive to or had not received treatment with biological disease-modifying antirheumatic drugs (DMARDs) for >3 months before enrollment, providing a better approximation of a true baseline disease signal. RESULTS We identified a shared, immune-mediated disease signal represented by low abundances of Lachnospiraceae taxa relative to controls, most notably Fusicatenibacter, which was most abundant in controls receiving nonsteroidal antiinflammatory drug monotherapy and implied to partially mediate higher serum C-reactive protein. Patients with SpA showed an enrichment of Collinsella, whereas human leukocyte antigen (HLA)-B27+ individuals displayed enriched Faecalibacterium. CD patients had higher abundances of a Ruminococcus taxon, and previous conventional/synthetic DMARD therapy was associated with increased Akkermansia. CONCLUSION Our work supports the existence of a common gut dysbiosis in SpA and related inflammatory pathologies. We reveal shared and disease-specific microbial associations and suggest potential mediators of disease activity. Validation studies are needed to clarify the role of Fusicatenibacter in gut-joint inflammation, and metagenomic resolution is needed to understand the relationship between Faecalibacterium commensals and HLA-B27.
Collapse
Affiliation(s)
- Morgan Essex
- Experimental and Clinical Research Center (ECRC; a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Charité-Universitätsmedizin Berlin (a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Berlin, Germany
| | - Valeria Rios Rodriguez
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Rademacher
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Proft
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Löber
- ECRC, MDC, Charité-Universitätsmedizin Berlin and German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lajos Markó
- ECRC, MDC, Charité-Universitätsmedizin Berlin and German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Braunschweig, Germany, and Cluster of Excellence RESIST (EXC 2155), Hannover Medical School and Center for Individualized Infection Medicine (CiiM; a joint venture between the Helmholtz Center for Infection Research and the Hannover Medical School), Hannover, Germany
| | - Jérémy Marchand
- MDC and BIH Metabolomics Platform at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer A Kirwan
- MDC and BIH Metabolomics Platform at Charité-Universitätsmedizin Berlin, Berlin, Germany, and University of Nottingham School of Veterinary Medicine and Science, Loughborough, UK
| | - Britta Siegmund
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia K Forslund
- ECRC, MDC, Charité-Universitätsmedizin Berlin, and DZHK, Berlin, and Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Denis Poddubnyy
- Department of Gastroentergology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin and German Rheumatism Research Center (DRFZ), Berlin, Germany
| |
Collapse
|
20
|
Pistol GC, Pertea AM, Taranu I. The Use of Fruit and Vegetable by-Products as Enhancers of Health Status of Piglets after Weaning: The Role of Bioactive Compounds from Apple and Carrot Industrial Wastes. Vet Sci 2023; 11:15. [PMID: 38250921 PMCID: PMC10820549 DOI: 10.3390/vetsci11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
At weaning, piglets are exposed to a large variety of stressors, from environmental/behavioral factors to nutritional stress. Weaning transition affects the gastrointestinal tract especially, resulting in specific disturbances at the level of intestinal morphology, barrier function and integrity, mucosal immunity and gut microbiota. All these alterations are associated with intestinal inflammation, oxidative stress and perturbation of intracellular signaling pathways. The nutritional management of the weaning period aims to achieve the reinforcement of intestinal integrity and functioning to positively modulate the intestinal immunity and that of the gut microbiota and to enhance the health status of piglets. That is why the current research is focused on the raw materials rich in phytochemicals which could positively modulate animal health. The composition analysis of fruit, vegetable and their by-products showed that identified phytochemicals could act as bioactive compounds, which can be used as modulators of weaning-induced disturbances in piglets. This review describes nutritional studies which investigated the effects of bioactive compounds derived from fruit (apple) and vegetables (carrot) or their by-products on the intestinal architecture and function, inflammatory processes and oxidative stress at the intestinal level. Data on the associated signaling pathways and on the microbiota modulation by bioactive compounds from these by-products are also presented.
Collapse
Affiliation(s)
- Gina Cecilia Pistol
- Laboratory of Animal Biology, INCDBNA-IBNA, National Research—Development Institute for Animal Biology and Nutrition, 077015 Balotesti, Ilfov, Romania; (A.-M.P.); (I.T.)
| | | | | |
Collapse
|
21
|
Kragsnaes MS, Miguens Blanco J, Mullish BH, Serrano‐Contreras JI, Kjeldsen J, Horn HC, Pedersen JK, Munk HL, Nilsson AC, Salam A, Lewis MR, Chekmeneva E, Kristiansen K, Marchesi JR, Ellingsen T. Small Intestinal Permeability and Metabolomic Profiles in Feces and Plasma Associate With Clinical Response in Patients With Active Psoriatic Arthritis Participating in a Fecal Microbiota Transplantation Trial: Exploratory Findings From the FLORA Trial. ACR Open Rheumatol 2023; 5:583-593. [PMID: 37736702 PMCID: PMC10642255 DOI: 10.1002/acr2.11604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE We investigated intestinal permeability and fecal, plasma, and urine metabolomic profiles in methotrexate-treated active psoriatic arthritis (PsA) and how this related to clinical response following one sham or fecal microbiota transplantation (FMT). METHODS This exploratory study is based on the FLORA trial cohort, in which 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate-treatment, were included in a 26-week, double-blind, 1:1 randomized, sham-controlled trial. Participants were randomly allocated to receive either one healthy donor FMT (n = 15) or sham (n = 16) via gastroscopy. The primary trial end point was the proportion of treatment failures through 26 weeks. We performed a lactulose-to-mannitol ratio (LMR) test at baseline (n = 31) and at week 26 (n = 26) to assess small intestinal permeability. Metabolomic profiles in fecal, plasma, and urine samples collected at baseline, weeks 4, 12, and 26 were measured using 1 H Nuclear Magnetic Resonance. RESULTS Trial failures (n = 7) had significantly higher LMR compared with responders (n = 19) at week 26 (0.027 [0.017-0.33]) vs. 0.012 [0-0.064], P = 0.013), indicating increased intestinal permeability. Multivariate analysis revealed a significant model for responders (n = 19) versus failures (n = 12) at all time points based on their fecal (P < 0.0001) and plasma (P = 0.005) metabolomic profiles, whereas urine metabolomic profiles did not differ between groups (P = 1). Fecal N-acetyl glycoprotein GlycA correlated with Health Assessment Questionnaire Disability Index (coefficient = 0.50; P = 0.03) and fecal propionate correlated with American College of Rheumatology 20 response at week 26 (coefficient = 27, P = 0.02). CONCLUSION Intestinal permeability and fecal and plasma metabolomic profiles of patients with PsA were associated with the primary clinical trial end point, failure versus responder.
Collapse
Affiliation(s)
| | | | - Benjamin H. Mullish
- Imperial College London and St. Mary's Hospital, Imperial College Healthcare National Health Service TrustLondonUK
| | | | - Jens Kjeldsen
- Odense University Hospital and University of Southern DenmarkOdenseDenmark
| | | | | | | | | | - Ash Salam
- Imperial College London, Hammersmith Hospital CampusLondonUK
| | | | | | - Karsten Kristiansen
- University of Copenhagen, Copenhagen, Denmark, and Institute of Metagenomics, Qingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
| | | | - Torkell Ellingsen
- Odense University Hospital and University of Southern DenmarkOdenseDenmark
| |
Collapse
|
22
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
23
|
Abaidullah M, La S, Liu M, Liu B, Cui Y, Wang Z, Sun H, Ma S, Shi Y. Polysaccharide from Smilax glabra Roxb Mitigates Intestinal Mucosal Damage by Therapeutically Restoring the Interactions between Gut Microbiota and Innate Immune Functions. Nutrients 2023; 15:4102. [PMID: 37836386 PMCID: PMC10574425 DOI: 10.3390/nu15194102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Smilax glabra Roxb (S. glabra) is a conventional Chinese medicine that is mainly used for the reliability of inflammation. However, bioactive polysaccharides from S. glabra (SGPs) have not been thoroughly investigated. Here, we demonstrate for the first time that SGPs preserve the integrity of the gut epithelial layer and protect against intestinal mucosal injury induced by dextran sulfate sodium. Mechanistically, SGPs mitigated colonic mucosal injury by restoring the association between the gut flora and innate immune functions. In particular, SGPs increased the number of goblet cells, reduced the proportion of apoptotic cells, improved the differentiation of gut tight junction proteins, and enhanced mucin production in the gut epithelial layer. Moreover, SGPs endorsed the propagation of probiotic bacteria, including Lachnospiraceae bacterium, which strongly correlated with decreased pro-inflammatory cytokines via the blocking of the TLR-4 NF-κB and MyD88 pathways. Overall, our study establishes a novel use of SGPs for the treatment of inflammatory bowel disease (IBD)-associated mucosal injury and provides a basis for understanding the therapeutic effects of natural polysaccharides from the perspective of symbiotic associations between host innate immune mechanisms and the gut microbiome.
Collapse
Affiliation(s)
- Muhammad Abaidullah
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Shaokai La
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
24
|
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21:212. [PMID: 37596634 PMCID: PMC10436623 DOI: 10.1186/s12964-023-01219-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract. The absorption of SCFAs is mediated by substrate transporters, such as monocarboxylate transporter 1 and sodium-coupled monocarboxylate transporter 1, which promote cellular metabolism. An increasing number of studies have implicated metabolites produced by microorganisms as crucial executors of diet-based microbial influence on the host. SCFAs are important fuels for intestinal epithelial cells (IECs) and represent a major carbon flux from the diet, that is decomposed by the gut microbiota. SCFAs play a vital role in multiple molecular biological processes, such as promoting the secretion of glucagon-like peptide-1 by IECs to inhibit the elevation of blood glucose, increasing the expression of G protein-coupled receptors such as GPR41 and GPR43, and inhibiting histone deacetylases, which participate in the regulation of the proliferation, differentiation, and function of IECs. SCFAs affect intestinal motility, barrier function, and host metabolism. Furthermore, SCFAs play important regulatory roles in local, intermediate, and peripheral metabolisms. Acetate, propionate, and butyrate are the major SCFAs, they are involved in the regulation of immunity, apoptosis, inflammation, and lipid metabolism. Herein, we review the diverse functional roles of this major class of bacterial metabolites and reflect on their ability to affect intestine, metabolic, and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yu-Ning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Li-Ting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hui-Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Ming-Di Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
25
|
Zhang Z, Cheng L, Ning D. Gut microbiota and sepsis: bidirectional Mendelian study and mediation analysis. Front Immunol 2023; 14:1234924. [PMID: 37662942 PMCID: PMC10470830 DOI: 10.3389/fimmu.2023.1234924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Background There is a growing body of evidence that suggests a connection between the composition of gut microbiota and sepsis. However, more research is needed to better understand the causal relationship between the two. To gain a deeper insight into the association between gut microbiota, C-reactive protein (CRP), and sepsis, we conducted several Mendelian randomization (MR) analyses. Methods In this study, publicly available genome-wide association study (GWAS) summary statistics were examined to determine the correlation between gut microbiota and sepsis, including various sepsis subgroups (such as under 75, 28-day death, Critical Care Units (ICU), 28-day death in ICU). Initially, two-sample and reverse Mendelian randomization (MR) analyses were conducted to identify causality between gut microbiota and sepsis. Subsequently, multivariable and two-step MR analyses revealed that the relationship between microbiota and sepsis was mediated by CRP. The robustness of the findings was confirmed through several sensitivity analyses. Findings In our study, we revealed positive correlations between 24 taxa and different sepsis outcomes, while 30 taxa demonstrated negative correlations with sepsis outcomes. Following the correction for multiple testing, we found that the Phylum Lentisphaerae (OR: 0.932, p = 2.64E-03), class Lentisphaeria, and order Victivallales (OR: 0.927, p = 1.42E-03) displayed a negative relationship with sepsis risk. In contrast, Phylum Tenericutes and class Mollicutes (OR: 1.274, p = 2.89E-03) were positively related to sepsis risk and death within 28 days. It is notable that Phylum Tenericutes and class Mollicutes (OR: 1.108, p = 1.72E-03) also indicated a positive relationship with sepsis risk in individuals under 75. From our analysis, it was shown that C-reactive protein (CRP) mediated 32.16% of the causal pathway from Phylum Tenericutes and class Mollicutes to sepsis for individuals under 75. Additionally, CRP was found to mediate 31.53% of the effect of the genus Gordonibacter on sepsis. Despite these findings, our reverse analysis did not indicate any influence of sepsis on the gut microbiota and CRP levels. Conclusion The study showcased the connection between gut microbiota, CRP, and sepsis, which sheds new light on the potential role of CRP as a mediator in facilitating the impact of gut microbiota on sepsis.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Health Management, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Lin Cheng
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Dong Ning
- Discipline of Physiology, Human Biology Building, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
26
|
Cao F, Jin L, Gao Y, Ding Y, Wen H, Qian Z, Zhang C, Hong L, Yang H, Zhang J, Tong Z, Wang W, Chen X, Mao Z. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. NATURE NANOTECHNOLOGY 2023; 18:617-627. [PMID: 36973397 DOI: 10.1038/s41565-023-01346-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Inflammatory bowel disease can be caused by the dysfunction of the intestinal mucosal barrier and dysregulation of gut microbiota. Traditional treatments use drugs to manage inflammation with possible probiotic therapy as an adjuvant. However, current standard practices often suffer from metabolic instability, limited targeting and result in unsatisfactory therapeutic outcomes. Here we report on artificial-enzyme-modified Bifidobacterium longum probiotics for reshaping a healthy immune system in inflammatory bowel disease. Probiotics can promote the targeting and retention of the biocompatible artificial enzymes to persistently scavenge elevated reactive oxygen species and alleviate inflammatory factors. The reduced inflammation caused by artificial enzymes improves bacterial viability to rapidly reshape the intestinal barrier functions and restore the gut microbiota. The therapeutic effects are demonstrated in murine and canine models and show superior outcomes to traditional clinical drugs.
Collapse
Affiliation(s)
- Fangfang Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongyang Wen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenyin Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jiaojiao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Marquez-Ortiz RA, Leon M, Abril D, Escobar-Perez J, Florez-Sarmiento C, Parra-Izquierdo V, Chalem P, Romero-Sanchez C. Colonoscopy aspiration lavages for mucosal metataxonomic profiling of spondylarthritis-associated gastrointestinal tract alterations. Sci Rep 2023; 13:7015. [PMID: 37117227 PMCID: PMC10147911 DOI: 10.1038/s41598-023-33597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
The study of the GI-tract microbiota of spondylarthritis (SpA) patients has focused on the analysis of feces samples, that picture mostly the luminal microbiota. The aim of this study was to determine the contribution of mucosal and luminal microbiome to the gut dysbiosis in SpA, using colonoscopy aspiration lavages (CAL), a recent alternative for regional studies of the GI-tract. We analyzed 59 CAL (from sigmoid colon and distal ileum), and 41 feces samples, from 32 SpA patients and 7 healthy individuals, using 16S rRNA gene-targeted metataxonomic profiling. It was found high prevalence of GI-tract manifestations among SpA patients (65.3%). Metataxonomic profiling, confirmed CAL samples from the lower GI tract (colon or ileum) presented a distinctive and undifferentiated bacteriome and separate from that found in feces' samples or in the beginning of the GI tract (oral cavity (OC)). Lower GI-tract samples and feces of SpA patients exhibited similar behavior to the microbiota of IBD group with reduced microbial richness and diversity, comparing to the healthy controls. Interestingly, it was found increase in proinflammatory taxa in SpA patients, such as Enterobacteriaceae family (mostly in the ileum), Succinivibrio spp. and Prevotella stercorea. Conversely, SpA patients presented significant decrease in the SCFA producers Coprococcus catus and Eubacterium biforme. Our data support the value of CAL samples for the regional study of GI-tract and contribute with information of potential "disruptor taxa" involved in the GI-tract associated disorders observed in SpA patients.
Collapse
Affiliation(s)
- Ricaurte A Marquez-Ortiz
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia.
| | - Moises Leon
- Master's Program in Basic Biomedical Sciences, Faculty of Science, Universidad El Bosque, Bogotá, Colombia
| | - Deisy Abril
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
| | - Javier Escobar-Perez
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
| | - Cristian Florez-Sarmiento
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
- Gastroadvanced, Bogotá, Colombia
| | - Viviana Parra-Izquierdo
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
- Gastroadvanced, Bogotá, Colombia
| | - Philippe Chalem
- Fundación Instituto de Reumatología Fernando Chalem, Bogotá, Colombia
| | - Consuelo Romero-Sanchez
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia.
- Hospital Militar Central, Rheumatology and Immunology Department, Bogotá, Colombia.
- Clinical Immunology Group, School of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia.
| |
Collapse
|
28
|
Xie Y, Xu W, Jin Z, Zhao K. Chondroitin sulfate functionalized palmitic acid and cysteine cografted-quaternized chitosan for CD44 and gut microbiota dual-targeted delivery of curcumin. Mater Today Bio 2023. [DOI: 10.1016/j.mtbio.2023.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
29
|
Tannic Acid Induces Intestinal Dysfunction and Intestinal Microbial Dysregulation in Brandt's Voles ( Lasiopodomys brandtii). Animals (Basel) 2023; 13:ani13040586. [PMID: 36830373 PMCID: PMC9951651 DOI: 10.3390/ani13040586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Brandt's vole (Lasiopodomys brandtii) is a small herbivorous mammal that feeds on plants rich in secondary metabolites (PSMs), including tannins. However, plant defense mechanisms against herbivory by Brandt's voles are not clearly established. This study aimed to investigate the effects of dietary tannic acid (TA) on the growth performance, intestinal morphology, digestive enzyme activities, cecal fermentation, intestinal barrier function, and gut microbiota in Brandt's voles. The results showed that TA significantly hindered body weight gain, reduced daily food intake, changed the intestinal morphology, reduced digestive enzyme activity, and increased the serum zonulin levels (p < 0.05). The number of intestinal goblet and mast cells and the levels of serum cytokines and immunoglobulins (IgA, IgG, TNF-α, IL-6, and duodenal SlgA) were all reduced by TA (p < 0.05). Moreover, TA altered β-diversity in the colonic microbial community (p < 0.05). In conclusion, the results indicate that TA could damage the intestinal function of Brandt's voles by altering their intestinal morphology, decreasing digestive ability and intestinal barrier function, and altering microbiota composition. Our study investigated the effects of natural PSMs on the intestinal function of wildlife and improved our general understanding of plant-herbivore interactions and the ecological role of PSMs.
Collapse
|
30
|
Prada P, Brunel B, Moulin D, Rouillon L, Netter P, Loeuille D, Slimano F, Bouche O, Peyrin-Biroulet L, Jouzeau JY, Piot O. Identification of circulating biomarkers of Crohn's disease and spondyloarthritis using Fourier transform infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200200. [PMID: 36112612 DOI: 10.1002/jbio.202200200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Crohn's disease (CD) and spondyloarthritis (SpA) are two inflammatory diseases sharing many common features (genetic polymorphism, armamentarium). Both diseases lack diagnostic markers of certainty. While the diagnosis of CD is made by a combination of clinical, and biological criteria, the diagnosis of SpA may take several years to be confirmed. Based on the hypothesis that CD and SpA alter the biochemical profile of plasma, the objective of this study was to evaluate the analytical capability of Fourier transform infrared spectroscopy (FTIR) in identifying spectral biomarkers. Plasma from 104 patients was analyzed. After data processing of the spectra by Extended Multiplicative Signal Correction and linear discriminant analysis, we demonstrated that it was possible to distinguish CD and SpA from controls with an accuracy of 97% and 85% respectively. Spectral differences were mainly associated with proteins and lipids. This study showed that FTIR analysis is efficient to identify plasma biosignatures specific to CD or SpA.
Collapse
Affiliation(s)
- Pierre Prada
- EA7506-BioSpectroscopie Translationnelle (BioSpecT), Université de Reims Champagne-Ardenne, Reims, France
| | - Benjamin Brunel
- EA7506-BioSpectroscopie Translationnelle (BioSpecT), Université de Reims Champagne-Ardenne, Reims, France
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, Besançon, France
| | - David Moulin
- Ingénierie Moléculaire et Ingénierie Articulaire (IMoPA), UMR-7365 CNRS, Faculté de Médecine, Université de Lorraine et Hôpital Universitaire de Nancy, Nancy, France
| | - Lise Rouillon
- EA7506-BioSpectroscopie Translationnelle (BioSpecT), Université de Reims Champagne-Ardenne, Reims, France
| | - Patrick Netter
- Ingénierie Moléculaire et Ingénierie Articulaire (IMoPA), UMR-7365 CNRS, Faculté de Médecine, Université de Lorraine et Hôpital Universitaire de Nancy, Nancy, France
| | - Damien Loeuille
- Ingénierie Moléculaire et Ingénierie Articulaire (IMoPA), UMR-7365 CNRS, Faculté de Médecine, Université de Lorraine et Hôpital Universitaire de Nancy, Nancy, France
| | - Florian Slimano
- EA7506-BioSpectroscopie Translationnelle (BioSpecT), Université de Reims Champagne-Ardenne, Reims, France
| | - Olivier Bouche
- EA7506-BioSpectroscopie Translationnelle (BioSpecT), Université de Reims Champagne-Ardenne, Reims, France
| | - Laurent Peyrin-Biroulet
- Département de Gastroentérologie, Hôpital Universitaire de Nancy-Brabois, Vandœuvre-lès-Nancy, France
| | - Jean-Yves Jouzeau
- Ingénierie Moléculaire et Ingénierie Articulaire (IMoPA), UMR-7365 CNRS, Faculté de Médecine, Université de Lorraine et Hôpital Universitaire de Nancy, Nancy, France
| | - Olivier Piot
- EA7506-BioSpectroscopie Translationnelle (BioSpecT), Université de Reims Champagne-Ardenne, Reims, France
- Plateforme d'Imagerie Cellulaire ou Tissulaire (PICT), Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
31
|
Oxymatrine ameliorated experimental colitis via mechanisms involving inflammatory DCs, gut microbiota and TLR/NF-κB pathway. Int Immunopharmacol 2023; 115:109612. [PMID: 36584572 DOI: 10.1016/j.intimp.2022.109612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
It is common knowledge that the crosstalk of gut microbiota (GM) and dendritic cells (DCs) are critical for the pathogenesis of inflammatory bowel disease (IBD). As a major bioactive constituent derived from the root of the Sophora flavescens, Oxymatrine (OMT) was used to treat IBD in China. However, it is still unknown whether OMT ameliorates IBD by regulating the crosstalk between DCs and GM. In the present study, after 10 days of OMT (100 mg/kg/day) treated mice with colitis induced by dextran sulfate sodium (DSS), the change rate of body weight, colon weight, colon weight index, colon length, DAI score and colonic pathological damage scores of colitis mice were significantly ameliorate, followed with fewer ulceration and inflammatory cell infiltration, the increased expression of IL-4 and IL-13, and the decreased expression of CCL-2, IL-33 and IFN-γ. The percents of inflammatory DCs (such as TNF-α+DCs, iNOS+DCs, CXCR5+DCs and E-cadherin+DCs) were markedly decreased, and the GM composition was regulated. Importantly, it is positive correlated between the efficacy of OMT on colitis, GM and inflammatory DCs. Meanwhile, Western blotting assay showed that OMT suppressed the activation of TLR4, Myd88, IRAK4, IRAK1, TRAF6, TAK1, TAB, MKK3, MKK6, P38, NF-κB in the TLR / NF-κB signaling pathway. In summary, OMT exhibits the protective effect against the DSS-induced experimental colitis, which was achieved by regulating the crosstalk of inflammatory DCs and GM, and inhibiting the TLR / NF-κB signaling pathway.
Collapse
|
32
|
Lan K, Yang H, Zheng J, Hu H, Zhu T, Zou X, Hu B, Liu H. Poria cocos oligosaccharides ameliorate dextran sodium sulfate-induced colitis mice by regulating gut microbiota dysbiosis. Food Funct 2023; 14:857-873. [PMID: 36537246 DOI: 10.1039/d2fo03424g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poria cocos, a widely accepted function food in China, has multiple pharmacological activities. This study aimed to investigate the therapeutic effect and molecular mechanism of Poria cocos oligosaccharides (PCOs) against dextran sodium sulfate (DSS)-induced mouse colitis. In this study, BALB/c mice were treated with 3% (w/v) DSS for seven days to establish a colitis model. The results showed that oral administration of PCOs (200 mg per kg per day) significantly reversed the changes in the physiological indices in colitis mice, including body weight, disease activity index scores (DAI), spleen index, and colon length. From the qRT-PCR assay, it was observed that PCOs suppressed the mRNA expression of pro-inflammatory cytokines, such as Tnf-α, Il-1β, and Il-6. In addition, PCOs protected the intestinal barrier from damage by promoting the expression of mucins and tight junction proteins at both mRNA and protein levels. Upon 16S rDNA sequencing, it was observed that PCO treatment partly reversed the changes in the gut microbiota of colitis mice by selectively regulating the abundance of specific bacteria. And Odoribacter, Muribaculum, Desulfovibrio, Oscillibacter, Escherichia-Shigella, and Turicibacter might be the critical bacteria in improving colitis via PCOs. Finally, using antibiotic mixtures to destroy the intestinal bacteria, we documented that PCO fermentation broth (PCO FB) instead of PCOs prevented the occurrence of colitis in gut microbiota-depleted mice. In conclusion, PCOs showed a protective effect on colitis by reversing gut microbiota dysbiosis. Our study sheds light on the potential application of PCOs as a prebiotic for treating colitis.
Collapse
Affiliation(s)
- Ke Lan
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Xiaojuan Zou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| |
Collapse
|
33
|
Shim JA, Ryu JH, Jo Y, Hong C. The role of gut microbiota in T cell immunity and immune mediated disorders. Int J Biol Sci 2023; 19:1178-1191. [PMID: 36923929 PMCID: PMC10008692 DOI: 10.7150/ijbs.79430] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies revealed that the microbiome play a critical role in both physiological and pathological immune system. The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic inflammations. We also discuss the limitations of current experimental animal models, cutting-edge developments and current challenges to overcome in the field, and the possibility of considering gut microbiome in the development of new drug.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Ha Ryu
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
34
|
Hoefer CC, Hollon LK, Campbell JA. The Role of the Human Gutome on Chronic Disease: A Review of the Microbiome and Nutrigenomics. Clin Lab Med 2022; 42:627-643. [PMID: 36368787 DOI: 10.1016/j.cll.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carrie C Hoefer
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, MSB 3005, Cincinnati, OH 45267, USA.
| | - Leah K Hollon
- Richmond Natural Medicine, National University of Natural Medicine Residency, 9211 Forest Hill Avenue, Richmond, VA 23235, USA
| | - Jennifer A Campbell
- Manchester University, College of Pharmacy, Natural, and Health Sciences, 10627 Diebold Road, Fort Wayne, IN 46845, USA
| |
Collapse
|
35
|
Wu X, Khatun A, Kasmani MY, Chen Y, Zheng S, Atkinson S, Nguyen C, Burns R, Taparowsky EJ, Salzman NH, Hand TW, Cui W. Group 3 innate lymphoid cells require BATF to regulate gut homeostasis in mice. J Exp Med 2022; 219:e20211861. [PMID: 36048018 PMCID: PMC9440727 DOI: 10.1084/jem.20211861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 12/22/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are crucial for the maintenance of host-microbiota homeostasis in gastrointestinal mucosal tissues. The mechanisms that maintain lineage identity of intestinal ILC3s and ILC3-mediated orchestration of microbiota and mucosal T cell immunity are elusive. Here, we identified BATF as a gatekeeper of ILC3 homeostasis in the gut. Depletion of BATF in ILC3s resulted in excessive interferon-γ production, dysbiosis, aberrant T cell immune responses, and spontaneous inflammatory bowel disease (IBD), which was considerably ameliorated by the removal of adaptive immunity, interferon-γ blockade, or antibiotic treatment. Mechanistically, BATF directly binds to the cis-regulatory elements of type 1 effector genes, restrains their chromatin accessibility, and inhibits their expression. Conversely, BATF promotes chromatin accessibility of genes involved in MHCII antigen processing and presentation pathways, which in turn directly promotes the transition of precursor ILC3s to MHCII+ ILC3s. Collectively, our findings reveal that BATF is a key transcription factor for maintaining ILC3 stability and coordinating ILC3-mediated control of intestinal homeostasis.
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Moujtaba Y. Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Samantha Atkinson
- Department of Pediatrics, Division of Gastroenterology and Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
| | - Christine Nguyen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Elizabeth J. Taparowsky
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN
| | - Nita H. Salzman
- Department of Pediatrics, Division of Gastroenterology and Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
| | - Timothy W. Hand
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
36
|
Eliseev MS, Kharlamova EN, Zhelyabina OV, Lila AM. Microbiota as a new pathogenetic factor in the development of chronic hyperuricemia and gout. Part I: the current state of the problem. MODERN RHEUMATOLOGY JOURNAL 2022. [DOI: 10.14412/1996-7012-2022-5-7-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The gut microbiota plays a key role in metabolism and immune regulation, and imbalance in microbial composition can contribute to various diseases. We present up-to-date data on the role of the gut microbiota in the occurrence of chronic hyperuricemia (HU) and gout, which is associated with the influence of the microbiota on the synthesis of purine-metabolizing enzymes and pro-inflammatory cytokines. It has been shown that the gut microbiota plays an important role in the pathophysiology of gout and can serve as a new target for therapy. Currently, the microbial index of gout is considered as a potential method for early diagnosis of the disease, possibly already at the preclinical stage. The gut microbiota can be a starting point in the study of the pathogenesis of HU and gout. This makes it necessary to assess the pathogenetic relationship between individual specific microorganisms, the microbiota as a whole, and the development of uric acid (UA) metabolism disorders that contribute to the onset of HU and its transformation into gout. It is assumed that this approach will provide a more complete understanding of the gut microbiota participation in the synthesis of UA and its extrarenal excretion, as well as of bacteria and bacterial enzymes that can be used as a probiotic coadjuvant for the treatment and prevention of gout.
Collapse
Affiliation(s)
| | | | | | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology;
Russian Medical Academy of Continuing Professional Education
| |
Collapse
|
37
|
Ishida T, Matsui H, Matsuda Y, Shimono T, Kanda S, Nishiyama T, Hosomi R, Fukunaga K, Yoshida M. Dietary Oyster (Crassostrea gigas) Extract Ameliorates Dextran Sulfate Sodium-Induced Chronic Experimental Colitis by Improving the Composition of Gut Microbiota in Mice. Foods 2022; 11:foods11142032. [PMID: 35885275 PMCID: PMC9317888 DOI: 10.3390/foods11142032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Previously, we have reported that the intake of oyster extract (OE), prepared from Pacific oysters (Crassostrea gigas), can attenuate symptoms of dextran sulfate sodium (DSS)-induced acute experimental colitis in mice. Herein, we aimed to evaluate whether OE intake ameliorates chronic experimental colitis induced by repeated DSS administration in mice. Male C57BL/6J (4-week-old) mice were fed either the standard diet AIN93G (control diet) or the control diet containing 5.0% (w/w) OE (OE diet). After 21 days of diet feeding, chronic experimental colitis was induced by three cycles of 2.0% (w/w) DSS solution administration (5 days), followed by distilled water (5 days). Mice fed OE alleviated the shortened colonic length, increased the relative weight of the spleen, colonic histopathological score (regeneration), and blood in the stool score compared with mice fed control diet. A tendency to improve the α-diversity of fecal microbiota, which was exacerbated by colitis, was observed in mice fed OE. Correlation analysis suggested that the anti-colitis effect of OE intake could be related to the valeric acid content and relative abundances of Ruminococcus and Enterococcus in the feces. In conclusion, OE could ameliorate DSS-induced chronic experimental colitis by improving the gut environment, including the microbiota community and SCFA composition.
Collapse
Affiliation(s)
- Tatsuya Ishida
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Hiroyuki Matsui
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Yoshikazu Matsuda
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Ryota Hosomi
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
- Correspondence: ; Tel.: +81-66-3681-765
| | - Kenji Fukunaga
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
| | - Munehiro Yoshida
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
| |
Collapse
|
38
|
Yu D, Du J, Pu X, Zheng L, Chen S, Wang N, Li J, Chen S, Pan S, Shen B. The Gut Microbiome and Metabolites Are Altered and Interrelated in Patients With Rheumatoid Arthritis. Front Cell Infect Microbiol 2022; 11:763507. [PMID: 35145919 PMCID: PMC8821809 DOI: 10.3389/fcimb.2021.763507] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/28/2021] [Indexed: 01/04/2023] Open
Abstract
The relationship among the gut microbiome, global fecal metabolites and rheumatoid arthritis (RA) has not been systematically evaluated. In this study, we performed 16S rDNA sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based nontargeted metabolomic profiling on feces of 26 untreated RA patients and 26 healthy controls. Twenty-six genera and forty-one MS2-identified metabolites were significantly altered in the RA patients. Klebsiella, Escherichia, Eisenbergiella and Flavobacterium were more abundant in the RA patients, while Fusicatenibacter, Megamonas and Enterococcus were more abundant in the healthy controls. Function prediction analysis demonstrated that the biosynthesis pathways of amino acids, such as L-arginine and aromatic amino acids, were depleted in the RA group. In the metabolome results, fecal metabolites including glycerophospholipids (PC(18:3(9Z,12Z,15Z)/16:1(9Z)), lysoPE 19:1, lysoPE 18:0, lysoPC(18:0/0:0)), sphingolipids (Cer(d18:0/16:0), Cer(d18:0/12:0), Cer(d18:0/14:0)), kynurenic acid, xanthurenic acid and 3-hydroxyanthranilic acid were remarkably altered between the RA patients and healthy controls. Dysregulation of pathways, such as tryptophan metabolism, alpha-linolenic acid metabolism and glycerophospholipid metabolism, may contribute to the development of RA. Additionally, we revealed that the gut microbiome and metabolites were interrelated in the RA patients, while Escherichia was the core genus. By depicting the overall landscape of the intestinal microbiome and metabolome in RA patients, our study could provide possible novel research directions regarding RA pathogenesis and targeted therapy.
Collapse
Affiliation(s)
- Die Yu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Xia Pu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Liyuan Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Na Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Shiyong Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Shaobiao Pan
- Department of Rheumatology and Immunology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- *Correspondence: Shaobiao Pan, ; Bo Shen,
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- *Correspondence: Shaobiao Pan, ; Bo Shen,
| |
Collapse
|
39
|
Dietary Alaska Pollock Protein Attenuates the Experimental Colitis Induced by Dextran Sulfate Sodium via Regulation of Gut Microbiota and Its Metabolites in Mice. Metabolites 2022; 12:metabo12010044. [PMID: 35050166 PMCID: PMC8779829 DOI: 10.3390/metabo12010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Protein derived from fish has not only nutritional properties but also health-promoting properties. Few studies have examined the effect of dietary Alaska pollock protein (APP) on the anticolitis effect reported to be associated with metabolic syndrome (MetS). This study investigated the effect of APP intake on colitis symptoms, gut microbiota, and its metabolites in the experimental colitis mouse model induced by dextran sulfate sodium (DSS). Male C57BL/6J mice were divided into three groups: (1) DSS-untreated mice fed an American Institute of Nutrition (AIN) 93G diet (protein source is casein), (2) DSS-treated mice fed an AIN93G diet, and (3) DSS-treated mice fed an APP diet. After the mice were fed the diets for 21 days, experimental colitis was induced by three cycles of 2% DSS administration for 5 days followed by washouts over the course of 5 days. APP-reduced body weight loss increased the disease activity index, and elevated spleen weight and alleviated colon length shortening and colonic tissue damage. Furthermore, APP altered the structure and composition of the microbiota and short-chain fatty acids in feces. Since APP intake alleviates experimental colitis induced by DSS administration through alterations in the gut microbiota and its metabolites, we deduced that APP would inhibit MetS progression via colitis suppression.
Collapse
|
40
|
Wang X, Xiao Y, Xu X, Guo L, Yu Y, Li N, Xu C. Characteristics of Fecal Microbiota and Machine Learning Strategy for Fecal Invasive Biomarkers in Pediatric Inflammatory Bowel Disease. Front Cell Infect Microbiol 2021; 11:711884. [PMID: 34950604 PMCID: PMC8688824 DOI: 10.3389/fcimb.2021.711884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Early diagnosis and treatment of pediatric Inflammatory bowel disease (PIBD) is challenging due to the complexity of the disease and lack of disease specific biomarkers. The novel machine learning (ML) technique may be a useful tool to provide a new route for the identification of early biomarkers for the diagnosis of PIBD. Methods In total, 66 treatment naive PIBD patients and 27 healthy controls were enrolled as an exploration cohort. Fecal microbiome profiling using 16S rRNA gene sequencing was performed. The correlation between microbiota and inflammatory and nutritional markers was evaluated using Spearman's correlation. A random forest model was used to set up an ML approach for the diagnosis of PIBD using 1902 markers. A validation cohort including 14 PIBD and 48 irritable bowel syndrome (IBS) was enrolled to further evaluate the sensitivity and accuracy of the model. Result Compared with healthy subjects, PIBD patients showed a significantly lower diversity of the gut microbiome. The increased Escherichia-Shigella and Enterococcus were positively correlated with inflammatory markers and negatively correlated with nutrition markers, which indicated a more severe disease. A diagnostic ML model was successfully set up for differential diagnosis of PIBD integrating the top 11 OTUs. This diagnostic model showed outstanding performance at differentiating IBD from IBS in an independent validation cohort. Conclusion The diagnosis penal based on the ML of the gut microbiome may be a favorable tool for the precise diagnosis and treatment of PIBD. A study of the relationship between disease status and the microbiome was an effective way to clarify the pathogenesis of PIBD.
Collapse
Affiliation(s)
- Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Li Guo
- Department of Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Yi Yu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Na Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Institute of Tropical Medicine, Hainan Medical University, HaiKou, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Nie K, Ma K, Luo W, Shen Z, Yang Z, Xiao M, Tong T, Yang Y, Wang X. Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Front Cell Infect Microbiol 2021; 11:757718. [PMID: 34881193 PMCID: PMC8647967 DOI: 10.3389/fcimb.2021.757718] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Roseburia intestinalis is an anaerobic, Gram-positive, slightly curved rod-shaped flagellated bacterium that produces butyrate in the colon. R. intestinalis has been shown to prevent intestinal inflammation and maintain energy homeostasis by producing metabolites. Evidence shows that this bacterium contributes to various diseases, such as inflammatory bowel disease, type 2 diabetes mellitus, antiphospholipid syndrome, and atherosclerosis. This review reveals the potential therapeutic role of R. intestinalis in human diseases. Patients with inflammatory bowel disease exhibit significant changes in R. intestinalis abundance, and they may benefit a lot from modulations targeting R. intestinalis. The data reviewed here demonstrate that R. intestinalis plays its role in regulating barrier homeostasis, immune cells, and cytokine release through its metabolite butyrate, flagellin and other. Recent advancements in the application of primary culture technology, culture omics, single-cell sequencing, and metabonomics technology have improved research on Roseburia and revealed the benefits of this bacterium in human health and disease treatment.
Collapse
Affiliation(s)
- Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Kejia Ma
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Zhenyu Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Mengwei Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Ting Tong
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yuanyuan Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
42
|
The gut-enthesis axis and the pathogenesis of Spondyloarthritis. Semin Immunol 2021; 58:101607. [PMID: 35850909 DOI: 10.1016/j.smim.2022.101607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
Subclinical inflammation is associated with Spondylarthritis (SpA). SpA patients show features of dysbiosis, altered gut barrier function, and local expansion of innate and innate-like cells involved in type 3 immune response. The recirculation of intestinal primed immune cells into the bloodstream and, in some cases, in the joints and the inflamed bone marrow of SpA patients gave the basis of the gut-joint axis theory. In the light of the critical role of enthesis in the pathogenesis of SpA and the identification of mucosal-derived immune cells residing into the normal human enthesis, a gut-enthesis axis is also likely to exist. This work reviews the current knowledge on enthesis-associated innate immune cells' primary involvement in enthesitis development, questions their origin, and critically discusses the clues supporting the existence of a gut-enthesis axis contributing to SpA development.
Collapse
|
43
|
Zhong YB, Kang ZP, Wang MX, Long J, Wang HY, Huang JQ, Wei SY, Zhou W, Zhao HM, Liu DY. Curcumin ameliorated dextran sulfate sodium-induced colitis via regulating the homeostasis of DCs and Treg and improving the composition of the gut microbiota. J Funct Foods 2021; 86:104716. [DOI: 10.1016/j.jff.2021.104716] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
Liu Y, Jin X, Tian L, Jian Z, Ma Y, Cheng L, Cui Y, Li H, Sun Q, Wang K. Lactiplantibacillus plantarum Reduced Renal Calcium Oxalate Stones by Regulating Arginine Metabolism in Gut Microbiota. Front Microbiol 2021; 12:743097. [PMID: 34630369 PMCID: PMC8498331 DOI: 10.3389/fmicb.2021.743097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Renal calcium oxalate (CaOx) stones are a common kidney disease. There are few methods for reducing the formation of these stones. However, the potential of probiotics for reducing renal stones has received increasing interest. We previously isolated a strain of Lactiplantibacillus plantarum N-1 from traditional cheese in China. This study aimed to investigate the effects of N-1 on renal CaOx crystal deposition. Thirty rats were randomly allocated to three groups: control group (ddH2O by gavage), model group [ddH2O by gavage and 1% ethylene glycol (EG) in drinking water], and Lactiplantibacillus group (N-1 by gavage and 1% EG in drinking water). After 4 weeks, compared with the model group, the group treated with N-1 exhibited significantly reduced renal crystals (P < 0.05). In the ileum and caecum, the relative abundances of Lactobacillus and Eubacterium ventriosum were higher in the control group, and those of Ruminococcaceae UCG 007 and Rikenellaceae RC9 were higher in the N-1-supplemented group. In contrast, the relative abundances of Staphylococcus, Corynebacterium 1, Jeotgalicoccus, Psychrobacter, and Aerococcus were higher in the model group. We also predicted that the arginase level would be higher in the ileal microbiota of the model group than in the N-1-supplemented group with PICRUSt2. The arginase activity was higher, while the level of arginine was lower in the ileal contents of the model group than in the N-1-supplemented group. The arginine level in the blood was also higher in the N-1-supplemented group than in the model group. In vitro studies showed that exposure to arginine could reduce CaOx crystal adhesion to renal epithelial HK-2 cells. Our findings highlighted the important role of N-1 in reducing renal CaOx crystals by regulating arginine metabolism in the gut microbiota. Probiotics containing L. plantarum N-1 may be potential therapies for preventing renal CaOx stones.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Jin
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Ma
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Cheng
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaqian Cui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Li
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kunjie Wang
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Nishio J, Negishi H, Yasui-Kato M, Miki S, Miyanaga K, Aoki K, Mizusawa T, Ueno M, Ainai A, Muratani M, Hangai S, Yanai H, Hasegawa H, Ishii Y, Tanji Y, Taniguchi T. Identification and characterization of a novel Enterococcus bacteriophage with potential to ameliorate murine colitis. Sci Rep 2021; 11:20231. [PMID: 34642357 PMCID: PMC8511138 DOI: 10.1038/s41598-021-99602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
Increase of the enteric bacteriophages (phage), components of the enteric virome, has been associated with the development of inflammatory bowel diseases. However, little is known about how a given phage contributes to the regulation of intestinal inflammation. In this study, we isolated a new phage associated with Enterococcus gallinarum, named phiEG37k, the level of which was increased in C57BL/6 mice with colitis development. We found that, irrespective of the state of inflammation, over 95% of the E. gallinarum population in the mice contained phiEG37k prophage within their genome and the phiEG37k titers were proportional to that of E. gallinarum in the gut. To explore whether phiEG37k impacts intestinal homeostasis and/or inflammation, we generated mice colonized either with E. gallinarum with or without the prophage phiEG37k. We found that the mice colonized with the bacteria with phiEG37k produced more Mucin 2 (MUC2) that serves to protect the intestinal epithelium, as compared to those colonized with the phage-free bacteria. Consistently, the former mice were less sensitive to experimental colitis than the latter mice. These results suggest that the newly isolated phage has the potential to protect the host by strengthening mucosal integrity. Our study may have clinical implication in further understanding of how bacteriophages contribute to the gut homeostasis and pathogenesis.
Collapse
Affiliation(s)
- Junko Nishio
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Department of Immunopathology and Immunoregulation, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Hideo Negishi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Mika Yasui-Kato
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shoji Miki
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-8 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Takuma Mizusawa
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Masami Ueno
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infection Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sho Hangai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infection Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-8 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
46
|
Chen Z, Luo J, Li J, Kim G, Chen ES, Xiao S, Snapper SB, Bao B, An D, Blumberg RS, Lin CH, Wang S, Zhong J, Liu K, Li Q, Wu C, Kuchroo VK. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J Exp Med 2021; 218:e20210324. [PMID: 34287641 PMCID: PMC8424467 DOI: 10.1084/jem.20210324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Mucus produced by goblet cells in the gastrointestinal tract forms a biological barrier that protects the intestine from invasion by commensals and pathogens. However, the host-derived regulatory network that controls mucus secretion and thereby changes gut microbiota has not been well studied. Here, we identify that Forkhead box protein O1 (Foxo1) regulates mucus secretion by goblet cells and determines intestinal homeostasis. Loss of Foxo1 in intestinal epithelial cells (IECs) results in defects in goblet cell autophagy and mucus secretion, leading to an impaired gut microenvironment and dysbiosis. Subsequently, due to changes in microbiota and disruption in microbiome metabolites of short-chain fatty acids, Foxo1 deficiency results in altered organization of tight junction proteins and enhanced susceptibility to intestinal inflammation. Our study demonstrates that Foxo1 is crucial for IECs to establish commensalism and maintain intestinal barrier integrity by regulating goblet cell function.
Collapse
Affiliation(s)
- Zuojia Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Eric S. Chen
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Sheng Xiao
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA
| | - Bin Bao
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Dingding An
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cheng-hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Jiaxin Zhong
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Kuai Liu
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Qiyuan Li
- Department of Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Chuan Wu
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vijay K. Kuchroo
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
47
|
Kragsnaes MS, Kjeldsen J, Horn HC, Munk HL, Pedersen JK, Just SA, Ahlquist P, Pedersen FM, de Wit M, Möller S, Andersen V, Kristiansen K, Kinggaard Holm D, Holt HM, Christensen R, Ellingsen T. Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial. Ann Rheum Dis 2021; 80:1158-1167. [PMID: 33926922 DOI: 10.1136/annrheumdis-2020-219511] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Although causality remains to be established, targeting dysbiosis of the intestinal microbiota by faecal microbiota transplantation (FMT) has been proposed as a novel treatment for inflammatory diseases. In this exploratory, proof-of-concept study, we evaluated the safety and efficacy of FMT in psoriatic arthritis (PsA). METHODS In this double-blind, parallel-group, placebo-controlled, superiority trial, we randomly allocated (1:1) adults with active peripheral PsA (≥3 swollen joints) despite ongoing treatment with methotrexate to one gastroscopic-guided FMT or sham transplantation into the duodenum. Safety was monitored throughout the trial. The primary efficacy endpoint was the proportion of participants experiencing treatment failure (ie, needing treatment intensification) through 26 weeks. Key secondary endpoints were change in Health Assessment Questionnaire Disability Index (HAQ-DI) and American College of Rheumatology (ACR20) response at week 26. RESULTS Of 97 screened, 31 (32%) underwent randomisation (15 allocated to FMT) and 30 (97%) completed the 26-week clinical evaluation. No serious adverse events were observed. Treatment failure occurred more frequently in the FMT group than in the sham group (9 (60%) vs 3 (19%); risk ratio, 3.20; 95% CI 1.06 to 9.62; p=0.018). Improvement in HAQ-DI differed between groups (0.07 vs 0.30) by 0.23 points (95% CI 0.02 to 0.44; p=0.031) in favour of sham. There was no difference in the proportion of ACR20 responders between groups (7 of 15 (47%) vs 8 of 16 (50%)). CONCLUSIONS In this first preliminary, interventional randomised controlled trial of FMT in immune-mediated arthritis, we did not observe any serious adverse events. Overall, FMT appeared to be inferior to sham in treating active peripheral PsA. TRIAL REGISTRATION NUMBER NCT03058900.
Collapse
Affiliation(s)
- Maja Skov Kragsnaes
- Rheumatology Research Unit, Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens Kjeldsen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Hans Christian Horn
- Rheumatology Research Unit, Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Heidi Lausten Munk
- Rheumatology Research Unit, Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | | | - Søren Andreas Just
- Section of Rheumatology, Department of Medicine, Svendborg Hospital, Svendborg, Denmark
| | | | | | | | - Sören Möller
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN - Open Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Vibeke Andersen
- IRS-Center Sønderjylland, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, BGI-Shenzhen, Shenzhen, China
| | | | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Robin Christensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Torkell Ellingsen
- Rheumatology Research Unit, Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Moisset X, Giraud P, Dallel R. Migraine in multiple sclerosis and other chronic inflammatory diseases. Rev Neurol (Paris) 2021; 177:816-820. [PMID: 34325914 DOI: 10.1016/j.neurol.2021.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Migraine is a very prevalent disease worldwide and is a major cause of disability. As known for a long time, migraine is associated with neurogenic inflammation. Epidemiological studies have shown that migraine is comorbid with several chronic inflammatory diseases, including multiple sclerosis (MS), chronic inflammatory rheumatic diseases (CIRDs) and inflammatory bowel diseases (IBDs). This brief narrative review highlights some recent data supporting a link between migraine and these three chronic inflammatory diseases. Studies found that migraine prevalence is approximately two-fold higher in these diseases compared to the general population. The causal link between migraine and these chronic inflammatory diseases has not been identified yet. Here, we suggest that systemic mediators (such as cytokines) and gut microbiome make migraine worse or add significant risks. Systemic inflammation biomarkers and gut microbiome modification are certainly avenues worth exploring.
Collapse
Affiliation(s)
- X Moisset
- Inserm, Neuro-Dol, Université Clermont-Auvergne, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - P Giraud
- Annecy-Genevois Hospital, 74370 Annecy, France
| | - R Dallel
- Inserm, Neuro-Dol, Université Clermont-Auvergne, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
49
|
Cai C, Zhu S, Tong J, Wang T, Feng Q, Qiao Y, Shen J. Relating the transcriptome and microbiome by paired terminal ileal Crohn disease. iScience 2021; 24:102516. [PMID: 34113837 PMCID: PMC8170125 DOI: 10.1016/j.isci.2021.102516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/28/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Management of terminal ileal Crohn disease (CD) is difficult due to fibrotic prognosis and failure to achieve mucosal healing. A limited number of synchronous analyses have been conducted on the transcriptome and microbiome in unpaired terminal ileum tissues. Therefore, our study focused on the transcriptome and mucosal microbiome in terminal ileal tissues of patients with CD with the aim of determining the role of cross-talk between the microbiome and transcriptome in the pathogenesis of terminal ileal CD. Mucosa-attached microbial communities were significantly associated with segmental inflammation status. Interaction-related transcription factors (TFs) are the panel nodes for cross-talk between the gene patterns and microbiome for terminal ileal CD. The transcriptome and microbiome in terminal ileal CD can be differently related to the local inflammatory status, and specific differentially expressed genes may be targeted for mucosal healing. TFs connect gene patterns with the microbiome by reflecting environmental stimuli and signals from microbiota.
Collapse
Affiliation(s)
- Chenwen Cai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
- Department of Gastroenterology, Huashan Hospital North, Fudan University, No.108 LuXiang Road, Shanghai 201907, China
| | - Sibo Zhu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinlu Tong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
| | - Tianrong Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Yuqi Qiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
| |
Collapse
|
50
|
Jugder BE, Kamareddine L, Watnick PI. Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histone acetyltransferase complex. Immunity 2021; 54:1683-1697.e3. [PMID: 34107298 DOI: 10.1016/j.immuni.2021.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Microbe-derived acetate activates the Drosophila immunodeficiency (IMD) pathway in a subset of enteroendocrine cells (EECs) of the anterior midgut. In these cells, the IMD pathway co-regulates expression of antimicrobial and enteroendocrine peptides including tachykinin, a repressor of intestinal lipid synthesis. To determine whether acetate acts on a cell surface pattern recognition receptor or an intracellular target, we asked whether acetate import was essential for IMD signaling. Mutagenesis and RNA interference revealed that the putative monocarboxylic acid transporter Tarag was essential for enhancement of IMD signaling by dietary acetate. Interference with histone deacetylation in EECs augmented transcription of genes regulated by the steroid hormone ecdysone including IMD targets. Reduced expression of the histone acetyltransferase Tip60 decreased IMD signaling and blocked rescue by dietary acetate and other sources of intracellular acetyl-CoA. Thus, microbe-derived acetate induces chromatin remodeling within enteroendocrine cells, co-regulating host metabolism and intestinal innate immunity via a Tip60-steroid hormone axis that is conserved in mammals.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|