1
|
Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021; 56:525-538. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a comprehensive regulator of vascular and airway tone. Endogenous NO produced by nitric oxide synthases regulates multiple signaling cascades, including activation of soluble guanylate cyclase to generate cGMP, relaxing smooth muscle cells. Inhaled NO is an established therapy for pulmonary hypertension in neonates, and has been recently proposed for the treatment of hypoxic respiratory failure and acute respiratory distress syndrome due to COVID-19. In this review, we summarize the effects of endogenous and exogenous NO on protein S-nitrosylation, which is the selective and reversible covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine. This posttranslational modification targets specific cysteines based on the acid/base sequence of surrounding residues, with significant impacts on protein interactions and function. S-nitrosothiol (SNO) formation is tightly compartmentalized and enzymatically controlled, but also propagated by nonenzymatic transnitrosylation of downstream protein targets. Redox-based nitrosylation and denitrosylation pathways dynamically regulate the equilibrium of SNO-proteins. We review the physiological roles of SNO proteins, including nitrosohemoglobin and autoregulation of blood flow through hypoxic vasodilation, and pathological effects of nitrosylation including inhibition of critical vasodilator enzymes; and discuss the intersection of NO source and dose with redox environment, in determining the effects of protein nitrosylation.
Collapse
Affiliation(s)
- Vikram Bhatia
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Lara Elnagary
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.,Section of Neonatology, Departments of Pediatrics and Physiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Reamtong O, Indrawattana N, Rungruengkitkun A, Thiangtrongjit T, Duangurai T, Chongsa-Nguan M, Pumirat P. Altered proteome of a Burkholderia pseudomallei mutant defective in short-chain dehydrogenase affects cell adhesion, biofilm formation and heat stress tolerance. PeerJ 2020; 8:e8659. [PMID: 32219018 PMCID: PMC7085900 DOI: 10.7717/peerj.8659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacillus that causes melioidosis and is recognized as an important public health problem in southeast Asia and northeast Australia. The treatment of B. pseudomallei infection is hampered by resistance to a wide range of antimicrobial agents and no vaccine is currently available. At present, the underlying mechanisms of B. pseudomallei pathogenesis are poorly understood. In our previous study, we reported that a B. pseudomallei short-chain dehydrogenase (SDO; BPSS2242) mutant constructed by deletion mutagenesis showed reduced B. pseudomallei invasion and initial intracellular survival. This indicated that SDO is associated with the pathogenesis of melioidosis. In the present study, the role of B. pseudomallei SDO was further investigated using the SDO deletion mutant by a proteomic approach. The protein profiles of the SDO mutant and wild-type K96243 were investigated through gel-based proteomic analysis. Quantitative intensity analysis of three individual cultures of the B. pseudomallei SDO mutant revealed significant down-regulation of five protein spots compared with the wild-type. Q-TOF MS/MS identified the protein spots as a glutamate/aspartate ABC transporter, prolyl-tRNA synthetase, Hsp70 family protein, quinone oxidoreductase and a putative carboxypeptidase. Functional assays were performed to investigate the role of these differentially expressed proteins in adhesion to host cells, biofilm induction and survival under heat stress conditions. The SDO deletion mutant showed a decreased ability to adhere to host cells. Moreover, biofilm formation and the survival rate of bacteria under heat stress conditions were also reduced in the mutant strain. Our findings provide insight into the role of SDO in the survival and pathogenesis of B. pseudomallei at the molecular level, which may be applied to the prevention and control of B. pseudomallei infection.
Collapse
Affiliation(s)
- Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Taksaon Duangurai
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Companion Animal Clinical Sciences/Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Manas Chongsa-Nguan
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Simple fluorescent reagents for monitoring disulfide reductase and S-nitroso reductase activities in vitro and in live cells in culture. Methods 2019; 168:29-34. [PMID: 31278980 DOI: 10.1016/j.ymeth.2019.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 06/30/2019] [Indexed: 11/20/2022] Open
Abstract
This study describes the theoretical basis and the methods for the facile synthesis and characterization of four fluorogenic probes, N-amido-O-aminobenzoyl-S-nitrosoglutathione (AOASNOG), N-thioamido-fluoresceinyl-S-nitroso-glutathione (TFSNOG), N,N-di(thioamido-fluoresceinyl)-cystine (DTFCys2) and N,N-di(thioamido-fluoresceinyl)-homocystine (DTFHCys2). In addition, the study describes the methodology for the application of these reagents for measuring and imaging of free thiols on cell surfaces as well as their use as pseudo substrates for the thiol reductase and S-nitrosothioldenitrosylase activities of protein disulfide isomerase (PDI) and S-nitrosothiol reductase activity of S-nitrosoglutathione reductase (GSNOR) in vitro and on live cells in culture.
Collapse
|
4
|
The role of short-chain dehydrogenase/oxidoreductase, induced by salt stress, on host interaction of B. pseudomallei. BMC Microbiol 2014; 14:1. [PMID: 24382268 PMCID: PMC3882111 DOI: 10.1186/1471-2180-14-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/21/2013] [Indexed: 12/16/2022] Open
Abstract
Background Burkholderia pseudomallei is the causative agent of melioidosis, a frequently occurring disease in northeastern Thailand, where soil and water high in salt content are common. Using microarray analysis, we previously showed that B. pseudomallei up-regulated a short-chain dehydrogenase/oxidoreductase (SDO) under salt stress. However, the importance of SDO in B. pseudomallei infection is unknown. This study aimed to explore the function of B. pseudomallei SDO, and to investigate its role in interactions between B. pseudomallei and host cells. Results Bioinformatics analysis of B. pseudomallei SDO structure, based on homology modeling, revealed a NAD+ cofactor domain and a catalytic triad containing Ser149, Tyr162, and Lys166. This is similar to Bacillus megaterium glucose 1-dehydrogenase. To investigate the role of this protein, we constructed a B. pseudomallei SDO defective mutant, measured glucose dehydrogenase (GDH) activity, and tested the interactions with host cells. The B. pseudomallei K96243 wild type exhibited potent GDH activity under condition containing 300 mM NaCl, while the mutant showed activity levels 15 times lower. Both invasion into the A549 cell line and early intracellular survival within the J774A.1 macrophage cell were impaired in the mutant. Complementation of SDO was able to restore the mutant ability to produce GDH activity, invade epithelial cells, and survive in macrophages. Conclusions Our data suggest that induced SDO activity during salt stress may facilitate B. pseudomallei invasion and affect initiation of successful intracellular infection. Identifying the role of B. pseudomallei SDO provides a better understanding of the association between bacterial adaptation and pathogenesis in melioidosis.
Collapse
|
5
|
Doctor A, Stamler JS. Nitric oxide transport in blood: a third gas in the respiratory cycle. Compr Physiol 2013; 1:541-68. [PMID: 23737185 DOI: 10.1002/cphy.c090009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The trapping, processing, and delivery of nitric oxide (NO) bioactivity by red blood cells (RBCs) have emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We present here an expanded paradigm for the human respiratory cycle based on the coordinated transport of three gases: NO, O₂, and CO₂. By linking O₂ and NO flux, RBCs couple vessel caliber (and thus blood flow) to O₂ availability in the lung and to O₂ need in the periphery. The elements required for regulated O₂-based signal transduction via controlled NO processing within RBCs are presented herein, including S-nitrosothiol (SNO) synthesis by hemoglobin and O₂-regulated delivery of NO bioactivity (capture, activation, and delivery of NO groups at sites remote from NO synthesis by NO synthase). The role of NO transport in the respiratory cycle at molecular, microcirculatory, and system levels is reviewed. We elucidate the mechanism through which regulated NO transport in blood supports O₂ homeostasis, not only through adaptive regulation of regional systemic blood flow but also by optimizing ventilation-perfusion matching in the lung. Furthermore, we discuss the role of NO transport in the central control of breathing and in baroreceptor control of blood pressure, which subserve O₂ supply to tissue. Additionally, malfunctions of this transport and signaling system that are implicated in a wide array of human pathophysiologies are described. Understanding the (dys)function of NO processing in blood is a prerequisite for the development of novel therapies that target the vasoactive capacities of RBCs.
Collapse
Affiliation(s)
- Allan Doctor
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO, USA
| | | |
Collapse
|
6
|
Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, Fotopoulos V, Molassiotis A. Nitrosative responses in citrus plants exposed to six abiotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:118-26. [PMID: 23685754 DOI: 10.1016/j.plaphy.2013.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 05/01/2023]
Abstract
Nitrosative status has emerged as a key component in plant response to abiotic stress; however, knowledge on its regulation by different environmental conditions remains unclear. The current study focused on nitrosative responses in citrus plants exposed to various abiotic stresses, including continuous light, continuous dark, heat, cold, drought and salinity. Morphological observations and physiological analysis showed that abiotic stress treatments were sensed by citrus plants. Furthermore, it was revealed that nitrosative networks are activated by environmental stress factors in citrus leaves as evidenced by increased nitrite (NO) content along with the release of NO and superoxide anion (O₂⁻) in the vascular tissues. The expression of genes potentially involved in NO production, such as NR, AOX, NADHox, NADHde, PAO and DAO, was affected by the abiotic stress treatments demonstrating that NO-derived nitrosative responses could be regulated by various pathways. In addition, S-nitrosoglutathione reductase (GSNOR) and nitrate reductase (NR) gene expression and enzymatic activity displayed significant changes in response to adverse environmental conditions, particularly cold stress. Peroxynitrite (ONOO⁻) scavenging ability of citrus plants was elicited by continuous light, dark or drought but was suppressed by salinity. In contrast, nitration levels were elevated by salinity and suppressed by continuous light or dark. Finally, S-nitrosylation patterns were enhanced by heat, cold or drought but were suppressed by dark or salinity. These results suggest that the nitrosative response of citrus plants is differentially regulated depending on the stress type and underscore the importance of nitrosative status in plant stress physiology.
Collapse
Affiliation(s)
- Vasileios Ziogas
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
7
|
Palmer LA, May WJ, deRonde K, Brown-Steinke K, Bates JN, Gaston B, Lewis SJ. Ventilatory responses during and following exposure to a hypoxic challenge in conscious mice deficient or null in S-nitrosoglutathione reductase. Respir Physiol Neurobiol 2012. [PMID: 23183419 DOI: 10.1016/j.resp.2012.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to a hypoxic challenge increases ventilation in wild-type (WT) mice that diminish during the challenge (roll-off) whereas return to room air causes an increase in ventilation (short-term facilitation, STF). Since plasma and tissue levels of ventilatory excitant S-nitrosothiols such as S-nitrosoglutathione (GSNO) increase during hypoxia, this study examined whether (1) the initial increase in ventilation is due to generation of GSNO, (2) roll-off is due to increased activity of the GSNO degrading enzyme, GSNO reductase (GSNOR), and (3) STF is limited by GSNOR activity. Initial ventilatory responses to hypoxic challenge (10% O(2), 90% N(2)) were similar in WT, GSNO+/- and GSNO-/- mice. These responses diminished markedly during hypoxic challenge in WT mice whereas there was minimal roll-off in GSNOR+/- and GSNOR-/- mice. Finally, STF was greater in GSNOR+/- and GSNOR-/- mice than in WT mice (especially females). This study suggests that GSNOR degradation of GSNO is a vital step in the expression of ventilatory roll-off and that GSNOR suppresses STF.
Collapse
Affiliation(s)
- Lisa A Palmer
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2089-103. [PMID: 22213812 PMCID: PMC3295397 DOI: 10.1093/jxb/err414] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/28/2011] [Accepted: 11/22/2011] [Indexed: 05/05/2023]
Abstract
Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - María C. Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
9
|
Glutathione homeostasis and functions: potential targets for medical interventions. JOURNAL OF AMINO ACIDS 2012; 2012:736837. [PMID: 22500213 PMCID: PMC3303626 DOI: 10.1155/2012/736837] [Citation(s) in RCA: 769] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 08/30/2011] [Accepted: 10/24/2011] [Indexed: 12/25/2022]
Abstract
Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health.
Collapse
|
10
|
Abstract
S-nitrosylation is a ubiquitous protein modification in redox-based signaling and forms S-nitrosothiol from nitric oxide (NO) on cysteine residues. Dysregulation of (S)NO signaling (nitrosative stress) leads to impairment of cellular function. Protein kinase C (PKC) is an important signaling protein that plays a role in the regulation of vascular function, and it is not known whether (S)NO affects PKC's role in vascular reactivity. We hypothesized that S-nitrosylation of PKC in vascular smooth muscle would inhibit its contractile activity. Aortic rings from male C57BL/6 mice were treated with auranofin or 1-chloro-2,4-dinitrobenzene (DNCB) as pharmacological tools, which lead to stabilize S-nitrosylation, and propylamine propylamine NONOate (PANOate) or S-nitrosocysteine (CysNO) as NO donors. Contractile responses of aorta to phorbol-12,13-dibutyrate, a PKC activator, were attenuated by auranofin, DNCB, PANOate, and CysNO. S-nitrosylation of PKCα was increased by auranofin or DNCB and CysNO as compared with control protein. Augmented S-nitrosylation inhibited PKCα activity and subsequently downstream signal transduction. These data suggest that PKC is inactivated by S-nitrosylation, and this modification inhibits PKC-dependent contractile responses. Because S-nitrosylation of PKC inhibits phosphorylation and activation of target proteins related to contraction, this posttranslational modification may be a key player in conditions of decreased vascular reactivity.
Collapse
|
11
|
Holzmeister C, Fröhlich A, Sarioglu H, Bauer N, Durner J, Lindermayr C. Proteomic analysis of defense response of wildtype Arabidopsis thaliana
and plants with impaired NO- homeostasis. Proteomics 2011; 11:1664-83. [DOI: 10.1002/pmic.201000652] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 01/01/2023]
|
12
|
Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft-Wilson R, Lysiak JJ, Gaston B, Palmer L, Isakson BE. Compartmentalized connexin 43 s-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 2010; 31:399-407. [PMID: 21071693 DOI: 10.1161/atvbaha.110.215939] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine whether S-nitrosylation of connexins (Cxs) modulates gap junction communication between endothelium and smooth muscle. METHODS AND RESULTS Heterocellular communication is essential for endothelium control of smooth muscle constriction; however, the exact mechanism governing this action remains unknown. Cxs and NO have been implicated in regulating heterocellular communication in the vessel wall. The myoendothelial junction serves as a conduit to facilitate gap junction communication between endothelial cells and vascular smooth muscle cells within the resistance vasculature. By using isolated vessels and a vascular cell coculture, we found that Cx43 is constitutively S-nitrosylated on cysteine 271 because of active endothelial NO synthase compartmentalized at the myoendothelial junction. Conversely, we found that stimulation of smooth muscle cells with the constrictor phenylephrine caused Cx43 to become denitrosylated because of compartmentalized S-nitrosoglutathione reductase, which attenuated channel permeability. We measured S-nitrosoglutathione breakdown and NO(x) concentrations at the myoendothelial junction and found S-nitrosoglutathione reductase activity to precede NO release. CONCLUSIONS This study provides evidence for compartmentalized S-nitrosylation/denitrosylation in the regulation of smooth muscle cell to endothelial cell communication.
Collapse
MESH Headings
- Alcohol Dehydrogenase
- Animals
- Cell Communication/physiology
- Cells, Cultured
- Connexin 43/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gap Junctions/metabolism
- Glutathione Reductase/genetics
- Glutathione Reductase/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phenylephrine/pharmacology
- S-Nitrosoglutathione/metabolism
- Vascular Resistance/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Adam C Straub
- Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bateman R, Rauh D, Shokat KM. Glutathione traps formaldehyde by formation of a bicyclo[4.4.1]undecane adduct. Org Biomol Chem 2007; 5:3363-7. [PMID: 17912391 PMCID: PMC2932697 DOI: 10.1039/b707602a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutathione forms complex reaction products with formaldehyde, which can be further modified through enzymatic modification. We studied the non-enzymatic reaction between glutathione and formaldehyde and identified a bicyclic complex containing two equivalents of formaldehyde and one glutathione molecule by protein X-ray crystallography (PDB accession number 2PFG). We have also used (1)H, (13)C and 2D NMR spectroscopy to confirm the structure of this unusual adduct. The key feature of this adduct is the involvement of the gamma-glutamyl alpha-amine and the Cys thiol in the formation of the bicyclic ring structure. These findings suggest that the structure of GSH allows for bi-dentate masking of the reactivity of formaldehyde. As this species predominates at near physiological pH values, we suggest this adduct may have biological significance.
Collapse
Affiliation(s)
- Raynard Bateman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, UCSF, 600 16 St., San Francisco, CA, 94143-2280, USA
- Chemistry and Chemical Biology Graduate Program, UCSF, 600 16 St., San Francisco, CA, 94143-2280, USA
| | - Daniel Rauh
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, UCSF, 600 16 St., San Francisco, CA, 94143-2280, USA
| | - Kevan M. Shokat
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, UCSF, 600 16 St., San Francisco, CA, 94143-2280, USA
| |
Collapse
|
14
|
Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, Sessa WC. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc Natl Acad Sci U S A 2006; 103:19777-82. [PMID: 17170139 PMCID: PMC1750883 DOI: 10.1073/pnas.0605907103] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) is a highly diffusible and short-lived physiological messenger. Despite its diffusible nature, NO modifies thiol groups of specific cysteine residues in target proteins and alters protein function via S-nitrosylation. Although intracellular S-nitrosylation is a specific posttranslational modification, the defined localization of an NO source (nitric oxide synthase, NOS) with protein S-nitrosylation has never been directly demonstrated. Endothelial NOS (eNOS) is localized mainly on the Golgi apparatus and in plasma membrane caveolae. Here, we show by using eNOS targeted to either the Golgi or the nucleus that S-nitrosylation is concentrated at the primary site of eNOS localization. Furthermore, localization of eNOS on the Golgi enhances overall Golgi protein S-nitrosylation, the specific S-nitrosylation of N-ethylmaleimide-sensitive factor and reduces the speed of protein transport from the endoplasmic reticulum to the plasma membrane in a reversible manner. These data indicate that local NOS action generates organelle-specific protein S-nitrosylation reactions that can regulate intracellular transport processes.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- *Section of Digestive Diseases
- Departments of Pharmacology and
- Hepatic Hemodynamic Laboratory, VA Connecticut Healthcare System, West Haven, CT 06516
| | | | - Suvro Chatterjee
- Gastroenterology Research Unit, Department of Physiology and Tumor Biology Program, Mayo Clinic, Rochester, MN 55905; and
| | - Derek K. Toomre
- Cell Biology, and
- Institute for Cancer Research, Yale University School of Medicine, New Haven, CT 06510
| | | | - David Fulton
- **Vascular Biology Center and Department of Pharmacology, Medical College of Georgia, Augusta, GA 30912
| | - Roberto J. Groszmann
- *Section of Digestive Diseases
- Hepatic Hemodynamic Laboratory, VA Connecticut Healthcare System, West Haven, CT 06516
| | - Vijay H. Shah
- Gastroenterology Research Unit, Department of Physiology and Tumor Biology Program, Mayo Clinic, Rochester, MN 55905; and
| | - William C. Sessa
- Departments of Pharmacology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 2006; 70:344-61. [PMID: 16760307 PMCID: PMC1489540 DOI: 10.1128/mmbr.00044-05] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neisseria gonorrhoeae is a host-adapted pathogen that colonizes primarily the human genitourinary tract. This bacterium encounters reactive oxygen and reactive nitrogen species as a consequence of localized inflammatory responses in the urethra of males and endocervix of females and also of the activity of commensal lactobacilli in the vaginal flora. This review describes recent advances in the understanding of defense systems against oxidative stress in N. gonorrhoeae and shows that while some of its defenses have similarities to the paradigm established with Escherichia coli, there are also some key differences. These differences include the presence of a defense system against superoxide based on manganese ions and a glutathione-dependent system for defense against nitric oxide which is under the control of a novel MerR-like transcriptional regulator. An understanding of the defenses against oxidative stress in N. gonorrhoeae and their regulation may provide new insights into the ways in which this bacterium survives challenges from polymorphonuclear leukocytes and urogenital epithelial cells.
Collapse
Affiliation(s)
- Kate L Seib
- The School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Hogg N. Formation and stability of S-nitrosothiols in RAW 264.7 cells. Am J Physiol Lung Cell Mol Physiol 2003; 287:L467-74. [PMID: 14672925 DOI: 10.1152/ajplung.00350.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S-Nitrosothiols have been suggested to be mediators of many nitric oxide-dependent processes, including apoptosis and vascular relaxation. Thiol nitrosation is a poorly understood process in vivo, and the mechanisms by which nitric oxide can be converted into a nitrosating agent have not been established. There is a discrepancy between the suggested biological roles of nitric oxide and its known chemical and physical properties. In this study, we have examined the formation of S-nitrosothiols in lipopolysaccharide-treated RAW 264.7 cells. This treatment generated 17.4 +/- 1.0 pmol/mg of protein (means +/- SE, n =27) of intracellular S-nitrosothiol that slowly decayed over several hours. S-Nitrosothiol formation depended on the formation of nitric oxide and not on the presence of nitrite. Extracellular thiols were nitrosated by cell-generated nitric oxide. Oxygenated ferrous hemoglobin inhibited the formation of S-nitrosothiol, indicating the nitrosation occurred more slowly than diffusion. We discuss several mechanisms for S-nitrosothiol formation and conclude that the nitrosation propensity of nitric oxide is a freely diffusible element that is not constrained within an individual cell and that both nitric oxide per se and nitric oxide-derived nitrosating agents are able to diffuse across cell membranes. To achieve intracellular localization of the nitrosation reaction, mechanisms must be invoked that do not involve the formation of nitric oxide as an intermediate.
Collapse
|