1
|
Prasad K, Raghu KS, Maruthiyodan S, Wadhwa R, Kaul SC, Satyamoorthy K, Guruprasad KP. Promotion of cellular differentiation and DNA repair potential in brain cancer cells by Clitoria ternatea L. with rasayana properties in vitro. J Ayurveda Integr Med 2025; 16:101050. [PMID: 39798267 PMCID: PMC11773022 DOI: 10.1016/j.jaim.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Brain ageing is accompanied by the diminution of neuronal plasticity, which is correlated with the inability to respond to loss of memory, various stress-induced stimuli, and increased risk of neurodegenerative disorders. In the recent past, plant based herbal medicines are of interest over synthetic drugs for therapeutic purposes due to lower side effects. The Indian traditional medicine Ayurveda describes several herbal remedies, such as rasayana (elixirs for rejuvenation), to treat many age-related diseases. Medhya rasayana (brain elixir) is a class of rasayana used for its nootropic functions, such as enhancement of memory and intellect, in addition to promoting normal health. Clitoria ternatea L. is one such plant used in the preparation of medhya rasayana. OBJECTIVE To investigate the neuronal differentiation and DNA repair potential of Shankhpushpi (Clitoria ternatea L.) in neuroblastoma cells. MATERIALS & METHODS The effect of Clitoria ternatea L. on neuronal cell differentiation, DNA repair (base excision repair, comet, γH2AX immunostaining assays), autophagy by cadaverine uptake and mitochondrial functions by fluorescent dye staining through flow cytometry were evaluated. RESULTS The results revealed that Clitoria ternatea L. enhanced DNA repair and mitochondrial membrane potential and reduced autophagy and reactive oxygen species (ROS) in IMR-32 neuroblastoma cells. Treatment of IMR-32 neuroblastoma and C6 glioblastoma cells with shankhpushpi induced neuronal differentiation and exhibited markers such as MAP2, Mortalin and GFAP. CONCLUSION Neurobiological pathways and molecular mechanisms influenced by rasayana herb shankhpushpi suggests its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Kothanahalli S Raghu
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Swathi Maruthiyodan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Sunil C Kaul
- Drug Discovery and Assets Innovation DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India; Shri Dharmasthala Manjunatheshwara (SDM) University, SDM College of Medical Sciences and Hospital, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| | - Kanive Parashiva Guruprasad
- Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Campos HM, Pereira RM, de Oliveira Ferreira PY, Uchenna N, Branco da Silva CR, Pruccoli L, Sanz G, Rodrigues MF, Vaz BG, Rivello BG, Batista da Rocha AL, de Carvalho FS, Oliveira GDAR, Lião LM, Georg RDC, Leite JA, Dos Santos FCA, Costa EA, Menegatti R, Tarozzi A, Ghedini PC. A novel arylpiperazine derivative (LQFM181) protects against neurotoxicity induced by 3- nitropropionic acid in in vitro and in vivo models. Chem Biol Interact 2024; 395:111026. [PMID: 38679115 DOI: 10.1016/j.cbi.2024.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
In the pursuit of novel antioxidant therapies for the prevention and treatment of neurodegenerative diseases, three new arylpiperazine derivatives (LQFM181, LQFM276, and LQFM277) were synthesized through a molecular hybridization approach involving piribedil and butylated hydroxytoluene lead compounds. To evaluate the antioxidant and neuroprotective activities of the arylpiperazine derivatives, we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (neurotoxicity induced by 3-nitropropionic acid in Swiss mice) models. In the in vitro tests, LQFM181 showed the most promising antioxidant activity at the neuronal membrane and cytoplasmic levels, and significant neuroprotective activity against the neurotoxicity induced by 3-nitropropionic acid. Hence, this compound was further subjected to in vivo evaluation, which demonstrated remarkable antioxidant capacity such as reduction of MDA and carbonyl protein levels, increased activities of succinate dehydrogenase, catalase, and superoxide dismutase. Interestingly, using the same in vivo model, LQFM181 also reduced locomotor behavior and memory dysfunction through its ability to decrease cholinesterase activity. Consequently, LQFM181 emerges as a promising candidate for further investigation into its neuroprotective potential, positioning it as a new therapeutic agent for neuroprotection.
Collapse
Affiliation(s)
| | - Robbert Mota Pereira
- Institute of Biological Sciences, Federal University of Goias, Goiania, GO, Brazil
| | | | - Nkaa Uchenna
- Institute of Biological Sciences, Federal University of Goias, Goiania, GO, Brazil
| | | | - Letizia Pruccoli
- Department of Life Quality Studies, Alma Mater Studiorum - University of Bologna, Rimini, Italy
| | - Germán Sanz
- Chemistry Institute, Federal University of Goias, Goiania, GO, Brazil
| | | | | | - Bárbara Gonçalves Rivello
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goias, Goiania, GO, Brazil
| | - André Luís Batista da Rocha
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goias, Goiania, GO, Brazil
| | - Flávio Silva de Carvalho
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goias, Goiania, GO, Brazil
| | | | | | | | | | | | - Elson Alves Costa
- Institute of Biological Sciences, Federal University of Goias, Goiania, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goias, Goiania, GO, Brazil
| | - Andrea Tarozzi
- Department of Life Quality Studies, Alma Mater Studiorum - University of Bologna, Rimini, Italy
| | - Paulo César Ghedini
- Institute of Biological Sciences, Federal University of Goias, Goiania, GO, Brazil.
| |
Collapse
|
3
|
Gao XY, Li XY, Zhang CY, Bai CY. Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. Front Pharmacol 2024; 15:1268464. [PMID: 38464713 PMCID: PMC10923241 DOI: 10.3389/fphar.2024.1268464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Scopoletin is a coumarin synthesized by diverse medicinal and edible plants, which plays a vital role as a therapeutic and chemopreventive agent in the treatment of a variety of diseases. In this review, an overview of the pharmacology, pharmacokinetics, and toxicity of scopoletin is provided. In addition, the prospects and outlook for future studies are appraised. Scopoletin is indicated to have antimicrobial, anticancer, anti-inflammation, anti-angiogenesis, anti-oxidation, antidiabetic, antihypertensive, hepatoprotective, and neuroprotective properties and immunomodulatory effects in both in vitro and in vivo experimental trials. In addition, it is an inhibitor of various enzymes, including choline acetyltransferase, acetylcholinesterase, and monoamine oxidase. Pharmacokinetic studies have demonstrated the low bioavailability, rapid absorption, and extensive metabolism of scopoletin. These properties may be associated with its poor solubility in aqueous media. In addition, toxicity research indicates the non-toxicity of scopoletin to most cell types tested to date, suggesting that scopoletin will neither induce treatment-associated mortality nor abnormal performance with the test dose. Considering its favorable pharmacological activities, scopoletin has the potential to act as a drug candidate in the treatment of cancer, liver disease, diabetes, neurodegenerative disease, and mental disorders. In view of its merits and limitations, scopoletin is a suitable lead compound for the development of new, efficient, and low-toxicity derivatives. Additional studies are needed to explore its molecular mechanisms and targets, verify its toxicity, and promote its oral bioavailability.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Xu-Yang Li
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| | - Cong-Ying Zhang
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Chun-Ying Bai
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| |
Collapse
|
4
|
Lum PT, Sekar M, Seow LJ, Shaikh MF, Arulsamy A, Retinasamy T, Gan SH, Gnanaraj C, Esa NM, Ramachawolran G, Subramaniyan V, Chinni SV, Wu YS. Neuroprotective potency of mangiferin against 3-nitropropionic acid induced Huntington's disease-like symptoms in rats: possible antioxidant and anti-inflammatory mechanisms. Front Pharmacol 2023; 14:1189957. [PMID: 37521470 PMCID: PMC10372348 DOI: 10.3389/fphar.2023.1189957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of psychiatric disturbances, cognitive and motor dysfunction. The daily performances and life quality of HD patients have been severely interfered by these clinical signs and symptoms until the last stage of neuronal cell death. To the best of our knowledge, no treatment is available to completely mitigate the progression of HD. Mangiferin, a naturally occurring potent glucoxilxanthone, is mainly isolated from the Mangifera indica plant. Considerable studies have confirmed the medicinal benefits of mangiferin against memory and cognitive impairment in neurodegenerative experimental models such as Alzheimer's and Parkinson's diseases. Therefore, this study aims to evaluate the neuroprotective effect of mangiferin against 3-nitropropionic acid (3-NP) induced HD in rat models. Adult Wistar rats (n = 32) were randomly allocated equally into four groups of eight rats each: normal control (Group I), disease control (Group II) and two treatment groups (Group III and Group IV). Treatment with mangiferin (10 and 20 mg/kg, p. o.) was given for 14 days, whereas 3-NP (15 mg/kg, i. p.) was given for 7 days to induce HD-like symptoms in rats. Rats were assessed for cognitive functions and motor coordination using open field test (OFT), novel object recognition (NOR) test, neurological assessment, rotarod and grip strength tests. Biochemical parameters such as oxidative stress markers and pro-inflammatory markers in brain hippocampus, striatum and cortex regions were evaluated. Histopathological study on brain tissue was also conducted using hematoxylin and eosin (H&E) staining. 3-NP triggered anxiety, decreased recognition memory, reduced locomotor activity, lower neurological scoring, declined rotarod performance and grip strength were alleviated by mangiferin treatment. Further, a significant depletion in brain malondialdehyde (MDA) level, an increase in reduced glutathione (GSH) level, succinate dehydrogenase (SDH), superoxide dismutase (SOD) and catalase (CAT) activities, and a decrease in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) levels were observed in mangiferin treated groups. Mangiferin also mitigated 3-NP induced histopathological alteration in the brain hippocampus, striatum and cortex sections. It could be inferred that mangiferin protects the brain against oxidative damage and neuroinflammation, notably via antioxidant and anti-inflammatory activities. Mangiferin, which has a good safety profile, may be an alternate treatment option for treating HD and other neurodegenerative disorders. The results of the current research of mangiferin will open up new avenues for the development of safe and effective therapeutic agents in diminishing HD.
Collapse
Affiliation(s)
- Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Mohd Farooq Shaikh
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW, Australia
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
5
|
Acero N, Ortega T, Villagrasa V, Leon G, Muñoz-Mingarro D, Castillo E, González-Rosende ME, Borrás S, Rios JL, Bosch-Morell F, Martínez-Solís I. Phytotherapeutic alternatives for neurodegenerative dementias: Scientific review, discussion and therapeutic proposal. Phytother Res 2023; 37:1176-1211. [PMID: 36690605 DOI: 10.1002/ptr.7727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/16/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023]
Abstract
The incidence and prevalence of age-related neurodegenerative dementias have been increasing. There is no curative therapy and conventional drug treatment can cause problems for patients. Medicinal plants traditionally used for problems associated with ageing are emerging as a therapeutic resource. The main aim is to give a proposal for use and future research based on scientific knowledge and tradition. A literature search was conducted in several searchable databases. The keywords used were related to neurodegenerative dementias, ageing and medicinal plants. Boolean operators and filters were used to focus the search. As a result, there is current clinical and preclinical scientific information on 49 species used in traditional medicine for ageing-related problems, including neurodegenerative dementias. There are preclinical and clinical scientific evidences on their properties against protein aggregates in the central nervous system and their effects on neuroinflammation, apoptosis dysregulation, mitochondrial dysfunction, gabaergic, glutamatergic and dopaminergic systems alterations, monoamine oxidase alterations, serotonin depletion and oestrogenic protection. In conclusion, the potential therapeutic effect of the different medicinal plants depends on the type of neurodegenerative dementia and its stage of development, but more clinical and preclinical research is needed to find better, safer and more effective treatments.
Collapse
Affiliation(s)
- Nuria Acero
- Pharmaceutical and Health Sciences Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Teresa Ortega
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| | - Victoria Villagrasa
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Gemma Leon
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Encarna Castillo
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - M Eugenia González-Rosende
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Silvia Borrás
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Jose Luis Rios
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Francisco Bosch-Morell
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain.,Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Isabel Martínez-Solís
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain.,ICBiBE-Botanical Garden, University of Valencia, Valencia, Valencia, Spain
| |
Collapse
|
6
|
Bhat SA, Ahamad S, Dar NJ, Siddique YH, Nazir A. The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington's Disease. Curr Neuropharmacol 2023; 21:867-889. [PMID: 36797612 PMCID: PMC10227909 DOI: 10.2174/1570159x21666230216104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
Huntington's disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.
Collapse
Affiliation(s)
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Nawab John Dar
- School of Medicine, UT Health San Antonio, Texas, TX, USA
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
7
|
Sharma R, Singla RK, Banerjee S, Sinha B, Shen B, Sharma R. Role of Shankhpushpi (Convolvulus pluricaulis) in neurological disorders: An umbrella review covering evidence from ethnopharmacology to clinical studies. Neurosci Biobehav Rev 2022; 140:104795. [PMID: 35878793 DOI: 10.1016/j.neubiorev.2022.104795] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023]
Abstract
C. pluricaulis Choisy (C. pluricaulis), a perennial herb aka C. microphyllus Sieb. and C. Prostratus Forsk. is being used as a traditional folk medicine for a variety of ailments. In this article, we collected information about C. pluricaulis through electronic search using PubMed, SciFinder, Google Scholar, and Web of Science as well as network pharmacology is done. This comprehensive review sheds light on the plant profile, phytochemistry, neuropharmacological, and toxicological data of C. pluricaulis. The crude herb and its metabolites have exhibited a wide range of in vitro and in vivo neuropharmacological effects, including memory enhancement, anxiolytic, tranquilizing, anti-depressant, anti-stress, neurodegenerative, anti-inflammatory, anti-oxidant, analgesic, sedative, anti-convulsant, and Alzheimer's disease-reversing effects. Network pharmacology results indicate that compounds from C. pluricaulis interact with various proteins, neuro synapses, signaling pathways, and serotonergic synapse which plays a crucial role in neurotransmission, Alzheimer's disease, long-term depression, addictions to alcohol, cognitive disorders, psychological conditions, and increasing serotonin concentration in synapses.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222 Chengdu, Sichuan, China; iGlobal Research and Publishing Foundation, New Delhi, India.
| | - Subhadip Banerjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Baivab Sinha
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222 Chengdu, Sichuan, China; Changhong AI Labs, Sichuan Changhong Electric Co. Ltd., Sichuan, China.
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222 Chengdu, Sichuan, China.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
8
|
Salman M, Sharma P, Alam MI, Tabassum H, Parvez S. Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntington's disease like symptoms in rats. Nutr Neurosci 2021; 25:1898-1908. [PMID: 33856270 DOI: 10.1080/1028415x.2021.1913319] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Naringenin is a powerful antioxidant and anti-inflammatory flavonoid which has been widely used as a therapeutic agent in various toxic models. However, few studies have clearly discussed the neuromodulatory effects of naringenin against different neurodegenerative disorders. AIM We investigated the neuroprotective efficacy of naringenin against 3-nitropropionic acid (3-NP)-induced neurobehavioral, biochemical and histopathological alterations in rats. METHODS Albino Wistar rats were randomly divided into three experimental groups. Group 1, the vehicle administered group, received saline. Group 2 received 3-NP (20 mg/kg body weight, i.p.) for 4 consecutive days. Group 3 received naringenin (50 mg/kg body weight, p.o.) twice daily for a period of 4 days, 30 min before and 6 h after the 3-NP administration. On the 5th day, neurobehavioral experiments were performed to access the behavioral outcomes and the striatum tissue was used for analysis of the monoamine oxidase (MAO) activity and serotonin (5-HT) levels. In addition, astrocytes activation was observed by glial fibrillary acidic protein (GFAP) immunostaining. RESULTS Our results showed that naringenin co-treatment provides neuroprotection against 3-NP-induced neurological disorders. Naringenin also increased the MAO activity and 5-HT levels in the striatum. Moreover, co-treatment with naringenin reduced the expression of GFAP protein in the striatal part and significantly attenuated the neuronal cell death. The findings of the present study suggest that naringenin provides neuroprotection and mitigates neurobehavioral alterations in experimental rats. CONCLUSION The results show that co-treatment with naringenin ameliorates 3-NP-induced HD-like symptoms in rats.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Pooja Sharma
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Md Iqbal Alam
- Department of Medical Physiology, HIMSR, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
9
|
Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF. Protective Effect of Natural Products against Huntington's Disease: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. ACS Chem Neurosci 2021; 12:391-418. [PMID: 33475334 DOI: 10.1021/acschemneuro.0c00824] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.
Collapse
Affiliation(s)
- Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
10
|
Sørnes EØ, Risal A, Manandhar K, Thomas H, Steiner TJ, Linde M. Use of medicinal plants for headache, and their potential implication in medication-overuse headache: Evidence from a population-based study in Nepal. Cephalalgia 2021; 41:561-581. [PMID: 33435708 PMCID: PMC8047708 DOI: 10.1177/0333102420970904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background In Nepal, traditional treatment using medicinal plants is popular. Whereas
medication-overuse headache is, by definition, caused by excessive use of
acute headache medication, we hypothesized that medicinal plants, being
pharmacologically active, were as likely a cause. Methods We used data from a cross-sectional, nationwide population-based study, which
enquired into headache and use of medicinal plants and allopathic
medications. We searched the literature for pharmacodynamic actions of the
medicinal plants. Results Of 2100 participants, 1794 (85.4%) reported headache in the preceding year;
161 (7.7%) reported headache on ≥15 days/month, of whom 28 (17.4%) had used
medicinal plants and 117 (72.7%) allopathic medication(s). Of 46 with
probable medication-overuse headache, 87.0% (40/46) were using allopathic
medication(s) and 13.0% (6/46) medicinal plants, a ratio of 6.7:1, higher
than the overall ratio among those with headache of 4.9:1 (912/185). Of 60
plant species identified, 49 were pharmacodynamically active on the central
nervous system, with various effects of likely relevance in
medication-overuse headache causation. Conclusions MPs are potentially a cause of medication-overuse headache, and not to be
seen as innocent in this regard. Numbers presumptively affected in Nepal are
low but not negligible. This pioneering project provides a starting point
for further research to provide needed guidance on use of medicinal plants
for headache.
Collapse
Affiliation(s)
- Elise Øien Sørnes
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ajay Risal
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Kavre, Nepal.,Kathmandu University School of Medical Sciences, Dhulikhel, Kavre, Nepal
| | - Kedar Manandhar
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Kavre, Nepal.,Kathmandu University School of Medical Sciences, Dhulikhel, Kavre, Nepal
| | - Hallie Thomas
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Timothy J Steiner
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Division of Brain Sciences, Imperial College London, London, UK
| | - Mattias Linde
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
11
|
Garg G, Patil AN, Kumar R, Bhatia A, Kasudhan KS, Pattanaik S. Protective role of Convolvulus pluricaulis on lipid abnormalities in high-fat diet with low dose streptozotocin-induced experimental rat model. J Ayurveda Integr Med 2020; 11:426-431. [PMID: 32814671 PMCID: PMC7772484 DOI: 10.1016/j.jaim.2020.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/18/2019] [Accepted: 06/11/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The methanolic extract of Convolvulus pluricaulis had earlier shown lipid lowering activity in Triton induced reversible hyperlipidemia model, but, the hypolipidemic activity in irreversible models and hypoglycaemic activity are not investigated so far. OBJECTIVE This study was designed to validate the lipid and glucose-lowering actions of C. pluricaulis methanolic extract (CPME) by using ingredients from the Indian diet for induction of hyperlipidemia and diabetes on experimental rats. MATERIALS AND METHODS Experimental animals were divided into four groups having six animals in each group (n = 6). Animals of Group I II, III and IV received - no treatment, 0.9% NaCl, Glipizide (GPZ) 5 mg/kg and CPME 400 mg/kg once daily for two weeks respectively. Animals of all groups except group I were fed a high fat-based Indian diet for 21 days followed by a single STZ (35 mg/kg) i.p. administration in model induction phase. Afterwards, animals were sacrificed, and the pancreas was dissected for histological changes, and blood was collected for measuring lipid parameters, FBS, insulin levels, and HOMA scores. RESULTS CPME significantly ameliorate the lipid abnormalities in HFD-STZ-treated experimental model (p < 0.001) but fails to reverse the hyperglycaemia developed in diabetic rats with no protective effect on islet architecture (p > 0.05) as compared to experimental group while, GPZ showed protective effect on both lipid abnormalities and hyperglycemia by modulating the levels of lipid parameters and insulin respectively. CONCLUSION In conclusion, the study confirm that CPME possesses significant hypolipidemic activity but fails to reverse the hyperglycaemia developed in diabetic rats.
Collapse
Affiliation(s)
- Gaurav Garg
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amol N Patil
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Rohit Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kripa Shanker Kasudhan
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Smita Pattanaik
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
12
|
Witter S, Samoson A, Vilu R, Witter R. Screening of Nutraceuticals and Plant Extracts for Inhibition of Amyloid-β Fibrillation. J Alzheimers Dis 2020; 73:1003-1012. [DOI: 10.3233/jad-190758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Steffi Witter
- School of Information Technologies, Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
- School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Ago Samoson
- School of Information Technologies, Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Raivo Vilu
- Competence Center of Food and Fermentation Technology (TFTAK), Tallinn, Estonia
| | - Raiker Witter
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Salehi B, Krochmal-Marczak B, Skiba D, Patra JK, Das SK, Das G, Popović-Djordjević JB, Kostić AŽ, Anil Kumar NV, Tripathi A, Al-Snafi AE, Arserim-Uçar DK, Konovalov DA, Csupor D, Shukla I, Azmi L, Mishra AP, Sharifi-Rad J, Sawicka B, Martins N, Taheri Y, Fokou PVT, Capasso R, Martorell M. Convolvulus plant-A comprehensive review from phytochemical composition to pharmacy. Phytother Res 2020; 34:315-328. [PMID: 31713286 DOI: 10.1002/ptr.6540] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022]
Abstract
Convolvulus genus is a representative of the family of Convolvulaceae. Convolvulus plants are broadly distributed all over the world and has been used for many centuries as herbal medicine. Convolvulus genus contains various phytochemicals such as flavonoids, alkaloids, carbohydrates, phenolic compounds, mucilage, unsaturated sterols or terpenes, resin, tannins, lactones, and proteins. This review highlights the phytochemical composition, antimicrobial and antioxidant activities, application as food preservative, traditional medicine use, anticancer activities, and clinical effectiveness in human of Convolvulus plants. All the parts of Convolvulus plants possess therapeutic benefits; preliminary pharmacological data validated their use in traditional medicine. However, further preclinical and clinical experiments are warranted before any application in human health.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Barbara Krochmal-Marczak
- Department of Production and Food Safety, The State Higher Vocational School name Stanisław Pigonia in Krosno, Krosno, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Sciences, Faculty of Agrobioengeeniering, University of Life Sciences in Lublin, Lublin, Poland
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Swagat Kumar Das
- Department of Biotechnology, College of Engineering and Technology, BPUT, Bhubaneswar, Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | | | | | - Nanjangud V Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Ayushi Tripathi
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Ali Esmail Al-Snafi
- Department of Pharmacology, College of Medicine, University of Thiqar, Nasiriyah, Iraq
| | | | - Dmitry Alekseevich Konovalov
- Department of Pharmacognosy and Botany, Pyatigorsk Medical and Pharmaceutical Institute, A Branch of Volgograd State Medical University, Ministry of Health of Russian Federation, Pyatigorsk, Russia
| | - Dezső Csupor
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Ila Shukla
- CSIR-SRF, Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Lubna Azmi
- DST-INSPIRE SRF, Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, in collaboration with Department of Chemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Sciences, Faculty of Agrobioengeeniering, University of Life Sciences in Lublin, Lublin, Poland
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University Concepcion, Concepcion, VIII-Bio Bio Region, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
14
|
Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF. Neuroprotective Potential of Secondary Metabolites from Melicope lunu-ankenda (Rutaceae). Molecules 2019; 24:E3109. [PMID: 31461914 PMCID: PMC6749319 DOI: 10.3390/molecules24173109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zeinab Abdulwanis Mohamed
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Enas Mohamed Eliaser
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, El-Mergib University, El Khums, Libya
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067 Orléans, France
| | - Gwendoline Cheng Lian Ee
- Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Gupta GL, Fernandes J. Protective effect of Convolvulus pluricaulis against neuroinflammation associated depressive behavior induced by chronic unpredictable mild stress in rat. Biomed Pharmacother 2019; 109:1698-1708. [DOI: 10.1016/j.biopha.2018.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 02/08/2023] Open
|
16
|
Garg G, Patil A, Singh J, Kaushik N, Praksah A, Pal A, Chakrabarti A. Pharmacological evaluation of Convolvulus pluricaulis as hypolipidaemic agent in Triton WR-1339-induced hyperlipidaemia in rats. J Pharm Pharmacol 2018; 70:1572-1580. [DOI: 10.1111/jphp.13004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/10/2018] [Indexed: 01/17/2023]
Abstract
Abstract
Objective
The aim of the study was to evaluate the effect of Convolvulus pluricaulis (CP; C. pluricaulis) methanolic extract on Triton WR-1339-induced hyperlipidaemia in rats.
Methods
The study comprised of six groups namely normal control, experimental control and treatment groups (100, 200 and 400 mg/kg of C. pluricaulis, and 65 mg/kg of Fenofibrate). Hyperlipidaemia was induced by a single intraperitoneal injection of Triton WR-1339 400 mg/kg in rats. Parameters such as lipid profile, oxidative stress, histological analysis and atherogenic index were evaluated. The plant extract was further studied by HPLC and LCMS, for analyses of active phytochemicals.
Key findings
The result of the study showed that C. pluricaulis significantly decreased total cholesterol, triglycerides, LDL-c, MDA levels and atherogenic index while the levels of HDL-c and GSH were found to be raised. Plant extract at the dose of 400 mg had a consistent effect on all lipid profile parameters. Lower doses (100 and 200 mg) did not produce a statistically significant reduction in LDL-c. In addition, the protective effect of C. pluricaulis was confirmed by histological analysis. Further, the findings of the study were found to be comparable with fenofibrate.
Conclusions
Therefore, the present study suggests that C. pluricaulis has the potential for the treatment of hyperlipidaemia.
Collapse
Affiliation(s)
- Gaurav Garg
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Amol Patil
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagjit Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | | | - Ajay Praksah
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Chen GT, Lu Y, Yang M, Li JL, Fan BY. Medicinal uses, pharmacology, and phytochemistry of Convolvulaceae plants with central nervous system efficacies: A systematic review. Phytother Res 2018; 32:823-864. [DOI: 10.1002/ptr.6031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Guang-Tong Chen
- School of Pharmacy; Nantong University; 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Yun Lu
- School of Pharmacy; Nantong University; 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Min Yang
- School of Pharmacy; Nantong University; 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Jian-Lin Li
- School of Pharmacy; Nantong University; 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Bo-Yi Fan
- School of Pharmacy; Nantong University; 19 Qixiu Road Nantong Jiangsu Province 226001 China
| |
Collapse
|
18
|
The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8590578. [PMID: 28116038 PMCID: PMC5223034 DOI: 10.1155/2016/8590578] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimer's disease (AD), impairments in the movement, Parkinson's disease (PD), and the inability to walk, talk, and think, Huntington's disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.
Collapse
|