1
|
Tekle AB, Bekele TT, Solbamo AB, Kebede MA, Berhanu MT, Baramo DD. Splenic infarction in a paediatric patient with Plasmodium vivax malaria from Ethiopia: a case report. Malar J 2025; 24:146. [PMID: 40336102 PMCID: PMC12060351 DOI: 10.1186/s12936-025-05386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Splenic infarction is an uncommon but serious side effect of Plasmodium vivax malaria, especially in young patients. Prompt diagnosis and effective treatment are essential to avoid serious consequences. Though there are few report of splenic infarction following P. vivax from different endemic country, PubMed and Google-based literature search found that it was the first case report of this type from Ethiopia. CASE PRESENTATION The patient was an 11-year-old girl, from Wolaita Sodo, Ethiopia, who had a high-grade fever, chills, rigors, headache, vomiting, and abdominal pain in the left upper quadrant. Upon examination, hepatomegaly, splenomegaly, and extreme pallor were found. Laboratory tests revealed acute kidney injury (creatinine 1.63 mg/dL), acute liver injury (AST 323 U/L, ALT 129 U/L), and severe anaemia (haemoglobin 3.4 g/dL, haematocrit 10.2%). A peripheral blood smear showed a trophozoite stage of P. vivax and was negative for Plasmodium falciparum. An abdominal ultrasound revealed hepatosplenomegaly along with a wedge-shaped, multifocal, hypoechoic splenic region that was consistent with an infarction. MANAGEMENT AND OUTCOME The patient had blood transfusions, NSAIDs for pain, and intravenous artesunate as treatment. Primaquine was used in radical therapy. After three days, her abdominal pain had considerably subsided and she became afebrile. Complete symptom relief, normalized abdominal ultrasound findings, and better laboratory results-including normal haemoglobin and liver enzymes-were all observed at the two-month follow-up. CONCLUSION This case underscores the importance of considering splenic infarction in paediatric patients with P. vivax malaria presenting with abdominal pain. Early recognition through imaging and laboratory investigations, along with prompt antimalarial therapy, is critical for favourable outcomes.
Collapse
Affiliation(s)
- Alemayehu Beharu Tekle
- Department of Emergency and Critical Care Medicine, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia.
| | - Tamirat T Bekele
- Department of Pediatrics and Child Health, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Alemu B Solbamo
- Department of Pediatrics and Child Health, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Molla A Kebede
- Department of Internal Medicine, School of Medicine, Mizan-Tepi University, Mizan-Teferi, Ethiopia
| | - Melaku T Berhanu
- Department of Emergency and Critical Care Medicine, School of Medicine, Asrat Woldeyes Health Science College, Debre Berhan University, Debre Berhan, Ethiopia
| | - Dereje D Baramo
- Department of Radiology, School of Medicine, Yirgalem Hospital Medical College, Yirgalem, Ethiopia
| |
Collapse
|
2
|
Groves ES, Simpson JA, Edler P, Daher A, Pasaribu AP, Pereira DB, Saravu K, von Seidlein L, Rajasekhar M, Price RN, Commons RJ. Parasitaemia and fever in uncomplicated Plasmodium vivax malaria: A systematic review and individual patient data meta-analysis. PLoS Negl Trop Dis 2025; 19:e0012951. [PMID: 40153391 PMCID: PMC11978046 DOI: 10.1371/journal.pntd.0012951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/08/2025] [Accepted: 02/26/2025] [Indexed: 03/30/2025] Open
Abstract
BACKGROUND Parasite density thresholds used for diagnosing symptomatic malaria are defined by the relationship between parasitaemia and fever. This relationship can inform the design and development of novel diagnostic tests but appropriate parasitaemia thresholds for Plasmodium vivax malaria remain poorly defined. METHODOLOGY/PRINCIPAL FINDINGS We undertook an individual patient data meta-analysis of P. vivax clinical trials mapped to the WorldWide Antimalarial Resistance Network (WWARN) repository and used parasitaemia centiles of febrile patients at enrolment to derive proportions of patients who would have been diagnosed at different parasite densities. Febrile and afebrile patients with recurrent infections were selected to estimate pyrogenic densities using receiver operating characteristic curve analysis. In total 13,263 patients from 50 studies were included in the analysis. In 27 studies (8,378 febrile patients) in which a parasitaemia threshold was not applied as an inclusion criterion, the median parasitaemia at enrolment was 3,280/µL (interquartile range, 968 - 8,320); 90% of patients had a parasitaemia above 278/µL (10th centile), and 95% above 120/µL (5th centile). The 10th centile was higher in children <5 years old (368/µL) compared to adults ≥15 years (240/µL). In high relapse periodicity regions (Southeast Asia and Oceania) febrile patients presented with lower parasitaemias (10th centile 185/µL vs. 504/µL) and a wider range of parasitaemias compared to those from low relapse periodicity regions (interquartile range 760/µL - 8,774/µL vs. 1,204/µL - 8,000/µL). In total 2,270 patients from 41 studies had at least one episode of recurrent P. vivax parasitaemia, of whom 43% (849/1,983) were febrile at their first recurrence. The P. vivax pyrogenic density at first recurrence was 1,063/µL, defining fever with 74% sensitivity and 65% specificity. The pyrogenic density was lower in young children compared to adults ≥15 years (935/µL vs. 1,179/µL). CONCLUSIONS/SIGNIFICANCE The derived parasitaemia centiles will inform the use of current and the design of novel point-of-care tests to diagnose patients with symptomatic vivax malaria. Variation by age and location should be considered when selecting diagnostic thresholds and interpreting results. TRIAL REGISTRATION This trial was registered with PROSPERO: CRD42021254905. The date of the first registration was 17th May 2021.
Collapse
Affiliation(s)
- Emily S. Groves
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Julie A. Simpson
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, Australia
| | - Peta Edler
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - André Daher
- Fiocruz Clinical Research Platform, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Vice‑presidency of Research and Biological Collections, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ayodhia P. Pasaribu
- Department of Pediatrics, Medical Faculty, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Dhelio B. Pereira
- Centro de Pesquisa em Medicina Tropical de Rondonia, Porto Velho, Brazil
- Fundação Universidade Federal de Rondonia, Porto Velho, Brazil
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lorenz von Seidlein
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ric N. Price
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, Australia
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Robert J. Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, Australia
- General and Subspecialty Medicine, Grampians Health - Ballarat, Ballarat, Victoria, Australia
| | | |
Collapse
|
3
|
Khatri B, Thakkar V, Dalwadi S, Shah A, Rana H, Shah P, Gandhi T, Prajapati B. Preparation and In-Vitro Characterization of Solid Lipid Nanoparticles Containing Artemisinin and Curcumin. Pharm Nanotechnol 2025; 13:199-211. [PMID: 39039683 DOI: 10.2174/0122117385296893240626061552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Malaria remains a formidable public health obstacle across Africa, Southeast Asia, and portions of South America, exacerbated by resistance to antimalarial medications, such as artemisinin-based combinations. The combination of curcumin and artemisinin shows promise due to its potential for dose reduction, reduced toxicity, synergistic effects, and suitability for drug delivery improvement. OBJECTIVES This research aims to enhance the solubility and dissolution rates of curcumin and artemisinin by employing Solid Lipid Nanoparticles (SLNs). Oral delivery of both drugs faces challenges due to their poor water solubility, inefficient absorption, and rapid metabolism and elimination. METHODS The study focuses on formulating and optimizing Solid Lipid Nanoparticles (SLNs) encapsulating artemisinin (ART) and curcumin (CUR). SLNs were developed using the hot homogenization method, incorporating ultrasonication. Drug-excipient compatibility was evaluated using Differential Scanning Calorimetry (DSC). Lipid and surfactant screening was performed to select suitable components. A 3² full factorial design was utilized to investigate the influence of lipid and surfactant concentrations on key parameters, such as entrapment efficiency (%EE) and cumulative drug release (%CDR). Additionally, evaluations of %EE, drug loading, particle size, zeta potential, and in-vitro drug release were conducted. RESULTS Successful development of artemisinin and curcumin SLNs was achieved using a full factorial design, demonstrating controlled drug release and high entrapment efficiency. The optimized nanoparticles exhibited a size of 114.7nm, uniformity (PDI: 0.261), and a zeta potential of -9.24 mV. Artemisinin and curcumin showed %EE values of 79.1% and 74.5%, respectively, with cumulative drug release of 85.1% and 80.9%, respectively. The full factorial design indicated that increased lipid concentration improved %EE, while higher surfactant concentration enhanced drug release and %EE. Stability studies of the optimized batch revealed no alterations in physical or chemical characteristics. CONCLUSION The study successfully developed Solid Lipid Nanoparticles (SLNs) for artemisinin and curcumin, achieving controlled drug release, high entrapment efficiency, and desired particle size and uniformity. This advancement holds promise for enhancing drug delivery of herbal formulations.
Collapse
Affiliation(s)
- Bhagyashri Khatri
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Vaishali Thakkar
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Saloni Dalwadi
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Avani Shah
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Hardik Rana
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Purvi Shah
- Department of Quality Assurance, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, India
| | - Tejal Gandhi
- Department of Pharmacology, Anand Pharmacy College, Anand, India
| | | |
Collapse
|
4
|
Li J, Docile HJ, Fisher D, Pronyuk K, Zhao L. Current Status of Malaria Control and Elimination in Africa: Epidemiology, Diagnosis, Treatment, Progress and Challenges. J Epidemiol Glob Health 2024; 14:561-579. [PMID: 38656731 PMCID: PMC11442732 DOI: 10.1007/s44197-024-00228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
The African continent carries the greatest malaria burden in the world. Falciparum malaria especially has long been the leading cause of death in Africa. Climate, economic factors, geographical location, human intervention and unstable security are factors influencing malaria transmission. Due to repeated infections and early interventions, the proportion of clinically atypical malaria or asymptomatic plasmodium carriers has increased significantly, which easily lead to misdiagnosis and missed diagnosis. African countries have made certain progress in malaria control and elimination, including rapid diagnosis of malaria, promotion of mosquito nets and insecticides, intermittent prophylactic treatment in high-risk groups, artemisinin based combination therapies, and the development of vaccines. Between 2000 and 2022, there has been a 40% decrease in malaria incidence and a 60% reduction in mortality rate in the WHO African Region. However, many challenges are emerging in the fight against malaria in Africa, such as climate change, poverty, substandard health services and coverage, increased outdoor transmission and the emergence of new vectors, and the growing threat of resistance to antimalarial drugs and insecticides. Joint prevention and treatment, identifying molecular determinants of resistance, new drug development, expanding seasonal malaria chemo-prevention intervention population, and promoting the vaccination of RTS, S/AS01 and R21/Matrix-M may help to solve the dilemma. China's experience in eliminating malaria is conducive to Africa's malaria prevention and control, and China-Africa cooperation needs to be constantly deepened and advanced. Our review aims to help the global public develop a comprehensive understanding of malaria in Africa, thereby contributing to malaria control and elimination.
Collapse
Affiliation(s)
- Jiahuan Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Haragakiza Jean Docile
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of The Western Cape, Cape Town, South Africa
| | - Khrystyna Pronyuk
- Department of Infectious Diseases, O. Bogomolets National Medical University, Kyiv, Ukraine
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
5
|
Aninagyei E, Agbenowoshie PS, Akpalu PM, Asiewe SB, Menu RY, Gbadago F, Asmah RH. ABO and Rhesus blood group variability and their associations with clinical malaria presentations. Malar J 2024; 23:257. [PMID: 39182094 PMCID: PMC11344939 DOI: 10.1186/s12936-024-05081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Plasmodium falciparum infection is associated with the human ABO blood group. However, there is a paucity of data on the role that ABO and Rhesus blood groups play in malaria clinical presentations. Therefore, the objective of this study was to assess the association of human ABO blood groups and the Rhesus blood (Rh) types with the severity of malaria. METHODS This cross-sectional study was carried out at the Suhum Government Hospital in the Eastern region of Ghana. Conveniently, study participants with malaria, diagnosed by microscopy, were selected into the study. Subsequently, their ABO and Rh blood groups were determined (Accucare ABO/Rh monoclonal antibodies, Chennai, India). Malaria severity was assessed using the criteria for assessing severe malarial anaemia published by the World Health Organization. According to the criteria, severe malarial anaemia was classified as having haemoglobin (Hb) < 5 g/dL for children < 12 years and in patients ≥ 12 years, Hb level < 7 g/dL, with parasitaemia > 10,000/µL in both cases. Severe malarial anaemia was also classified as having plasma bilirubin > 50 µmol/L with parasitaemia ≥ 100,000/µL, for all ages. Chi square statistical analysis was used to test the association between the blood groups and the clinical or laboratory findings, while multivariate analysis was performed to identify which blood groups were more vulnerable to develop severe malarial anaemia. RESULTS Of the total number of the study participants (n = 328), most of the patients had blood group O Rh positive (35.7%) while few of them had blood group AB Rh negative (2.1%). The types of Rhesus did not associate with malaria. However, compared to blood group O, the odds of developing severe malarial anaemia, in children < 12 years and in patients ≥ 12 years, were 16 times and 17.8 times higher among patients with blood group A, respectively. Furthermore, the odds of having bilirubin level > 50 µmol/L with parasitaemia ≥ 100,000 /µL was 10 times higher among patients with blood groups A and 2.6 times higher in patients with blood group B, compared to blood group O. Finally, in patients with blood group A majority (71.6%) of them developed high temperature (> 37.5 °C) while 43.3% of them vomited and had diarrhoea. However, pallor (group B = 46.2% vs group A = 37.3%), fever (group B = 84.6% vs group A = 79.1%) and nausea (group B = 46.2% vs group A = 25.4%) were more frequent in patients with blood group B than A. CONCLUSIONS This study found that people with blood groups A and B were severely affected by malaria, with group A being the most vulnerable. It is recommended that blood group assessment be performed for all patients with malaria. Patients found to have blood group A or B must be promptly and efficiently managed to avoid the development of severe malaria anaemia.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Sokode - Ho, Ghana.
| | - Pearl Sedinam Agbenowoshie
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Sokode - Ho, Ghana
| | - Praise Mawuena Akpalu
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Sokode - Ho, Ghana
| | - Selina Blefono Asiewe
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Sokode - Ho, Ghana
| | - Regina Yayra Menu
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Sokode - Ho, Ghana
| | - Fred Gbadago
- Ghana Health Service, Suhum Government Hospital, Suhum District, Eastern Region, Suhum, Ghana
| | - Richard Harry Asmah
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Sokode - Ho, Ghana.
| |
Collapse
|
6
|
Pal C. Redox modulating small molecules having antimalarial efficacy. Biochem Pharmacol 2023; 218:115927. [PMID: 37992998 DOI: 10.1016/j.bcp.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The search for effective antimalarial agents remains a critical priority because malaria is widely spread and drug-resistant strains are becoming more prevalent. In this review, a variety of small molecules capable of modulating redox processes were showcased for their potential as antimalarial agents. The compounds were designed to target the redox balance of Plasmodium parasites, which has a pivotal function in their ability to survive and multiply within the host organism. A thorough screening method was utilized to assess the effectiveness of these compounds against both drug-sensitive and drug-resistant strains of Plasmodium falciparum, the malaria-causing parasite. The results revealed that several of the tested compounds exhibited significant effectiveness against malaria, displaying IC50 values at a low micromolar range. Furthermore, these compounds displayed promising selectivity for the parasite, as they exhibited low cytotoxicity towards mammalian cells. Thorough mechanistic studies were undertaken to clarify how the active compounds exert their mode of action. The findings revealed that these compounds disrupted the parasites' redox balance, causing oxidative stress and interfering with essential cellular functions. Additionally, the compounds showed synergistic effects when combined with existing antimalarial drugs, suggesting their potential for combination therapies to combat drug resistance. Overall, this study highlights the potential of redox-modulating small molecules as effective antimalarial agents. The identified compounds demonstrate promising antimalarial activity, and their mechanism of action offers insights into targeting the redox balance of Plasmodium parasites. Further optimization and preclinical studies are warranted to determine their efficacy, safety, and potential for clinical development as novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
7
|
Antwi-Baffour S, Mensah BT, Johnson G, Armah DNO, Ali-Mustapha S, Annison L. Haematological parameters and their correlation with the degree of malaria parasitaemia among outpatients attending a polyclinic. Malar J 2023; 22:281. [PMID: 37743476 PMCID: PMC10519094 DOI: 10.1186/s12936-023-04710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Malaria is a parasitic disease caused by various species of the blood parasite Plasmodium; of all the parasitic diseases, malaria has the highest prevalence and mortality with an estimated 247 million cases and 619,000 deaths recorded worldwide as of 2021. Malaria causes febrile illness with several changes in blood cell parameters. Some of these changes include leucopenia, thrombocytopenia, and anaemia. If these changes could be correlated with the degree of parasitaemia, it can serve as a guide to physicians when treating malaria. This study was therefore aimed at correlating haematological parameters with levels of parasitaemia during malaria infection. METHODS The study was a cross-sectional study involving 89 malaria positive patients. About 5 ml of blood was collected from each participant who gave his or her informed consent to partake in the study. A full blood count was performed on their samples to determine their haematological parameters using a haematology auto-analyzer. A parasite count was also performed via microscopy to determine the degree of parasitaemia. The data obtained from the study was entered into a database and statistically analysed using Statistical Package for Social Sciences (SPSS) version 23 and Microsoft Excel 2016. RESULTS The study comprised of 89 participants out of which 35 were males and 54 were females with the mean age of 26.15 years. Secondary education participants were the highest with quaternary education the lowest. The highest parasite count recorded was 398,174 parasites/µl of blood, lowest count was 101 with the average being 32,942.32584. There was also a significant positive Pearson's correlation between total WBC and parasitaemia and with the WBC differentials, neutrophils, lymphocytes and monocytes had positive correlations while eosinophils and basophils had negative correlations. Furthermore, platelets, total RBC's, haemoglobin, MCH, MCHC and Hct all showed negative correlations. Linear regression also showed a linear relationship between parasite density and the various haematological parameters. CONCLUSION The linear relationship (correlation) between WBC and MCH were the only significant ones at 95% and 99% confidence interval, respectively based on a two-tail t-test. Also, based on the regression analysis, the changes caused by WBC and PLT were the only significant changes at 95% confidence level in a two-tailed t-test.
Collapse
Affiliation(s)
- Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, P. O. Box KB 143, Accra, Ghana.
| | - Benjamin Tetteh Mensah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, P. O. Box KB 143, Accra, Ghana
| | - George Johnson
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, P. O. Box KB 143, Accra, Ghana
| | - Dorinda Naa Okailey Armah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, P. O. Box KB 143, Accra, Ghana
| | - Samira Ali-Mustapha
- Department of Maternal and Child Health, School of Nursing, University of Ghana, Legon, Ghana
| | - Lawrence Annison
- Department of Medical Laboratory Technology, School of Medical Sciences, Accra Technical University, Accra, Ghana
| |
Collapse
|
8
|
Mackin C, Dahiya D, Nigam PS. Honey as a Natural Nutraceutical: Its Combinational Therapeutic Strategies Applicable to Blood Infections-Septicemia, HIV, SARS-CoV-2, Malaria. Pharmaceuticals (Basel) 2023; 16:1154. [PMID: 37631069 PMCID: PMC10459786 DOI: 10.3390/ph16081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Honey is a natural substance that has existed alongside humanity since the time of antiquity, acting then as a source of nutrition, as well as a source of medicinal aid for people. Ancient civilizations from multiple nations of the world, from ancient China to ancient Greece and Egypt, utilized the supposed healing properties of honey to treat lacerations and wounds, as well as for internal pathologies such as intestinal disease. At present, honey has entered the modern scientific research program in search of novel antibiotics. In recent research, honey has demonstrated its potential use for static and/or cidal effects on microbial strains which are becoming resistant to chemical antibiotics. Additionally, the use of honey as an agent of treatment for more severe infections, namely blood infections pertaining to septicemia, HIV, and SARS-CoV-2, as well as parasitic infections such as malaria, have also been investigated in recent years. In this article, the literature has been reviewed on some of the therapeutic properties of natural nutraceutical honey, where it has been observed to act as a potential ameliorating agent; reducing the severity of such conditions that may amplify a disease, as well as reducing the progression of the disease and its symptoms.
Collapse
Affiliation(s)
- Caoimhin Mackin
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | | | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
9
|
Zafar I, Taniguchi T, Baghdadi HB, Kondoh D, Rizk MA, Galon EM, Ji S, El-Sayed SAES, Do T, Li H, Amer MM, Zhuowei M, Yihong M, Zhou J, Inoue N, Xuan X. Babesia microti alleviates disease manifestations caused by Plasmodium berghei ANKA in murine co-infection model of complicated malaria. Front Cell Infect Microbiol 2023; 13:1226088. [PMID: 37492527 PMCID: PMC10364126 DOI: 10.3389/fcimb.2023.1226088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Malaria remains one of the most significant health issues worldwide, accounting for 2.6% of the total global disease burden, and efforts to eliminate this threat continue. The key focus is to develop an efficient and long-term immunity to this disease via vaccination or therapeutic approach, and innovative strategies would enable us to achieve this target. Previously, using a mouse co-infection disease model, cross-protection was illustrated between Babesia microti and Plasmodium chabaudi. Hence, this study was planned to elucidate the impact of acute B. microti Peabody mjr and Plasmodium berghei ANKA co-infection on the consequence of complicated malaria in the C57BL/6J mouse model of malaria. Furthermore, immune response and pathological features were analyzed, and the course of the disease was compared among experimental groups. Our study established that acute B. microti infection activated immunity which was otherwise suppressed by P. berghei. The immunosuppressive tissue microenvironment was counteracted as evidenced by the enhanced immune cell population in co-infected mice, in contrast to P. berghei-infected control mice. Parasite sequestration in the brain, liver, lung, and spleen of co-infected mice was significantly decreased and tissue injury was ameliorated. Meanwhile, the serum levels of IFN-γ, TNF-α, and IL-12p70 were reduced while the secretion of IL-10 was promoted in co-infected mice. Eventually, co-infected mice showed an extended rate of survival. Hereby, the principal cytokines associated with the severity of malaria by P. berghei infection were TNF-α, IFN-γ, and IL-12p70. Moreover, it was evident from our flow cytometry results that innate immunity is crucial and macrophages are at the frontline of immunity against P. berghei infection. Our study recommended further investigations to shed light on the effects of babesiosis in suppressing malaria with the goal of developing Babesia-based therapy against malaria.
Collapse
Affiliation(s)
- Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Livestock and Dairy Development Department, Veterinary Research Institute, Lahore, Punjab, Pakistan
| | - Tomoyo Taniguchi
- Department of Immunology and Parasitology, Graduate School of Medicine University of the Ryukyus, Nishihara Cho, Japan
| | - Hanadi B. Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang, Cavite, Philippines
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Moaz M. Amer
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ma Zhuowei
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ma Yihong
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
10
|
Salimo ZM, Barros AL, Adrião AAX, Rodrigues AM, Sartim MA, de Oliveira IS, Pucca MB, Baia-da-Silva DC, Monteiro WM, de Melo GC, Koolen HHF. Toxins from Animal Venoms as a Potential Source of Antimalarials: A Comprehensive Review. Toxins (Basel) 2023; 15:375. [PMID: 37368676 DOI: 10.3390/toxins15060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.
Collapse
Affiliation(s)
- Zeca M Salimo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - André L Barros
- Setor de Medicina Veterinária, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Asenate A X Adrião
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Aline M Rodrigues
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Marco A Sartim
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Pro-Reitoria de Pesquisa e Pós-Graduação, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Isadora S de Oliveira
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Manuela B Pucca
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Faculdade de Medicina, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
| | - Djane C Baia-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Faculdade de Farmácia, Universidade Nilton Lins, Manaus 69058-030, Brazil
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus 69057-070, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69080-900, Brazil
| | - Wuelton M Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Gisely C de Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Hector H F Koolen
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| |
Collapse
|
11
|
Duay SS, Yap RCY, Gaitano AL, Santos JAA, Macalino SJY. Roles of Virtual Screening and Molecular Dynamics Simulations in Discovering and Understanding Antimalarial Drugs. Int J Mol Sci 2023; 24:ijms24119289. [PMID: 37298256 DOI: 10.3390/ijms24119289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Malaria continues to be a global health threat, with approximately 247 million cases worldwide. Despite therapeutic interventions being available, patient compliance is a problem due to the length of treatment. Moreover, drug-resistant strains have emerged over the years, necessitating urgent identification of novel and more potent treatments. Given that traditional drug discovery often requires a great deal of time and resources, most drug discovery efforts now use computational methods. In silico techniques such as quantitative structure-activity relationship (QSAR), docking, and molecular dynamics (MD) can be used to study protein-ligand interactions and determine the potency and safety profile of a set of candidate compounds to help prioritize those tested using assays and animal models. This paper provides an overview of antimalarial drug discovery and the application of computational methods in identifying candidate inhibitors and elucidating their potential mechanisms of action. We conclude with the continued challenges and future perspectives in the field of antimalarial drug discovery.
Collapse
Affiliation(s)
- Searle S Duay
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Rianne Casey Y Yap
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Arturo L Gaitano
- Chemistry Department, Adamson University, Manila 1000, Philippines
| | | | | |
Collapse
|
12
|
Mawson AR. Understanding health disparities affecting people of West Central African descent in the United States: An evolutionary perspective. Evol Appl 2023; 16:963-978. [PMID: 37216026 PMCID: PMC10197229 DOI: 10.1111/eva.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023] Open
Abstract
Human populations adapting to diverse aspects of their environment such as climate and pathogens leave signatures of genetic variation. This principle may apply to people of West Central African descent in the United States, who are at increased risk of certain chronic conditions and diseases compared to their European counterparts. Less well known is that they are also at reduced risk of other diseases. While discriminatory practices in the United States continue to affect access to and the quality of healthcare, the health disparities affecting African Americans may also be due in part to evolutionary adaptations to the original environment of sub-Saharan Africa, which involved continuous exposure to the vectors of potentially lethal endemic tropical diseases. Evidence is presented that these organisms selectively absorb vitamin A from the host, and its use in parasite reproduction contributes to the signs and symptoms of the respective diseases. These evolutionary adaptations included (1) sequestering vitamin A away from the liver to other organs, to reduce accessibility to the invaders; and (2) reducing the metabolism and catabolism of vitamin A (vA), causing it to accumulate to subtoxic concentrations and weaken the organisms, thereby reducing the risk of severe disease. However, in the environment of North America, lacking vA-absorbing parasites and with a mainly dairy-based diet that is high in vA, this combination of factors is hypothesized to lead to the accumulation of vA and to increased sensitivity to vA as a toxin, which contribute to the health disparities affecting African Americans. vA toxicity is linked to numerous acute and chronic conditions via mitochondrial dysfunction and apoptosis. Subject to testing, the hypothesis suggests that the adoption of traditional or modified West Central African-style diets that are low in vA and high in vA-absorbing fiber hold promise for disease prevention and treatment, and as a population-based strategy for health maintenance and longevity.
Collapse
Affiliation(s)
- Anthony R. Mawson
- Department of Epidemiology and Biostatistics, School of Public Health, College of Health SciencesJackson State UniversityJacksonMississippiUSA
| |
Collapse
|
13
|
Dobkin J, Wu L, Mangalmurti NS. The ultimate tradeoff: how red cell adaptations to malaria alter the host response during critical illness. Am J Physiol Lung Cell Mol Physiol 2023; 324:L169-L178. [PMID: 36594846 PMCID: PMC9902222 DOI: 10.1152/ajplung.00127.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
The human immune system evolved in response to pathogens. Among these pathogens, malaria has proven to be one of the deadliest and has exerted the most potent selective pressures on its target cell, the red blood cell. Red blood cells have recently gained recognition for their immunomodulatory properties, yet how red cell adaptations contribute to the host response during critical illness remains understudied. This review will discuss how adaptations that may have been advantageous for host survival might influence immune responses in modern critical illness. We will highlight the current evidence for divergent host resilience arising from the adaptations to malaria and summarize how understanding evolutionary red cell adaptations to malaria may provide insight into the heterogeneity of the host response to critical illness, perhaps driving future precision medicine approaches to syndromes affecting the critically ill such as sepsis and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Jane Dobkin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ling Wu
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nilam S Mangalmurti
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Piperine Enhances the Antimalarial Activity of Curcumin in Plasmodium berghei ANKA-Infected Mice: A Novel Approach for Malaria Prophylaxis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7897163. [PMID: 36106028 PMCID: PMC9467801 DOI: 10.1155/2022/7897163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Malaria is a prevalent vector-borne infectious disease in tropical regions, particularly in the absence of effective vaccines and because of the emergence resistance of Plasmodium to available antimalarial drugs. An alternative strategy for malaria eradication could be the combination of existing compounds that possess antimalarial activity to target multiple stages of the parasite. This study evaluated the antimalarial activity of a combination of curcumin and piperine in mice. A total of 42 mice were assigned to six groups depending on the treatment administered: group I (normal group) with aquadest; group II (negative control) with 0.2 ml DMSO; group III received a standard malarial drug (artesunate 5 mg/kg BW); groups IV, V, and VI with curcumin 300 mg/kg BW, curcumin 300 mg/kg BW and piperine 20 mg/kg BW, and piperine 20 mg/kg BW, respectively. The antimalarial activity was evaluated using prophylactic assays in Plasmodium berghei ANKA-infected mice, including the percentage parasitemia, clinical signs, survival rate, serum biochemical analysis, parasitic load in the liver, and liver histopathology. All treatments showed significant (p < 0.05) antiplasmodial activity, with considerable parasite inhibition (>50%), curcumin 300 mg/kg BW (60.22%), curcumin 300 mg/kg BW, and piperine 20 mg/kg BW (77.94%) except for piperine 20 mg/kg BW (47.20%), eliciting greater inhibition relative to that of artesunate (51.18%). The delayed onset of clinical symptoms and prolonged survival rate were also significant (p < 0.05) in the combination of curcumin and piperine treated group. In addition, the low parasitic load in the liver and mild histopathological changes in the liver suggest that the combination of curcumin and piperine had synergistic or additive effects. These findings demonstrate the promising use of these combined compounds as a malarial prophylactic. Further studies were recommended to assess their clinical usefulness.
Collapse
|
15
|
Hakizayezu F, Omolo J, Biracyaza E, Ntaganira J. Treatment outcome and factors associated with mortality due to malaria in Munini District Hospital, Rwanda in 2016-2017: Retrospective cross-sectional study. Front Public Health 2022; 10:898528. [PMID: 36016893 PMCID: PMC9395727 DOI: 10.3389/fpubh.2022.898528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/29/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Malaria is a major public health burden in developing countries despite efforts made by several countries. This disease leads to high morbidity and mortality among Rwandans, particularly in the Southern Province where it was the sixth national cause of morality; at Munini hospital it is the first cause of mortality, but the associated factors remain unknown. In this study, we determined the factors associated with deaths among patients with severe malaria to come up with evidence-based interventions to prevent malaria and its factors. Methods A retrospective cross-sectional study was conducted on malaria patients who were treated at the Munini District Hospital from 2016 to 2017. Data were collected from the hospital records or registers relating to patients who were admitted with severe malaria. The odds ratio was estimated by bivariate logistic regression and multivariate hierarchical regression models for determining the associated factors of deaths. Data were analyzed using STATA/MP Version 14.1 and Epi-info with proportions. Results The study population were mostly women (n = 237, 59.1%), farmers (n = 313, 78.05%), aged 16-30 years (n = 107, 26.68%). Our results indicated that the majority of deaths were women (56.25%). Socio-economic and clinical determinants are important predictors of death among patients with severe malaria. Patients with coma had higher odds of dying (AOR = 7.31, 95% CI :3.33-16.1, p < 0.001) than those who were not. The possibility of mortality increased by almost four times in patients who delayed consultation by a day (AOR = 3.7, 95%CI:1.8-4.1; p < 0.001) compared to those who came in very early. Patients who had severe malaria in the dry season were at a lower risk of mortality (AOR = 0.23, 95%CI:0.08-0.64, p = 0.005) compared to those with severe malaria during the rainy season. Conclusion Lack of health insurance, age of the patient, delayed diagnosis, coma, proximity and access to healthcare services, and weather conditions were the major factors associated with mortality among patients with severe malaria. Comprehensive, long-term, equity-based healthcare interventions and immediate care strategies are recommended.
Collapse
Affiliation(s)
- François Hakizayezu
- Department of Epidemiology and Biostatistics, School of Public Health, University of Rwanda, Kigali, Rwanda,Centers for Disease Control and Prevention (CDC), Field Epidemiology and Laboratory Training Program (FELTP), University of Rwanda, Kigali, Rwanda,*Correspondence: François Hakizayezu
| | - Jared Omolo
- Centers for Disease Control and Prevention (CDC), Field Epidemiology and Laboratory Training Program (FELTP), University of Rwanda, Kigali, Rwanda
| | | | - Joseph Ntaganira
- Department of Epidemiology and Biostatistics, School of Public Health, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
16
|
Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022; 305:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
Infectious diseases remain as one of the major burdens among health communities as well as in the general public despite the advances in prevention and treatment. Although vaccination and vector eliminations have greatly prevented the transmission of these diseases, the effectiveness of these strategies is no longer guaranteed as new challenges such as drug resistance and toxicity as well as the missing effective therapeutics arise. Hence, the development of new tools to manage these challenges is anticipated, in which nano technology using liposomes as effective nanostructure is highly considered. In this review, we concentrate on the advantages of liposomes in the drug delivery system and the development of vaccine in the treatment of three major infectious diseases; tuberculosis (TB), malaria and HIV.
Collapse
Affiliation(s)
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
17
|
Richter RP, Payne GA, Ambalavanan N, Gaggar A, Richter JR. The endothelial glycocalyx in critical illness: A pediatric perspective. Matrix Biol Plus 2022; 14:100106. [PMID: 35392182 PMCID: PMC8981764 DOI: 10.1016/j.mbplus.2022.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium is the interface between circulating blood and end organs and thus has a critical role in preserving organ function. The endothelium is lined by a glycan-rich glycocalyx that uniquely contributes to endothelial function through its regulation of leukocyte and platelet interactions with the vessel wall, vascular permeability, coagulation, and vasoreactivity. Degradation of the endothelial glycocalyx can thus promote vascular dysfunction, inflammation propagation, and organ injury. The endothelial glycocalyx and its role in vascular pathophysiology has gained increasing attention over the last decade. While studies characterizing vascular glycocalyx injury and its downstream consequences in a host of adult human diseases and in animal models has burgeoned, studies evaluating glycocalyx damage in pediatric diseases are relatively few. As children have unique physiology that differs from adults, significant knowledge gaps remain in our understanding of the causes and effects of endothelial glycocalyx disintegrity in pediatric critical illness. In this narrative literature overview, we offer a unique perspective on the role of the endothelial glycocalyx in pediatric critical illness, drawing from adult and preclinical data in addition to pediatric clinical experience to elucidate how marked derangement of the endothelial surface layer may contribute to aberrant vascular biology in children. By calling attention to this nascent field, we hope to increase research efforts to address important knowledge gaps in pediatric vascular biology that may inform the development of novel therapeutic strategies.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- CD, cell differentiation marker
- COVID-19, coronavirus disease 2019
- CPB, cardiopulmonary bypass
- CT, component therapy
- Children
- Critical illness
- DENV NS1, dengue virus nonstructural protein 1
- DM, diabetes mellitus
- ECLS, extracorporeal life support
- ECMO, extracorporeal membrane oxygenation
- EG, endothelial glycocalyx
- Endothelial glycocalyx
- FFP, fresh frozen plasma
- GAG, glycosaminoglycan
- GPC, glypican
- HPSE, heparanase
- HSV, herpes simplex virus
- IV, intravenous
- MIS-C, multisystem inflammatory syndrome in children
- MMP, matrix metalloproteinase
- Pragmatic, Randomized Optimal Platelet and Plasma Ratios
- RHAMM, receptor for hyaluronan-mediated motility
- S protein, spike protein
- SAFE, Saline versus Albumin Fluid Evaluation
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC, syndecan
- SDF, sidestream darkfield
- SIRT1, sirtuin 1
- TBI, traumatic brain injury
- TBSA, total body surface area
- TMPRSS2, transmembrane protease serine 2
- Th2, type 2 helper T cell
- VSMC, vascular smooth muscle cell
- Vascular biology
- WB+CT, whole blood and component therapy
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Robert P. Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A. Payne
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Translational Research in Normal and Disordered Development Program, University of Alabama, Birmingham, AL, USA
| | - Amit Gaggar
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jillian R. Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Oral Administration of Piperine as Curative and Prophylaxis Reduces Parasitaemia in Plasmodium berghei ANKA-Infected Mice. J Trop Med 2022; 2022:5721449. [PMID: 35360190 PMCID: PMC8964209 DOI: 10.1155/2022/5721449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria remains a public health problem and a leading cause of death worldwide. Consequently, the discovery of novel agents, including substances from medicinal plants, is urgently needed. Piper nigrum has long been used by the community in the treatment of the symptoms of malaria. In a previous study, Piper nigrum was demonstrated to exhibit promising antiplasmodial activity against Plasmodium falciparum 3D7 and INDO strains. The aim of this study was to further investigate the antimalarial activity (curative and prophylactic) of piperine (a major isolated constituent of Piper nigrum) in Plasmodium berghei ANKA-infected mice. Piperine 10, 20, and 40 mg/kg body weight (bw), artesunate 5 mg/kg bw, and DMSO were administered orally for four days to different groups of Swiss Webster mice. Then, mice were monitored for parasitaemia, body weight, rectal temperature, survival rate, and clinical parameters. Piperine 40 mg/kg bw in curative and prophylactic tests had the maximum parasitaemia chemosuppression of 79.21% and 58.8% (p < 0.05), respectively, with a significant effect on the survival rate compared with control animals. In the curative test, piperine 40 mg/kg bw reduced the mean clinical score compared with the control group. Additionally, piperine showed an ability to protect organs (lungs, liver, spleen, and kidneys) from some damage in a dose-dependent manner. This study can be used as a basis for further discovery of novel chemotherapeutic or chemoprophylactic compounds.
Collapse
|
19
|
The Potential use of a Curcumin-Piperine Combination as an Antimalarial Agent: A Systematic Review. J Trop Med 2021; 2021:9135617. [PMID: 34671402 PMCID: PMC8523290 DOI: 10.1155/2021/9135617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a significant global health problem, but the development of effective antimalarial drugs is challenging due to the parasite's complex life cycle and lack of knowledge about the critical specific stages. Medicinal plants have been investigated as adjuvant therapy for malaria, so this systematic review summarizes 46 primary articles published until December 2020 that discuss curcumin and piperine as antimalarial agents. The selected articles discussed their antioxidant, anti-inflammatory, and antiapoptosis properties, as well as their mechanism of action against Plasmodium species. Curcumin is a potent antioxidant, damages parasite DNA, and may promote an immune response against Plasmodium by increasing reactive oxygen species (ROS), while piperine is also a potent antioxidant that potentiates the effects of curcumin. Hence, combining these compounds is likely to have the same effect as chloroquine, that is, attenuate and restrict parasite development, thereby reducing parasitemia and increasing host survival. This systematic review presents new information regarding the development of a curcumin-piperine combination for future malaria therapy.
Collapse
|
20
|
Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. Trends Analyt Chem 2020; 133:116067. [PMID: 33052154 PMCID: PMC7545218 DOI: 10.1016/j.trac.2020.116067] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of field-Effect-Transistor (FET) type biosensing arrangements has been highlighted by researchers in the field of early biomarker detection and drug screening. Their non-metalized gate dielectrics that are exposed to an electrolyte solution cover the semiconductor material and actively transduce the biological changes on the surface. The efficiency of these novel devices in detecting different biomolecular analytes in a real-time, highly precise, specific, and label-free manner has been validated by numerous research studies. Considerable progress has been attained in designing FET devices, especially for biomedical diagnosis and cell-based assays in the past few decades. The exceptional electronic properties, compactness, and scalability of these novel tools are very desirable for designing rapid, label-free, and mass detection of biomolecules. With the incorporation of nanotechnology, the performance of biosensors based on FET boosts significantly, particularly, employment of nanomaterials such as graphene, metal nanoparticles, single and multi-walled carbon nanotubes, nanorods, and nanowires. Besides, their commercial availability, and high-quality production on a large-scale, turn them to be one of the most preferred sensing and screening platforms. This review presents the basic structural setup and working principle of different types of FET devices. We also focused on the latest progression regarding the use of FET biosensors for the recognition of viruses such as, recently emerged COVID-19, Influenza, Hepatitis B Virus, protein biomarkers, nucleic acids, bacteria, cells, and various ions. Additionally, an outline of the development of FET sensors for investigations related to drug development and the cellular investigation is also presented. Some technical strategies for enhancing the sensitivity and selectivity of detection in these devices are addressed as well. However, there are still certain challenges which are remained unaddressed concerning the performance and clinical use of transistor-based point-of-care (POC) instruments; accordingly, expectations about their future improvement for biosensing and cellular studies are argued at the end of this review.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Dept. of Elecrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada
| |
Collapse
|
21
|
Xavier-Elsas P, Vieira BM, Masid-de-Brito D, Barradas MG, Gaspar-Elsas MIC. The Need to Consider Context in the Evaluation of Anti-infectious and Immunomodulatory Effects of Vitamin A and its Derivatives. Curr Drug Targets 2020; 20:871-878. [PMID: 30556501 DOI: 10.2174/1389450120666181217095323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
Abstract
Vitamin A and its derivatives (retinoids) act as potent regulators in many aspects of mammalian reproduction, development, repair, and maintenance of differentiated tissue functioning. Unlike other vitamins, Vitamin A and retinoids, which have hormonal actions, present significant toxicity, which plays roles in clinically relevant situations, such as hypervitaminosis A and retinoic acid ("differentiation") syndrome. Although clinical presentation is conspicuous in states of insufficient or excessive Vitamin A and retinoid concentration, equally relevant effects on host resistance to specific infectious agents, and in the general maintenance of immune homeostasis, may go unnoticed, because their expression requires either pathogen exposure or the presence of inflammatory co-morbidities. There is a vast literature on the roles played by retinoids in the maintenance of a tolerogenic, noninflammatory environment in the gut mucosa, which is considered by many investigators representative of a general role played by retinoids as anti-inflammatory hormones elsewhere. However, in the gut mucosa itself, as well as in the bone marrow and inflammatory sites, context determines whether one observes an anti-inflammatory or proinflammatory action of retinoids. Both interactions between specialized cell populations, and interactions between retinoids and other classes of mediators/regulators, such as cytokines and glucocorticoid hormones, must be considered as important factors contributing to this overall context. We review evidence from recent studies on mucosal immunity, granulocyte biology and respiratory allergy models, highlighting the relevance of these variables as well as their possible contributions to the observed outcomes.
Collapse
Affiliation(s)
- Pedro Xavier-Elsas
- Department of Immunology, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Brazil
| | - Bruno M Vieira
- Department of Immunology, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Brazil
| | - Daniela Masid-de-Brito
- Department of Immunology, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Brazil
| | - Monica G Barradas
- Department of Immunology, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. ScientificWorldJournal 2020. [DOI: 10.1155/2020/1295381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malaria, caused by apicomplexan parasite, is an old disease and continues to be a major public health threat in many countries. This article aims to present different aspects of malaria including causes, pathogenesis, prevention, and treatment in an articulate and comprehensive manner. Six Plasmodium species are recognized as the etiology of human malaria, of which Plasmodium falciparum is popular in East and Southern Africa. Malaria is transmitted mainly through Anopheles gambiae and Anopheles funestus, the two most effective malaria vectors in the world. Half of the world’s population is at risk for malaria infection. Globally, the morbidity and mortality rates of malaria have become decreased even though few reports in Ethiopia showed high prevalence of malaria. The malaria parasite has a complex life cycle that takes place both inside the mosquito and human beings. Generally, diagnosis of malaria is classified into clinical and parasitological diagnoses. Lack of clear understanding on the overall biology of Plasmodium has created a challenge in an effort to develop new drugs, vaccines, and preventive methods against malaria. However, three types of vaccines and a lot of novel compounds are under perclinical and clinical studies that are triggered by the occurrence of resistance among commonly used drugs and insecticides. Antiadhesion adjunctive therapies are also under investigation in the laboratory. In addition to previously known targets for diagnostic tool, vaccine and drug discovery scientists from all corner of the world are in search of new targets and chemical entities.
Collapse
|
23
|
Na J, Khan A, Kim JK, Wadood A, Choe YL, Walker DI, Jones DP, Lim CS, Park YH. Discovery of metabolic alterations in the serum of patients infected with Plasmodium spp. by high-resolution metabolomics. Metabolomics 2019; 16:9. [PMID: 31872321 DOI: 10.1007/s11306-019-1630-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/18/2019] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Despite the advances in diagnosis and treatment, malaria has still not been eradicated. Metabolic interactions between the host and Plasmodium may present novel targets for malaria control, but such interactions are yet to be deciphered. An exploration of metabolic interactions between humans and two Plasmodium species by high-resolution metabolomics may provide fundamental insights that can aid the development of a new strategy for the control of malaria. OBJECTIVES This study aimed at exploring the metabolic changes in the sera of patients infected with Plasmodium falciparum and Plasmodium vivax. METHODS Uni- and multivariate metabolomic analyses were performed on the sera of four groups of patients, namely normal control (N, n = 100), P. falciparum-infected patients (PF, n = 21), P. vivax-infected patients (PV, n = 74), and non-malarial pyretic patients (Pyr, n = 25). RESULTS Univariate and multivariate analyses of N, PF, and PV groups showed differential metabolic phenotypes and subsequent comparisons in pairs revealed significant features. Pathway enrichment test with significant features showed the affected pathways, namely glycolysis/gluconeogenesis for PF and retinol metabolism for PV. The metabolites belonging to the affected pathways included significantly low 2,3-diphosphoglycerate and glyceraldehyde-3-phosphate in the sera of PF. The sera of PV had significantly low levels of retinol but high levels of retinoic acid. CONCLUSION Our study reveals metabolic alterations induced by Plasmodium spp. in human serum and would serve as a milestone in the development of novel anti-malarial strategies.
Collapse
Affiliation(s)
- Jinhyuk Na
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea
| | - Adnan Khan
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea
| | - Jae Kwan Kim
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea
| | - Abdul Wadood
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea
| | - Young Lan Choe
- Department of Laboratory Medicine, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Douglas I Walker
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30308, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30308, USA
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Youngja Hwang Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong, 30019, Republic of Korea.
| |
Collapse
|
24
|
Ghosh S, Jiang N, Farr L, Ngobeni R, Moonah S. Parasite-Produced MIF Cytokine: Role in Immune Evasion, Invasion, and Pathogenesis. Front Immunol 2019; 10:1995. [PMID: 31497025 PMCID: PMC6712082 DOI: 10.3389/fimmu.2019.01995] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022] Open
Abstract
Protozoan parasites represent a major threat to health and contribute significantly to morbidity and mortality worldwide, especially in developing countries. This is further compounded by lack of effective vaccines, drug resistance and toxicity associated with current therapies. Multiple protozoans, including Plasmodium, Entamoeba, Toxoplasma, and Leishmania produce homologs of the cytokine MIF. These parasite MIF homologs are capable of altering the host immune response during infection, and play a role in immune evasion, invasion and pathogenesis. This minireview outlines well-established and emerging literature on the role of parasite MIF homologs in disease, and their potential as targets for therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Swagata Ghosh
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Nona Jiang
- Department of Medicine, Yale University, New Haven, CT, United States
| | - Laura Farr
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Renay Ngobeni
- Department of Environmental, Water, and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Shannon Moonah
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
25
|
Saranathan N, Vivekanandan P. G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol 2019; 27:148-163. [PMID: 30224157 PMCID: PMC7127049 DOI: 10.1016/j.tim.2018.08.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures formed by guanine-rich DNA and RNA sequences. In this review we aim to provide an overview of the biological roles of G4s in microbial genomes with emphasis on recent discoveries. G4s are enriched and conserved in the regulatory regions of microbes, including bacteria, fungi, and viruses. Importantly, G4s in hepatitis B virus (HBV) and hepatitis C virus (HCV) genomes modulate genes crucial for virus replication. Recent studies on Epstein-Barr virus (EBV) shed light on the role of G4s within the microbial transcripts as cis-acting regulatory signals that modulate translation and facilitate immune evasion. Furthermore, G4s in microbial genomes have been linked to radioresistance, antigenic variation, recombination, and latency. G4s in microbial genomes represent novel therapeutic targets for antimicrobial therapy.
Collapse
Affiliation(s)
- Nandhini Saranathan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
26
|
Mawson AR, Majumdar S. Malaria, Epstein-Barr virus, vitamin A and Burkitt's lymphoma: Response to Joob and Wiwanitkit. Int J Cancer 2018; 142:864. [DOI: 10.1002/ijc.31122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Anthony R. Mawson
- Department of Epidemiology and Biostatistics, School of Public Health; Jackson State University; Jackson MS
| | - Suvankar Majumdar
- Division of Hematology, Center for Cancer and Blood Disorders; Children's National Medical Center; Washington, DC
- George Washington University School of Medicine and Health Sciences; Washington, DC
| |
Collapse
|
27
|
Mawson AR, Majumdar S. Malaria, Epstein-Barr virus infection and the pathogenesis of Burkitt's lymphoma. Int J Cancer 2017; 141:1849-1855. [PMID: 28707393 DOI: 10.1002/ijc.30885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/10/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023]
Abstract
A geographical and causal connection has long been recognized between malaria, Epstein-Barr virus (EBV) infection and Burkitt's lymphoma (BL), but the underlying mechanisms remain obscure. Potential clues are that the malaria parasite Plasmodium falciparum selectively absorbs vitamin A from the host and depends on it for its biological activities; secondly, alterations in vitamin A (retinoid) metabolism have been implicated in many forms of cancer, including BL. The first author has proposed that the merozoite-stage malaria parasite, emerging from the liver, uses its absorbed vitamin A as a cell membrane destabilizer to invade the red blood cells, causing anemia and other signs and symptoms of the disease as manifestations of an endogenous form of hypervitaminosis A (Mawson AR, Path Global Health 2013;107(3):122-9). Repeated episodes of malaria would therefore be expected to expose the tissues of affected individuals to potentially toxic doses of vitamin A. It is proposed that such episodes activate latent EBV infection, which in turn activates retinoid-responsive genes. Expression of these genes enhances viral replication and induces germinal center (GC) B cell expansion, activation-induced cytidine deaminase (AID) expression, and c-myc translocation, which in turn predisposes to BL. Thus, an endogenous form of retinoid toxicity related to malaria infection may be the common factor linking frequent malaria, EBV infection and BL, whereby prolonged exposure of lymphatic tissues to high concentrations of retinoids may combine to induce B-cell translocation and increase the risk of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Anthony R Mawson
- Professor, Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS
| | - Suvankar Majumdar
- Chief, Division of Hematology, Center for Cancer and Blood Disorders, Children's National Medical Center, Associate Professor of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
28
|
Gómez-Pérez GP, van Bruggen R, Grobusch MP, Dobaño C. Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis. Malar J 2014; 13:335. [PMID: 25158979 PMCID: PMC4161853 DOI: 10.1186/1475-2875-13-335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022] Open
Abstract
Children with recent or acute malaria episodes are at increased risk of invasive bacterial infections (IBI). However, the exact nature of the malaria-IBI association is still unclear. Young children have an age-related spleen immunologic immaturity, mainly due to the still ongoing development of the marginal zone (MZ) B cell subset. By mounting a rapid antibody response against encapsulated bacteria, these cells are critical for the defence against highly pathogenic microorganisms that do not elicit classical T cell-dependent responses. There is increasing evidence that the anatomy of the spleen becomes disorganized during malaria infection, with complete dissolution of the MZ and apoptosis of MZ B cells. Correspondingly, a reduction in the frequency of the peripheral equivalent of the MZ B cells has been found in malaria endemic areas. A remarkable similarity exists in IBI susceptibility between African children with malaria and hyposplenic or splenectomized patients. However, studies specifically assessing the immune function of the spleen in controlling bacterial infections in young children with malaria are scarce. Here, it is hypothesized that Plasmodium falciparum malaria infection constitutes a detrimental factor in the still immature spleen function of young children, resulting in a factually hyposplenic state during malaria episodes, putting children with malaria at a high risk to develop life-threatening bacterial infections. Studies to confirm or reject this hypothesis are greatly needed, as well as the development of affordable and feasible tools to assess the immune spleen function against encapsulated bacteria in children with malaria.
Collapse
Affiliation(s)
- Gloria P Gómez-Pérez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona 08036, Spain.
| | | | | | | |
Collapse
|
29
|
Oluwatosin A, Tolulope A, Ayokulehin K, Patricia O, Aderemi K, Catherine F, Olusegun A. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. ASIAN PAC J TROP MED 2014; 7:97-104. [DOI: 10.1016/s1995-7645(14)60003-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/15/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022] Open
|
30
|
Mawson AR. Retinoids, race and the pathogenesis of dengue hemorrhagic fever. Med Hypotheses 2013; 81:1069-74. [PMID: 23999008 DOI: 10.1016/j.mehy.2013.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022]
Abstract
Dengue hemorrhagic fever (DHF) is the most significant mosquito-borne viral disease worldwide in terms of illness, mortality and economic cost, but the pathogenesis of DHF is not well understood and there is no specific treatment or vaccine. Based on evidence of liver involvement, it is proposed that dengue virus and retinoids interact to cause cholestatic liver damage, resulting in the spillage of stored retinoids into the circulation and in an endogenous form of hypervitaminosisis A manifested by the signs and symptoms of the disease, including: fever, severe joint and bone pain, capillary leakage, thrombocytopenia, headache, and gastrointestinal symptoms. While retinoids in low concentration are essential for numerous biological functions, they are prooxidant, cytotoxic, mutagenic and teratogenic in higher concentration, especially when unbound to protein, and an endogenous form of vitamin A intoxication is recognized in cholestasis. The model tentatively explains the observations that 1) repeat infections are more severe than initial dengue virus infections; 2) the incidence of denue has increased dramatically worldwide in recent decades; 3) DHF is less prevalent in people of African ancestry than those of other racial backgrounds; and 4) infants are protected from dengue. The retinoid toxicity hypothesis of DHF predicts the co-existence of low serum concentrations of retinol coupled with high concentrations of retinoic acid and an increased percentage of retinyl esters to total vitamin A. Subject to such tests, it may be possible to treat DHF effectively using drugs that target the metabolism and expression of retinoids.
Collapse
Affiliation(s)
- Anthony R Mawson
- Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University, Jackson, MS 39213, United States.
| |
Collapse
|