1
|
Pokrovskaya ID, Ball KK, Webb MW, Joshi S, Rhee SW, Ware J, Storrie B. Contrasting Effects of Platelet GPVI Deletion Versus Syk Inhibition on Mouse Jugular Vein Puncture Wound Structure. Int J Mol Sci 2025; 26:4294. [PMID: 40362537 PMCID: PMC12072639 DOI: 10.3390/ijms26094294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Platelet glycoprotein (GP)VI is a transmembrane protein that was originally characterized as a collagen receptor supporting platelet adhesion and activation through its association with the Fc receptor γ-chain (FcRγ). The FcRγ subunit contains immunoreceptor tyrosine-based activation motifs (ITAMs) that recruit and activate Syk (spleen tyrosine kinase), a key player in intracellular signaling pathways. The absence or dysfunction of GPVI produces a mild bleeding defect in humans like the impaired hemostasis reported in the murine knockout. Here, we took an ultrastructure approach to examine the impact of ligand binding to GPVI versus the downstream pharmacologic inhibition of the GPVI-dependent ITAM signaling pathway. Clots were generated for analysis following a puncture wound in the mouse external jugular vein. Images were obtained using mice genetically missing GPVI and mice pretreated with the Syk inhibitor, BI 1002494. Our study was designed to test the hypothesis that the predominant contribution of GPVI to hemostasis is mediated by a Syk-dependent signaling cascade. If true, the clot structure observed with a Syk inhibitor versus the GPVI knockout would be similar. If the extracellular domains of the protein had a Syk-independent platelet adhesion role, then significant comparative differences in the thrombus structure would be expected. Our results clearly indicate an important, Syk-independent role of the GPVI extracellular domain in the adherence of platelets within the intravascular crown of a growing venous clot, a site distant from exposed collagen-rich adventitia. In striking contrast, the adventitial proximal role of GPVI was Syk-dependent, with the GPVI knockout and Syk inhibitor giving the same, limited structural outcome of collagen-proximal platelet cytosol loss and a thinned extravascular cap. Consistent with the lesser role of Syk-dependent processes on the thrombus structure, the Syk inhibitor had no detectable effect on jugular puncture wound bleeding times, while the knockout had a statistically significant, but modest effect on bleeding time. Based on this contrast, we suggest that Syk inhibition may be the more selective approach to modulating the role of GPVI in occlusive clotting.
Collapse
Affiliation(s)
- Irina D. Pokrovskaya
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 77205, USA
| | - Kelly K. Ball
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 77205, USA
| | - Michael W. Webb
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 77205, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Sung W. Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jerry Ware
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 77205, USA
| | - Brian Storrie
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 77205, USA
| |
Collapse
|
2
|
Vilahur G, Fuster V. Interplay between platelets and coagulation: from protective haemostasis to pathological arterial thrombosis. Eur Heart J 2025; 46:413-423. [PMID: 39673717 DOI: 10.1093/eurheartj/ehae776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 10/27/2024] [Indexed: 12/16/2024] Open
Abstract
Haemostasis refers to the physiological process aimed at repairing vessel injury and preventing bleeding. It involves four interlinked stages culminating in the formation of a platelet-fibrin haemostatic plug that is eventually dissolved once the vessel heals. In contrast, arterial thrombosis is a pathological condition resulting from atheroma exposure, triggering the formation of a platelet-rich thrombus that may obstruct blood flow, leading to the clinical manifestations of ischaemic cardiovascular disease. The following review will provide a comprehensive overview of the finely regulated endogenous antithrombotic mechanisms responsible for maintaining the haemostatic balance and preventing intravascular thrombosis. Thereafter, it will further detail the different stages and mechanisms governing the intricate interplay between the vessel, platelets, and the coagulation cascade in haemostasis, highlighting the most recent advances in platelet biology and function, to further elucidate the differential traits and players contributing to pathological arterial thrombus growth. The review will also delve into the impact of emerging cardiovascular risk factors on tilting the haemostatic balance towards a pro-thrombotic state, thereby increasing the patient's vulnerability to thrombotic events. Finally, it will underscore the importance of early screening for subclinical atherosclerosis through advanced imaging technologies capable of quantifying plaque burden and metabolic activity since they may set the stage for an increased thrombotic risk. Implementing proactive interventions to halt atherosclerosis progression or inducing its regression at early stages is crucial for preserving haemostasis and reducing the likelihood of ischaemic atherothrombotic disease.
Collapse
Affiliation(s)
- Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer Sant Quintí 77-79, Barcelona 08041, Spain
- CiberCV, Institute Carlos III, Madrid 28029, Spain
| | - Valentin Fuster
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Trory JS, Vautrinot J, May CJ, Hers I. PROTACs in platelets: emerging antithrombotic strategies and future perspectives. Curr Opin Hematol 2025; 32:34-42. [PMID: 39446364 DOI: 10.1097/moh.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Proteolysis-targeted chimeras (PROTACs) are heterobifunctional compounds that selectively target proteins for degradation and are an emerging therapeutic modality to treat diseases such as cancer and neurodegenerative disorders. This review will widen the area of application by highlighting the ability of PROTACs to remove proteins from the anucleate platelets and evaluate their antithrombotic potential. RECENT FINDINGS Proteomic and biochemical studies demonstrated that human platelets possess the Ubiquitin Proteasomal System as well as the E3 ligase cereblon (CRBN) and therefore may be susceptible to PROTAC-mediated protein degradation. Recent findings confirmed that CRBN ligand-based PROTACs targeting generic tyrosine kinases, Btk and/or Fak lead to efficacious and selective protein degradation in human platelets. Downregulation of Btk, a key player involved in signalling to thrombosis, but not haemostasis, resulted in impaired in-vitro thrombus formation. SUMMARY Platelets are susceptible to targeted protein degradation by CRBN ligand-based PROTACs and have limited ability to resynthesise proteins, ensuring long-term downregulation of target proteins. Therefore, PROTACs serve as an additional research tool to study platelet function and offer new therapeutic potential to prevent thrombosis. Future studies should focus on enhancing cell specificity to avoid on-target side effects on other blood cells.
Collapse
Affiliation(s)
- Justin S Trory
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
4
|
Slater A, Khattak S, Thomas MR. GPVI inhibition: Advancing antithrombotic therapy in cardiovascular disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:465-473. [PMID: 38453424 PMCID: PMC11323372 DOI: 10.1093/ehjcvp/pvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Glycoprotein (GP) VI (GPVI) plays a major role in thrombosis but not haemostasis, making it a promising antithrombotic target. The primary role of GPVI on the surface of platelets is a signalling receptor for collagen, which is one of the most potent thrombotic sub-endothelial components that is exposed by atherosclerotic plaque rupture. Inhibition of GPVI has therefore been investigated as a strategy for treatment and prevention of atherothrombosis, such as during stroke and acute coronary syndromes. A range of specific GPVI inhibitors have been characterized, and two of these inhibitors, glenzocimab and revacept, have completed Phase II clinical trials in ischaemic stroke. In this review, we summarize mechanisms of GPVI activation and the latest progress of clinically tested GPVI inhibitors, including their mechanisms of action. By focusing on what is known about GPVI activation, we also discuss whether alternate strategies could be used to target GPVI.
Collapse
Affiliation(s)
- Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Sophia Khattak
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| |
Collapse
|
5
|
Gilbert GE. Unexpected bleeding with platelet phosphatidylserine exposure defect: new kindred motivates rethinking Scott syndrome. J Thromb Haemost 2024; 22:2147-2149. [PMID: 39048266 DOI: 10.1016/j.jtha.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Gary E Gilbert
- Department of Medicine, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Krott KJ, Feige T, Elvers M. Flow Chamber Analyses in Cardiovascular Research: Impact of Platelets and the Intercellular Crosstalk with Endothelial Cells, Leukocytes, and Red Blood Cells. Hamostaseologie 2023; 43:338-347. [PMID: 37857296 DOI: 10.1055/a-2113-1134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Platelets are main drivers of thrombus formation. Besides platelet aggregate formation, platelets interact with different blood cells such as red blood and white blood cells (RBCs, WBCs) and endothelial cells (ECs), to promote thrombus formation and inflammation. In the past, the role of different proteins in platelet adhesion, activation, and aggregate formation has been analyzed using platelets/mice with a genetic loss of a certain protein. These knock-out mouse models have been investigated for changes in experimental arterial thrombosis or hemostasis. In this review, we focused on the Maastricht flow chamber, which is a very elegant tool to analyze thrombus formation under flow using whole blood or different blood cell components of genetically modified mice. Besides, the interaction of platelets with RBCs, WBCs, and ECs under flow conditions has been evaluated with regard to thrombus formation and platelet-mediated inflammation. Importantly, alterations in thrombus formation as emerged in the flow chamber frequently reflect arterial thrombosis in different mouse models. Thus, the results of flow chamber experiments in vitro are excellent indicators for differences in arterial thrombosis in vivo. Taken together, the Maastricht flow chamber can be used to (1) determine the severity of platelet alterations in different knock-out mice; (2) analyze differences in platelet adhesion, aggregation, and activation; (3) investigate collagen and non-collagen-dependent alterations of thrombus formation; and (4) highlight differences in the interaction of platelets with different blood/ECs. Thus, this experimental approach is a useful tool to increase our understanding of signaling mechanisms that drive arterial thrombosis and hemostasis.
Collapse
Affiliation(s)
- Kim Jürgen Krott
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Feige
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
7
|
Agbani EO, Hers I, Poole AW. Platelet procoagulant membrane dynamics: a key distinction between thrombosis and hemostasis? Blood Adv 2023; 7:1615-1619. [PMID: 36574232 PMCID: PMC10173732 DOI: 10.1182/bloodadvances.2022008122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ejaife O. Agbani
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alastair W. Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Gauer JS, Duval C, Xu RG, Macrae FL, McPherson HR, Tiede C, Tomlinson D, Watson SP, Ariëns RAS. Fibrin-glycoprotein VI interaction increases platelet procoagulant activity and impacts clot structure. J Thromb Haemost 2023; 21:667-681. [PMID: 36696196 DOI: 10.1016/j.jtha.2022.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The glycoprotein VI (GPVI) signaling pathway was previously reported to direct procoagulant platelet activity through collagen binding. However, the impact of GPVI-fibrin interaction on procoagulant platelet development and how it modulates the clot structure are unknown. OBJECTIVES To determine the effect of GPVI-fibrin interaction on the platelet phenotype and its impact on the clot structure. METHODS Procoagulant platelets in platelet-rich plasma clots were determined by scanning electron microscopy (wild-type and GPVI-deficient murine samples) and confocal microscopy. Procoagulant platelet number, clot density, clot porosity, and clot retraction were determined in platelet-rich plasma or whole blood clots of healthy volunteers in the presence of tyrosine kinase inhibitors (PRT-060318, ibrutinib, and dasatinib) and eptifibatide. RESULTS GPVI-deficient clots showed a higher nonprocoagulant vs procoagulant platelet ratio than wild-type clots. The fiber density and the procoagulant platelet number decreased in the presence of Affimer proteins, inhibiting GPVI-fibrin(ogen) interaction and the tyrosine kinase inhibitors. The effect of GPVI signaling inhibitors on the procoagulant platelet number was exacerbated by eptifibatide. The tyrosine kinase inhibitors led to an increase in clot porosity; however, no differences were observed in the final clot weight, following clot retraction with the tyrosine kinase inhibitors, except for ibrutinib. In the presence of eptifibatide, clot retraction was impaired. CONCLUSION Our findings showed that GPVI-fibrin interaction significantly contributes to the development of procoagulant platelets and that inhibition of GPVI signaling increases clot porosity. Clot contractibility was impaired by the integrin αIIbβ3 and Btk pathway inhibition. Thus, inhibition of GPVI-fibrin interactions can alleviate structural characteristics that contribute to a prothrombotic clot phenotype, having potential important implications for novel antithrombotic interventions.
Collapse
Affiliation(s)
- Julia S Gauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Cédric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Rui-Gang Xu
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen R McPherson
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Christian Tiede
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Darren Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
9
|
Pokrovskaya ID, Rhee SW, Ball KK, Kamykowski JA, Zhao OS, Cruz DRD, Cohen J, Aronova MA, Leapman RD, Storrie B. Tethered platelet capture provides a mechanism for restricting circulating platelet activation to the wound site. Res Pract Thromb Haemost 2023; 7:100058. [PMID: 36865905 PMCID: PMC9971284 DOI: 10.1016/j.rpth.2023.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Background Puncture wounding is a longstanding challenge to human health for which understanding is limited, in part, by a lack of detailed morphological data on how the circulating platelet capture to the vessel matrix leads to sustained, self-limiting platelet accumulation. Objectives The objective of this study was to produce a paradigm for self-limiting thrombus growth in a mouse jugular vein model. Methods Data mining of advanced electron microscopy images was performed from authors' laboratories. Results Wide-area transmission electron mcrographs revealed initial platelet capture to the exposed adventitia resulted in localized patches of degranulated, procoagulant-like platelets. Platelet activation to a procoagulant state was sensitive to dabigatran, a direct-acting PAR receptor inhibitor, but not to cangrelor, a P2Y12 receptor inhibitor. Subsequent thrombus growth was sensitive to both cangrelor and dabigatran and sustained by the capture of discoid platelet strings first to collagen-anchored platelets and later to loosely adherent peripheral platelets. Spatial examination indicated that staged platelet activation resulted in a discoid platelet tethering zone that was pushed progressively outward as platelets converted from one activation state to another. As thrombus growth slowed, discoid platelet recruitment became rare and loosely adherent intravascular platelets failed to convert to tightly adherent platelets. Conclusions In summary, the data support a model that we term Capture and Activate, in which the initial high platelet activation is directly linked to the exposed adventitia, all subsequent tethering of discoid platelets is to loosely adherent platelets that convert to tightly adherent platelets, and self-limiting, intravascular platelet activation over time is the result of decreased signaling intensity.
Collapse
Affiliation(s)
- Irina D Pokrovskaya
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kelly K Ball
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jeffrey A Kamykowski
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Oliver S Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Denzel R D Cruz
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Cohen
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian Storrie
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
10
|
Chen S, Zhang L, Chen L, Huang Q, Wang Y, Liang Y. Comprehensive analysis of glycoprotein VI-mediated platelet activation signaling pathway for predicting pan-cancer survival and response to anti-PD-1 immunotherapy. Comput Struct Biotechnol J 2023; 21:2873-2883. [PMID: 37206616 PMCID: PMC10189353 DOI: 10.1016/j.csbj.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Platelets play a vital role in cancer and immunity. However, few comprehensive studies have been conducted on the role of platelet-related signaling pathways in various cancers and their responses to immune checkpoint blockade (ICB) therapy. In the present study, we focused on the glycoprotein VI-mediated platelet activation (GMPA) signaling pathway and comprehensively evaluated its roles in 19 types of cancers listed in The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Cox regression and meta-analyses showed that for all 19 types of cancers, patients with high GMPA scores tended to have a good prognosis. Furthermore, the GMPA signature score could serve as an independent prognostic factor for patients with skin cutaneous melanoma (SKCM). The GMPA signature was linked to tumor immunity in all 19 types of cancers, and was correlated with SKCM tumor histology. Compared to other signature scores, the GMPA signature scores for on-treatment samples were more robust predictors of the response to anti-PD-1 blockade in metastatic melanoma. Moreover, the GMPA signature scores were significantly negatively correlated with EMMPRIN (CD147) and positively correlated with CD40LG expression at the transcriptomic level in most cancer patient samples from the TCGA cohort and on-treatment samples from anti-PD1 therapy cohorts. The results of this study provide an important theoretical basis for the use of GMPA signatures, as well as GPVI-EMMPRIN and GPVI-CD40LG pathways, to predict the responses of cancer patients to various types of ICB therapy.
Collapse
|
11
|
Smith CW, Harbi MH, Garcia‐Quintanilla L, Rookes K, Brown H, Poulter NS, Watson SP, Nicolson PLR, Thomas MR. The Btk inhibitor AB-95-LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and platelet procoagulant activity. J Thromb Haemost 2022; 20:2939-2952. [PMID: 36239466 PMCID: PMC9827830 DOI: 10.1111/jth.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND New antithrombotic therapies with less effect on bleeding are needed for coronary artery disease. The Btk inhibitor ibrutinib blocks atherosclerotic plaque-mediated thrombus formation. However, it is associated with increased bleeding, possibly due to non-Btk-mediated effects. Btk-deficient patients do not have bleeding issues, suggesting selective Btk inhibition as a promising antithrombotic strategy. OBJECTIVES To compare the antithrombotic effects of the highly selective Btk inhibitor AB-95-LH34 (LH34) with ibrutinib. METHODS Glycoprotein VI and G-protein coupled receptor-mediated platelet function and signaling were analyzed in healthy human donor platelets by lumi-aggregometry, flow adhesion, and western blot following 1 h treatment with inhibitors in vitro. RESULTS LH34 showed similar inhibition of Btk-Y223 phosphorylation as ibrutinib, but had no off-target inhibition of Src-Y418 phosphorylation. Similar dose-dependent inhibition of aggregation to atherosclerotic plaque material was observed for both. However, in response to Horm collagen, which also binds integrin α2β1, LH34 exhibited less marked inhibition than ibrutinib. Both LH34 and ibrutinib inhibited platelet adhesion and aggregation to plaque material at arterial shear. Ibrutinib demonstrated the most potent effect, with complete blockade at high concentrations. Platelet activation (P-selectin) and procoagulant activity (phosphatidylserine exposure) in thrombi were inhibited by LH34 and completely blocked by ibrutinib at high concentrations. Furthermore, plaque-induced thrombin generation was reduced by higher concentrations of LH34 and ibrutinib. CONCLUSIONS LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and procoagulant platelet activity in vitro, with less off-target inhibition of Src than ibrutinib, suggesting it is a promising antiplatelet therapy with the potential for reduced bleeding side effects.
Collapse
Affiliation(s)
- Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Maan H. Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Pharmacology and Toxicology Department, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Lourdes Garcia‐Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Kieran Rookes
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Helena Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
12
|
Artesunate as a glycoprotein VI antagonist for preventing platelet activation and thrombus formation. Biomed Pharmacother 2022; 153:113531. [DOI: 10.1016/j.biopha.2022.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
|
13
|
Constantinescu-Bercu A, Wang YA, Woollard KJ, Mangin P, Vanhoorelbeke K, Crawley JTB, Salles-Crawley II. The GPIbα intracellular tail - role in transducing VWF- and collagen/GPVI-mediated signaling. Haematologica 2022; 107:933-946. [PMID: 34134470 PMCID: PMC8968903 DOI: 10.3324/haematol.2020.278242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/09/2022] Open
Abstract
The GPIbT-VWF A1 domain interaction is essential for platelet tethering under high shear. Synergy between GPIbα and GPVI signaling machineries has been suggested previously, however its molecular mechanism remains unclear. We generated a novel GPIbα transgenic mouse (GpIbαΔsig/Δsig) by CRISPR-Cas9 technology to delete the last 24 residues of the GPIbα intracellular tail that harbors the 14-3-3 and phosphoinositide-3 kinase binding sites. GPIbαΔsig/Δsig platelets bound VWF normally under flow. However, they formed fewer filopodia on VWF/botrocetin in the presence of a oIIbI3 blocker, demonstrating that despite normal ligand binding, VWF-dependent signaling is diminished. Activation of GpIbαΔsig/Δsig platelets with ADP and thrombin was normal, but GpIbαΔsig/Δsig platelets stimulated with collagen-related-peptide (CRP) exhibited markedly decreased P-selectin exposure and eIIbI3 activation, suggesting a role for the GpIbaaintracellular tail in GPVI-mediated signaling. Consistent with this, while haemostasis was normal in GPIbαΔsig/Δsig mice, diminished tyrosine-phosphorylation, (particularly pSYK) was detected in CRP-stimulated GpIbαΔsig/Δsig platelets as well as reduced platelet spreading on CRP. Platelet responses to rhodocytin were also affected in GpIbαΔsig/Δsig platelets but to a lesser extent than those with CRP. GpIbαΔsig/Δsig platelets formed smaller aggregates than wild-type platelets on collagen-coated microchannels at low, medium and high shear. In response to both VWF and collagen binding, flow assays performed with plasma-free blood or in the presence of bIIbI3- or GPVI-blockers suggested reduced bIIbI3 activation contributes to the phenotype of the GpIbαΔsig/Δsig platelets. Together, these results reveal a new role for the intracellular tail of GPIbiiin transducing both VWF-GPIbGGand collagen-GPVI signaling events in platelets.
Collapse
Affiliation(s)
| | - Yuxiao A Wang
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Pierre Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | | | - James T B Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
14
|
Neagoe RAI, Gardiner EE, Stegner D, Nieswandt B, Watson SP, Poulter NS. Rac Inhibition Causes Impaired GPVI Signalling in Human Platelets through GPVI Shedding and Reduction in PLCγ2 Phosphorylation. Int J Mol Sci 2022; 23:3746. [PMID: 35409124 PMCID: PMC8998833 DOI: 10.3390/ijms23073746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Rac1 is a small Rho GTPase that is activated in platelets upon stimulation with various ligands, including collagen and thrombin, which are ligands for the glycoprotein VI (GPVI) receptor and the protease-activated receptors, respectively. Rac1-deficient murine platelets have impaired lamellipodia formation, aggregation, and reduced PLCγ2 activation, but not phosphorylation. The objective of our study is to investigate the role of Rac1 in GPVI-dependent human platelet activation and downstream signalling. Therefore, we used human platelets stimulated using GPVI agonists (collagen and collagen-related peptide) in the presence of the Rac1-specific inhibitor EHT1864 and analysed platelet activation, aggregation, spreading, protein phosphorylation, and GPVI clustering and shedding. We observed that in human platelets, the inhibition of Rac1 by EHT1864 had no significant effect on GPVI clustering on collagen fibres but decreased the ability of platelets to spread or aggregate in response to GPVI agonists. Additionally, in contrast to what was observed in murine Rac1-deficient platelets, EHT1864 enhanced GPVI shedding in platelets and reduced the phosphorylation levels of PLCγ2 following GPVI activation. In conclusion, Rac1 activity is required for both human and murine platelet activation in response to GPVI-ligands, but Rac1's mode of action differs between the two species.
Collapse
Affiliation(s)
- Raluca A. I. Neagoe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia;
| | - David Stegner
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Bernhard Nieswandt
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK
| |
Collapse
|
15
|
Foster H, Wilson C, Gauer JS, Xu RG, Howard MJ, Manfield IW, Ariëns R, Naseem K, Vidler LR, Philippou H, Foster R. A Comparative Assessment Study of Known Small-molecule GPVI Modulators. ACS Med Chem Lett 2022; 13:171-181. [PMID: 35178172 PMCID: PMC8842102 DOI: 10.1021/acsmedchemlett.1c00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The GPVI platelet receptor was recently validated as a safe antiplatelet target for the treatment of thrombosis using several peptidic modulators. In contrast, few weakly potent small-molecule GPVI antagonists have been reported. Those that have been published often lack evidence for target engagement, and their biological efficacy cannot be compared because of the natural donor variability associated with the assays implemented. Herein, we present the first side-by-side assessment of the reported GPVI small-molecule modulators. We have characterized their functional activities on platelet activation and aggregation using flow cytometry as well as light transmission and electrical impedance aggregometry. We also utilized microscale thermophoresis (MST) and saturation transfer difference (STD) NMR to validate GPVI binding and have used this along with molecular modeling to suggest potential binding interactions. We conclude that of the compounds examined, losartan and compound 5 are currently the most viable GPVI modulators.
Collapse
Affiliation(s)
- Holly Foster
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Clare Wilson
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Julia S. Gauer
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Rui-Gang Xu
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mark J. Howard
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Iain W. Manfield
- Faculty
of Biological Sciences and Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Robert Ariëns
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Khalid Naseem
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Helen Philippou
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Richard Foster
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
16
|
Lee RH, Kawano T, Grover SP, Bharathi V, Martinez D, Cowley DO, Mackman N, Bergmeier W, Antoniak S. Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability. J Thromb Haemost 2022; 20:422-433. [PMID: 34689407 PMCID: PMC8792346 DOI: 10.1111/jth.15569] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Protease-activated receptor 4 (PAR4) is expressed by a wide variety of cells, including megakaryocytes/platelets, immune cells, cardiomyocytes, and lung epithelial cells. It is the only functional thrombin receptor on murine platelets. A global deficiency of PAR4 is associated with impaired hemostasis and reduced thrombosis. OBJECTIVE We aimed to generate a mouse line with a megakaryocyte/platelet-specific deletion of PAR4 (PAR4fl/fl ;PF4Cre+ ) and use the mouse line to investigate the role of platelet PAR4 in hemostasis and thrombosis in mice. METHODS Platelets from PAR4fl/fl ;PF4Cre+ were characterized in vitro. Arterial and venous thrombosis was analyzed. Hemostatic plug formation was analyzed using a saphenous vein laser injury model in mice with global or megakaryocyte/platelet-specific deletion of PAR4 or wild-type mice treated with thrombin or glycoprotein VI (GPVI) inhibitors. RESULTS PAR4fl/fl ;PF4Cre+ platelets were unresponsive to thrombin or specific PAR4 stimulation but not to other agonists. PAR4-/- and PAR4fl/fl ;PF4Cre+ mice both exhibited a similar reduction in arterial thrombosis compared to their respective controls. More importantly, we show for the first time that platelet PAR4 is critical for venous thrombosis in mice. In addition, PAR4-/- mice and PAR4fl/fl ;PF4Cre+ mice exhibited a similar impairment in hemostatic plug stability in a saphenous vein laser injury model. Inhibition of thrombin in wild-type mice gave a similar phenotype. Combined PAR4 deficiency on platelets with GPVI inhibition did not impair hemostatic plug formation but further reduced plug stability. CONCLUSION We generated a novel PAR4fl/fl ;PF4Cre+ mouse line. We used this mouse line to show that PAR4 signaling in platelets is critical for arterial and venous thrombosis and hemostatic plug stability.
Collapse
Affiliation(s)
- Robert H. Lee
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tomohiro Kawano
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven P. Grover
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vanthana Bharathi
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Martinez
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dale O. Cowley
- UNC Animal Models Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Hosseini E, Solouki A, Haghshenas M, Ghasemzadeh M, Schoenwaelder SM. Agitation-dependent biomechanical forces modulate GPVI receptor expression and platelet adhesion capacity during storage. Thromb J 2022; 20:3. [PMID: 35022046 PMCID: PMC8756730 DOI: 10.1186/s12959-021-00359-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Continuous agitation during storage slows down the platelet storage lesions. However, in special circumstances, manual-mixing can be alternatively used to store products for short time periods without compromising platelet quality. Based on this finding, and given the role of shear stress in modulating receptor expression, we were interested in comparing the levels of platelet adhesion receptor, GPVI and platelet adhesion capacity under each storage condition. METHODS Platelet concentrates (PCs) were divided into three groups: continuously-agitated PCs (CAG-PCs) with or without PP2 (Src kinase inhibitor) and manually-mixed PCs (MM-PCs). Platelet count/MPV, swirling, GPVI and P-selectin expression, GPVI shedding, platelet adhesion/spreading to collagen were examined during 5 days of storage. RESULTS While MM- and CAG-PCs showed similar levels of P-selectin expression, GPVI expression was significantly elevated in MM-PCs with lower GPVI shedding/expression ratios, enhanced platelet adhesion/spreading and swirling in manually-mixed PCs. Of note, CAG-PCs treated with PP2 also demonstrated lower P-selectin expression and GPVI shedding, higher GPVI expression and attenuated swirling and spreading capability. CONCLUSION Given the comparable platelet activation state in MM and CAG-PCs as indicated by P-selectin expression, enhanced platelet adhesion/spreading in MM-PCs, along with relatively higher GPVI expression here, supports previous studies demonstrating a role for biomechanical forces in modulating GPVI-dependent function. Thus, lower GPVI expression in CAG-PCs may be due to shear forces induced by agitation, which keeps this receptor down-regulated while also attenuating platelet adhesion/spreading capacities during storage. Low platelet function in PP2-CAG-PCs also highlights the importance of Src-kinases threshold activity in maintaining platelets quality.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Amin Solouki
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masood Haghshenas
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Simone M Schoenwaelder
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia
| |
Collapse
|
18
|
Hwang BO, Park SY, Cho ES, Zhang X, Lee SK, Ahn HJ, Chun KS, Chung WY, Song NY. Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Front Immunol 2022; 12:807600. [PMID: 34987523 PMCID: PMC8721674 DOI: 10.3389/fimmu.2021.807600] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer tissues are not just simple masses of malignant cells, but rather complex and heterogeneous collections of cellular and even non-cellular components, such as endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor microenvironment (TME). These multiple players in the TME develop dynamic interactions with each other, which determines the characteristics of the tumor. Platelets are the smallest cells in the bloodstream and primarily regulate blood coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a status of an increased platelet number in the bloodstream, as well as the platelet infiltration into the tumor stroma, which contributes to cancer promotion and progression. Thus, platelets function as one of the important stromal components in the TME, emerging as a promising chemotherapeutic target. However, the use of traditional antiplatelet agents, such as aspirin, has limitations mainly due to increased bleeding complications. This requires to implement new strategies to target platelets for anti-cancer effects. In oral squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-stromal ratio (high stroma) are strongly correlated with increased metastasis and poor prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of relatively easy access for visual examination of precancerous lesions in the oral cavity. Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative evidence supports that platelets can directly interact with PDPN-expressing cancer cells via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction, and will assess their potentials as therapeutic targets for OSCC treatment.
Collapse
Affiliation(s)
- Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eunae Sandra Cho
- BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Pathology, Yanbian University Hospital, Yanji City, China
| | - Sun Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hyung-Joon Ahn
- Department of Orofacial Pain and Oral Medicine, Dental Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Won-Yoon Chung
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
19
|
Hers I, Mundell SJ. GPR56, a novel platelet collagen receptor that loves stress. J Thromb Haemost 2021; 19:1848-1851. [PMID: 33908157 DOI: 10.1111/jth.15335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, UK
| |
Collapse
|
20
|
Chen C, Rawat D, Samikannu B, Bender M, Preissner KT, Linn T. Platelet glycoprotein VI-dependent thrombus stabilization is essential for the intraportal engraftment of pancreatic islets. Am J Transplant 2021; 21:2079-2089. [PMID: 33099857 DOI: 10.1111/ajt.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 01/25/2023]
Abstract
Platelet activation and thrombus formation have been implicated to be detrimental for intraportal pancreatic islet transplants. The platelet-specific collagen receptor glycoprotein VI (GPVI) plays a key role in thrombosis through cellular activation and the subsequent release of secondary mediators. In aggregometry and in a microfluidic dynamic assay system modeling flow in the portal vein, pancreatic islets promoted platelet aggregation and triggered thrombus formation, respectively. While platelet GPVI deficiency did not affect the initiation of these events, it was found to destabilize platelet aggregates and thrombi in this process. Interestingly, while no major difference was detected in early thrombus formation after intraportal islet transplantation, genetic GPVI deficiency or acute anti-GPVI treatment led to an inferior graft survival and function in both syngeneic mouse islet transplantation and xenogeneic human islet transplantation models. These results demonstrate that platelet GPVI signaling is indispensable in stable thrombus formation induced by pancreatic islets. GPVI deficiency resulted in thrombus destabilization and inferior islet engraftment indicating that thrombus formation is necessary for a successful intraportal islet transplantation in which platelets are active modulators.
Collapse
Affiliation(s)
- Chunguang Chen
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Giessen, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Divya Rawat
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Balaji Samikannu
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Giessen, Germany.,Cell and Developmental Biology, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Markus Bender
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
21
|
Flow studies on human GPVI-deficient blood under coagulating and noncoagulating conditions. Blood Adv 2021; 4:2953-2961. [PMID: 32603422 DOI: 10.1182/bloodadvances.2020001761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of glycoprotein VI (GPVI) in platelets was investigated in 3 families bearing an insertion within the GP6 gene that introduces a premature stop codon prior to the transmembrane domain, leading to expression of a truncated protein in the cytoplasm devoid of the transmembrane region. Western blotting and flow cytometry of GP6hom (homozygous) platelets confirmed loss of the full protein. The level of the Fc receptor γ-chain, which associates with GPVI in the membrane, was partially reduced, but expression of other receptors and signaling proteins was not altered. Spreading of platelets on collagen and von Willebrand factor (which supports partial spreading) was abolished in GP6hom platelets, and spreading on uncoated glass was reduced. Anticoagulated whole blood flowed over immobilized collagen or a mixture of von Willebrand factor, laminin, and rhodocytin (noncollagen surface) generated stable platelet aggregates that express phosphatidylserine (PS). Both responses were blocked on the 2 surfaces in GP6hom individuals, but adhesion was not altered. Thrombin generation was partially reduced in GP6hom blood. The frequency of the GP6het (heterozygous) variant in a representative sample of the Chilean population (1212 donors) is 2.9%, indicating that there are ∼4000 GP6hom individuals in Chile. These results demonstrate that GPVI supports aggregation and PS exposure under flow on collagen and noncollagen surfaces, but not adhesion. The retention of adhesion may contribute to the mild bleeding diathesis of GP6hom patients and account for why so few of the estimated 4000 GP6hom individuals in Chile have been identified.
Collapse
|
22
|
Abstract
Until recently, the nucleic acid content of platelets was considered to be fully determined by their progenitor megakaryocyte. However, it is now well understood that additional mediators (eg, cancer cells) can intervene, thereby influencing the RNA repertoire of platelets. Platelets are highly dynamic cells that are able to communicate and influence their environment. For instance, platelets have been involved in various steps of cancer development and progression by supporting tumor growth, survival, and dissemination. Cancer cells can directly and/or indirectly influence platelet RNA content, resulting in tumor-mediated "education" of platelets. Alterations in the tumor-educated platelet RNA profile have been described as a novel source of potential biomarkers. Individual platelet RNA biomarkers as well as complex RNA signatures may be used for early detection of cancer and treatment monitoring. Here, we review the RNA transfer occurring between cancer cells and platelets. We explore the potential use of platelet RNA biomarkers as a liquid biopsy biosource and discuss methods to evaluate the transcriptomic content of platelets.
Collapse
|
23
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
24
|
Belcher A, Zulfiker AHM, Li OQ, Yue H, Gupta AS, Li W. Targeting Thymidine Phosphorylase With Tipiracil Hydrochloride Attenuates Thrombosis Without Increasing Risk of Bleeding in Mice. Arterioscler Thromb Vasc Biol 2021; 41:668-682. [PMID: 33297751 PMCID: PMC8105268 DOI: 10.1161/atvbaha.120.315109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Current antiplatelet medications increase the risk of bleeding, which leads to a clear clinical need in developing novel mechanism-based antiplatelet drugs. TYMP (Thymidine phosphorylase), a cytoplasm protein that is highly expressed in platelets, facilitates multiple agonist-induced platelet activation, and enhances thrombosis. Tipiracil hydrochloride (TPI), a selective TYMP inhibitor, has been approved by the Food and Drug Administration for clinical use. We tested the hypothesis that TPI is a safe antithrombotic medication. Approach and Results: By coexpression of TYMP and Lyn, GST (glutathione S-transferase) tagged Lyn-SH3 domain or Lyn-SH2 domain, we showed the direct evidence that TYMP binds to Lyn through both SH3 and SH2 domains, and TPI diminished the binding. TYMP deficiency significantly inhibits thrombosis in vivo in both sexes. Pretreatment of platelets with TPI rapidly inhibited collagen- and ADP-induced platelet aggregation. Under either normal or hyperlipidemic conditions, treating wild-type mice with TPI via intraperitoneal injection, intravenous injection, or gavage feeding dramatically inhibited thrombosis without inducing significant bleeding. Even at high doses, TPI has a lower bleeding side effect compared with aspirin and clopidogrel. Intravenous delivery of TPI alone or combined with tissue plasminogen activator dramatically inhibited thrombosis. Dual administration of a very low dose of aspirin and TPI, which had no antithrombotic effects when used alone, significantly inhibited thrombosis without disturbing hemostasis. CONCLUSIONS This study demonstrated that inhibition of TYMP, a cytoplasmic protein, attenuated multiple signaling pathways that mediate platelet activation, aggregation, and thrombosis. TPI can be used as a novel antithrombotic medication without the increase in risk of bleeding.
Collapse
Affiliation(s)
- Adam Belcher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Abu Hasanat Md Zulfiker
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Oliver Qiyue Li
- Marshall Institute for Interdisciplinary Research; Huntington, WV, 25701, USA
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland OH 44106, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|
25
|
Damaskinaki FN, Moran LA, Garcia A, Kellam B, Watson SP. Overcoming challenges in developing small molecule inhibitors for GPVI and CLEC-2. Platelets 2021; 32:744-752. [PMID: 33406951 DOI: 10.1080/09537104.2020.1863939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
GPVI and CLEC-2 have emerged as promising targets for long-term prevention of both arterial thrombosis and thrombo-inflammation with a decreased bleeding risk relative to current drugs. However, while there are potent blocking antibodies of both receptors, their protein nature comes with decreased bioavailability, making formulation for oral medication challenging. Small molecules are able to overcome these limitations, but there are many challenges in developing antagonists of nanomolar potency, which is necessary when considering the structural features that underlie the interaction of CLEC-2 and GPVI with their protein ligands. In this review, we describe current small-molecule inhibitors for both receptors and strategies to overcome such limitations, including considerations when it comes to in silico drug design and the importance of complex compound library selection.
Collapse
Affiliation(s)
- Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.,Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Luis A Moran
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Angel Garcia
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.,Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
26
|
Borst O, Gawaz M. Glycoprotein VI - novel target in antiplatelet medication. Pharmacol Ther 2021; 217:107630. [DOI: 10.1016/j.pharmthera.2020.107630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
|
27
|
Chan KYT, Yong ASM, Wang X, Ringgold KM, St John AE, Baylis JR, White NJ, Kastrup CJ. The adhesion of clots in wounds contributes to hemostasis and can be enhanced by coagulation factor XIII. Sci Rep 2020; 10:20116. [PMID: 33208779 PMCID: PMC7675984 DOI: 10.1038/s41598-020-76782-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/18/2020] [Indexed: 11/09/2022] Open
Abstract
The adhesion of blood clots to wounds is necessary to seal injured vasculature and achieve hemostasis. However, it has not been specifically tested if adhesive failure of clots is a major contributor to rebleeding and what mechanisms prevent clot delamination. Here, we quantified the contribution of adhesive and cohesive failure to rebleeding in a rat model of femoral artery injury, and identified mechanisms that contribute to the adhesive strength of bulk clots in a lap-shear test in vitro. In the rat bleeding model, the frequency of clot failures correlated positively with blood loss (R = 0.81, p = 0.014) and negatively with survival time (R = - 0.89, p = 0.0030), with adhesive failures accounting for 51 ± 14% of rebleeds. In vitro, adhesion depended on fibrinogen and coagulation factor XIII (FXIII), and supraphysiological FXIII improved adhesive strength. Furthermore, when exogenous FXIII was topically applied into the wound pocket of rats, eleven adhesive failures occurred between eight rats, compared to seventeen adhesive failures between eight untreated rats, whereas the number of cohesive failures remained the same at sixteen in both groups. In conclusion, rebleeding from both adhesive and cohesive failure of clots decreases survival from hemorrhage in vivo. Both endogenous and exogenous FXIII improves the adhesive strength of clots.
Collapse
Affiliation(s)
- Karen Y T Chan
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Alyssa S M Yong
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Xu Wang
- Department of Emergency Medicine, University of Washington, Seattle, USA
| | - Kristyn M Ringgold
- Department of Emergency Medicine, University of Washington, Seattle, USA
| | | | - James R Baylis
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Nathan J White
- Department of Emergency Medicine, University of Washington, Seattle, USA
| | - Christian J Kastrup
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
28
|
GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force. Proc Natl Acad Sci U S A 2020; 117:28275-28286. [PMID: 33097663 PMCID: PMC7668045 DOI: 10.1073/pnas.2008921117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We identified the known collagen receptor GPR56/ADGRG1 on platelets. GPR56 is an adhesion G protein-coupled receptor that becomes activated following forced dissociation of its N-terminal fragment and C-terminal fragment or seven-transmembrane spanning domain (7TM). Fragment dissociation reveals the cryptic stalk of the 7TM, which acts as a tethered peptide agonist, and for GPR56, this activates platelet G13 signaling. GPR56 pharmacological probes activated platelets to undergo shape change and aggregation, which are critical for the formation of hemostatic plugs. Gpr56−/− mice exhibit prolonged bleeding, defective platelet plug formation in vessel injury assays, and delayed thrombotic vessel occlusion. Shear-force dependency of platelet adhesion to immobilized collagen was found to be GPR56 dependent. Circulating platelets roll along exposed collagen at vessel injury sites and respond with filipodia protrusion, shape change, and surface area expansion to facilitate platelet adhesion and plug formation. Various glycoproteins were considered to be both collagen responders and mediators of platelet adhesion, yet the signaling kinetics emanating from these receptors do not fully account for the rapid platelet cytoskeletal changes that occur in blood flow. We found the free N-terminal fragment of the adhesion G protein-coupled receptor (GPCR) GPR56 in human plasma and report that GPR56 is the platelet receptor that transduces signals from collagen and blood flow-induced shear force to activate G protein 13 signaling for platelet shape change. Gpr56−/− mice have prolonged bleeding, defective platelet plug formation, and delayed thrombotic occlusion. Human and mouse blood perfusion studies demonstrated GPR56 and shear-force dependence of platelet adhesion to immobilized collagen. Our work places GPR56 as an initial collagen responder and shear-force transducer that is essential for platelet shape change during hemostasis.
Collapse
|
29
|
Hemostasis vs. homeostasis: Platelets are essential for preserving vascular barrier function in the absence of injury or inflammation. Proc Natl Acad Sci U S A 2020; 117:24316-24325. [PMID: 32929010 DOI: 10.1073/pnas.2007642117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelets are best known for their vasoprotective responses to injury and inflammation. Here, we have asked whether they also support vascular integrity when neither injury nor inflammation is present. Changes in vascular barrier function in dermal and meningeal vessels were measured in real time in mouse models using the differential extravasation of fluorescent tracers as a biomarker. Severe thrombocytopenia produced by two distinct methods caused increased extravasation of 40-kDa dextran from capillaries and postcapillary venules but had no effect on extravasation of 70-kDa dextran or albumin. This reduction in barrier function required more than 4 h to emerge after thrombocytopenia was established, reverting to normal as the platelet count recovered. Barrier dysfunction was also observed in mice that lacked platelet-dense granules, dense granule secretion machinery, glycoprotein (GP) VI, or the GPVI signaling effector phospholipase C (PLC) γ2. It did not occur in mice lacking α-granules, C type lectin receptor-2 (CLEC-2), or protease activated receptor 4 (PAR4). Notably, although both meningeal and dermal vessels were affected, intracerebral vessels, which are known for their tighter junctions between endothelial cells, were not. Collectively, these observations 1) highlight a role for platelets in maintaining vascular homeostasis in the absence of injury or inflammation, 2) provide a sensitive biomarker for detecting changes in platelet-dependent barrier function, 3) identify which platelet processes are required, and 4) suggest that the absence of competent platelets causes changes in the vessel wall itself, accounting for the time required for dysfunction to emerge.
Collapse
|
30
|
Gupta S, Brass LF. Glycoprotein VI Blockade: Not Just Targeting Collagen Anymore? Arterioscler Thromb Vasc Biol 2020; 40:1964-1966. [PMID: 32845775 DOI: 10.1161/atvbaha.120.315059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shuchi Gupta
- From the Hematology-Oncology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Lawrence F Brass
- From the Hematology-Oncology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
31
|
Huskens D, Li L, Florin L, de Kesel P, de Laat B, Roest M, Devreese KMJ. Flow cytometric analysis of platelet function to improve the recognition of thrombocytopathy. Thromb Res 2020; 194:183-189. [PMID: 32788114 DOI: 10.1016/j.thromres.2020.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Light transmission aggregometry (LTA) is the gold standard for diagnosing bleeding disorders. Although LTA is laborious, requires large volumes of blood and is relatively insensitive to small changes in platelet function, there is still no competing alternative approach to replace LTA for the diagnosis of platelet bleeding disorders. MATERIALS AND METHODS This study investigates the correlation between flow cytometry-based whole blood platelet activation test (WB-PACT) and LTA and whether WB-PACT is of additional value for the identification of bleeding disorders. In total, 161 patients with suspected bleeding diathesis were tested. RESULTS A correlation of 0.41 between LTA and WB-PACT was found, and there was agreement between tests in 62% of cases (κ = 0.23). The WB-PACT is of additional value to LTA to detect platelet function disorders (PFD) as 10 patients with elevated bleeding score (BS) were detected with WB-PACT, 4 with LTA and 7 patients were positive with both tests. Interestingly, in contrast to LTA, WB-PACT has an additional option to detect VWF disfunctions. CONCLUSION WB-PACT may have added value for the routine diagnostic work-up in patients who need to have platelet function tested.
Collapse
Affiliation(s)
- Dana Huskens
- Synapse Research Institute, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Li Li
- Synapse Research Institute, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Lisa Florin
- Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Pieter de Kesel
- Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bas de Laat
- Synapse Research Institute, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Katrien M J Devreese
- Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Diacylglycerol kinase ζ is a negative regulator of GPVI-mediated platelet activation. Blood Adv 2020; 3:1154-1166. [PMID: 30967391 DOI: 10.1182/bloodadvances.2018026328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that convert diacylglycerol (DAG) into phosphatidic acid (PA). The ζ isoform of DGK (DGKζ) has been reported to inhibit T-cell responsiveness by downregulating intracellular levels of DAG. However, its role in platelet function remains undefined. In this study, we show that DGKζ was expressed at significant levels in both platelets and megakaryocytes and that DGKζ-knockout (DGKζ-KO) mouse platelets were hyperreactive to glycoprotein VI (GPVI) agonists, as assessed by aggregation, spreading, granule secretion, and activation of relevant signal transduction molecules. In contrast, they were less responsive to thrombin. Platelets from DGKζ-KO mice accumulated faster on collagen-coated microfluidic surfaces under conditions of arterial shear and stopped blood flow faster after ferric chloride-induced carotid artery injury. Other measures of hemostasis, as measured by tail bleeding time and rotational thromboelastometry analysis, were normal. Interestingly, DGKζ deficiency led to increased GPVI expression on the platelet and megakaryocyte surfaces without affecting the expression of other platelet surface receptors. These results implicate DGKζ as a novel negative regulator of GPVI-mediated platelet activation that plays an important role in regulating thrombus formation in vivo.
Collapse
|
33
|
Foster H, Wilson C, Philippou H, Foster R. Progress toward a Glycoprotein VI Modulator for the Treatment of Thrombosis. J Med Chem 2020; 63:12213-12242. [PMID: 32463237 DOI: 10.1021/acs.jmedchem.0c00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic thrombus formation accounts for the etiology of many serious conditions including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Despite the development of numerous anticoagulants and antiplatelet agents, the mortality rate associated with these diseases remains high. In recent years, however, significant epidemiological evidence and clinical models have emerged to suggest that modulation of the glycoprotein VI (GPVI) platelet receptor could be harnessed as a novel antiplatelet strategy. As such, many peptidic agents have been described in the past decade, while more recent efforts have focused on the development of small molecule modulators. Herein the rationale for targeting GPVI is summarized and the published GPVI modulators are reviewed, with particular focus on small molecules. A qualitative pharmacophore hypothesis for small molecule ligands at GPVI is also presented.
Collapse
Affiliation(s)
- Holly Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Clare Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
34
|
Denorme F, Rondina MT. Targeting Glycoprotein VI for Thromboembolic Disorders. Arterioscler Thromb Vasc Biol 2020; 39:839-840. [PMID: 31017825 DOI: 10.1161/atvbaha.119.312621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frederik Denorme
- From the Molecular Medicine Program, University of Utah, Salt Lake City (F.D., M.T.R.).,Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (F.D.)
| | - Matthew T Rondina
- From the Molecular Medicine Program, University of Utah, Salt Lake City (F.D., M.T.R.).,Department of Internal Medicine, University of Utah, Salt Lake City (M.T.R.).,George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, Utah (M.T.R.)
| |
Collapse
|
35
|
Mezger M, Nording H, Sauter R, Graf T, Heim C, von Bubnoff N, Ensminger SM, Langer HF. Platelets and Immune Responses During Thromboinflammation. Front Immunol 2019; 10:1731. [PMID: 31402914 PMCID: PMC6676797 DOI: 10.3389/fimmu.2019.01731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Besides mediating hemostatic functions, platelets are increasingly recognized as important players of inflammation. Data from experiments in mice and men revealed various intersection points between thrombosis, hemostasis, and inflammation, which are addressed and discussed in this review in detail. One such example is the intrinsic coagulation cascade that is initiated after platelet activation thereby further propagating and re-enforcing wound healing or thrombus formation but also contributing to the pathophysiology of severe diseases. FXII of the intrinsic pathway connects platelet activation with the coagulation cascade during immune reactions. It can activate the contact system thereby either creating an inflammatory state or accelerating inflammation. Recent insights into platelet biology could show that platelets are equipped with complement receptors. Platelets are important for tissue remodeling after injury has been inflicted to the endothelial barrier and to the subendothelial tissue. Thus, platelets are increasingly recognized as more than just cells relevant for bleeding arrest. Future insights into platelet biology are to be expected. This research will potentially offer novel opportunities for therapeutic intervention in diseases featuring platelet abundance.
Collapse
Affiliation(s)
- Matthias Mezger
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Reinhard Sauter
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Tobias Graf
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian Heim
- Department of Cardiac Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Stephan M Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, Lübeck, Germany
| | - Harald F Langer
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
36
|
Nurden AT. Clinical significance of altered collagen-receptor functioning in platelets with emphasis on glycoprotein VI. Blood Rev 2019; 38:100592. [PMID: 31351674 DOI: 10.1016/j.blre.2019.100592] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Much interest surrounds the receptors α2β1 and glycoprotein VI (GPVI) whose synchronized action mediates the attachment and activation of platelets on collagen, essential for preventing blood loss but also the most thrombogenic component of the vessel wall. Subject to density variations on platelets through natural polymorphisms, the absence of α2β1 or GPVI uniquely leads to a substantial block of hemostasis without causing major bleeding. Specific to the megakaryocyte lineage, GPVI and its signaling pathways are most promising targets for anti-thrombotic therapy. This review looks at the clinical consequences of the loss of collagen receptor function with emphasis on both the inherited and acquired loss of GPVI with brief mention of mouse models when necessary. A detailed survey of rare case reports of patients with inherited disease-causing variants of the GP6 gene is followed by an assessment of the causes and clinical consequences of acquired GPVI deficiency, a more frequent finding most often due to antibody-induced platelet GPVI shedding. Release of soluble GPVI is brought about by platelet metalloproteinases; a process induced by ligand or antibody binding to GPVI or even high shear forces. Also included is an assessment of the clinical importance of GPVI-mediated platelet interactions with fibrin and of the promise shown by the pharmacological inhibition of GPVI in a cardiovascular context. The role for GPVI in platelet function in inflammation and in the evolution and treatment of major illnesses such as rheumatoid arthritis, cancer and sepsis is also discussed.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, PTIB, Hôpital Xavier Arnozan, 33600 Pessac, France.
| |
Collapse
|
37
|
Eaton N, Drew C, Wieser J, Munday AD, Falet H. Dynamin 2 is required for GPVI signaling and platelet hemostatic function in mice. Haematologica 2019; 105:1414-1423. [PMID: 31296575 PMCID: PMC7193499 DOI: 10.3324/haematol.2019.218644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023] Open
Abstract
Receptor-mediated endocytosis, which contributes to a wide range of cellular functions, including receptor signaling, cell adhesion, and migration, requires endocytic vesicle release by the large GTPase dynamin 2. Here, the role of dynamin 2 was investigated in platelet hemostatic function using both pharmacological and genetic approaches. Dnm2fl/fl Pf4-Cre (Dnm2Plt−/−) mice specifically lacking dynamin 2 within the platelet lineage developed severe thrombocytopenia and bleeding diathesis and Dnm2Plt−/− platelets adhered poorly to collagen under arterial shear rates. Signaling via the collagen receptor GPVI was impaired in platelets treated with the dynamin GTPase inhibitor dynasore, as evidenced by poor protein tyrosine phosphorylation, including that of the proximal tyrosine kinase Lyn on its activating tyrosine 396 residue. Platelet stimulation via GPVI resulted in a slight decrease in GPVI, which was maintained by dynasore treatment. Dynasore-treated platelets had attenuated function when stimulated via GPVI, as evidenced by reduced GPIbα downregulation, α-granule release, integrin αIIbβ3 activation, and spreading onto immobilized fibrinogen. By contrast, responses to the G-protein coupled receptor agonist thrombin were minimally affected by dynasore treatment. GPVI expression was severely reduced in Dnm2Plt−/− platelets, which were dysfunctional in response to stimulation via GPVI, and to a lesser extent to thrombin. Dnm2Plt−/− platelets lacked fibrinogen in their α-granules, but retained von Willebrand factor. Taken together, the data show that dynamin 2 plays a proximal role in signaling via the collagen receptor GPVI and is required for fibrinogen uptake and normal platelet hemostatic function.
Collapse
Affiliation(s)
- Nathan Eaton
- Blood Research Institute, Versiti, Milwaukee, WI.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Caleb Drew
- Blood Research Institute, Versiti, Milwaukee, WI
| | - Jon Wieser
- Blood Research Institute, Versiti, Milwaukee, WI
| | - Adam D Munday
- Bloodworks Northwest Research Institute, Seattle, WA.,Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hervé Falet
- Blood Research Institute, Versiti, Milwaukee, WI .,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
38
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11:125. [PMID: 30305116 PMCID: PMC6180572 DOI: 10.1186/s13045-018-0669-2] [Citation(s) in RCA: 440] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.
Collapse
|
40
|
Martins Lima A, Bragina ME, Burri O, Bortoli Chapalay J, Costa-Fraga FP, Chambon M, Fraga-Silva RA, Stergiopulos N. An optimized and validated 384-well plate assay to test platelet function in a high-throughput screening format. Platelets 2018; 30:563-571. [PMID: 30183501 DOI: 10.1080/09537104.2018.1514106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite significant advances in the treatment of cardiovascular diseases, antiplatelet therapies are still associated with a high risk of hemorrhage. In order to develop new drugs, methods to measure platelet function must be adapted for the high-throughput screening (HTS) format. Currently, all assays capable of assessing platelet function are either expensive, complex, or not validated, which makes them unsuitable for drug discovery. Here, we propose a simple, low-cost, and high-throughput-compatible platelet function assay, validated for the 384-well plate. In the proposed assay, agonist-induced platelet activity was assessed by three different methods: (i) measurement of light absorbance, which decreases with platelet aggregation; (ii) luminescence measurement, based on ATP release from activated platelets and luciferin-luciferase reaction; and (iii) automated bright-field microscopy of the wells and further quantification of platelet image area, described here for the first time. Brightfield imaging results were validated by demonstrating the similarity of dose-response curves obtained with absorbance and luminescence measurements after stimulating platelets, pre-incubated with prostaglandin E1 or tirofiban, and demonstrating the similarity of dose-response curves obtained with agonists. Assay quality was confirmed using the Z'-factor, a statistical parameter used to validate the robustness and suitability of an HTS assay. The results showed that, under high rotations per minute (1200 RPM), an acceptable Z'-factor score is reached for absorbance measurements (Z'-factor - 0.58) and automated brightfield imaging (Z'-factor - 0.52), without the need of replicates, while triplicates must be used to achieve an acceptable Z'-factor score (0.54) for luminescence measurements. Using low platelet concentration (4 × 104/μl - 10 μl), the brightfield imaging test was further validated using washed platelets. Furthermore, drug screening was performed with compounds selected by structure-based virtual screening. Taken together, this study presents an optimized and validated assay for HTS to be used as a tool for antiplatelet drug discovery.
Collapse
Affiliation(s)
- Augusto Martins Lima
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Maiia E Bragina
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Olivier Burri
- b BioImaging and Optics Core Facility , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Julien Bortoli Chapalay
- c Biomolecular Screening Facility , École Polytechnique Federale de Lausanne , Lausanne , Switzerland
| | - Fabiana P Costa-Fraga
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Marc Chambon
- c Biomolecular Screening Facility , École Polytechnique Federale de Lausanne , Lausanne , Switzerland
| | - Rodrigo A Fraga-Silva
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Nikolaos Stergiopulos
- a Institute of Bioengineering , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| |
Collapse
|
41
|
Molica F, Figueroa XF, Kwak BR, Isakson BE, Gibbins JM. Connexins and Pannexins in Vascular Function and Disease. Int J Mol Sci 2018; 19:ijms19061663. [PMID: 29874791 PMCID: PMC6032213 DOI: 10.3390/ijms19061663] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/24/2022] Open
Abstract
Connexins (Cxs) and pannexins (Panxs) are ubiquitous membrane channel forming proteins that are critically involved in many aspects of vascular physiology and pathology. The permeation of ions and small metabolites through Panx channels, Cx hemichannels and gap junction channels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. This review provides an overview of current knowledge with respect to the pathophysiological role of these channels in large arteries, the microcirculation, veins, the lymphatic system and platelet function. The essential nature of these membrane proteins in vascular homeostasis is further emphasized by the pathologies that are linked to mutations and polymorphisms in Cx and Panx genes.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Xavier F Figueroa
- Departamento de Fisiología, Faculdad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8330025, Chile.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Jonathan M Gibbins
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Reading RG6 6AS, UK.
| |
Collapse
|
42
|
Boulaftali Y, Mawhin M, Jandrot‐Perrus M, Ho‐Tin‐Noé B. Glycoprotein VI in securing vascular integrity in inflamed vessels. Res Pract Thromb Haemost 2018; 2:228-239. [PMID: 30046725 PMCID: PMC5974920 DOI: 10.1002/rth2.12092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Glycoprotein VI (GPVI), the main platelet receptor for collagen, has been shown to play a central role in various models of thrombosis, and to be a minor actor of hemostasis at sites of trauma. These observations have made of GPVI a novel target for antithrombotic therapy, as its inhibition would ideally combine efficacy with safety. Nevertheless, recent studies have indicated that GPVI could play an important role in preventing bleeding caused by neutrophils in the inflamed skin and lungs. Remarkably, there is evidence that the GPVI-dependent hemostatic function of platelets at the acute phase of inflammation in these organs does not involve aggregation. From a therapeutic perspective, the vasculoprotective action of GPVI in inflammation suggests that blocking of GPVI might bear some risks of bleeding at sites of neutrophil infiltration. In this review, we summarize recent findings on GPVI functions in inflammation and discuss their possible clinical implications and applications.
Collapse
Affiliation(s)
- Yacine Boulaftali
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Marie‐Anne Mawhin
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Martine Jandrot‐Perrus
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Benoît Ho‐Tin‐Noé
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| |
Collapse
|
43
|
Mangin PH, Onselaer MB, Receveur N, Le Lay N, Hardy AT, Wilson C, Sanchez X, Loyau S, Dupuis A, Babar AK, Miller JL, Philippou H, Hughes CE, Herr AB, Ariëns RA, Mezzano D, Jandrot-Perrus M, Gachet C, Watson SP. Immobilized fibrinogen activates human platelets through glycoprotein VI. Haematologica 2018; 103:898-907. [PMID: 29472360 PMCID: PMC5927996 DOI: 10.3324/haematol.2017.182972] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/13/2018] [Indexed: 12/27/2022] Open
Abstract
Glycoprotein VI, a major platelet activation receptor for collagen and fibrin, is considered a particularly promising, safe antithrombotic target. In this study, we show that human glycoprotein VI signals upon platelet adhesion to fibrinogen. Full spreading of human platelets on fibrinogen was abolished in platelets from glycoprotein VI- deficient patients suggesting that fibrinogen activates platelets through glycoprotein VI. While mouse platelets failed to spread on fibrinogen, human-glycoprotein VI-transgenic mouse platelets showed full spreading and increased Ca2+ signaling through the tyrosine kinase Syk. Direct binding of fibrinogen to human glycoprotein VI was shown by surface plasmon resonance and by increased adhesion to fibrinogen of human glycoprotein VI-transfected RBL-2H3 cells relative to mock-transfected cells. Blockade of human glycoprotein VI with the Fab of the monoclonal antibody 9O12 impaired platelet aggregation on preformed platelet aggregates in flowing blood independent of collagen and fibrin exposure. These results demonstrate that human glycoprotein VI binds to immobilized fibrinogen and show that this contributes to platelet spreading and platelet aggregation under flow.
Collapse
Affiliation(s)
- Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, France
| | - Marie-Blanche Onselaer
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Nicolas Receveur
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, France
| | - Nicolas Le Lay
- Université de Paris Diderot, INSERM UMR_S1148, Hôpital Bichat, Paris, France
| | - Alexander T Hardy
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Clare Wilson
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Ximena Sanchez
- Laboratorio de Hemostasia, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Stéphane Loyau
- Université de Paris Diderot, INSERM UMR_S1148, Hôpital Bichat, Paris, France
| | - Arnaud Dupuis
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, France
| | - Amir K Babar
- Division of Immunobiology, Center for Systems Immunology & Division of Infectious Diseases, Cincinnati, OH, USA
| | - Jeanette Lc Miller
- Division of Immunobiology, Center for Systems Immunology & Division of Infectious Diseases, Cincinnati, OH, USA
| | - Helen Philippou
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Craig E Hughes
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, UK.,Institute for Cardiovascular and Metabolic Research, Harborne Building, University of Reading, UK
| | - Andrew B Herr
- Division of Immunobiology, Center for Systems Immunology & Division of Infectious Diseases, Cincinnati, OH, USA
| | - Robert As Ariëns
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Diego Mezzano
- Laboratorio de Hemostasia, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Martine Jandrot-Perrus
- Université de Paris Diderot, INSERM UMR_S1148, Hôpital Bichat, Paris, France.,Acticor Biotech, Hôpital Bichat, INSERM, UMR-S 1148, Paris, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, France
| | - Steve P Watson
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, UK .,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| |
Collapse
|
44
|
Abstract
Platelets patrol the vasculature and adhere at sites of vascular damage after trauma to limit blood loss. In recent years, however, it has become clear that platelets also contribute to pathophysiologic processes such as thrombosis, atherosclerosis, stroke, sepsis and many more. An exciting new role for them is in non-classical hemostasis to prevent bleeding in the inflamed vasculature. Recent studies suggest that GPVI, CLEC-2, integrin αIIbβ3 (GPIIb/IIIa), and the content of platelet α- and dense granules are important players in this process. This review summarizes the current knowledge about how platelets prevent vascular integrity during inflammation in the skin, lung, and the ischemic brain and their organ-specific role.
Collapse
Affiliation(s)
- Carsten Deppermann
- a Snyder Institute for Chronic Diseases , University of Calgary , Calgary , AB , Canada
| |
Collapse
|
45
|
Bergmeier W, Stefanini L. Platelets at the Vascular Interface. Res Pract Thromb Haemost 2018; 2:27-33. [PMID: 29457148 PMCID: PMC5810953 DOI: 10.1002/rth2.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 02/01/2023] Open
Abstract
In this brief review paper, we will summarize the State-of-the-Art on how platelet reactivity is regulated in circulation and at sites of vascular injury. Our review discusses recent and ongoing work, presented at this year's International Society on Thrombosis and Haemostasis (ISTH) meeting, on the role of platelets in (1) classical hemostasis at sites of mechanical injury, and (2) the maintenance of vascular integrity at sites of inflammation.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| |
Collapse
|
46
|
Vögtle T, Cherpokova D, Bender M, Nieswandt B. Targeting platelet receptors in thrombotic and thrombo-inflammatory disorders. Hamostaseologie 2017; 35:235-43. [DOI: 10.5482/hamo-14-10-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
SummaryPlatelet activation at sites of vascular injury is critical for the formation of a hemostatic plug which limits excessive blood loss, but also represents a major pathomechanism of ischemic cardio- and cerebrovascular diseases. Although currently available antiplatelet therapies have proved beneficial in preventing the recurrence of vascular events, their adverse effects on primary hemostasis emphasize the necessity to identify and characterize novel pharmacological targets for platelet inhibition. Increasing experimental evidence has suggested that several major platelet surface receptors which regulate initial steps of platelet adhesion and activation may become promising new targets for anti-platelet drugs due to their involvement in thrombotic and thrombo-inflammatory signaling cascades.This review summarizes recent developments in understanding the function of glycoprotein (GP)Ib, GPVI and the C-type lectin-like receptor 2 (CLEC-2) in hemostasis, arterial thrombosis and thrombo-inflammation and will discuss the suitability of the receptors as novel targets to treat these diseases in humans.
Collapse
|
47
|
Haining EJ, Matthews AL, Noy PJ, Romanska HM, Harris HJ, Pike J, Morowski M, Gavin RL, Yang J, Milhiet PE, Berditchevski F, Nieswandt B, Poulter NS, Watson SP, Tomlinson MG. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets 2017; 28:629-642. [PMID: 28032533 PMCID: PMC5706974 DOI: 10.1080/09537104.2016.1254175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics.
Collapse
Affiliation(s)
- Elizabeth J. Haining
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra L. Matthews
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Peter J. Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Helen J. Harris
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy Pike
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- PSIBS Doctoral Training Centre, School of Chemistry, University of Birmingham, Birmingham, UK
| | - Martina Morowski
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Rebecca L. Gavin
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jing Yang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre-Emmanuel Milhiet
- INSERM U1054, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier University, France
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael G. Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
48
|
Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda) 2017; 32:162-177. [PMID: 28228483 DOI: 10.1152/physiol.00020.2016] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upon blood vessel injury, platelets are exposed to adhesive proteins in the vascular wall and soluble agonists, which initiate platelet activation, leading to formation of hemostatic thrombi. Pathological activation of platelets can induce occlusive thrombosis, resulting in ischemic events such as heart attack and stroke, which are leading causes of death globally. Platelet activation requires intracellular signal transduction initiated by platelet receptors for adhesion proteins and soluble agonists. Whereas many platelet activation signaling pathways have been established for many years, significant recent progress reveals much more complex and sophisticated signaling and amplification networks. With the discovery of new receptor signaling pathways and regulatory networks, some of the long-standing concepts of platelet signaling have been challenged. This review provides an overview of the new developments and concepts in platelet activation signaling.
Collapse
Affiliation(s)
- Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Bijak M, Dziedzic A, Saluk-Bijak J. Flavonolignans reduce the response of blood platelet to collagen. Int J Biol Macromol 2017; 106:878-884. [PMID: 28842200 DOI: 10.1016/j.ijbiomac.2017.08.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/29/2017] [Accepted: 08/14/2017] [Indexed: 01/25/2023]
Abstract
The primary biological function of platelets is to form hemostatic thrombi that prevent blood loss and maintain vascular integrity. These multi-responding cells are activated by different endogenous, physiological agonists due to the vast number of receptors present on the surface of the platelets. Collagen represents up to 40% of the total protein presented in the vessel wall and is the major activator of the platelets' response after tissue injury, and is the only matrix protein which supports both platelet adhesion and complete activation. The aim of our study was to determine the effects of three major flavonolignans (silybin, silychristin and silydianin) on collagen-induced blood platelets' activation, adhesion, aggregation and secretion of PF-4. We observed that depending on the dose, silychristin and silybin have anti-platelet properties observed as inhibition of collagen-induced activation (formation of blood platelet aggregates and microparticles, as well as decreased expression of P-selectin and activation of integrin αIIbβ3), aggregation, adhesion and secretion of PF-4. These effects highlight the potential of silybin and silychristin as supplementation to prevent primary and secondary thrombotic events wherein excessive blood platelet response to a physiological agonist is observed.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
50
|
Abstract
Fibrin has recently been shown to activate platelets through the immunoglobulin receptor glycoprotein VI (GPVI). In the present study, we show that spreading of human platelets on fibrin is abolished in patients deficient in GPVI, confirming that fibrin activates human platelets through the immunoglobulin receptor. Using a series of proteolytic fragments, we show that D-dimer, but not the E fragment of fibrin, binds to GPVI and that immobilized D-dimer induces platelet spreading through activation of Src and Syk tyrosine kinases. In contrast, when platelets are activated in suspension, soluble D-dimer inhibits platelet aggregation induced by fibrin and collagen, but not by a collagen-related peptide composed of a repeat GPO sequence or by thrombin. Using surface plasmon resonance, we demonstrate that fibrin binds selectively to monomeric GPVI with a KD of 302 nM, in contrast to collagen, which binds primarily to dimeric GPVI. These results establish GPVI as the major signaling receptor for fibrin in human platelets and provide evidence that fibrin binds to a distinct configuration of GPVI. This indicates that it may be possible to develop agents that selectively block the interaction of fibrin but not collagen with the immunoglobulin receptor. Such agents are required to establish whether selective targeting of either interaction has the potential to lead to development of an antithrombotic agent with a reduced effect on bleeding relative to current antiplatelet drugs.
Collapse
|