1
|
Esen F, Deniz G, Aktas EC. PD-1, CTLA-4, LAG-3, and TIGIT: The roles of immune checkpoint receptors on the regulation of human NK cell phenotype and functions. Immunol Lett 2021; 240:15-23. [PMID: 34599946 DOI: 10.1016/j.imlet.2021.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
The roles of immune checkpoint receptors were defined in many cancers and autoimmune diseases, while there is limited information on their functional roles in the NK cells of healthy individuals. Immune checkpoint receptor expression of NK cell subsets and their association with NK cell functions (cytotoxic capacity and cytokine production) in healthy population were investigated. PD-1, CTLA-4, LAG-3 and TIGIT expression of peripheral blood NK cells, cytokine levels (TNF-α, IFN-γ, IL-10) and cytotoxic functions (granzyme A, perforin, CD107a; with/without K562 target cell stimulation) were evaluated by flow cytometry. CD56dimCD16dim NK cells had the highest expression of TIGIT, while CD56dimCD16- NK cells had highest expression of PD-1, CTLA-4 and LAG-3. PD-1+ NK cells, CTLA-4+ NK cells and LAG-3+ NK cells had increased amount of IL-10 however, reduced IFN-γ and TNF-α levels. Cytotoxic granule expressions (perforin and granzyme A) were reduced in PD-1+ NK cells, CTLA-4+ NK cells and LAG-3+ NK cells. However, TIGIT expression did not alter perforin and granzyme A expressions. Degranulation capacity was reduced in three groups of NK cells (PD-1+ or LAG-3+ or TIGIT+). TIGIT+ NK cells responded strongly to target cell stimulation, while NK cells in the other groups (PD-1+ or CTLA-4+ or LAG-3+) were resistant. PD-1+ NK cells, CTLA-4+ NK cells and LAG-3+ NK cells had a regulatory phenotype, impaired cytotoxic functions, and response to target cell stimulation. In contrast, TIGIT+ NK cells had strong baseline cytotoxic activity that further increased in response to target cell stimulation.
Collapse
Affiliation(s)
- Fehim Esen
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey; Istanbul Medeniyet University Medical Faculty, Department of Ophthalmology, Istanbul, Turkey
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Esin Cetin Aktas
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey.
| |
Collapse
|
2
|
Karmakar S, Pal P, Lal G. Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. Immunotargets Ther 2021; 10:387-407. [PMID: 34754837 PMCID: PMC8570289 DOI: 10.2147/itt.s306109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the most potent arm of the innate immune system and play an important role in immunity, alloimmunity, autoimmunity, and cancer. NK cells recognize “altered-self” cells due to oncogenic transformation or stress due to viral infection and target to kill them. The effector functions of NK cells depend on the interaction of the activating and inhibitory receptors on their surface with their cognate ligand expressed on the target cells. These activating and inhibitory receptors interact with major histocompatibility complex I (MHC I) expressed on the target cells and make decisions to mount an immune response. NK cell immune response includes cytolytic activity and secretion of cytokines to help with the ongoing immune response. The advancement of our knowledge on the expression of inhibitory and activating molecules led us to exploit these molecules in the treatment of cancer. This review discusses the importance of activating and inhibitory receptors on NK cells and their clinical importance in cancer immunotherapy.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Pradipta Pal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| |
Collapse
|
3
|
Tang F, Zhang P, Ye P, Lazarski CA, Wu Q, Bergin IL, Bender TP, Hall MN, Cui Y, Zhang L, Jiang T, Liu Y, Zheng P. A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice. eLife 2017; 6:e32497. [PMID: 29206103 PMCID: PMC5762159 DOI: 10.7554/elife.32497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/02/2017] [Indexed: 02/06/2023] Open
Abstract
Adaptive autoimmunity is restrained by controlling population sizes and pathogenicity of harmful clones, while innate destruction is controlled at effector phase. We report here that deletion of Rptor in mouse hematopoietic stem/progenitor cells causes self-destructive innate immunity by massively increasing the population of previously uncharacterized innate myelolymphoblastoid effector cells (IMLECs). Mouse IMLECs are CD3-B220-NK1.1-Ter119- CD11clow/-CD115-F4/80low/-Gr-1- CD11b+, but surprisingly express high levels of PD-L1. Although they morphologically resemble lymphocytes and actively produce transcripts from Immunoglobulin loci, IMLECs have non-rearranged Ig loci, are phenotypically distinguishable from all known lymphocytes, and have a gene signature that bridges lymphoid and myeloid leukocytes. Rptor deletion unleashes differentiation of IMLECs from common myeloid progenitor cells by reducing expression of Myb. Importantly, IMLECs broadly overexpress pattern-recognition receptors and their expansion causes systemic inflammation in response to Toll-like receptor ligands in mice. Our data unveil a novel leukocyte population and an unrecognized role of Raptor/mTORC1 in innate immune tolerance.
Collapse
Affiliation(s)
- Fei Tang
- Center for Cancer and Immunology Research, Children's Research InstituteChildren’s National Medical CenterWashingtonUnited States
| | - Peng Zhang
- Center for Cancer and Immunology Research, Children's Research InstituteChildren’s National Medical CenterWashingtonUnited States
- Key Laboratory of Protein and Peptide PharmaceuticalsInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Peiying Ye
- Center for Cancer and Immunology Research, Children's Research InstituteChildren’s National Medical CenterWashingtonUnited States
| | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's Research InstituteChildren’s National Medical CenterWashingtonUnited States
| | - Qi Wu
- Department of NeurologyUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Ingrid L Bergin
- ULAM In-Vivo Animal CoreUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Timothy P Bender
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleUnited States
| | | | - Ya Cui
- Key Laboratory of Protein and Peptide PharmaceuticalsInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Liguo Zhang
- Key Laboratory of Infection and ImmunityInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Taijiao Jiang
- Key Laboratory of Protein and Peptide PharmaceuticalsInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's Research InstituteChildren’s National Medical CenterWashingtonUnited States
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's Research InstituteChildren’s National Medical CenterWashingtonUnited States
| |
Collapse
|
4
|
Stojanovic A, Fiegler N, Brunner-Weinzierl M, Cerwenka A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-γ production in response to mature dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:4184-91. [PMID: 24688023 DOI: 10.4049/jimmunol.1302091] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NK cells express an array of activating and inhibitory receptors that determine NK cell responses upon triggering by cognate ligands. Although activating NK cell receptors recognize mainly ligands expressed by stressed, virus-infected, or transformed cells, most inhibitory receptors engage MHC class I, preventing NK cell activation in response to healthy cells. In this study, we provide insight into the regulation and function of additional receptors involved in mouse NK cell responses: CTLA-4 and CD28. CTLA-4 and CD28 engage the same ligands, B7-1 and B7-2, which are primarily expressed by APCs, such as dendritic cells. Our data demonstrate that activation of mouse NK cells with IL-2 induces the expression of CTLA-4 and upregulates CD28. CTLA-4 expression in IL-2-expanded NK cells was further up- or downregulated by IL-12 or TGF-β, respectively. Using gene-deficient NK cells, we show that CD28 induces, and CTLA-4 inhibits, IFN-γ release by NK cells upon engagement by the recombinant ligand, B7-1, or upon coculture with mature dendritic cells. Notably, we show that mouse NK cells infiltrating solid tumors express CD28 and CTLA-4 and respond to stimulation with recombinant B7-1, suggesting that the NK cell responses mediated by the CD28/CTLA-4:B7-1/B7-2 system could be of importance during malignant disease. Accordingly, our study might have implications for immunotherapy of cancer based on blocking anti-CTLA-4 mAbs.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity Group, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
5
|
Ayello J, van de Ven C, Cairo E, Hochberg J, Baxi L, Satwani P, Cairo MS. Characterization of natural killer and natural killer-like T cells derived from ex vivo expanded and activated cord blood mononuclear cells: implications for adoptive cellular immunotherapy. Exp Hematol 2009; 37:1216-29. [PMID: 19638292 DOI: 10.1016/j.exphem.2009.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Cord blood (CB) is limited by the absence of available donor effector cells for post-unrelated CB transplantation adoptive cellular immunotherapy. We reported the ability to ex vivo expand (EvE) CB mononuclear cells (MNC) after short-term incubation with anti-CD3, interleukin (IL)-2, IL-7, and IL-12 (antibody/cytokine [AB/CY]) into subpopulations of CD3(-)/56(+) natural killer (NK) cells with enhanced in vitro and in vivo tumor cytotoxicity. MATERIALS AND METHODS We compared 2- vs 7-day EvE of rethawed CB MNCs in AB/CY and activation of NK and NK-like T (NKT) cell (CD3(+)/56(+)) subsets expressing specific NK-cell receptors along with IL-15, IL-18, and interferon-gamma production. RESULTS Nonadherent total cell number were significantly increased at day 7 (p<0.001) along with NK-cell number (20-fold) and an enrichment in NKT-like subsets (36-fold). There was no change in the NK(dim) subset; yet the NKT(bright) and NKT KIR3DL1(dim) subsets were significantly increased (p<0.05). NK cells expressing the inhibitory natural cytoxicity receptor CD94/NKG2A were decreased (p<0.001), while those expressing activating natural cytoxicity receptor CD94/NKG2D receptor and activating NK and NKT KIR2DS4 subsets were significantly increased (p<0.001). IL-18 and interferon-gamma protein production was also significantly increased (p<0.001 and p<0.05, respectively). Lysosomal-associated membrane protein-1 and granzyme B expression were increased (p<0.001 and p>0.01, respectively), which correlated with the significant increase in NK, LAK, and tumor cytotoxicity of the EvE cells. CONCLUSION This study demonstrates that previously cryopreserved and rethawed CB MNCs can be EvE up to 7 days to yield viable and activated NK and NKT-like subsets that appear to be cytolytic based on the cell repertoire and could be utilized in the future as adoptive cellular immunotherapy post-unrelated CB transplantation.
Collapse
Affiliation(s)
- Janet Ayello
- Department of Pediatrics, Morgan Stanley Children's Hospital of New York-Presbyterian Hospital and Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Cook CH, Chen L, Wen J, Zimmerman P, Zhang Y, Trgovcich J, Liu Y, Gao JX. CD28/B7-mediated co-stimulation is critical for early control of murine cytomegalovirus infection. Viral Immunol 2009; 22:91-103. [PMID: 19326996 PMCID: PMC2741336 DOI: 10.1089/vim.2008.0080] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/09/2008] [Indexed: 12/16/2022] Open
Abstract
Control of acute murine cytomegalovirus (MCMV) infection is dependent upon both innate and adaptive immune responses, relying primarily upon natural killer (NK) and T-cell responses for control. Although CD28/B7 plays a clear role in T-cell responses in many antigen systems including some viral infections, the importance of co-stimulation during MCMV infection is unconfirmed. In addition, recent data suggest that CD28/B7 co-stimulation might also be important to Ly49H+ NK-cell expansion. We therefore hypothesized that CD28/B7 co-stimulation is critical to viral control after MCMV infection, and further that CD28/B7 co-stimulation plays a role in MCMV-specific T- and NK-cell responses. To test these hypotheses, we utilized C57BL/6 mice lacking the co-stimulatory molecules B7-1 and B7-2 or CD28. After primary infection with MCMV, viral titers are significantly elevated in mice lacking CD28 or B7 compared with wild-type mice. Impaired viral control is associated with significant defects in peripheral T-cell responses to MCMV, which appear to be dependent upon CD28/B7 co-stimulation. Abnormal hepatic T-cell responses in CD28(-/-) mice are preceded by impaired MCMV-specific Ly49H+ NK-cell responses. Cytokine evaluations confirm that CD28/B7 co-stimulation is not required for non-specific antiviral responses. We conclude that CD28-mediated co-stimulation is critical for early viral control during acute MCMV infection.
Collapse
Affiliation(s)
- Charles H Cook
- Department of Surgery, Ohio State University Medical College, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zheng X, Zhang H, Yin L, Wang CR, Liu Y, Zheng P. Modulation of NKT cell development by B7-CD28 interaction: an expanding horizon for costimulation. PLoS One 2008; 3:e2703. [PMID: 18628995 PMCID: PMC2442875 DOI: 10.1371/journal.pone.0002703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/19/2008] [Indexed: 11/19/2022] Open
Abstract
It has been demonstrated that the development of NKT cells requires CD1d. The contribution of costimulatory molecules in this process has not been studied. Here we show that in mice with targeted mutations of B7-1/2 and CD28, the TCRbeta(+)alpha-Galcer/CD1d(+) (iValpha14 NKT) subset is significantly reduced in the thymus, spleen and liver. This is mainly due to decreased cell proliferation; although increased cell death in the thymi of CD28-deficient mice was also observed. Moreover, in the B7-1/2- and CD28-deficient mice, we found a decreased percentage of the CD4(-)NK1.1(+) subset and a correspondingly increased portion of the CD4(+)NK1.1(-) subset. In addition, the mice with a targeted mutation of either B7 or CD28 had a reduced susceptibility to Con A induced hepatitis, which is known to be mediated by NKT cells. Our results demonstrate that the development, maturation and function of NKT cell are modulated by the costimulatory pathway and thus expand the horizon of costimulation into NKT, which is widely viewed as a bridge between innate and adaptive immunity. As such, costimulation may modulate all major branches of cell-mediated immunity, including T cells, NK cells and NKT cells.
Collapse
Affiliation(s)
- Xincheng Zheng
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- OncoImmune Ltd., Columbus, Ohio, United States of America
| | - Huiming Zhang
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lijie Yin
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chyung-Ru Wang
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Yang Liu
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pan Zheng
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
8
|
Mir MA, Agrewala JN. Signaling through CD80: an approach for treating lymphomas. Expert Opin Ther Targets 2008; 12:969-79. [DOI: 10.1517/14728222.12.8.969] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Arina A, Murillo O, Dubrot J, Azpilikueta A, Alfaro C, Pérez-Gracia JL, Bendandi M, Palencia B, Hervás-Stubbs S, Melero I. Cellular liaisons of natural killer lymphocytes in immunology and immunotherapy of cancer. Expert Opin Biol Ther 2007; 7:599-615. [PMID: 17477799 DOI: 10.1517/14712598.7.5.599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is compelling evidence for the role of natural killer (NK) cells in tumor immunosurveillance and their beneficial effects on many experimentally successful immunotherapy strategies. NK cells mediate cell contact-dependent cellular cytotoxicity and produce pro-inflammatory cytokines, but do not rearrange antigen receptors. Their activation depends on various germline-encoded receptors, including CD16, which mediates recognition of antibody-coated target cells. NK cytotoxicity is checked by a repertoire of inhibitory receptors that scan adequate expression of major histocompatibility complex class I molecules on the potential target cell. Functional cross-talk of NK and dendritic cells suggests a critical role for NK cells in the initiation and regulation of cellular immunity. Considerable knowledge on the molecular basis of NK recognition/activation contrasts with a lack of successful translational research on these matters. However, there is plenty of opportunity for targeted intervention of inhibitory/activatory surface receptors and for adoptive cell therapy with autologous or allogeneic NK cells.
Collapse
Affiliation(s)
- Ainhoa Arina
- University of Navarra, Centro de Investigación Médica Aplicada and Clinica Universitaria, Gene Therapy Unit, Avda. Pio XII 55, 31008, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen L, Calomeni E, Wen J, Ozato K, Shen R, Gao JX. Natural killer dendritic cells are an intermediate of developing dendritic cells. J Leukoc Biol 2007; 81:1422-33. [PMID: 17332372 DOI: 10.1189/jlb.1106674] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NK dendritic cells (DCs; NKDCs) appear to emerge as a distinct DC subset in humans and rodents, which have the functions of NK cells and DCs. However, the developmental relationship of NKDCs (CD11c(+)NK1.1(+)) to CD11c(+)NK1.1(-) DCs has not been addressed. Herein, we show that NKDCs exist exclusively in the compartment of CD11c(+)MHC II(-) cells in the steady state and express variable levels of DC subset markers, such as the IFN-producing killer DC marker B220, in a tissue-dependent manner. They can differentiate into NK1.1(-) DCs, which is accompanied by the up-regulation of MHC Class II molecules and down-regulation of NK1.1 upon adoptive transfer. However, NK cells (NK(+)CD11c(-)) did not differentiate into NK1.1(+)CD11c(+) cells upon adoptive transfer. Bone marrow-derived Ly6C(+) monocytes can be a potential progenitor of NKDCs, as some of them can differentiate into CD11c(+)NK1.1(+) as well as CD11c(+)NK1.1(-) cells in vivo. The steady-state NKDCs have a great capacity to lyse tumor cells but little capability to present antigens. Our studies suggest that NKDCs are an intermediate of developing DCs. These cells appear to bear the unique surface phenotype of CD11c(+)NK1.1(+)MHC II(-) and possess strong cytotoxic function yet show a poor ability to present antigen in the steady state. These findings suggest that NKDCs may play a critical role in linking innate and adaptive immunity.
Collapse
Affiliation(s)
- Li Chen
- Department of Pathology, Ohio State University Medical Center, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
11
|
Chang X, Chen L, Wen J, Godfrey VL, Qiao G, Hussien Y, Zhang J, Gao JX. Foxp3 controls autoreactive T cell activation through transcriptional regulation of early growth response genes and E3 ubiquitin ligase genes, independently of thymic selection. Clin Immunol 2006; 121:274-85. [PMID: 16945588 DOI: 10.1016/j.clim.2006.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 12/11/2022]
Abstract
To elucidate the mechanisms of autoreactive T cell activation and expansion, we used endogenous viral superantigens (VSAg)-reactive T cells as a model of self-antigens in two strains of Foxp3-mutant mice. These two strains, together with wild-type mice, provided us with an advantage to simultaneously study the positively and negatively selected as well as rescued autoreactive T cells. We show here that while both VSAg-reactive and non-VSAg-reactive T cells are equally activated in Foxp3-mutant mice, only the VSAg-reactive T cells are preferentially expanded independently of their selected states in the thymus. The T cell activation appears to be controlled by Foxp3 through transcriptional regulation of early growth response (Egr) genes Egr-2 and Egr-3, and E3 ubiquitin (Ub) ligase genes Cblb, Itch and GRAIL, subsequently affecting degradation of two key signaling proteins, PLCgamma1 and PKC-theta. Physiologically, the positively, but not negatively selected VSAg-reactive T cells are spontaneously activated without significant expansion. The results suggest that autoreactive T cell activation is controlled by Foxp3 through transcriptional regulation of early growth response genes and E3 ubiquitin ligase genes, independently of thymic selection.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pathology, Ohio State University Medical Center, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chan L, Hardwick NR, Guinn BA, Darling D, Gäken J, Galea-Lauri J, Ho AY, Mufti GJ, Farzaneh F. An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother 2006; 55:1017-24. [PMID: 16450142 PMCID: PMC11030980 DOI: 10.1007/s00262-006-0129-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
Cell based therapies for acute myeloid leukaemia (AML) have made significant progress in the last decade benefiting the prognosis and survival of patients with this aggressive form of leukaemia. Due to advances in haematopoietic stem cell transplantation (HSCT) and particularly the advent of reduced intensity conditioning (RIC), the scope of transplantation has now extended to those patients previously ineligible due to age and health restrictions and has been associated with a decrease in transplant related mortality. The apparent graft versus leukaemia (GvL) effect observed following HSCT demonstrates the potential of the immune system to target and eradicate AML cells. Building on previously published pre-clinical studies by ourselves and others, we are now initiating a Phase I clinical study in which lentiviral vectors are used to genetically modify AML cells to express B7.1 (CD80) and IL-2. By combining allogeneic HSCT with immunisation, using the autologous AML cells expressing B7.1 and IL-2, we hope to stimulate immune eradication of residual AML cells in poor prognosis patients that have achieved donor chimerism. In this report we describe the background to cell therapy based approaches for AML, and discuss difficulties associated with the deployment of a chronically stimulated, hence exhausted/depleted immune system to eradicate tumour cells that have already escaped immune surveillance.
Collapse
Affiliation(s)
- Lucas Chan
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Nicola R. Hardwick
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Barbara-ann Guinn
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Dave Darling
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Joop Gäken
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Joanna Galea-Lauri
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Aloysius Y. Ho
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Ghulam J. Mufti
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| | - Farzin Farzaneh
- King’s College London, Department of Haematological Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK
| |
Collapse
|
13
|
Arai S, Klingemann HG. Natural killer cells: can they be useful as adoptive immunotherapy for cancer? Expert Opin Biol Ther 2005; 5:163-72. [PMID: 15757378 DOI: 10.1517/14712598.5.2.163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As part of the innate immune system, natural killer (NK) cells form the first line of defence against pathogens or transformed/cancerous host cells. Recent experimental and clinical data show the possibility of exploiting NK activity as a cell-based immunotherapy to treat cancer. This review discusses the recent knowledge on NK cell biology that has impacted on its development as a treatment for cancer.
Collapse
Affiliation(s)
- Sally Arai
- Stanford University Medical Center, Division of Bone Marrow Transplant, 300 Pasteur Drive, H3249, MC 5623, Stanford, CA 94305, USA.
| | | |
Collapse
|
14
|
Li O, Zheng P, Liu Y. CD24 expression on T cells is required for optimal T cell proliferation in lymphopenic host. ACTA ACUST UNITED AC 2004; 200:1083-9. [PMID: 15477346 PMCID: PMC2211842 DOI: 10.1084/jem.20040779] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well established that T lymphocytes undergo homeostatic proliferation in lymphopenic environment. The homeostatic proliferation requires recognition of the major histocompatibility complex on the host. Recent studies have demonstrated that costimulation-mediated CD28, 4-1BB, and CD40 is not required for T cell homeostatic proliferation. It has been suggested that homeostatic proliferation is costimulation independent. Here, we report that T cells from mice with a targeted mutation of CD24 have a remarkably reduced rate of proliferation when adoptively transferred into syngeneic lymphopenic hosts. The reduced proliferation cannot be attributed to abnormal survival and homing properties of the CD24-deficient T cells. T cell proliferation in allogeneic hosts is less affected by this mutation. These results demonstrate a novel function of CD24 expressed on T cells. Thus, although distinct costimulatory molecules are involved in antigen-driven proliferation and homeostatic proliferation, both processes can be modulated by costimulatory molecules.
Collapse
Affiliation(s)
- Ou Li
- Division of Cancer Immunology, Department of Pathology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | |
Collapse
|