1
|
Koduru P, Chen W, Fuda F, Pacheco M, Garcia R. MYC-r with a non-IG partner concurrently with a cryptic t(12;21) in B-lymphoblastic leukemia: A case and prognostic significance. Cancer Genet 2025; 292-293:85-91. [PMID: 39983666 DOI: 10.1016/j.cancergen.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025]
Abstract
B-lymphoblastic leukemia (B-ALL) in children is characterized by recurrent chromosomal rearrangements that mostly have prognostic value. MYC rearrangements (MYC-r), typically associated with Burkitt lymphoma or mature B-cell neoplasms are infrequent in B-ALL. We report here a unique case of childhood B-ALL with concurrent MYC-r with a non-IG partner and a cryptic t(12;21). Leukemic cells had lymphoblastic morphology. Immunophenotypically, leukemic blasts were CD10 (+, slightly bright), CD15 (few +), CD19 (+), CD20 (+, partial), CD22 (+), CD34 (-), CD38 (+, slightly variably), CD45 (+, partial), cytoplasmic CD79a (+), HLA-DR (+), surface Ig (-), MPO (-), and TdT (+, partially). This immunophenotype was consistent with B-ALL. Cytogenetically, the karyotype was complex including a t(4;8)(q31;q24), and FISH analysis showed MYC-r, ETV6::RUNX1 and loss of ETV6 allele. The patient has been in complete remission for 11 years following the diagnosis. We reviewed cases of B-ALL with double leukemogenic alterations and MYC-r with non-IG partners to understand the clinical outcome in these rare patients.
Collapse
Affiliation(s)
- Prasad Koduru
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Franklin Fuda
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Martha Pacheco
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA; Current address: St. Lukes Children's Cancer Institute, Boise, ID, USA
| | - Rolando Garcia
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Casado-García A, Isidro-Hernández M, Alemán-Arteaga S, Ruiz-Corzo B, Riesco S, Prieto-Matos P, Sánchez L, Sánchez-García I, Vicente-Dueñas C. Lessons from mouse models in the impact of risk factors on the genesis of childhood B-cell leukemia. Front Immunol 2023; 14:1285743. [PMID: 37901253 PMCID: PMC10602728 DOI: 10.3389/fimmu.2023.1285743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) stands as the primary contributor to childhood cancer-related mortality on a global scale. The development of the most conventional forms of this disease has been proposed to be conducted by two different steps influenced by different types of risk factors. The first step is led by a genetic insult that is presumably acquired before birth that transforms a healthy cell into a preleukemic one, which is maintained untransformed until the second step takes place. This necessary next step to leukemia development will be triggered by different risk factors to which children are exposed after birth. Murine models that recap the stepwise progression of B-ALL have been instrumental in identifying environmental and genetic factors that contribute to disease risk. Recent evidence from these models has demonstrated that specific environmental risk factors, such as common infections or gut microbiome dysbiosis, induce immune stress, driving the transformation of preleukemic cells, and harboring genetic alterations, into fully transformed leukemic cells. Such models serve as valuable tools for investigating the mechanisms underlying preleukemic events and can aid in the development of preventive approaches for leukemia in child. Here, we discuss the existing knowledge, learned from mouse models, of the impact of genetic and environmental risk factors on childhood B-ALL evolution and how B-ALL prevention could be reached by interfering with preleukemic cells.
Collapse
Affiliation(s)
- Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Alemán-Arteaga
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Belén Ruiz-Corzo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Susana Riesco
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Prieto-Matos
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Sánchez
- School of Law, University of Salamanca, Salamanca, Spain
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carolina Vicente-Dueñas
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
4
|
Wray JP, Deltcheva EM, Boiers C, Richardson SЕ, Chhetri JB, Brown J, Gagrica S, Guo Y, Illendula A, Martens JHA, Stunnenberg HG, Bushweller JH, Nimmo R, Enver T. Regulome analysis in B-acute lymphoblastic leukemia exposes Core Binding Factor addiction as a therapeutic vulnerability. Nat Commun 2022; 13:7124. [PMID: 36411286 PMCID: PMC9678885 DOI: 10.1038/s41467-022-34653-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
The ETV6-RUNX1 onco-fusion arises in utero, initiating a clinically silent pre-leukemic state associated with the development of pediatric B-acute lymphoblastic leukemia (B-ALL). We characterize the ETV6-RUNX1 regulome by integrating chromatin immunoprecipitation- and RNA-sequencing and show that ETV6-RUNX1 functions primarily through competition for RUNX1 binding sites and transcriptional repression. In pre-leukemia, this results in ETV6-RUNX1 antagonization of cell cycle regulation by RUNX1 as evidenced by mass cytometry analysis of B-lineage cells derived from ETV6-RUNX1 knock-in human pluripotent stem cells. In frank leukemia, knockdown of RUNX1 or its co-factor CBFβ results in cell death suggesting sustained requirement for RUNX1 activity which is recapitulated by chemical perturbation using an allosteric CBFβ-inhibitor. Strikingly, we show that RUNX1 addiction extends to other genetic subtypes of pediatric B-ALL and also adult disease. Importantly, inhibition of RUNX1 activity spares normal hematopoiesis. Our results suggest that chemical intervention in the RUNX1 program may provide a therapeutic opportunity in ALL.
Collapse
Affiliation(s)
- Jason P Wray
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Charlotta Boiers
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden
| | - Simon Е Richardson
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW, UK
| | | | - John Brown
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Sladjana Gagrica
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yanping Guo
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Anuradha Illendula
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525, GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525, GA, Nijmegen, The Netherlands
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Rachael Nimmo
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford, OX4 6LT, UK
| | - Tariq Enver
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK.
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden.
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Childhood B-Cell Preleukemia Mouse Modeling. Int J Mol Sci 2022; 23:ijms23147562. [PMID: 35886910 PMCID: PMC9317949 DOI: 10.3390/ijms23147562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leukemia is the most usual childhood cancer, and B-cell acute lymphoblastic leukemia (B-ALL) is its most common presentation. It has been proposed that pediatric leukemogenesis occurs through a “multi-step” or “multi-hit” mechanism that includes both in utero and postnatal steps. Many childhood leukemia-initiating events, such as chromosomal translocations, originate in utero, and studies so far suggest that these “first-hits” occur at a far higher frequency than the incidence of childhood leukemia itself. The reason why only a small percentage of the children born with such preleukemic “hits” will develop full-blown leukemia is still a mystery. In order to better understand childhood leukemia, mouse modeling is essential, but only if the multistage process of leukemia can be recapitulated in the model. Therefore, mouse models naturally reproducing the “multi-step” process of childhood B-ALL will be essential to identify environmental or other factors that are directly linked to increased risk of disease.
Collapse
|
6
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
7
|
Qiu KY, Liao XY, He ZW, Wu RH, Li Y, Xu LH, Zhou DH, Fang JP. DNA index as prognostic factor in childhood acute lymphoblastic leukemia in the COG-TARGET database. BMC Cancer 2021; 21:813. [PMID: 34266412 PMCID: PMC8283927 DOI: 10.1186/s12885-021-08545-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study was aimed to evaluate the value of DNA index(DI) among pediatric acute lymphoblastic leukemia (ALL) treated on Children’s Oncology Group (COG) protocols between 2000 and 2015. Methods Retrospective study were analysis among pediatric ALL patients from the TARGET dataset. Result Totally, 1668 eligible pediatric patients were enrolled in this study. Of them, 993 are male and 675 are female with a median age of 7.6 years old. The median follow-up for those patients was 7.7 years (range 0.1–15.7 years). The probability of 15-year EFS and OS were reported to be 67.5 ± 3.1% and 78.3 ± 2.5%, respectively. BCR/ABL1 fusion gene affected the early treatment response and the survival of childhood ALL. Moreover, those patients with ETV6/RUNX1 fusion gene were also significantly associated with better EFS (HR = 0.6, 95% CI 0.4–0.8, P = 0.003) and OS (HR = 0.3, 95%CI 0.2–0.5, P < 0.001) compared to patients with no ETV6/RUNX1. On the contrary, BM NR on Day+ 29 showed a significant decrease in EFS (HR = 3.1, 95%CI 2.1–4.5, P < 0.001) and OS (HR = 1.7, 95%CI 1.1–2.8, P = 0.026). Multivariate analysis showed that DI was significantly associated with better EFS and OS. The threshold effect of DI on poor outcome was significant after adjusting for potential confounders. The adjusted regression coefficient (Log RR) was 0.7 (95%CI 0.1–3.2, P = 0.597) for DI < 1.1 while 8.8 (95%CI 1.4–56.0, P = 0.021) for DI ≥ 1.2 and 0.0 (95%CI 0.0–0.8, P = 0.041) for 1.1 ≤ DI < 1.2. Generalized additive models revealed that the lowest rates of the adverse outcomes estimated to occur among DI between 1.1 and 1.2. Conclusion For those childhood ALL treated on COG protocols between 2000 and 2015, ETV6/RUNX1 and BM NR were closely related to the prognosis. Moreover, the DI between 1.1 and 1.2 can serve as a significant cut-point discriminating the risk group, which indicated a favourable prognostic factor.
Collapse
Affiliation(s)
- Kun-Yin Qiu
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Xiong-Yu Liao
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhan-Wen He
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ruo-Hao Wu
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yang Li
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lu-Hong Xu
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Dun-Hua Zhou
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| | - Jian-Pei Fang
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
8
|
Mehtonen J, Teppo S, Lahnalampi M, Kokko A, Kaukonen R, Oksa L, Bouvy-Liivrand M, Malyukova A, Mäkinen A, Laukkanen S, Mäkinen PI, Rounioja S, Ruusuvuori P, Sangfelt O, Lund R, Lönnberg T, Lohi O, Heinäniemi M. Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities. Genome Med 2020; 12:99. [PMID: 33218352 PMCID: PMC7679990 DOI: 10.1186/s13073-020-00799-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention. METHODS We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion. RESULTS We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq. CONCLUSIONS Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.
Collapse
Affiliation(s)
- Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Susanna Teppo
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Aleksi Kokko
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Laura Oksa
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Artturi Mäkinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Saara Laukkanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | | | - Pekka Ruusuvuori
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olli Lohi
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland.
| |
Collapse
|
9
|
ARHGEF4 Regulates an Essential Oncogenic Program in t(12;21)-Associated Acute Lymphoblastic Leukemia. Hemasphere 2020; 4:e467. [PMID: 32984770 PMCID: PMC7489581 DOI: 10.1097/hs9.0000000000000467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022] Open
|
10
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Pathways, Processes, and Candidate Drugs Associated with a Hoxa Cluster-Dependency Model of Leukemia. Cancers (Basel) 2019; 11:cancers11122036. [PMID: 31861091 PMCID: PMC6966468 DOI: 10.3390/cancers11122036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
High expression of the HOXA cluster correlates with poor clinical outcome in acute myeloid leukemias, particularly those harboring rearrangements of the mixed-lineage-leukemia gene (MLLr). Whilst decreased HOXA expression acts as a readout for candidate experimental therapies, the necessity of the HOXA cluster for leukemia maintenance has not been fully explored. Primary leukemias were generated in hematopoietic stem/progenitor cells from Cre responsive transgenic mice for conditional deletion of the Hoxa locus. Hoxa deletion resulted in reduced proliferation and colony formation in which surviving leukemic cells retained at least one copy of the Hoxa cluster, indicating dependency. Comparative transcriptome analysis of Hoxa wild type and deleted leukemic cells identified a unique gene signature associated with key pathways including transcriptional mis-regulation in cancer, the Fanconi anemia pathway and cell cycle progression. Further bioinformatics analysis of the gene signature identified a number of candidate FDA-approved drugs for potential repurposing in high HOXA expressing cancers including MLLr leukemias. Together these findings support dependency for an MLLr leukemia on Hoxa expression and identified candidate drugs for further therapeutic evaluation.
Collapse
|
12
|
SYK Targeting Represents a Potential Therapeutic Option for Relapsed Resistant Pediatric ETV6-RUNX1 B-Acute Lymphoblastic Leukemia Patients. Int J Mol Sci 2019; 20:ijms20246175. [PMID: 31817853 PMCID: PMC6940898 DOI: 10.3390/ijms20246175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
The presence of the chromosomal rearrangement t(12;21)(ETV6-RUNX1) in childhood B-acute lymphoblastic leukemia (B-ALL) is an independent predictor of favorable prognosis, however relapses still occur many years later after stopping therapy, and patients often display resistance to current treatments. Since spleen tyrosine kinase (SYK), a cytosolic nonreceptor tyrosine kinase interacting with immune receptors, has been previously associated with malignant transformation and cancer cell proliferation, we aimed to assess its role in ETV6-RUNX1 cell survival and prognosis. We evaluated the effects on cell survival of three SYK inhibitors and showed that all of them, in particular entospletinib, are able to induce cell death and enhance the efficacy of conventional chemotherapeutics. By using reverse phase protein arrays we next revealed that activated SYK is upregulated at diagnosis in pediatric ETV6-RUNX1 patients who will experience relapse, and, importantly, hyperactivation is maintained at a high level also at relapse occurrence. We thus treated primary cells from patients both at diagnosis and relapse with the combination entospletinib + chemotherapeutics and observed that SYK inhibition is able to sensitize resistant primary cells to conventional drugs. Entospletinib could thus represent a new therapeutic option supporting conventional chemotherapy for relapsed ETV6-RUNX1 patients, and these evidences encourage further studies on SYK for treatment of other relapsed resistant acute lymphoblastic leukemia (ALL) subgroups.
Collapse
|
13
|
Campos-Sanchez E, Vicente-Dueñas C, Rodríguez-Hernández G, Capstick M, Kuster N, Dasenbrock C, Sánchez-García I, Cobaleda C. Novel ETV6-RUNX1 Mouse Model to Study the Role of ELF-MF in Childhood B-Acute Lymphoblastic Leukemia: a Pilot Study. Bioelectromagnetics 2019; 40:343-353. [PMID: 31157932 DOI: 10.1002/bem.22193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
Exposure to extremely low-frequency magnetic fields (ELF-MFs) has been classified by the International Agency for Research on Cancer (IARC) as "possibly carcinogenic to humans," based on limited scientific evidence concerning childhood leukemia. This assessment emphasized the lack of appropriate animal models recapitulating the natural history of this disease. Childhood B-cell acute lymphoblastic leukemia (B-ALL) is the result of complex interactions between genetic susceptibility and exposure to exogenous agents. The most common chromosomal alteration is the ETV6-RUNX1 fusion gene, which confers a low risk of developing the malignancy by originating a preleukemic clone requiring secondary hits for full-blown disease to appear. To develop potential prophylactic interventions, we need to identify the environmental triggers of the second hit. Recently, we generated a B-ALL mouse model of the human ETV6-RUNX1+ preleukemic state. Here, we present the results from the ARIMMORA pilot study, obtained by exposing 34 Sca1-ETV6-RUNX1 mice (vs. 27 unexposed) to a 50 Hz magnetic field of 1.5 mT with both fundamental and harmonic content, with an on/off cycle of 10 min/5 min, for 20 h/day, from conception until 3 months of age. Mice were monitored until 2 years of age and peripheral blood was periodically analyzed by flow cytometry. One of the exposed mice developed B-ALL while none of the non-exposed did. Although the results are statistically non-significant due to the limited number of mice used in this pilot experiment, overall, the results show that the newly developed Sca1-ETV6-RUNX1 mouse can be successfully used for ELF-MF exposure studies about the etiology of childhood B-ALL. Bioelectromagnetics. 2019;40:343-353. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Elena Campos-Sanchez
- Department of Cell Biology and Immunology, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid, Spain
| | - Carolina Vicente-Dueñas
- Cancer Research Unit, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Guillermo Rodríguez-Hernández
- Cancer Research Unit, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | | | - Niels Kuster
- IT'IS Foundation, Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETHZ, Zurich, Switzerland
| | - Clemens Dasenbrock
- Fraunhofer ITEM, Toxicology and Environmental Hygiene, Hannover, Germany
| | - Isidro Sánchez-García
- Cancer Research Unit, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - César Cobaleda
- Department of Cell Biology and Immunology, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid, Spain
| |
Collapse
|
14
|
Wang Y, Zeng HM, Zhang LP. ETV6/RUNX1-positive childhood acute lymphoblastic leukemia in China: excellent prognosis with improved BFM protocol. Ital J Pediatr 2018; 44:94. [PMID: 30115129 PMCID: PMC6097322 DOI: 10.1186/s13052-018-0541-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/12/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In childhood B-precursor acute lymphoblastic leukemia (B-ALL), the ETV6/RUNX1 fusion transcript is considered to have an excellent outcome. However, few studies of children with ETV6/RUNX1-positive ALL from China have been conducted. It is largely unknown whether clinical outcomes for patients with this genotype and important factors that influence such outcomes are similar to those reported in other countries. Therefore, it is important to analyze the outcomes of children with ETV6/RUNX1-positive ALL treated at our institution with the aim of identifying significant prognostic variables in a Chinese population. METHODS We studied the clinical characteristics and treatment outcomes for 77 pediatric patients diagnosed with ETV6/RUNX1-positive ALL between 2005 and 2015 at our institution. RESULTS The 5-year event-free survival (EFS) and the disease-free survival (DFS) were reported to be 90% ± 3% and 96% ± 3% respectively. Two patients had a relapse at a median of 42 months from diagnosis and the 5-year cumulative incidence of relapse was 2.1%. Despite intensive chemotherapy or allogeneic hematopoietic cell transplantation, the 2 relapsed patients succumbed to the disease progression and the 5-year overall survival (OS) was 97% ± 2%. Multivariate analysis for EFS revealed that the minimal residual disease (MRD) ≥10- 3 on Day + 33 negatively affected the outcome. CONCLUSIONS In conclusion, patients with ETV6/RUNX1 fusion transcript can achieve a high rate of complete remission and the long-term curative effect was excellent under risk-stratified treatment. In case of relapse, the MRD level at the end of induction therapy should be taken into consideration while deciding the appropriate chemotherapy dosage.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatrics, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing, 100044 China
| | - Hui-min Zeng
- Department of Pediatrics, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing, 100044 China
| | - Le-ping Zhang
- Department of Pediatrics, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing, 100044 China
| |
Collapse
|
15
|
Abstract
In this Review, I present evidence supporting a multifactorial causation of childhood acute lymphoblastic leukaemia (ALL), a major subtype of paediatric cancer. ALL evolves in two discrete steps. First, in utero initiation by fusion gene formation or hyperdiploidy generates a covert, pre-leukaemic clone. Second, in a small fraction of these cases, the postnatal acquisition of secondary genetic changes (primarily V(D)J recombination-activating protein (RAG) and activation-induced cytidine deaminase (AID)-driven copy number alterations in the case of ETS translocation variant 6 (ETV6)-runt-related transcription factor 1 (RUNX1)+ ALL) drives conversion to overt leukaemia. Epidemiological and modelling studies endorse a dual role for common infections. Microbial exposures earlier in life are protective but, in their absence, later infections trigger the critical secondary mutations. Risk is further modified by inherited genetics, chance and, probably, diet. Childhood ALL can be viewed as a paradoxical consequence of progress in modern societies, where behavioural changes have restrained early microbial exposure. This engenders an evolutionary mismatch between historical adaptations of the immune system and contemporary lifestyles. Childhood ALL may be a preventable cancer.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
16
|
Tijchon E, van Emst L, Yuniati L, van Ingen Schenau D, Gerritsen M, van der Meer LT, Williams O, Hoogerbrugge PM, Scheijen B, van Leeuwen FN. Tumor suppressor BTG1 limits activation of BCL6 expression downstream of ETV6-RUNX1. Exp Hematol 2018; 60:57-62.e3. [PMID: 29408281 DOI: 10.1016/j.exphem.2018.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/20/2018] [Indexed: 11/28/2022]
Abstract
Translocation t(12;21) (p13;q22), giving rise to the ETV6-RUNX1 fusion gene, is the most common genetic abnormality in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation usually arises in utero, but its expression is insufficient to induce leukemia and requires other cooperating genetic lesions for BCP-ALL to develop. Deletions affecting the transcriptional coregulator BTG1 are frequently observed in ETV6-RUNX1-positive leukemia. Here we report that Btg1 deficiency enhances the self-renewal capacity of ETV6-RUNX1-positive mouse fetal liver-derived hematopoietic progenitors (FL-HPCs). Combined expression of the fusion protein and a loss of BTG1 drive upregulation of the proto-oncogene Bcl6 and downregulation of BCL6 target genes, such as p19Arf and Tp53. Similarly, ectopic expression of BCL6 promotes the self-renewal and clonogenic replating capacity of FL-HPCs, by suppressing the expression of p19Arf and Tp53. Together these results identify BCL6 as a potential driver of ETV6-RUNX1-mediated leukemogenesis, which could involve loss of BTG1-dependent suppression of ETV6-RUNX1 function.
Collapse
Affiliation(s)
- Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Mylène Gerritsen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Owen Williams
- Molecular Haematology and Cancer Biology Unit, UCL-Institute of Child Health, London, United Kingdom
| | | | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget 2018; 8:35445-35459. [PMID: 28418909 PMCID: PMC5471068 DOI: 10.18632/oncotarget.16367] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
ETV6/RUNX1 (E/R) is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL). Multiple lines of evidence imply a “two-hit” model for the molecular pathogenesis of E/R-positive ALL, whereby E/R rearrangement is followed by a series of secondary mutations that trigger overt leukemia. The cellular framework in which E/R arises and the maintenance of a pre-leukemic condition by E/R are fundamental to the mechanism that underlies leukemogenesis. Accordingly, a variety of studies have focused on the relationship between the clones giving rise to the primary and recurrent E/R-positive ALL. We review here the most recent insights into the pathogenic mechanisms underlying E/R-positive ALL, as well as the molecular abnormalities prevailing at relapse.
Collapse
|
18
|
Böiers C, Richardson SE, Laycock E, Zriwil A, Turati VA, Brown J, Wray JP, Wang D, James C, Herrero J, Sitnicka E, Karlsson S, Smith AJH, Jacobsen SEW, Enver T. A Human IPS Model Implicates Embryonic B-Myeloid Fate Restriction as Developmental Susceptibility to B Acute Lymphoblastic Leukemia-Associated ETV6-RUNX1. Dev Cell 2017; 44:362-377.e7. [PMID: 29290585 PMCID: PMC5807056 DOI: 10.1016/j.devcel.2017.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/04/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state.
Collapse
Affiliation(s)
- Charlotta Böiers
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK; Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Emma Laycock
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Alya Zriwil
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Jason P Wray
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Dapeng Wang
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Javier Herrero
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Ewa Sitnicka
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Andrew J H Smith
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; MRC Molecular Haematology Unit, University of Oxford, Oxford, UK
| | - Sten Erik W Jacobsen
- MRC Molecular Haematology Unit, University of Oxford, Oxford, UK; Departments of Cell and Molecular Biology and Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Karolinska University Hospital, Stockholm, Sweden
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK; Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
19
|
Modeling the process of childhood ETV6-RUNX1 B-cell leukemias. Oncotarget 2017; 8:102674-102680. [PMID: 29254279 PMCID: PMC5731989 DOI: 10.18632/oncotarget.21281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/16/2017] [Indexed: 01/02/2023] Open
Abstract
ETV6-RUNX1 is associated with the most common subtype of childhood leukemia. Pre-leukaemic clones carrying ETV6-RUNX1 oncogenic lesions are frequently found in neonatal cord blood, but only few ETV6-RUNX1 carriers develop pB-ALL. The highly demanding and pending challenge is to reveal the multistep natural history of ETV6-RUNX1 pB-ALL, because it can offer non-toxic prophylactic interventions to preleukemic carriers. However, the lack of a genetically engineered ETV6-RUNX1 mouse model mimicking the human pB-ALL has hampered our understanding of the pathogenesis of this disease. This rule has now been broken in a study of the effect of the ETV6-RUNX1 oncogene in cancer development in a mouse model in which oncogene expression is restricted to the stem cell compartment. In this article, we review the different attempts to model this disease, including the recent representative success stories and we discuss its potential application to both identify etiologic factors of childhood ETV6-RUNX1 pB-ALL and prevent the conversion of a preleukemic clone in an irreversible transformed state.
Collapse
|
20
|
Navarrete-Meneses MDP, Pérez-Vera P. Alteraciones epigenéticas en leucemia linfoblástica aguda. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:243-264. [DOI: 10.1016/j.bmhimx.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
|
21
|
|
22
|
Rodríguez-Hernández G, Hauer J, Martín-Lorenzo A, Schäfer D, Bartenhagen C, García-Ramírez I, Auer F, González-Herrero I, Ruiz-Roca L, Gombert M, Okpanyi V, Fischer U, Chen C, Dugas M, Bhatia S, Linka RM, Garcia-Suquia M, Rascón-Trincado MV, Garcia-Sanchez A, Blanco O, García-Cenador MB, García-Criado FJ, Cobaleda C, Alonso-López D, De Las Rivas J, Müschen M, Vicente-Dueñas C, Sánchez-García I, Borkhardt A. Infection Exposure Promotes ETV6-RUNX1 Precursor B-cell Leukemia via Impaired H3K4 Demethylases. Cancer Res 2017. [PMID: 28630052 DOI: 10.1158/0008-5472.can-17-0701] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ETV6-RUNX1 is associated with the most common subtype of childhood leukemia. As few ETV6-RUNX1 carriers develop precursor B-cell acute lymphocytic leukemia (pB-ALL), the underlying genetic basis for development of full-blown leukemia remains to be identified, but the appearance of leukemia cases in time-space clusters keeps infection as a potential causal factor. Here, we present in vivo genetic evidence mechanistically connecting preleukemic ETV6-RUNX1 expression in hematopoetic stem cells/precursor cells (HSC/PC) and postnatal infections for human-like pB-ALL. In our model, ETV6-RUNX1 conferred a low risk of developing pB-ALL after exposure to common pathogens, corroborating the low incidence observed in humans. Murine preleukemic ETV6-RUNX1 pro/preB cells showed high Rag1/2 expression, known for human ETV6-RUNX1 pB-ALL. Murine and human ETV6-RUNX1 pB-ALL revealed recurrent genomic alterations, with a relevant proportion affecting genes of the lysine demethylase (KDM) family. KDM5C loss of function resulted in increased levels of H3K4me3, which coprecipitated with RAG2 in a human cell line model, laying the molecular basis for recombination activity. We conclude that alterations of KDM family members represent a disease-driving mechanism and an explanation for RAG off-target cleavage observed in humans. Our results explain the genetic basis for clonal evolution of an ETV6-RUNX1 preleukemic clone to pB-ALL after infection exposure and offer the possibility of novel therapeutic approaches. Cancer Res; 77(16); 4365-77. ©2017 AACR.
Collapse
Affiliation(s)
- Guillermo Rodríguez-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Julia Hauer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Alberto Martín-Lorenzo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Daniel Schäfer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Christoph Bartenhagen
- Department of Computer Science, Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Idoia García-Ramírez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Franziska Auer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Inés González-Herrero
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucia Ruiz-Roca
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Michael Gombert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Okpanyi
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Cai Chen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Martin Dugas
- Department of Computer Science, Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - René Martin Linka
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Marta Garcia-Suquia
- Departamento de Ciencias Biomédicas y del Diagnóstico, Área de Obstetricia y Ginecología, HUS-Universidad de Salamanca, Salamanca, Spain
| | - María Victoria Rascón-Trincado
- Departamento de Ciencias Biomédicas y del Diagnóstico, Área de Obstetricia y Ginecología, HUS-Universidad de Salamanca, Salamanca, Spain
| | - Angel Garcia-Sanchez
- Departamento de Ciencias Biomédicas y del Diagnóstico, Área de Obstetricia y Ginecología, HUS-Universidad de Salamanca, Salamanca, Spain.,IBSAL, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Oscar Blanco
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
| | - Maria Begoña García-Cenador
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Javier García-Criado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - César Cobaleda
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Diego Alonso-López
- Bioinformatics Unit, Cancer Research Center (CSIC-USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Bioinformatics Unit, Cancer Research Center (CSIC-USAL), Salamanca, Spain.,Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CSIC-USAL), Salamanca, Spain
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | | | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany.
| |
Collapse
|
23
|
Karalexi MA, Dessypris N, Skalkidou A, Biniaris-Georgallis SI, Kalogirou ΕΙ, Thomopoulos TP, Herlenius E, Spector LG, Loutradis D, Chrousos GP, Petridou ET. Maternal fetal loss history and increased acute leukemia subtype risk in subsequent offspring: a systematic review and meta-analysis. Cancer Causes Control 2017; 28:599-624. [PMID: 28401353 DOI: 10.1007/s10552-017-0890-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE History of fetal loss including miscarriage and stillbirth has been inconsistently associated with childhood (0-14 years) leukemia in subsequent offspring. A quantitative synthesis of the inconclusive literature by leukemia subtype was therefore conducted. METHODS Eligible studies (N = 32) were identified through the screening of over 3500 publications. Random-effects meta-analyses were conducted on the association of miscarriage/stillbirth history with overall (AL; 18,868 cases/35,685 controls), acute lymphoblastic (ALL; 16,150 cases/38,655 controls), and myeloid (AML; 3042 cases/32,997 controls) leukemia. Sensitivity and subgroup analyses by age and ALL subtype, as well as meta-regression were undertaken. RESULTS Fetal loss history was associated with increased AL risk [Odds Ratio (OR) 1.10, 95% Confidence Intervals (CI) 1.04-1.18]. The positive association was seen for ALL (OR 1.12, 95%CI 1.05-1.19) and for AML (OR 1.13, 95%CI 0.91-1.41); for the latter the OR increased in sensitivity analyses. Notably, stillbirth history was significantly linked to ALL risk (OR 1.33, 95%CI 1.02-1.74), but not AML. By contrast, the association of ALL and AML with previous miscarriage reached marginal significance. The association of miscarriage history was strongest in infant ALL (OR 2.34, 95%CI 1.19-4.60). CONCLUSIONS In this meta-analysis involving >50,000 children, we found noteworthy associations by indices of fetal loss, age at diagnosis, and leukemia type; namely, of stillbirth with ALL and miscarriage history with infant ALL. Elucidation of plausible underlying mechanisms may provide insight into leukemia pathogenesis and indicate monitoring interventions prior to and during pregnancy.
Collapse
Affiliation(s)
- M A Karalexi
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| | - N Dessypris
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| | - A Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - S -I Biniaris-Georgallis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| | - Ε Ι Kalogirou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| | - T P Thomopoulos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| | - E Herlenius
- Department of Women's and Children׳s Health, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - L G Spector
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - D Loutradis
- First Department of Obstetrics and Gynecology of the University of Athens, Alexandra Hospital, Athens, Greece
| | - G P Chrousos
- First Department of Pediatrics, University of Athens, Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | - E Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece.
| |
Collapse
|
24
|
Sundaresh A, Williams O. Mechanism of ETV6-RUNX1 Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:201-216. [PMID: 28299659 DOI: 10.1007/978-981-10-3233-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The t(12;21)(p13;q22) translocation is the most frequently occurring single genetic abnormality in pediatric leukemia. This translocation results in the fusion of the ETV6 and RUNX1 genes. Since its discovery in the 1990s, the function of the ETV6-RUNX1 fusion gene has attracted intense interest. In this chapter, we will summarize current knowledge on the clinical significance of ETV6-RUNX1, the experimental models used to unravel its function in leukemogenesis, the identification of co-operating mutations and the mechanisms responsible for their acquisition, the function of the encoded transcription factor and finally, the future therapeutic approaches available to mitigate the associated disease.
Collapse
Affiliation(s)
- Aishwarya Sundaresh
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Owen Williams
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK.
| |
Collapse
|
25
|
Stoskus M, Eidukaite A, Griskevicius L. Defining the significance of IGF2BP1 overexpression in t(12;21)(p13;q22)-positive leukemia REH cells. Leuk Res 2016; 47:16-21. [DOI: 10.1016/j.leukres.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/06/2016] [Accepted: 05/15/2016] [Indexed: 12/27/2022]
|
26
|
Stoskus M, Vaitkeviciene G, Eidukaite A, Griskevicius L. ETV6/RUNX1 transcript is a target of RNA-binding protein IGF2BP1 in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia. Blood Cells Mol Dis 2016; 57:30-4. [PMID: 26852652 DOI: 10.1016/j.bcmd.2015.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022]
Abstract
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) is overexpressed in a subset of cancers and promotes cell cycle, migration and aggressive phenotype by regulating post-transcriptionally a number of key mRNAs (e. g, ACTB, CD44, CTNNB1, KRAS, MAPK4, MYC, PTEN and others). IGF2BP1 is also overexpressed in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia (ALL), but the biological significance of this phenomenon has not been addressed so far. We have identified leukemia fusion gene ETV6/RUNX1 mRNA to be highly enriched in immunoprecipitated fraction of endogenous IGF2BP1 from a model cell line REH and t(12;21)(p13;q22)-positive ALL samples. Furthermore, downregulation of IGF2BP1 by two-fold has resulted in a corresponding decrease of ETV6/RUNX1 mRNA validating this transcript as a target of IGF2BP1 protein in t(12;21)(p13;q22)-positive ALL. These data infer that IGF2BP1 is a potent regulator of ETV6/RUNX1 mRNA stability and potentially link this evolutionary-highly conserved protein to cell transformation events in ETV6/RUNX1-mediated leukemogenesis of t(12;21)(p13;q22)-positive ALL.
Collapse
MESH Headings
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 21
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Binding
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Translocation, Genetic
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Mindaugas Stoskus
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania; Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Goda Vaitkeviciene
- Children's Hospital, Affiliate of Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania
| | - Audrone Eidukaite
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Children's Hospital, Affiliate of Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania
| | - Laimonas Griskevicius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania; Clinics of Internal, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
27
|
Auer F, Ingenhag D, Bhatia S, Enczmann J, Cobaleda C, Sanchez-Garcia I, Borkhardt A, Hauer J. GEMMs addressing Pax5 loss-of-function in childhood pB-ALL. Eur J Med Genet 2016; 59:166-72. [DOI: 10.1016/j.ejmg.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/13/2015] [Accepted: 11/22/2015] [Indexed: 02/08/2023]
|
28
|
Janczar K, Janczar S, Pastorczak A, Mycko K, Paige AJW, Zalewska-Szewczyk B, Wagrowska-Danilewicz M, Danilewicz M, Mlynarski W. Preserved global histone H4 acetylation linked to ETV6-RUNX1 fusion and PAX5 deletions is associated with favorable outcome in pediatric B-cell progenitor acute lymphoblastic leukemia. Leuk Res 2015; 39:1455-61. [PMID: 26520622 DOI: 10.1016/j.leukres.2015.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Epigenetic dysregulation is a hallmark of cancer executed by a number of complex processes the most important of which converge on DNA methylation and histone protein modifications. Epigenetic marks are potentially reversible and thus promising drug targets. In the setting of acute lymphoblastic leukemia (ALL) they have been associated with clinicopathological features including risk of relapse or molecular subgroups of the disease. Here, using immunocytochemistry of bone marrow smears from diagnosis, we studied global histone H4 acetylation, whose loss was previously linked to treatment failure in adults with ALL, in pediatric patients. We demonstrate that preserved global histone H4 acetylation is significantly associated with favorable outcome (RFS, EFS, OS) in children with B cell progenitor (BCP) ALL, recapitulating the findings from adult populations. Further, for the first time we demonstrate differential histone H4 acetylation in molecular subclasses of BCP-ALL including cases with ETV6-RUNX1 fusion gene or PAX5 deletion or deletions in genes linked to B cell development. We conclude global histone H4 acetylation is a prognostic marker and a potential therapeutic target in ALL.
Collapse
Affiliation(s)
- K Janczar
- Department of Nephropathology, Medical University of Lodz, Poland
| | - S Janczar
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland.
| | - A Pastorczak
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - K Mycko
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - A J W Paige
- Department of Life Science, University of Bedfordshire, UK
| | - B Zalewska-Szewczyk
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | | | - M Danilewicz
- Department of Nephropathology, Medical University of Lodz, Poland
| | - W Mlynarski
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| |
Collapse
|
29
|
Ghazavi F, Lammens T, Van Roy N, Poppe B, Speleman F, Benoit Y, Van Vlierberghe P, De Moerloose B. Molecular basis and clinical significance of genetic aberrations in B-cell precursor acute lymphoblastic leukemia. Exp Hematol 2015; 43:640-53. [DOI: 10.1016/j.exphem.2015.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 12/25/2022]
|
30
|
ETV6/RUNX1 induces reactive oxygen species and drives the accumulation of DNA damage in B cells. Neoplasia 2014; 15:1292-300. [PMID: 24339741 DOI: 10.1593/neo.131310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022] Open
Abstract
The t(12;21)(p13;q22) chromosomal translocation is the most frequent translocation in childhood B cell precursor-acute lymphoblastic leukemia and results in the expression of an ETV6/RUNX1 fusion protein. The frequency of ETV6/RUNX1 fusions in newborns clearly exceeds the leukemia rate revealing that additional events occur in ETV6/RUNX1-positive cells for leukemic transformation. Hitherto, the mechanisms triggering these second hits remain largely elusive. Thus, we generated a novel ETV6/RUNX1 transgenic mouse model where the expression of the fusion protein is restricted to CD19(+) B cells. These animals harbor regular B cell development and lack gross abnormalities. We established stable pro-B cell lines carrying the ETV6/RUNX1 transgene that allowed us to investigate whether ETV6/RUNX1 itself favors the acquisition of second hits. Remarkably, these pro-B cell lines as well as primary bone marrow cells derived from ETV6/RUNX1 transgenic animals display elevated levels of reactive oxygen species (ROS) as tested with ETV6/RUNX1 transgenic dihydroethidium staining. In line, intracellular phospho-histone H2AX flow cytometry and comet assay revealed increased DNA damage indicating that ETV6/RUNX1 expression enhances ROS. On the basis of our data, we propose the following model: the expression of ETV6/RUNX1 creates a preleukemic clone and leads to increased ROS levels. These elevated ROS favor the accumulation of secondary hits by increasing genetic instability and double-strand breaks, thus allowing preleukemic clones to develop into fully transformed leukemic cells.
Collapse
|
31
|
Palmi C, Fazio G, Savino AM, Procter J, Howell L, Cazzaniga V, Vieri M, Longinotti G, Brunati I, Andrè V, Della Mina P, Villa A, Greaves M, Biondi A, D'Amico G, Ford A, Cazzaniga G. Cytoskeletal regulatory gene expression and migratory properties of B-cell progenitors are affected by the ETV6-RUNX1 rearrangement. Mol Cancer Res 2014; 12:1796-806. [PMID: 25061103 DOI: 10.1158/1541-7786.mcr-14-0056-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Although the ETV6-RUNX1 fusion is a frequent initiating event in childhood leukemia, its role in leukemogenesis is only partly understood. The main impact of the fusion itself is to generate and sustain a clone of clinically silent preleukemic B-cell progenitors (BCP). Additional oncogenic hits, occurring even several years later, are required for overt disease. The understanding of the features and interactions of ETV6-RUNX1-positive cells during this "latency" period may explain how these silent cells can persist and whether they could be prone to additional genetic changes. In this study, two in vitro murine models were used to investigate whether ETV6-RUNX1 alters the cellular adhesion and migration properties of BCP. ETV6-RUNX1-expressing cells showed a significant defect in the chemotactic response to CXCL12, caused by a block in CXCR4 signaling, as demonstrated by inhibition of CXCL12-associated calcium flux and lack of ERK phosphorylation. Moreover, the induction of ETV6-RUNX1 caused changes in the expression of cell-surface adhesion molecules. The expression of genes regulating the cytoskeleton was also affected, resulting in a block of CDC42 signaling. The abnormalities described here could alter the interaction of ETV6-RUNX1 preleukemic BCP with the microenvironment and contribute to the pathogenesis of the disease. IMPLICATIONS Alterations in the expression of cytoskeletal regulatory genes and migration properties of BCP represent early events in the evolution of the disease, from the preleukemic phase to the clinical onset, and suggest new strategies for effective eradication of leukemia.
Collapse
Affiliation(s)
- Chiara Palmi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Angela M Savino
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Julia Procter
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Louise Howell
- Haemato-Oncology Research Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Valeria Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Margherita Vieri
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Giulia Longinotti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Ilaria Brunati
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Valentina Andrè
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Pamela Della Mina
- Microscopy and Image Analysis Consortium, Università di Milano-Bicocca, Monza, Italy
| | - Antonello Villa
- Microscopy and Image Analysis Consortium, Università di Milano-Bicocca, Monza, Italy
| | - Mel Greaves
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy.
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Anthony Ford
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| |
Collapse
|
32
|
Jacoby E, Chien CD, Fry TJ. Murine models of acute leukemia: important tools in current pediatric leukemia research. Front Oncol 2014; 4:95. [PMID: 24847444 PMCID: PMC4019869 DOI: 10.3389/fonc.2014.00095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/18/2014] [Indexed: 01/09/2023] Open
Abstract
Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies.
Collapse
Affiliation(s)
- Elad Jacoby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Christopher D Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Terry J Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
33
|
Bokemeyer A, Eckert C, Meyr F, Koerner G, von Stackelberg A, Ullmann R, Türkmen S, Henze G, Seeger K. Copy number genome alterations are associated with treatment response and outcome in relapsed childhood ETV6/RUNX1-positive acute lymphoblastic leukemia. Haematologica 2013; 99:706-14. [PMID: 24241490 DOI: 10.3324/haematol.2012.072470] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The clinical heterogeneity among first relapses of childhood ETV6/RUNX1-positive acute lymphoblastic leukemia indicates that further genetic alterations in leukemic cells might affect the course of salvage therapy and be of prognostic relevance. To assess the incidence and prognostic relevance of additional copy number alterations at relapse of the disease, we performed whole genome array comparative genomic hybridization of leukemic cell DNA from 51 patients with first ETV6/RUNX1-positive relapse enrolled in and treated according to the relapse trials ALL-REZ of the Berlin-Frankfurt-Münster Study Group. Within this cohort of patients with relapsed ETV6/RUNX1-positive acute lymphoblastic leukemia, the largest analyzed for genome wide DNA copy number alterations to date, alterations were present in every ETV6/RUNX1-positive relapse and a high proportion of them occurred in recurrent overlapping chromosomal regions. Recurrent losses affected chromosomal regions 12p13, 6q21, 15q15.1, 9p21, 3p21, 5q and 3p14.2, whereas gains occurred in regions 21q22 and 12p. Loss of 12p13 including CDKN1B was associated with a shorter remission duration (P=0.009) and a lower probability of event-free survival (P=0.001). Distribution of X-chromosomal copy number alterations was gender-specific: whole X-chromosome loss occurred exclusively in females, gain of Xq only in males. Loss of the glucocorticoid receptor gene NR3C1 (5q31.3) was associated with a poor response to induction treatment (P=0.003), possibly accounting for the adverse prognosis of some of the ETV6/RUNX1-positive relapses.
Collapse
|
34
|
Linka Y, Ginzel S, Krüger M, Novosel A, Gombert M, Kremmer E, Harbott J, Thiele R, Borkhardt A, Landgraf P. The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods. Blood Cancer J 2013; 3:e151. [PMID: 24121163 PMCID: PMC3816209 DOI: 10.1038/bcj.2013.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/18/2013] [Accepted: 09/04/2013] [Indexed: 02/03/2023] Open
Abstract
The reciprocal translocation t(12;21)(p13;q22), the most common structural genomic alteration in B-cell precursor acute lymphoblastic leukaemia in children, results in a chimeric transcription factor TEL-AML1 (ETV6-RUNX1). We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with chromatin immunoprecipitation (ChIP)-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture, we identified 217 directly and 118 indirectly regulated targets of the TEL-AML1 fusion protein. Directly, but not indirectly, regulated promoters were enriched in AML1-binding sites. The majority of promoter regions were specific for the fusion protein and not bound by native AML1 or TEL. Comparison with gene expression profiles from TEL-AML1-positive patients identified 56 concordantly misregulated genes with negative effects on proliferation and cellular transport mechanisms and positive effects on cellular migration, and stress responses including immunological responses. In summary, this work for the first time gives a comprehensive insight into how TEL-AML1 expression may directly and indirectly contribute to alter cells to become prone for leukemic transformation.
Collapse
Affiliation(s)
- Y Linka
- Heinrich-Heine University of Dusseldorf, Medical Faculty, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Key Points
STAT3 activity is necessary for TEL-AML1 leukemia maintenance. TEL-AML1 induces STAT3 activation via RAC1 and leading to induction of MYC expression.
Collapse
|
36
|
Tsuzuki S, Seto M. TEL (ETV6)-AML1 (RUNX1) initiates self-renewing fetal pro-B cells in association with a transcriptional program shared with embryonic stem cells in mice. Stem Cells 2013; 31:236-47. [PMID: 23135987 DOI: 10.1002/stem.1277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/09/2012] [Indexed: 11/06/2022]
Abstract
The initial steps involved in the pathogenesis of acute leukemia are poorly understood. The TEL-AML1 fusion gene usually arises before birth, producing a persistent and covert preleukemic clone that may convert to precursor B cell leukemia following the accumulation of secondary genetic "hits." Here, we show that TEL-AML1 can induce persistent self-renewing pro-B cells in mice. TEL-AML1+ cells nevertheless differentiate terminally in the long term, providing a "window" period that may allow secondary genetic hits to accumulate and lead to leukemia. TEL-AML1-mediated self-renewal is associated with a transcriptional program shared with embryonic stem cells (ESCs), within which Mybl2, Tgif2, Pim2, and Hmgb3 are critical and sufficient components to establish self-renewing pro-B cells. We further show that TEL-AML1 increases the number of leukemia-initiating cells that are generated in collaboration with additional genetic hits, thus providing an overall basis for the development of novel therapeutic and preventive measures targeting the TEL-AML1-associated transcriptional program.
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | | |
Collapse
|
37
|
Figueroa ME, Chen SC, Andersson AK, Phillips LA, Li Y, Sotzen J, Kundu M, Downing JR, Melnick A, Mullighan CG. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. J Clin Invest 2013; 123:3099-111. [PMID: 23921123 DOI: 10.1172/jci66203] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 04/23/2013] [Indexed: 01/23/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the commonest childhood malignancy and is characterized by recurring structural genetic alterations. Previous studies of DNA methylation suggest epigenetic alterations may also be important, but an integrated genome-wide analysis of genetic and epigenetic alterations in ALL has not been performed. We analyzed 137 B-lineage and 30 T-lineage childhood ALL cases using microarray analysis of DNA copy number alterations and gene expression, and genome-wide cytosine methylation profiling using the HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) assay. We found that the different genetic subtypes of ALL are characterized by distinct DNA methylation signatures that exhibit significant correlation with gene expression profiles. We also identified an epigenetic signature common to all cases, with correlation to gene expression in 65% of these genes, suggesting that a core set of epigenetically deregulated genes is central to the initiation or maintenance of lymphoid transformation. Finally, we identified aberrant methylation in multiple genes also targeted by recurring DNA copy number alterations in ALL, suggesting that these genes are inactivated far more frequently than suggested by structural genomic analyses alone. Together, these results demonstrate subtype- and disease-specific alterations in cytosine methylation in ALL that influence transcriptional activity, and are likely to exert a key role in leukemogenesis.
Collapse
Affiliation(s)
- Maria E Figueroa
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Initially disadvantaged, TEL-AML1 cells expand and initiate leukemia in response to irradiation and cooperating mutations. Leukemia 2013; 27:1570-3. [PMID: 23443342 PMCID: PMC3715751 DOI: 10.1038/leu.2013.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Brady G, Elgueta Karstegl C, Farrell PJ. Novel function of the unique N-terminal region of RUNX1c in B cell growth regulation. Nucleic Acids Res 2012; 41:1555-68. [PMID: 23254331 PMCID: PMC3561965 DOI: 10.1093/nar/gks1273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RUNX family proteins are expressed from alternate promoters, giving rise to different N-terminal forms, but the functional difference of these isoforms is not understood. Here, we show that growth of a human B lymphoblastoid cell line infected with Epstein-Barr virus is inhibited by RUNX1c but not by RUNX1b. This gives a novel functional assay for the unique N-terminus of RUNX1c, and amino acids of RUNX1c required for the effect have been identified. Primary resting B cells contain RUNX1c, consistent with the growth inhibitory effect in B cells. The oncogene TEL-RUNX1 lacks the N-terminus of RUNX1c because of the TEL fusion and does not inhibit B cell growth. Mouse Runx1c lacks some of the sequences required for human RUNX1c to inhibit B cell growth, indicating that this aspect of human B cell growth control may differ in mice. Remarkably, a cell-penetrating peptide containing the N-terminal sequence of RUNX1c specifically antagonizes the growth inhibitory effect in B lymphoblastoid cells and might be used to modulate the function of human RUNX1c.
Collapse
Affiliation(s)
- Gareth Brady
- Section of Virology, Imperial College Faculty of Medicine, Norfolk Place, London W2 1PG, UK
| | | | | |
Collapse
|
40
|
Tijchon E, Havinga J, van Leeuwen FN, Scheijen B. B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia 2012; 27:541-52. [PMID: 23047478 DOI: 10.1038/leu.2012.293] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Differentiation of hematopoietic stem cells into B lymphocytes requires the concerted action of specific transcription factors, such as RUNX1, IKZF1, E2A, EBF1 and PAX5. As key determinants of normal B-cell development, B-lineage transcription factors are frequently deregulated in hematological malignancies, such as B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and affected by either chromosomal translocations, gene deletions or point mutations. However, genetic aberrations in this developmental pathway are generally insufficient to induce BCP-ALL, and often complemented by genetic defects in cytokine receptors and tyrosine kinases (IL-7Rα, CRLF2, JAK2 and c-ABL1), transcriptional cofactors (TBL1XR1, CBP and BTG1), as well as the regulatory pathways that mediate cell-cycle control (pRB and INK4A/B). Here we provide a detailed overview of the genetic pathways that interact with these B-lineage specification factors, and describe how mutations affecting these master regulators together with cooperating lesions drive leukemia development.
Collapse
Affiliation(s)
- E Tijchon
- Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 2012; 122:3407-15. [PMID: 23023711 DOI: 10.1172/jci61203] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
B-precursor acute lymphoblastic leukemia (B-ALL) is the most common childhood tumor and the leading cause of cancer-related death in children and young adults. The majority of B-ALL cases are aneuploid or harbor recurring structural chromosomal rearrangements that are important initiating events in leukemogenesis but are insufficient to explain the biology and heterogeneity of disease. Recent studies have used microarrays and sequencing to comprehensively identify all somatic genetic alterations in acute lymphoblastic leukemia (ALL). These studies have identified cryptic or submicroscopic genetic alterations that define new ALL subtypes, cooperate with known chromosomal rearrangements, and influence prognosis. This article reviews these advances, discusses results from ongoing second-generation sequencing studies of ALL, and highlights challenges and opportunities for future genetic profiling approaches.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
42
|
Bhojwani D, Pei D, Sandlund JT, Jeha S, Ribeiro RC, Rubnitz JE, Raimondi SC, Shurtleff S, Onciu M, Cheng C, Coustan-Smith E, Bowman WP, Howard SC, Metzger ML, Inaba H, Leung W, Evans WE, Campana D, Relling MV, Pui CH. ETV6-RUNX1-positive childhood acute lymphoblastic leukemia: improved outcome with contemporary therapy. Leukemia 2012; 26:265-70. [PMID: 21869842 PMCID: PMC3345278 DOI: 10.1038/leu.2011.227] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/30/2011] [Accepted: 07/20/2011] [Indexed: 11/08/2022]
Abstract
ETV6-RUNX1 fusion is the most common genetic aberration in childhood acute lymphoblastic leukemia (ALL). To evaluate whether outcomes for this drug-sensitive leukemia are improved by contemporary risk-directed therapy, we studied clinical features, response and adverse events of 168 children with newly diagnosed ETV6-RUNX1-positive ALL on St Jude Total Therapy studies XIIIA (N=36), XIIIB (N=38) and XV (N=94). Results were compared with 494 ETV6-RUNX1-negative B-precursor ALL patients. ETV6-RUNX1 was associated with age 1-9 years, pre-treatment classification as low risk and lower levels of minimal residual disease (MRD) on day 19 of therapy (P<0.001). Event-free survival (EFS) or overall survival (OS) did not differ between patients with or without ETV6-RUNX1 in Total XIIIA or XIIIB. By contrast, in Total XV, patients with ETV6-RUNX1 had significantly better EFS (P=0.04; 5-year estimate, 96.8±2.4% versus 88.3±2.5%) and OS (P=0.04; 98.9±1.4% versus 93.7±1.8%) than those without ETV6-RUNX1. Within the ETV6-RUNX1 group, the only significant prognostic factor associated with higher OS was the treatment protocol Total XV (versus XIIIA or XIIIB) (P=0.01). Thus, the MRD-guided treatment schema including intensive asparaginase and high-dose methotrexate in the Total XV study produced significantly better outcomes than previous regimens and demonstrated that nearly all children with ETV6-RUNX1 ALL can be cured.
Collapse
Affiliation(s)
- D Bhojwani
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood 2011; 118:4910-8. [PMID: 21900195 DOI: 10.1182/blood-2011-05-354266] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ETV6-RUNX1 gene fusion is usually an early, prenatal event in childhood acute lymphoblastic leukemia (ALL). Transformation results in the generation of a persistent (> 14 years) preleukemic clone, which postnatally converts to ALL after the acquisition of necessary secondary genetic alterations. Many cancer cells show some expression of the erythropoietin receptor (EPOR) gene, although the "functionality" of any EPOR complexes and their relevant signaling pathways in nonerythroid cells has not been validated. EPOR mRNA is selectively and ectopically expressed in ETV6-RUNX1(+) ALL, but the presence of a functional EPOR on the cell surface and its role in leukemogenesis driven by ETV6-RUNX1 remains to be identified. Here, we show that ETV6-RUNX1 directly binds the EPOR promoter and that expression of ETV6-RUNX1 alone in normal pre-B cells is sufficient to activate EPOR transcription. We further reveal that murine and human ETV6-RUNX1(+) cells expressing EPOR mRNA have EPO ligand binding activity that correlates with an increased cell survival through activation of the JAK2-STAT5 pathway and up-regulation of antiapoptotic BCL-XL. These data support the contention that ETV6-RUNX1 directly activates ectopic expression of a functional EPOR and provides cell survival signals that may contribute critically to persistence of covert premalignant clones in children.
Collapse
|
44
|
Stoskus M, Gineikiene E, Valceckiene V, Valatkaite B, Pileckyte R, Griskevicius L. Identification of characteristic IGF2BP expression patterns in distinct B-ALL entities. Blood Cells Mol Dis 2011; 46:321-6. [PMID: 21414819 DOI: 10.1016/j.bcmd.2011.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/28/2011] [Accepted: 02/14/2011] [Indexed: 01/26/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins IGF2BP1, IGF2BP2, and IGF2BP3 have been shown to have diagnostic and prognostic utility in a number of epithelial and soft tissue tumors. Still, little is known about the expression of these molecules in different types of leukemia and our study aims to fill this gap. By using an RT-qPCR approach, we have systemically analyzed the expression of three IGF2BP coding genes in normal hematopoietic tissues and distinct acute lymphoblastic leukemia (ALL) entities. We show that low/negative IGF2BP1 and IGF2BP3 and high IGF2BP2 levels are characteristic to healthy donor bone marrow and peripheral blood whereas different B-ALL entities displayed characteristic perturbations of IGF2BP expression patterns. Namely, we have identified significant associations of overexpressed IGF2BP1 with ETV6/RUNX1-positive (r(2)=0.7891, y=0.8105x-0.4471, p<0.0001), underexpressed IGF2BP2 with E2A/PBX1-positive (p<0.01), and overexpressed IGF2BP2 and IGF2BP3 with MLL/AF4-positive (r(2)=0.6571, y=0.1507x-0.2722, p<0.0001, and r(2)=0.7022, y=0.6482x-0.7660, p<0.0001, respectively) leukemia. Secondly, based on transcript expression dynamics during follow-up, we conclude that overexpression of only IGF2BP1 is inherent characteristic of ETV6/RUNX1-positive leukemic blasts in contrast to IGF2BP3 which remained stably expressed throughout the monitoring period and upon the achievement of molecular remission. Finally, our data suggest that IGF2BP3 might be a marker of disease aggressiveness in BCR/ABL1-positive ALL as consistently increasing levels of this transcript during follow-up predicted eventual leukemia relapse by three months. Altogether, our results highlight the potential utility of IGF2BP profiling in precursor B lymphoid neoplasms as the functions of IGF2BPs in normal and malignant hematopoiesis are further delineated.
Collapse
Affiliation(s)
- Mindaugas Stoskus
- Hematology, Oncology, and Transfusion Medicine Center, Vilnius University Hospital, Santariskiu Clinics, Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|
45
|
Hill VK, Dunwell TL, Catchpoole D, Krex D, Brini AT, Griffiths M, Craddock C, Maher ER, Latif F. Frequent epigenetic inactivation of KIBRA, an upstream member of the Salvador/Warts/Hippo (SWH) tumor suppressor network, is associated with specific genetic event in B-cell acute lymphocytic leukemia. Epigenetics 2011; 6:326-32. [PMID: 21173572 DOI: 10.4161/epi.6.3.14404] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The WW-domain containing protein KIBRA has recently been identified as a new member of the Salvador/Warts/Hippo (SWH) pathway in Drosophila and is shown to act as a tumor suppressor gene in Drosophila. This pathway is conserved in humans and members of the pathway have been shown to act as tumor suppressor genes in mammalian systems. We determined the methylation status of the 5' CpG island associated with the KIBRA gene in human cancers. In a large panel of cancer cell lines representing common epithelial cancers KIBRA was unmethylated. But in pediatric acute lymphocytic leukemia (ALL) cell lines KIBRA showed frequent hypermethylation and silencing of gene expression, which could be reversed by treatment with 5-aza-2'-deoxycytidine. In ALL patient samples KIBRA was methylated in 70% B-ALL but was methylated in < 20% T-ALL leukemia (p = 0.0019). In B-ALL KIBRA methylation was associated with ETV6/RUNX1 [t(12;21) (p13;q22)] chromosomal translocation (p = 0.0082) phenotype, suggesting that KIBRA may play an important role in t(12;21) leukemogenesis. In ALL paired samples at diagnosis and remission KIBRA methylation was seen in diagnostic but not in any of the remission samples accompanied by loss of KIBRA expression in disease state compared to patients in remission. Hence KIBRA methylation occurs frequently in B-cell acute lymphocytic leukemia but not in epithelial cancers and is linked to specific genetic event in B-ALL.
Collapse
Affiliation(s)
- Victoria K Hill
- Medical and Molecular Genetics, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zaliova M, Meyer C, Cario G, Vaskova M, Marschalek R, Stary J, Zuna J, Trka J. TEL/AML1-positive patients lacking TEL exon 5 resemble canonical TEL/AML1 cases. Pediatr Blood Cancer 2011; 56:217-25. [PMID: 21157892 DOI: 10.1002/pbc.22686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/11/2010] [Indexed: 11/06/2022]
Abstract
BACKGROUND The TEL/AML1 fusion gene which represents the most frequent genetic abnormality in childhood ALL, usually results from genomic breakpoints in TEL intron 5 and AML1 intron 1 or 2. At the protein level, the helix-loop-helix domain and exon 5-coded central region of TEL are typically fused to almost entire AML1 including DNA-binding domain. PROCEDURE We identified two ALL patients with genomic breakpoints within TEL intron 4 resulting in variant TEL/AML1 fusion lacking the TEL exon 5-coded central region. This region was supposed to play an important role in TEL/AML1 function, particularly in TEL/AML1-mediated transcriptional repression of AML1 targets. We aimed at investigating the impact of the loss of this region on disease behavior and TEL/AML1 function. We compared clinical and biological characteristics, treatment response, and outcome of the variant versus classical TEL/AML1 cases, analyzed genome wide gene expression profiles and performed reporter gene assay. RESULTS No distinct differences between variant and classical TEL/AML1 cases were observed including gene expression profiling and detailed immunophenotyping. By using reporter gene assay, we showed that the loss of the central region does not influence the TEL/AML1-mediated transcriptional repression. CONCLUSIONS The deletion of the central region did not affect the TEL/AML1-specific phenotype; we did not find any relevant differences in clinical and biological features when variant versus classical TEL/AML1-positive cases were compared. Thus, our data does not support hypothesis that the central region of TEL is indispensable for TEL/AML1 driven leukemogenesis.
Collapse
Affiliation(s)
- Marketa Zaliova
- CLIP, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Translocation (12;21), the most frequent chromosomal aberration in childhood acute lymphoblastic leukemia, creates TEL/AML1 fusion gene. Resulting hybrid protein was shown to have a role in pre-leukemia establishment. To address its role for leukemic cell survival, we applied RNA interference to silence TEL/AML1 in leukemic cells. We designed and tested 11 different oligonucleotides targeting the TEL/AML1 fusion site. Using most efficient siRNAs, we achieved an average of 74-86% TEL/AML1 protein knockdown in REH and UOC-B6 leukemic cells, respectively. TEL/AML1 silencing neither decreased cell viability, nor induced apoptosis. On the contrary, it resulted in the modest but significant increase in the S phase fraction and in higher proliferation rate. Opposite effects on cell cycle distribution and proliferation were induced by AML1 silencing, thus, supporting our hypothesis that TEL/AML1 may block AML1-mediated promotion of G1/S progression through the cell cycle. In line with the lack of major effect on phenotype, we found no significant changes in clonogenic potential and global gene expression pattern upon TEL/AML1 depletion. Our data suggest that though TEL/AML1 is important for the (pre)leukemic clone development, it may be dispensable for leukemic cell survival and would not be a suitable target for gene-specific therapy.
Collapse
|
48
|
The E2A-HLF oncogenic fusion protein acts through Lmo2 and Bcl-2 to immortalize hematopoietic progenitors. Leukemia 2010; 25:321-30. [DOI: 10.1038/leu.2010.253] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Lyons R, Williams O, Morrow M, Sebire N, Hubank M, Anderson J. The RAC specific guanine nucleotide exchange factor Asef functions downstream from TEL-AML1 to promote leukaemic transformation. Leuk Res 2010; 34:109-15. [DOI: 10.1016/j.leukres.2009.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/13/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
|
50
|
Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53. Leukemia 2009; 24:89-96. [PMID: 19890372 PMCID: PMC2811577 DOI: 10.1038/leu.2009.208] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) regulate the expression of multiple proteins in a dose dependent manner. We hypothesized that increased expression of miRNAs encoded on chromosome 21 (chr 21) contribute to the leukemogenic role of trisomy 21. The levels of chr 21 miRNAs were quantified by qRT-PCR in four types of childhood ALL characterized by either numerical (trisomy or tetrasomy) or structural abnormalities of chr 21. Suprisingly high expression of the hsa-mir-125b-2 cluster, consisting of three miRNAs, was identified in leukemias with the structural ETV6/RUNX1 abnormality and not in ALLs with trisomy 21. Manipulation of ETV6/RUNX1 expression and chromatin immunoprecipitation studies demonstrated that the high expression of the miRNA cluster is an event independent of the ETV6/RUNX1 fusion protein. Overexpression of hsa-mir-125b-2 conferred a survival advantage to Ba/F3 cells following IL-3 withdrawal or a broad spectrum of apoptotic stimuli through inhibition of caspase 3 activation. Conversely, knockdown of the endogenous miR-125b in the ETV6/RUNX1 leukemia cell line REH increased apoptosis after Doxorubicin and Staurosporine treatments. P53 protein levels were not altered by miR-125b. Together these results suggest that the expression of hsa-mir-125b-2 in ETV6/RUNX1 ALL provides survival advantage to growth inhibitory signals in a p53 independent manner.
Collapse
|