1
|
Choudhury R, Bahadi CK, Ray IP, Dash P, Pattanaik I, Mishra S, Mohapatra SR, Patnaik S, Nikhil K. PIM1 kinase and its diverse substrate in solid tumors. Cell Commun Signal 2024; 22:529. [PMID: 39487435 PMCID: PMC11531143 DOI: 10.1186/s12964-024-01898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Rituparna Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Chandan Kumar Bahadi
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Ipsa Pratibimbita Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Pragyanshree Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Isha Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Suman Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Soumya R Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Kumar Nikhil
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India.
| |
Collapse
|
2
|
Shenoy US, Adiga D, Alhedyan F, Kabekkodu SP, Radhakrishnan R. HOXA9 transcription factor is a double-edged sword: from development to cancer progression. Cancer Metastasis Rev 2024; 43:709-728. [PMID: 38062297 PMCID: PMC11156722 DOI: 10.1007/s10555-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024]
Abstract
The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Faisal Alhedyan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
3
|
He L, Feng X, Hu C, Liu S, Sheng H, Cai B, Ma Y. HOXA9 gene inhibits proliferation and differentiation and promotes apoptosis of bovine preadipocytes. BMC Genomics 2024; 25:358. [PMID: 38605318 PMCID: PMC11007997 DOI: 10.1186/s12864-024-10231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.
Collapse
Affiliation(s)
- Lixia He
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Xue Feng
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Chunli Hu
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Shuang Liu
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Hui Sheng
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Bei Cai
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Yun Ma
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
4
|
Nock S, Karim E, Unsworth AJ. Pim Kinases: Important Regulators of Cardiovascular Disease. Int J Mol Sci 2023; 24:11582. [PMID: 37511341 PMCID: PMC10380471 DOI: 10.3390/ijms241411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pim Kinases; Pim-1, Pim-2, and Pim-3, are a family of constitutively active serine/threonine kinases, widely associated with cell survival, proliferation, and migration. Historically considered to be functionally redundant, independent roles for the individual isoforms have been described. Whilst most established for their role in cancer progression, there is increasing evidence for wider pathological roles of Pim kinases within the context of cardiovascular disease, including inflammation, thrombosis, and cardiac injury. The Pim kinase isoforms have widespread expression in cardiovascular tissues, including the heart, coronary artery, aorta, and blood, and have been demonstrated to be upregulated in several co-morbidities/risk factors for cardiovascular disease. Pim kinase inhibition may thus be a desirable therapeutic for a multi-targeted approach to treat cardiovascular disease and some of the associated risk factors. In this review, we discuss what is known about Pim kinase expression and activity in cells of the cardiovascular system, identify areas where the role of Pim kinase has yet to be fully explored and characterised and review the suitability of targeting Pim kinase for the prevention and treatment of cardiovascular events in high-risk individuals.
Collapse
Affiliation(s)
| | | | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
5
|
Hao X, Shen Y, Chen N, Zhang W, Valverde E, Wu L, Chan HL, Xu Z, Yu L, Gao Y, Bado I, Michie LN, Rivas CH, Dominguez LB, Aguirre S, Pingel BC, Wu YH, Liu F, Ding Y, Edwards DG, Liu J, Alexander A, Ueno NT, Hsueh PR, Tu CY, Liu LC, Chen SH, Hung MC, Lim B, Zhang XHF. Osteoprogenitor-GMP crosstalk underpins solid tumor-induced systemic immunosuppression and persists after tumor removal. Cell Stem Cell 2023; 30:648-664.e8. [PMID: 37146584 PMCID: PMC10165729 DOI: 10.1016/j.stem.2023.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Remote tumors disrupt the bone marrow (BM) ecosystem (BME), eliciting the overproduction of BM-derived immunosuppressive cells. However, the underlying mechanisms remain poorly understood. Herein, we characterized breast and lung cancer-induced BME shifts pre- and post-tumor removal. Remote tumors progressively lead to osteoprogenitor (OP) expansion, hematopoietic stem cell dislocation, and CD41- granulocyte-monocyte progenitor (GMP) aggregation. The tumor-entrained BME is characterized by co-localization between CD41- GMPs and OPs. OP ablation abolishes this effect and diminishes abnormal myeloid overproduction. Mechanistically, HTRA1 carried by tumor-derived small extracellular vesicles upregulates MMP-13 in OPs, which in turn induces the alterations in the hematopoietic program. Importantly, these effects persist post-surgery and continue to impair anti-tumor immunity. Conditional knockout or inhibition of MMP-13 accelerates immune reinstatement and restores the efficacies of immunotherapies. Therefore, tumor-induced systemic effects are initiated by OP-GMP crosstalk that outlasts tumor burden, and additional treatment is required to reverse these effects for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nan Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Elizabeth Valverde
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hilda L Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Liqun Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Laura Natalee Michie
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Charlotte Helena Rivas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Luis Becerra Dominguez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bradley C Pingel
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David G Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Angela Alexander
- Department of Breast Medical Oncology and Morgan Welch IBC Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology and Morgan Welch IBC Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; University of Hawai'i Cancer Center (UHCC), 701 Ilalo Street, Honolulu, HI 96813, USA
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Yen Tu
- School of Medicine, College of Medicine, China Medical University, Taichung 406, Taiwan; Division of Pulmonary and Critical Care, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Liang-Chih Liu
- School of Medicine, College of Medicine, China Medical University, Taichung 406, Taiwan; Division of Breast Surgery, Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shu-Hsia Chen
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Bora Lim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Fu X, Fu P, Yang T, Niu T. Homeobox A9 is a novel mediator of vascular smooth muscle cell phenotypic switching and proliferation by regulating methyl-CpG binding protein 2. Cell Signal 2023; 108:110695. [PMID: 37127144 DOI: 10.1016/j.cellsig.2023.110695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Aberrant proliferation and phenotypic switching of vascular smooth muscle cells (VSMCs) are considered to be the main pathological processes of atherosclerotic plaque formation. Methyl-CpG binding protein 2 (MECP2) affects cell differentiation via modulating VSMC-specific gene expression and acts as a driver for the development of atherosclerosis (AS). Here, we aimed to elucidate (Rafieian-Kopaei et al., 2014 [1]) the role of homeobox A9 (HOXA9) on aberrant VSMCs upon injury or AS, and (Rana et al., 2021 [2]) whether HOXA9-mediated VSMC injury was associated with MECP2. Adeno-associated virus serotype 8-mediated knockdown of HOXA9 rescued aortic pathological injury of apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (HFD), characterized by the reduction of lipid accumulation and foam cell formation. Further in vitro evidence suggested that proliferation and migration of primary mouse VSMCs (mVSMCs) stimulated by oxidized low-density lipoprotein (ox-LDL) were inhibited after HOXA9 silencing. In addition, HOXA9 silencing blocked VSMC phenotypic switching from contractile to a pathological synthetic state. HOXA9 overexpression caused opposite alterations in ox-LDL-stimulated mVSMCs. Mechanistically, MECP2 was transcriptionally activated by HOXA9. Forced expression of MECP2 impaired the anti-proliferation, anti-migration, and phenotypic switching abilities of HOXA9 silencing in VSMCs upon ox-LDL stimulation. Collectively, our findings reveal that the role of HOXA9 in pathological vascular remodeling may attribute to transcriptional regulation of MECP2.
Collapse
Affiliation(s)
- Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Peng Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Tiesheng Niu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
7
|
Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 2023; 22:18. [PMID: 36694243 PMCID: PMC9875428 DOI: 10.1186/s12943-023-01721-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.
Collapse
|
8
|
Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022; 22:349. [PMID: 36376832 PMCID: PMC9664671 DOI: 10.1186/s12935-022-02767-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.
Collapse
|
9
|
Julson JR, Marayati R, Beierle EA, Stafman LL. The Role of PIM Kinases in Pediatric Solid Tumors. Cancers (Basel) 2022; 14:3565. [PMID: 35892829 PMCID: PMC9332273 DOI: 10.3390/cancers14153565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
PIM kinases have been identified as potential therapeutic targets in several malignancies. Here, we provide an in-depth review of PIM kinases, including their structure, expression, activity, regulation, and role in pediatric carcinogenesis. Also included is a brief summary of the currently available pharmaceutical agents targeting PIM kinases and existing clinical trials.
Collapse
Affiliation(s)
- Janet Rae Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Elizabeth Ann Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Laura Lee Stafman
- Division of Pediatric Surgery, Department of Surgery, Vanderbilt University, Nashville, TN 37240, USA;
| |
Collapse
|
10
|
Hamed G, Omar HM, Sarhan AM, Salah HE. Proviral Integration of Moloney Virus-2 (PIM-2) Expression Level as a Prognostic Marker in Patients with Acute Myeloid Leukemia. Int J Gen Med 2022; 15:4247-4258. [PMID: 35480994 PMCID: PMC9035444 DOI: 10.2147/ijgm.s354092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to assess PIM-2 gene expression level as a prognostic marker in AML patients and to correlate the results with their clinical outcome. Patients and Methods This study was conducted on 50 de novo younger AML patients (median age 44). Quantitative real-time polymerase chain reaction (QRT-PCR) was used to assess the expression level of the PIM-2 gene. The transcription level of the target gene (PIM-2) was normalized to that of the reference gene (GAPDH). Twenty control samples were withdrawn from 20 age- and sex-matched individuals for the analysis of the results using the 2−ΔΔCT method. On day 28 following induction chemotherapy, patients’ bone marrow (BM) was examined for evaluation of their remission status. Results PIM-2 gene expression was higher among AML patients who did not achieve complete remission (CR); also, it was higher in patients in the intermediate and poor cytogenetic risk groups. A significant positive correlation was found between PIM-2 level and BM blasts on day 28. In AML patients, PIM-2 has been discovered to be an independent predictive factor for achieving CR following standard induction treatment. Receiver operating characteristic curve (ROC) and area under the curve (AUC) were performed for PIM-2 level at diagnosis to evaluate its role in achieving remission after induction. It was found that PIM-2 at cutoff ≤1.6 had an AUC (0.903) with a sensitivity (90.48%) and specificity (86.21%), P <0.001. Conclusion Overexpression of the PIM-2 gene is associated with induction failure and low CR.
Collapse
Affiliation(s)
- Gehad Hamed
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, Egypt
- Correspondence: Gehad Hamed, Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, 44519, Egypt, Tel +201092034529, Email
| | - Hisham M Omar
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, Egypt
| | - Abbas M Sarhan
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, Egypt
| | - Hossam E Salah
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia, Egypt
| |
Collapse
|
11
|
Lim JT, Singh N, Leuvano LA, Calvert VS, Petricoin EF, Teachey DT, Lock RB, Padi M, Kraft AS, Padi SKR. PIM Kinase Inhibitors Block the Growth of Primary T-cell Acute Lymphoblastic Leukemia: Resistance Pathways Identified by Network Modeling Analysis. Mol Cancer Ther 2020; 19:1809-1821. [PMID: 32753387 DOI: 10.1158/1535-7163.mct-20-0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022]
Abstract
Despite significant progress in understanding the genetic landscape of T-cell acute lymphoblastic leukemia (T-ALL), the discovery of novel therapeutic targets has been difficult. Our results demonstrate that the levels of PIM1 protein kinase is elevated in early T-cell precursor ALL (ETP-ALL) but not in mature T-ALL primary samples. Small-molecule PIM inhibitor (PIMi) treatment decreases leukemia burden in ETP-ALL. However, treatment of animals carrying ETP-ALL with PIMi was not curative. To model other pathways that could be targeted to complement PIMi activity, HSB-2 cells, previously characterized as a PIMi-sensitive T-ALL cell line, were grown in increasing doses of PIMi. Gene set enrichment analysis of RNA sequencing data and functional enrichment of network modules demonstrated that the HOXA9, mTOR, MYC, NFκB, and PI3K-AKT pathways were activated in HSB-2 cells after long-term PIM inhibition. Reverse phase protein array-based pathway activation mapping demonstrated alterations in the mTOR, PI3K-AKT, and NFκB pathways, as well. PIMi-tolerant HSB-2 cells contained phosphorylated RelA-S536 consistent with activation of the NFκB pathway. The combination of NFκB and PIMis markedly reduced the proliferation in PIMi-resistant leukemic cells showing that this pathway plays an important role in driving the growth of T-ALL. Together these results demonstrate key pathways that are activated when HSB-2 cell line develop resistance to PIMi and suggest pathways that can be rationally targeted in combination with PIM kinases to inhibit T-ALL growth.
Collapse
Affiliation(s)
- James T Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Neha Singh
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Libia A Leuvano
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Valerie S Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
- Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, Arizona
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.
| | - Sathish K R Padi
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.
| |
Collapse
|
12
|
HoxA9 transforms murine myeloid cells by a feedback loop driving expression of key oncogenes and cell cycle control genes. Blood Adv 2019; 2:3137-3148. [PMID: 30463913 DOI: 10.1182/bloodadvances.2018025866] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
Ectopic expression of the oncogenic transcription factor HoxA9 is a major cause of acute myeloid leukemia (AML). Here, we demonstrate that HoxA9 is a specific substrate of granule proteases. Protease knockout allowed the comprehensive determination of genome-wide HoxA9 binding sites by chromatin immunoprecipitation sequencing in primary murine cells and a human AML cell line. The kinetics of enhancer activity and transcription rates in response to alterations of an inducible HoxA9 were determined. This permitted identification of HoxA9-controlled enhancers and promoters, allocation to their respective transcription units, and discrimination against HoxA9-bound, but unresponsive, elements. HoxA9 triggered an elaborate positive-feedback loop that drove expression of the complete Hox-A locus. In addition, it controlled key oncogenic transcription factors Myc and Myb and directly induced the cell cycle regulators Cdk6 and CyclinD1, as well as telomerase, drawing the essential blueprint for perturbation of proliferation by leukemogenic HoxA9 expression.
Collapse
|
13
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
14
|
Depauw S, Lambert M, Jambon S, Paul A, Peixoto P, Nhili R, Morongiu L, Figeac M, Dassi C, Paul-Constant C, Billoré B, Kumar A, Farahat AA, Ismail MA, Mineva E, Sweat DP, Stephens CE, Boykin DW, Wilson WD, David-Cordonnier MH. Heterocyclic Diamidine DNA Ligands as HOXA9 Transcription Factor Inhibitors: Design, Molecular Evaluation, and Cellular Consequences in a HOXA9-Dependant Leukemia Cell Model. J Med Chem 2019; 62:1306-1329. [PMID: 30645099 PMCID: PMC6561105 DOI: 10.1021/acs.jmedchem.8b01448] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most transcription factors were for a long time considered as undruggable targets because of the absence of binding pockets for direct targeting. HOXA9, implicated in acute myeloid leukemia, is one of them. To date, only indirect targeting of HOXA9 expression or multitarget HOX/PBX protein/protein interaction inhibitors has been developed. As an attractive alternative by inhibiting the DNA binding, we selected a series of heterocyclic diamidines as efficient competitors for the HOXA9/DNA interaction through binding as minor groove DNA ligands on the HOXA9 cognate sequence. Selected DB818 and DB1055 compounds altered HOXA9-mediated transcription in luciferase assays, cell survival, and cell cycle, but increased cell death and granulocyte/monocyte differentiation, two main HOXA9 functions also highlighted using transcriptomic analysis of DB818-treated murine Hoxa9-transformed hematopoietic cells. Altogether, these data demonstrate for the first time the propensity of sequence-selective DNA ligands to inhibit HOXA9/DNA binding both in vitro and in a murine Hoxa9-dependent leukemic cell model.
Collapse
Affiliation(s)
- Sabine Depauw
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Mélanie Lambert
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Samy Jambon
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Paul Peixoto
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Raja Nhili
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Laura Morongiu
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Martin Figeac
- Functional and Structural Genomic Platform, Lille University, F-59000 Lille, France
| | - Christelle Dassi
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Charles Paul-Constant
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Benjamin Billoré
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Abdelbasset A. Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Ismail
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ekaterina Mineva
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Daniel P. Sweat
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30904, United States
| | - Chad E. Stephens
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30904, United States
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| |
Collapse
|
15
|
A novel, dual pan-PIM/FLT3 inhibitor SEL24 exhibits broad therapeutic potential in acute myeloid leukemia. Oncotarget 2018; 9:16917-16931. [PMID: 29682194 PMCID: PMC5908295 DOI: 10.18632/oncotarget.24747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is one of the most common genetic lesions in acute myeloid leukemia patients (AML). Although FLT3 tyrosine kinase inhibitors initially exhibit clinical activity, resistance to treatment inevitably occurs within months. PIM kinases are thought to be major drivers of the resistance phenotype and their inhibition in relapsed samples restores cell sensitivity to FLT3 inhibitors. Thus, simultaneous PIM and FLT3 inhibition represents a promising strategy in AML therapy. For such reasons, we have developed SEL24-B489 - a potent, dual PIM and FLT3-ITD inhibitor. SEL24-B489 exhibited significantly broader on-target activity in AML cell lines and primary AML blasts than selective FLT3-ITD or PIM inhibitors. SEL24-B489 also demonstrated marked activity in cells bearing FLT3 tyrosine kinase domain (TKD) mutations that lead to FLT3 inhibitor resistance. Moreover, SEL24-B489 inhibited the growth of a broad panel of AML cell lines in xenograft models with a clear pharmacodynamic-pharmacokinetic relationship. Taken together, our data highlight the unique dual activity of the SEL24-B489 that abrogates the activity of signaling circuits involved in proliferation, inhibition of apoptosis and protein translation/metabolism. These results underscore the therapeutic potential of the dual PIM/FLT3-ITD inhibitor for the treatment of AML.
Collapse
|
16
|
de Bock CE, Demeyer S, Degryse S, Verbeke D, Sweron B, Gielen O, Vandepoel R, Vicente C, Vanden Bempt M, Dagklis A, Geerdens E, Bornschein S, Gijsbers R, Soulier J, Meijerink JP, Heinäniemi M, Teppo S, Bouvy-Liivrand M, Lohi O, Radaelli E, Cools J. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development. Cancer Discov 2018; 8:616-631. [PMID: 29496663 DOI: 10.1158/2159-8290.cd-17-0583] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
Abstract
Leukemia is caused by the accumulation of multiple genomic lesions in hematopoietic precursor cells. However, how these events cooperate during oncogenic transformation remains poorly understood. We studied the cooperation between activated JAK3/STAT5 signaling and HOXA9 overexpression, two events identified as significantly co-occurring in T-cell acute lymphoblastic leukemia. Expression of mutant JAK3 and HOXA9 led to a rapid development of leukemia originating from multipotent or lymphoid-committed progenitors, with a significant decrease in disease latency compared with JAK3 or HOXA9 alone. Integrated RNA sequencing, chromatin immunoprecipitation sequencing, and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) revealed that STAT5 and HOXA9 have co-occupancy across the genome, resulting in enhanced STAT5 transcriptional activity and ectopic activation of FOS/JUN (AP1). Our data suggest that oncogenic transcription factors such as HOXA9 provide a fertile ground for specific signaling pathways to thrive, explaining why JAK/STAT pathway mutations accumulate in HOXA9-expressing cells.Significance: The mechanism of oncogene cooperation in cancer development remains poorly characterized. In this study, we model the cooperation between activated JAK/STAT signaling and ectopic HOXA9 expression during T-cell leukemia development. We identify a direct cooperation between STAT5 and HOXA9 at the transcriptional level and identify PIM1 kinase as a possible drug target in mutant JAK/STAT/HOXA9-positive leukemia cases. Cancer Discov; 8(5); 616-31. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Charles E de Bock
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Sofie Demeyer
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Sandrine Degryse
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Delphine Verbeke
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Bram Sweron
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Olga Gielen
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Roel Vandepoel
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Carmen Vicente
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Marlies Vanden Bempt
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Antonis Dagklis
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Ellen Geerdens
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Simon Bornschein
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jean Soulier
- U944 INSERM and Hematology Laboratory, St-Louis Hospital, APHP, Hematology University Institute, University Paris-Diderot, Paris, France
| | - Jules P Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- Tampere Centre for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Lohi
- Tampere Centre for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Enrico Radaelli
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Jan Cools
- KU Leuven, Center for Human Genetics, Leuven, Belgium. .,VIB, Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
17
|
Brunen D, García-Barchino MJ, Malani D, Jagalur Basheer N, Lieftink C, Beijersbergen RL, Murumägi A, Porkka K, Wolf M, Zwaan CM, Fornerod M, Kallioniemi O, Martínez-Climent JÁ, Bernards R. Intrinsic resistance to PIM kinase inhibition in AML through p38α-mediated feedback activation of mTOR signaling. Oncotarget 2018; 7:37407-37419. [PMID: 27270648 PMCID: PMC5122321 DOI: 10.18632/oncotarget.9822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Although conventional therapies for acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) are effective in inducing remission, many patients relapse upon treatment. Hence, there is an urgent need for novel therapies. PIM kinases are often overexpressed in AML and DLBCL and are therefore an attractive therapeutic target. However, in vitro experiments have demonstrated that intrinsic resistance to PIM inhibition is common. It is therefore likely that only a minority of patients will benefit from single agent PIM inhibitor treatment. In this study, we performed an shRNA-based genetic screen to identify kinases whose suppression is synergistic with PIM inhibition. Here, we report that suppression of p38α (MAPK14) is synthetic lethal with the PIM kinase inhibitor AZD1208. PIM inhibition elevates reactive oxygen species (ROS) levels, which subsequently activates p38α and downstream AKT/mTOR signaling. We found that p38α inhibitors sensitize hematological tumor cell lines to AZD1208 treatment in vitro and in vivo. These results were validated in ex vivo patient-derived AML cells. Our findings provide mechanistic and translational evidence supporting the rationale to test a combination of p38α and PIM inhibitors in clinical trials for AML and DLBCL.
Collapse
Affiliation(s)
- Diede Brunen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Disha Malani
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Noorjahan Jagalur Basheer
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maarten Fornerod
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Liu X, Liu X, Liu W, Luo M, Tao H, Wu D, Zhao Y, Zou L. HOXA9 transcriptionally regulates the EPHB4 receptor to modulate trophoblast migration and invasion. Placenta 2017; 51:38-48. [PMID: 28292467 DOI: 10.1016/j.placenta.2017.01.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Functional placenta formation is crucially dependent on extravillous trophoblast migration and invasion. EPHB4 has been identified to play a negative but important role in regulating trophoblast biological function, whereas the upstream regulation mechanism remains unknown. As reported, there is a transcriptional stimulation of EPHB4 expression consequent to HOXA9 activation in endothelial cells (ECs). Therefore, this study is conducted to investigate the role of HOXA9 and its relationship with EPHB4 in trophoblast cells. METHOD Both mRNA and protein expression levels of HOXA9 and EPHB4 were measured in preeclamptic placenta (n = 15) and normal placenta (n = 15). Next, the expression and location of HOXA9 and EPHB4 in first-trimester villi were shown via immunohistochemistry. Trophoblast cell line HTR-8/SVneo was used to explore the effect of HOXA9 on EPHB4 expression and trophoblast bioactivity by gain- and loss-of function studies. In addition, chromatin immunoprecipitation (ChIP) and luciferase assays were conducted to clarify the regulation mechanism of HOXA9 on EPHB4 expression in HTR-8/SVneo. RESULT HOXA9 and EPHB4 expression were increased in preeclamptic placenta compared with normal placenta. HOXA9 could promote EPHB4 expression and impaired HTR-8/SVneo cells migration and invasion. ChIP and luciferase assays revealed that HOXA9 could directly bind to EPHB4 promoter and promoted its transcription. CONCLUSION HOXA9 transcriptionally regulated EPHB4 expression to modulate trophoblasts migration and invasion, which may suggest a contribution of HOXA9-EPHB4 in the poor placentation in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglian Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet 2017; 49:451-456. [PMID: 28112737 DOI: 10.1038/ng.3772] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) in which cells morphologically resemble abnormal megakaryoblasts. While rare in adults, AMKL accounts for 4-15% of newly diagnosed childhood AML cases. AMKL in individuals without Down syndrome (non-DS-AMKL) is frequently associated with poor clinical outcomes. Previous efforts have identified chimeric oncogenes in a substantial number of non-DS-AMKL cases, including RBM15-MKL1, CBFA2T3-GLIS2, KMT2A gene rearrangements, and NUP98-KDM5A. However, the etiology of 30-40% of cases remains unknown. To better understand the genomic landscape of non-DS-AMKL, we performed RNA and exome sequencing on specimens from 99 patients (75 pediatric and 24 adult). We demonstrate that pediatric non-DS-AMKL is a heterogeneous malignancy that can be divided into seven subgroups with varying outcomes. These subgroups are characterized by chimeric oncogenes with cooperating mutations in epigenetic and kinase signaling genes. Overall, these data shed light on the etiology of AMKL and provide useful information for the tailoring of treatment.
Collapse
|
20
|
Xu Z, Gwin KA, Li Y, Medina KL. Developmental stage-specific effects of Pim-1 dysregulation on murine bone marrow B cell development. BMC Immunol 2016; 17:16. [PMID: 27287229 PMCID: PMC4902936 DOI: 10.1186/s12865-016-0152-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Background The serine threonine kinase Pim-1 has documented roles in hematopoietic progenitor and B cell precursor proliferation and survival. Pim-1 is a molecular target of the transcription factor Hoxa9. Previous studies showed that Pim-1 deficiency phenocopied the hematopoietic progenitor defect in hoxa9-/- mice and forced expression of Pim-1 normalized the in vitro proliferation defect inherent to hoxa9-/- hematopoietic progenitors. Pim-1 is induced by cytokine signaling, including the early lymphoid/B lineage regulators Flt3 and IL-7, and expression levels were shown to influence the size of the B cell compartment in bone marrow (BM). Results In this study, we sought to determine if transgenic expression of Pim-1, driven by the immunoglobulin enhancer, Eμ, was sufficient to rescue the lymphoid/B cell precursor defect in hoxa9 or flt3-ligand (flt3l) deficient mice. Unexpectedly, expression of Eμ − Pim1 exacerbated lymphoid progenitor deficiencies in flt3l-/-, and to a lesser extent, hoxa9-/- mice. Furthermore, Eμ − Pim1 expression alone reduced early myeloid and lymphoid, but not erythroid, progenitors. In contrast, Pim-1 deficiency had no significant effect on early lymphoid/B cell development through the Pre-Pro-B cell stage, but caused a significant reduction in IgM− B cell precursors. Importantly, loss of Pim-1 did not phenocopy hoxa9- or flt3l-deficiency on the lymphoid/early B cell progenitor pools. Conclusions These experimental findings demonstrate that Pim-1 overexpression has developmental-stage-specific effects on B lymphopoiesis and myelopoiesis. Importantly, these suggest that Pim-1 deficiency does not contribute significantly to the early lymphoid/B cell developmental deficiency in hoxa9-/- or flt3l-/- mice.
Collapse
Affiliation(s)
- Zhihui Xu
- The Key Laboratory Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130000, People's Republic of China.,Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kimberly A Gwin
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yulin Li
- The Key Laboratory Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130000, People's Republic of China. .,Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun, 130000, People's Republic of China.
| | - Kay L Medina
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Fantini S, Salsi V, Vitobello A, Rijli FM, Zappavigna V. MicroRNA-196b is transcribed from an autonomous promoter and is directly regulated by Cdx2 and by posterior Hox proteins during embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1066-80. [PMID: 26141604 DOI: 10.1016/j.bbagrm.2015.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022]
Abstract
The miR-196 miRNA gene family located within the Hox gene clusters has been shown to function during embryogenesis and to be aberrantly expressed in various malignancies, including leukaemia, melanoma, and colorectal cancer. Despite its involvement in numerous biological processes, the control of miR-196 expression is still poorly defined. We identified the miR-196b promoter and found that the mature miR-196b originates from a large, non-coding primary transcript, which starts within an autonomous TATA box promoter and is not in physical continuity with either the Hoxa10 or Hoxa9 main primary transcripts. A ~680bp genomic fragment, spanning the pri-miR-196b transcription start site, is sufficient to recapitulate the neural tube expression pattern of miR-196 during embryogenesis. This region contains potential binding sites for Cdx and 5'Hox transcription factors. Two of these sites revealed to be necessary for neural tube expression and were bound in vivo by Cdx2 and Hoxd13. We show that Cdx2 is required for miR-196 expression and that both Cdx2 and 5'Hox, but not 3'Hox, are able to activate the miR-196b promoter. The possible role of Cdx2- and 5'Hox-mediated regulation of miR-196 expression in vertebrate anterior-posterior (AP) axis formation during embryogenesis is discussed.
Collapse
Affiliation(s)
- Sebastian Fantini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41125, Italy
| | - Valentina Salsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41125, Italy
| | - Antonio Vitobello
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41125, Italy.
| |
Collapse
|
22
|
Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2015; 35:1090-8. [PMID: 26028034 DOI: 10.1038/onc.2015.174] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 02/08/2023]
Abstract
HOXA9 is a homeodomain-containing transcription factor that has an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation; however, the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for greater than 50% of AML with overexpression of HOXA9.
Collapse
|
23
|
Yang C, Boyson CA, Di Liberto M, Huang X, Hannah J, Dorn DC, Moore MAS, Chen-Kiang S, Zhou P. CDK4/6 Inhibitor PD 0332991 Sensitizes Acute Myeloid Leukemia to Cytarabine-Mediated Cytotoxicity. Cancer Res 2015; 75:1838-45. [PMID: 25744718 DOI: 10.1158/0008-5472.can-14-2486] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Abstract
Cyclin-dependent kinase (CDK)4 and CDK6 are frequently overexpressed or hyperactivated in human cancers. Targeting CDK4/CDK6 in combination with cytotoxic killing therefore represents a rational approach to cancer therapy. By selective inhibition of CDK4/CDK6 with PD 0332991, which leads to early G1 arrest and synchronous S-phase entry upon release of the G1 block, we have developed a novel strategy to prime acute myeloid leukemia (AML) cells for cytotoxic killing by cytarabine (Ara-C). This sensitization is achieved in part through enrichment of S-phase cells, which maximizes the AML populations for Ara-C incorporation into replicating DNA to elicit DNA damage. Moreover, PD 0332991 triggered apoptosis of AML cells through inhibition of the homeobox (HOX)A9 oncogene expression, reducing the transcription of its target PIM1. Reduced PIM1 synthesis attenuates PIM1-mediated phosphorylation of the proapoptotic BAD and activates BAD-dependent apoptosis. In vivo, timely inhibition of CDK4/CDK6 by PD 0332991 and release profoundly suppresses tumor growth in response to reduced doses of Ara-C in a xenograft AML model. Collectively, these data suggest selective and reversible inhibition of CDK4/CDK6 as an effective means to enhance Ara-C killing of AML cells at reduced doses, which has implications for the treatment of elderly AML patients who are unable to tolerate high-dose Ara-C therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/genetics
- Cyclin-Dependent Kinase 6/metabolism
- Cytarabine/pharmacology
- DNA Damage/drug effects
- DNA Replication/drug effects
- HEK293 Cells
- HL-60 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice, Inbred NOD
- Mice, SCID
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-pim-1/genetics
- Proto-Oncogene Proteins c-pim-1/metabolism
- Pyridines/pharmacology
- S Phase/drug effects
- S Phase/genetics
- Transcription, Genetic/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chenyi Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Cynthia A Boyson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Xiangao Huang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Jeffrey Hannah
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - David C Dorn
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Malcolm A S Moore
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
24
|
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7:95. [PMID: 25491234 PMCID: PMC4266197 DOI: 10.1186/s13045-014-0095-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125, Messina, Italy. .,Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Michael Mian
- Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. .,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
25
|
Banerjee S, Lu J, Cai Q, Sun Z, Jha HC, Robertson ES. EBNA3C augments Pim-1 mediated phosphorylation and degradation of p21 to promote B-cell proliferation. PLoS Pathog 2014; 10:e1004304. [PMID: 25121590 PMCID: PMC4133388 DOI: 10.1371/journal.ppat.1004304] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/28/2014] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. The oncogenic serine/threonine kinase Pim-1 is upregulated in a number of human cancers including lymphomas, gastric, colorectal and prostate carcinomas. EBV nuclear antigen 3C (EBNA3C) is essential for EBV-induced transformation of human primary B-lymphocytes. Our current study revealed that EBNA3C significantly enhances Pim-1 kinase expression at both the transcript and protein levels. EBNA3C also interacts with Pim-1 and can form a complex in EBV-transformed cells. Moreover, EBNA3C increases nuclear localization of Pim-1 and stabilizes Pim-1 protein levels by inhibiting its poly-ubiquitination. Additionally, EBNA3C augments Pim-1 mediated phosphorylation of p21 and its proteosomal degradation. Stable knockdown of Pim-1 using si-RNA showed a significant decrease in proliferation of EBV transformed lymphoblastoid cell lines and subsequent induction of apoptosis by triggering the intrinsic apoptotic pathway. Therefore, our study demonstrated a new mechanism by which the oncogenic Pim-1 kinase targeted by EBV latent antigen 3C can inhibit p21 function, and is therefore a potential therapeutic target for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qiliang Cai
- Key Laboratory of Molecular Medical Virology (Ministries of Education and Health), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Velu CS, Chaubey A, Phelan JD, Horman SR, Wunderlich M, Guzman ML, Jegga AG, Zeleznik-Le NJ, Chen J, Mulloy JC, Cancelas JA, Jordan CT, Aronow BJ, Marcucci G, Bhat B, Gebelein B, Grimes HL. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest 2014; 124:222-36. [PMID: 24334453 PMCID: PMC3871218 DOI: 10.1172/jci66005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/10/2013] [Indexed: 12/14/2022] Open
Abstract
Acute myelogenous leukemia (AML) subtypes that result from oncogenic activation of homeobox (HOX) transcription factors are associated with poor prognosis. The HOXA9 transcription activator and growth factor independent 1 (GFI1) transcriptional repressor compete for occupancy at DNA-binding sites for the regulation of common target genes. We exploited this HOXA9 versus GFI1 antagonism to identify the genes encoding microRNA-21 and microRNA-196b as transcriptional targets of HOX-based leukemia oncoproteins. Therapeutic inhibition of microRNA-21 and microRNA-196b inhibited in vitro leukemic colony forming activity and depleted in vivo leukemia-initiating cell activity of HOX-based leukemias, which led to leukemia-free survival in a murine AML model and delayed disease onset in xenograft models. These data establish microRNA as functional effectors of endogenous HOXA9 and HOX-based leukemia oncoproteins, provide a concise in vivo platform to test RNA therapeutics, and suggest therapeutic value for microRNA antagonists in AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Base Sequence
- Binding Sites
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Combined Modality Therapy
- Cytarabine/administration & dosage
- DNA-Binding Proteins/metabolism
- Doxorubicin/administration & dosage
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/metabolism
- Humans
- Induction Chemotherapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/physiology
- Phosphorothioate Oligonucleotides/genetics
- Pre-B-Cell Leukemia Transcription Factor 1
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Transcription Factors/metabolism
- Transcriptome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chinavenmeni S. Velu
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aditya Chaubey
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James D. Phelan
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shane R. Horman
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark Wunderlich
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Monica L. Guzman
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anil G. Jegga
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nancy J. Zeleznik-Le
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jianjun Chen
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James C. Mulloy
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jose A. Cancelas
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Craig T. Jordan
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bruce J. Aronow
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Guido Marcucci
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Balkrishen Bhat
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian Gebelein
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - H. Leighton Grimes
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood 2013; 123:905-13. [PMID: 24363397 DOI: 10.1182/blood-2013-04-495366] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Upregulation of Pim kinases is observed in several types of leukemias and lymphomas. Pim-1, -2, and -3 promote cell proliferation and survival downstream of cytokine and growth factor signaling pathways. AZD1208 is a potent, highly selective, and orally available Pim kinase inhibitor that effectively inhibits all three isoforms at <5 nM or <150 nM in enzyme and cell assays, respectively. AZD1208 inhibited the growth of 5 of 14 acute myeloid leukemia (AML) cell lines tested, and sensitivity correlates with Pim-1 expression and STAT5 activation. AZD1208 causes cell cycle arrest and apoptosis in MOLM-16 cells, accompanied by a dose-dependent reduction in phosphorylation of Bcl-2 antagonist of cell death, 4EBP1, p70S6K, and S6, as well as increases in cleaved caspase 3 and p27. Inhibition of p4EBP1 and p-p70S6K and suppression of translation are the most representative effects of Pim inhibition in sensitive AML cell lines. AZD1208 inhibits the growth of MOLM-16 and KG-1a xenograft tumors in vivo with a clear pharmacodynamic-pharmacokinetic relationship. AZD1208 also potently inhibits colony growth and Pim signaling substrates in primary AML cells from bone marrow that are Flt3 wild-type or Flt3 internal tandem duplication mutant. These results underscore the therapeutic potential of Pim kinase inhibition for the treatment of AML.
Collapse
|
28
|
Gwin KA, Shapiro MB, Dolence JJ, Huang ZL, Medina KL. Hoxa9 and Flt3 signaling synergistically regulate an early checkpoint in lymphopoiesis. THE JOURNAL OF IMMUNOLOGY 2013; 191:745-54. [PMID: 23772038 DOI: 10.4049/jimmunol.1203294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hoxa9 and Flt3 signaling are individually important for the generation of lymphoid lineage precursors from multipotent hematopoietic progenitors (MPP) in bone marrow. Mice deficient for Hoxa9, Flt3, or Flt3 ligand (FL) have reduced numbers of lymphoid-primed multipotential progenitors (LMPP), common lymphoid progenitors (CLP), and B/T cell precursors. Hoxa9 regulates lymphoid development, in part, through transcriptional regulation of Flt3. However, it was unclear whether Hoxa9 has functions in lymphopoiesis independent of, or alternatively, synergistically with Flt3 signaling. In this study, we show that Hoxa9(-/-)Flt3l(-/-) mice have more severe deficiencies in all B lineage cells, CLP, LMPP, and total Flt3(+) MPP in bone marrow than the single knockouts. Although LMPP and Flt3(+) CLP contain precursors for NK and dendritic cell lineage cells, no deficiencies in these lineages beyond that in Flt3l(-/-) mice was found. Thymocyte cellularity was significantly reduced in the compound knockout, although peripheral T cell numbers mirrored Flt3l(-/-) mice. Analysis of the hematopoietic progenitor compartment revealed elevated numbers of CD150(+hi)CD34(-)CD41(+) myeloid-biased stem cells in Hoxa9(-/-)Flt3l(-/-) mice. In contrast, CD150(-) MPP enriched for lymphoid potential were synergistically reduced, suggesting Hoxa9 and Flt3 signaling function coordinately to regulate lymphopoiesis at a very early stage. Real-time PCR analysis of CD150(-)Flt3(+) cells from wild-type control, Hoxa9(-/-), and Flt3l(-/-) single knockouts revealed decreased lymphoid transcripts, corroborating the importance of these regulators in lymphoid development. Taken together, these studies reveal a very early checkpoint in lymphopoiesis dependent on the combinatorial activities of Hoxa9 function and Flt3 signaling.
Collapse
Affiliation(s)
- Kimberly A Gwin
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
29
|
An N, Lin YW, Mahajan S, Kellner JN, Wang Y, Li Z, Kraft AS, Kang Y. Pim1 serine/threonine kinase regulates the number and functions of murine hematopoietic stem cells. Stem Cells 2013; 31:1202-1212. [PMID: 23495171 PMCID: PMC3664117 DOI: 10.1002/stem.1369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
Abstract
The genes and pathways that govern the functions and expansion of hematopoietic stem cells (HSC) are not completely understood. In this study, we investigated the roles of serine/threonine Pim kinases in hematopoiesis in mice. We generated PIM1 transgenic mice (Pim1-Tx) overexpressing human PIM1 driven by vav hematopoietic promoter/regulatory elements. Compared to wild-type littermates, Pim1-Tx mice showed enhanced hematopoiesis as demonstrated by increased numbers of Lin(-) Sca-1 (+) c-Kit (+) (LSK) hematopoietic stem/progenitor cells and cobblestone area forming cells, higher BrdU incorporation in long-term HSC population, and a better ability to reconstitute lethally irradiated mice. We then extended our study using Pim1(-/-), Pim2(-/-), Pim3(-/-) single knockout (KO) mice. HSCs from Pim1(-/-) KO mice showed impaired long-term hematopoietic repopulating capacity in secondary and competitive transplantations. Interestingly, these defects were not observed in HSCs from Pim2(-/-) or Pim3(-/-) KO mice. Limiting dilution competitive transplantation assay estimated that the frequency of LSKCD34(-) HSCs was reduced by approximately 28-fold in Pim1(-/-) KO mice compared to wild-type littermates. Mechanistic studies demonstrated an important role of Pim1 kinase in regulating HSC cell proliferation and survival. Finally, our polymerase chain reaction (PCR) array and confirmatory real-time PCR (RT-PCR) studies identified several genes including Lef-1, Pax5, and Gata1 in HSCs that were affected by Pim1 deletion. Our data provide the first direct evidence for the important role of Pim1 kinase in the regulation of HSCs. Our study also dissects out the relative role of individual Pim kinase in HSC functions and regulation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina
| | - Ying-Wei Lin
- Department of Pediatrics, Date Red Cross Hospital, Hokkaido, Japan
| | | | - Joshua N. Kellner
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Yong Wang
- Department of Pathology, Medical University of South Carolina, Charleston, SC 29425
| | - Zihai Li
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Andrew S. Kraft
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina
| | - Yubin Kang
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina
| |
Collapse
|
30
|
Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev 2013; 34:136-59. [PMID: 23576269 DOI: 10.1002/med.21284] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proviral insertion site in Moloney murine leukemia virus, or PIM proteins, are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM2, and PIM3) that are highly evolutionarily conserved. These proteins are regulated primarily by transcription and stability through pathways that are controlled by Janus kinase/Signal transducer and activator of transcription, JAK/STAT, transcription factors. The PIM family proteins have been found to be overexpressed in hematological malignancies and solid tumors, and their roles in these tumors were confirmed in mouse tumor models. Furthermore, the PIM family proteins have been implicated in the regulation of apoptosis, metabolism, cell cycle, and homing and migration, which has led to the postulation of these proteins as interesting targets for anticancer drug discovery. In the present work, we review the importance of PIM kinases in tumor growth and as drug targets.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | |
Collapse
|
31
|
An N, Kraft AS, Kang Y. Abnormal hematopoietic phenotypes in Pim kinase triple knockout mice. J Hematol Oncol 2013; 6:12. [PMID: 23360755 PMCID: PMC3610283 DOI: 10.1186/1756-8722-6-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/25/2013] [Indexed: 11/25/2022] Open
Abstract
Background Pim (proviral insertion in murine lymphoma) kinases are a small family of constitutively active, highly conservative serine/threonine oncogenic kinases and have 3 members: Pim1, Pim2, and Pim3. Pim kinases are also implicated in the regulation of B- and T- cell responses to cytokines and hematopoietic growth factors. The roles of Pim kinases in the regulation of primitive hematopoietic stem cells (HSCs) are largely unknown. Methods In the current study, Pim1−/−2−/−3−/− triple knockout (TKO) mice were used to determine the role of Pim kinases in hematopoiesis. Peripheral blood hematological parameters were measured in Pim TKO mice and age-matched wild-type (WT) controls. Primary, secondary, and competitive transplantations were performed to assay the long-term repopulating HSCs in Pim TKO mice. In vivo BrdU incorporation assay and ex vivo Ki67 staining and caspase 3 labeling were performed to evaluate the proliferation and apoptosis of HSCs in Pim TKO mice. Results Compared to age-matched WT controls, Pim TKO mice had lower peripheral blood platelet count and exhibited erythrocyte hypochromic microcytosis. The bone marrow cells from Pim TKO mice demonstrated decreased hematopoietic progenitor colony-forming ability. Importantly, Pim TKO bone marrow cells had significantly impaired capacity in rescuing lethally irradiated mice and reconstituting hematopoiesis in primary, secondary and competitive transplant models. In vivo BrdU incorporation in long-term HSCs was reduced in Pim TKO mice. Finally, cultured HSCs from Pim TKO mice showed reduced proliferation evaluated by Ki67 staining and higher rate of apoptosis via caspase 3 activation. Conclusions Pim kinases are not only essential in the hematopoietic lineage cell development, but also important in HSC expansion, self-renewal, and long-term repopulation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina, 86 Jonathan Lucas Street, Hollings Cancer Center Rm# HO307, Charleston, SC 29425, USA
| | | | | |
Collapse
|
32
|
Abstract
The homeobox (HOX) genes are a highly conserved family of homeodomain-containing transcription factors that specify cell identity in early development and, subsequently, in a number of adult processes including hematopoiesis. The dysregulation of HOX genes is associated with a number of malignancies including acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), where they have been shown to support the immortalization of leukemic cells both as chimeric partners in fusion genes and when overexpressed in their wild-type form. This review covers our current understanding of the role of HOX genes in normal hematopoiesis, AML and ALL, with particular emphasis on the similarities and differences of HOX function in these contexts, their hematopoietic downstream gene targets and implications for therapy.
Collapse
|
33
|
Blanco-Aparicio C, Carnero A. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol 2012; 85:629-643. [PMID: 23041228 DOI: 10.1016/j.bcp.2012.09.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
PIM proteins belong to a family of ser/thr kinases composed of 3 members, PIM1, PIM2 and PIM3, with greatly overlapping functions. PIM kinases are mainly responsible for cell cycle regulation, antiapoptotic activity and the homing and migration of receptor tyrosine kinases mediated via the JAK/STAT pathway. PIM kinases have been found to be upregulated in many hematological malignancies and solid tumors. Although these kinases have been described as weak oncogenes, they are heavily targeted for anticancer drug discovery. The present review summarizes the discoveries made to date regarding PIM kinases as driving oncogenes in the process of tumorigenesis and their validation as drug targets.
Collapse
Affiliation(s)
- Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain; Consejo Superior de Investigaciones Cientificas, Spain.
| |
Collapse
|
34
|
Lee JW, Kim HS, Hwang J, Kim YH, Lim GY, Sohn WJ, Yoon SR, Kim JY, Park TS, Oh SH, Park KM, Choi SU, Ryoo ZY, Lee S. Regulation of HOXA9 activity by predominant expression of DACH1 against C/EBPα and GATA-1 in myeloid leukemia with MLL-AF9. Biochem Biophys Res Commun 2012; 426:299-305. [PMID: 22902925 DOI: 10.1016/j.bbrc.2012.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 02/03/2023]
Abstract
Although MLL-AF9 caused by the chromosomal translocation t(9;11) has a critical role in acute myeloid leukemia, the molecular pathogenesis is poorly understood. Here, we identified that the cell fate determination factor DACH1 is directly up-regulated by MLL-AF9. Recently we showed that the forced expression of DACH1 in myeloid cells induced p27(Kip1) and repressed p21(Cip1), which is a pivotal characteristic of the myeloid progenitor. Consistent with our previous study, ectopic expression of DACH1 contributed to the maintenance of colonogenic activity and blocked the differentiation of myeloid progenitors. Moreover, we here identified an endogenous HOXA9-DACH1 complex mediated by the carboxyl terminus of DACH1 in t(9;11) leukemia cells. qRT-PCR revealed that DACH1 has a stronger transcription-promoting activity with HOXA9 than does PBX2 with HOXA9. Furthermore, C/EBPα and GATA-1 can directly bind to the promoter of DACH1 and act as a transcriptional suppressor. Expression of DACH1 is down-regulated during myeloid differentiation and shows an inverse pattern compared to C/EBPα and GATA-1 expression. However, ectopic expression of C/EBPα and/or GATA-1 could not abrogate the over-expression of DACH1 induced by MLL-AF9. Therefore, we postulate that the inability of C/EBPα and GATA-1 to down-regulate DACH1 expression induced by MLL-AF9 during myeloid differentiation may contribute to t(9;11) leukemogenesis.
Collapse
Affiliation(s)
- Jae-Woong Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sundararaman B, Avitabile D, Konstandin MH, Cottage CT, Gude N, Sussman MA. Asymmetric chromatid segregation in cardiac progenitor cells is enhanced by Pim-1 kinase. Circ Res 2012; 110:1169-73. [PMID: 22441844 DOI: 10.1161/circresaha.112.267716] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Cardiac progenitor cells (CPCs) in the adult heart are used for cell-based treatment of myocardial damage, but factors determining stemness, self-renewal, and lineage commitment are poorly understood. Immortal DNA strands inherited through asymmetric chromatid segregation correlate with self-renewal of adult stem cells, but the capacity of CPCs for asymmetric segregation to retain immortal strands is unknown. Cardioprotective kinase Pim-1 increases asymmetric cell division in vivo, but the ability of Pim-1 to enhance asymmetric chromatid segregation is unknown. OBJECTIVE We aimed to demonstrate immortal strand segregation in CPCs and the enhancement of asymmetric chromatid distribution by Pim-1 kinase. METHODS AND RESULTS Asymmetric segregation is tracked by incorporation of bromodeoxyuridine. The CPC DNA was labeled for several generations and then blocked in second cytokinesis during chase to determine distribution of immortal versus newly synthesized strands. Intensity ratios of binucleated CPCs with bromodeoxyuridine of ≥70:30 between daughter nuclei indicative of asymmetric chromatid segregation occur with a frequency of 4.57, and asymmetric chromatid segregation is demonstrated at late mitotic phases. Asymmetric chromatid segregation is significantly enhanced by Pim-1 overexpression in CPCs (9.19 versus 4.79 in eGFP-expressing cells; P=0.006). CONCLUSIONS Asymmetric segregation of chromatids in CPCs is increased nearly two-fold with Pim-1 kinase overexpression, indicating that Pim-1 promotes self-renewal of stem cells.
Collapse
Affiliation(s)
- Balaji Sundararaman
- SDSU Heart Institute and Biology Department, San Diego State University, CA 92182, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.
Collapse
Affiliation(s)
- Yesid Alvarado
- Department of Hematology/Oncology, Cancer Therapy & Research Center, The University of Texas Health Science Center San Antonio, 7979 Wurzbach Road, MC8232, San Antonio, 78229, TX, USA
| | | | | |
Collapse
|
37
|
Abstract
Pim kinases are Ser/Thr kinases with multiple substrates that affect survival pathways. These proteins are overexpressed in acute myeloid leukemia (AML) blasts and we hypothesized that Pim kinase inhibition would affect AML cell survival. Imidazo[1,2-b]pyridazine compound, SGI-1776 inhibits Pim-1, Pim-2 and Pim-3, and was evaluated in AML-cell line, -xenograft model, and -primary blasts. Treatment of AML cells with SGI-1776 results in a concentration-dependent induction of apoptosis and we investigated its effect on Pim kinase functions. Phosphorylation of traditional Pim kinase targets, c-Myc(Ser62) and 4E-BP1 (Thr36/Thr47), were both decreased in actively cycling AML cell lines MV-4-11, MOLM-13 and OCI-AML-3. Levels of antiapoptotic proteins Bcl-2, Bcl-x(L), XIAP, and proapoptotic Bak and Bax were unchanged; however, a significant reduction in Mcl-1 was observed. This was correlated with inhibition of global RNA and protein synthesis and MCL-1 transcript decline after SGI-1776 treatment. These data suggest that SGI-1776 mechanism in AML involves Mcl-1 protein reduction. Consistent with cell line data, xenograft model studies with mice bearing MV-4-11 tumors showed efficacy with SGI-1776. Importantly, SGI-1776 was also cytotoxic in AML primary cells, irrespective of FLT3 mutation status and resulted in Mcl-1 protein decline. Pim kinase inhibition may be a new strategy for AML treatment.
Collapse
|
38
|
Bei L, Huang W, Wang H, Shah C, Horvath E, Eklund E. HoxA10 activates CDX4 transcription and Cdx4 activates HOXA10 transcription in myeloid cells. J Biol Chem 2011; 286:19047-64. [PMID: 21471217 PMCID: PMC3099719 DOI: 10.1074/jbc.m110.213983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/04/2011] [Indexed: 12/19/2022] Open
Abstract
HoxA10 is a homeodomain transcription factor that influences a number of developmental processes, including hematopoiesis. During definitive hematopoiesis, expression of HoxA10 is maximal in committed myeloid progenitor cells and decreases as differentiation proceeds. Aberrantly increased expression of HoxA10 was found in bone marrow cells in a poor prognosis subset of human acute myeloid leukemia (AML). Consistent with this, AML developed in mice transplanted with HoxA10-overexpressing bone marrow. However, relatively few target genes have been identified that explain the role of HoxA10 in leukemogenesis. In the current study, we identified CDX4 as a HoxA10 target gene. Cdx4 is a homeodomain transcription factor that was also implicated in myeloid leukemogenesis. Although relatively few Cdx4 target genes have been identified, Cdx4 was known to influence HOX gene transcription. We identified a HoxA10-binding cis element in the CDX4 promoter that activated transcription. We also identified a Cdx4-binding cis element that activated the HOXA10 promoter. Therefore, increased Cdx4 expression in HoxA10-overexpressing cells augmented transcription of the endogenous HOXA10 gene. Increased endogenous HoxA10 in these cells induced additional CDX4 transcription. We found that Cdx4 influenced transcription of HoxA10 target genes in a HoxA10-dependent manner. Similarly, HoxA10 influenced transcription of HOX genes in a Cdx4-dependent manner. We previously found that HoxA10-overexpressing myeloid progenitors were hypersensitive to a variety of cytokines. In the current studies, we found that Cdx4 knockdown decreased cytokine hypersensitivity of HoxA10-overexpressing cells. Therefore, these studies identified a positive feedback relationship between HoxA10 and Cdx4, which potentially amplified the contribution of either transcription factor to the pathogenesis of AML.
Collapse
Affiliation(s)
- Ling Bei
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Weiqi Huang
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Hao Wang
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Chirag Shah
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Elizabeth Horvath
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Elizabeth Eklund
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
39
|
Zhao L, Wang Y, Min X, Yang H, Zhang P, Zeng Q. Ischemia-reperfusion injury up-regulates Pim-3 gene expression in myocardial tissue. ACTA ACUST UNITED AC 2010; 30:704-8. [PMID: 21181358 DOI: 10.1007/s11596-010-0644-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Indexed: 11/25/2022]
Abstract
This study examined the effect of ischemia-reperfusion injury on the expression of Pim-3 gene in myocardial tissues and their underlying mechanism. Rat models of myocardial ischemia-reperfusion injury were established by ligating the left anterior descending coronary artery of the rats. A total of 30 SD male adult rats were randomly divided into 5 groups: group A (sham operation, n=6); group B (in which the rats were subjected to 15 min of ischemia by ligation of the left anterior descending coronary artery, n=6); group C (in which the rats received 30 min of ischemia, n=6), group D and group E (in which the left anterior descending coronary artery of the rats were ligated for 30 min and then reperfused for 30 min or 120 min, n=6 in each). The left ventricular tissues were removed immediately after the ischemia-reperfusion injury. Neonatal cardiomyocytes were cultured and treated with different concentrations of H(2)O(2) (0, 5, 10, 20 μmol/L) or tumor necrosis factor-α (TNF-α, 0, 1, 5, 10 ng/mL). The mRNA and protein expression of Pim-3 gene was determined by using RT-PCR, western blotting and immunohistochemistry. Additionally, neonatal cardiomyocytes were transfected with Pim-3 siRNA, and induced to develop apoptosis by using H(2)O(2). The results showed that normal myocardial tissues expressed a quantity of Pim-3 gene mRNA and protein. Ischemia-reperfusion injury could up-regulate the mRNA and protein expression of Pim-3 gene in myocardial tissues. Furthermore, H(2)O(2) but not TNF-α up-regulated the Pim-3 gene expression in cultured cardiomyocytes. And Pim-3 silencing failed to strengthen the H(2)O(2)-inducing apoptosis in cardiomyocytes. It was concluded that ischemia-reperfusion injury up-regulated the Pim-3 gene expression through oxidative stress signaling pathway in myocardial tissues.
Collapse
Affiliation(s)
- Libing Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | |
Collapse
|
40
|
Gwin K, Frank E, Bossou A, Medina KL. Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. THE JOURNAL OF IMMUNOLOGY 2010; 185:6572-83. [PMID: 20971928 DOI: 10.4049/jimmunol.0904203] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early B cell factor (EBF) is a transcription factor essential for specification and commitment to the B cell fate. In this study, we show downregulation of a developmentally regulated cluster of hoxa genes, notably hoxa9, coincides with induction of EBF at the Pro-B cell stage of B cell differentiation. Analysis of the hematopoietic progenitor compartment in Hoxa9(-/-) mice revealed significantly reduced frequencies and expression levels of Flt3, a cytokine receptor important for lymphoid priming and the generation of B cell precursors (BCPs). We show that Hoxa9 directly regulates the flt3 gene. Chromatin immunoprecipitation analysis revealed binding of Hoxa9 to the flt3 promoter in a lymphoid progenitor cell line. Knockdown of Hoxa9 significantly reduced Flt3 transcription and expression. Conversely, forced expression of Hoxa9 increased Flt3 transcription and expression in a Pro-B cell line that expressed low levels of Flt3. Hoxa9 inversely correlated with ebf1 in ex vivo-isolated bone marrow progenitors and BCPs, suggesting that EBF might function to silence a Hoxa9 transcriptional program. Restoration of EBF function in an EBF(-/-) cell line induced B lineage gene expression but did not directly suppress hoxa9 transcription, revealing alternate mechanisms of Hoxa9 regulation in BCPs. These data provide new insight into Hoxa9 function and regulation during lymphoid and B cell development. Furthermore, they suggest that failure to upregulate Flt3 provides a molecular basis for the lymphoid/early B cell deficiencies in Hoxa9(-/-) mice.
Collapse
Affiliation(s)
- Kimberly Gwin
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
41
|
Gessner A, Thomas M, Garrido Castro P, Büchler L, Scholz A, Brümmendorf TH, Martinez Soria N, Vormoor J, Greil J, Heidenreich O. Leukemic fusion genes MLL/AF4 and AML1/MTG8 support leukemic self-renewal by controlling expression of the telomerase subunit TERT. Leukemia 2010; 24:1751-9. [DOI: 10.1038/leu.2010.155] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Zemskova M, Lilly MB, Lin YW, Song JH, Kraft AS. p53-dependent induction of prostate cancer cell senescence by the PIM1 protein kinase. Mol Cancer Res 2010; 8:1126-41. [PMID: 20647331 DOI: 10.1158/1541-7786.mcr-10-0174] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The PIM family of serine threonine protein kinases plays an important role in regulating both the growth and transformation of malignant cells. However, in a cell line-dependent manner, overexpression of PIM1 can inhibit cell and tumor growth. In 22Rv1 human prostate cells, but not in Du145 or RWPE-2, PIM1 overexpression was associated with marked increases in cellular senescence, as shown by changes in the levels of beta-galactosidase (SA-beta-Gal), p21, interleukin (IL)-6 and IL-8 mRNA and protein. During early cell passages, PIM1 induced cellular polyploidy. As the passage number increased, markers of DNA damage, including the level of gammaH2AX and CHK2 phosphorylation, were seen. Coincident with these DNA damage markers, the level of p53 protein and genes transcriptionally activated by p53, such as p21, TP53INP1, and DDIT4, increased. In these 22Rv1 cells, the induction of p53 protein was associated not only with senescence but also with a significant level of apoptosis. The importance of the p53 pathway to PIM1-driven cellular senescence was further shown by the observation that expression of dominant-negative p53 or shRNA targeting p21 blocked the PIM1-induced changes in the DNA damage response and increases in SA-beta-Gal activity. Likewise, in a subcutaneous tumor model, PIM1-induced senescence was rescued when the p53-p21 pathways are inactivated. Based on these results, PIM1 will have its most profound effects on tumorigenesis in situations where the senescence response is inactivated.
Collapse
Affiliation(s)
- Marina Zemskova
- Department of Cell and Molecular Pharmacology, Hollings Cancer Center, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
43
|
Phelan JD, Shroyer NF, Cook T, Gebelein B, Grimes HL. Gfi1-cells and circuits: unraveling transcriptional networks of development and disease. Curr Opin Hematol 2010; 17:300-7. [PMID: 20571393 PMCID: PMC2910316 DOI: 10.1097/moh.0b013e32833a06f8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The review will integrate current knowledge of transcriptional circuits whose dysregulation leads to autoimmunity, neutropenia and leukemia. RECENT FINDINGS Growth factor independent-1 (Gfi1) is a transcriptional repressor with essential roles in controlling hematopoietic stem cell biology, myeloid and lymphoid differentiation and lymphocyte effector functions. Recent work has suggested that Gfi1 competes or collaborates with other transcription factors to modulate transcription programs and lineage decisions. SUMMARY Gfi1 is central to several transcriptional circuits whose dysregulation leads to abnormal or malignant hematopoiesis. These functional relationships are conserved from Drosophila development. Such conserved pathways represent central oncogenic or 'gatekeeper' pathways that are pivotal to understanding the process of cellular transformation, and illustrate key targets for clinical intervention.
Collapse
Affiliation(s)
- James D. Phelan
- Immunobiology Graduate Program Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Noah F. Shroyer
- Division of Gastroenterology, Hepatology and Nutrition Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Tiffany Cook
- Division of Developmental Biology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Brian Gebelein
- Division of Developmental Biology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - H. Leighton Grimes
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Experimental Hematology and Cancer Biology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
44
|
Hu YL, Fong S, Largman C, Shen WF. HOXA9 regulates miR-155 in hematopoietic cells. Nucleic Acids Res 2010; 38:5472-8. [PMID: 20444872 PMCID: PMC2938212 DOI: 10.1093/nar/gkq337] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HOXA9-mediated up-regulation of miR-155 was noted during an array-based analysis of microRNA expression in Hoxa9(-/-)bone marrow (BM) cells. HOXA9 induction of miR-155 was confirmed in these samples, as well as in wild-type versus Hoxa9-deficient marrow, using northern analysis and qRT-PCR. Infection of wild-type BM with HOXA9 expressing or GFP(+) control virus further confirmed HOXA9-mediated regulation of miR-155. miR-155 expression paralleled Hoxa9 mRNA expression in fractionated BM progenitors, being highest in the stem cell enriched pools. HOXA9 capacity to induce myeloid colony formation was blunted in miR-155-deficient BM cells, indicating that miR-155 is a downstream mediator of HOXA9 function in blood cells. Pu.1, an important regulator of myelopoiesis, was identified as a putative down stream target for miR-155. Although miR-155 was shown to down-regulate the Pu.1 protein, HOXA9 did not appear to modulate Pu.1 expression in murine BM cells.
Collapse
Affiliation(s)
- Yu-Long Hu
- Department of Medicine, Department of Veterans Affairs Medical Center and University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
45
|
Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95:1004-15. [PMID: 20145274 DOI: 10.3324/haematol.2009.017079] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The identification as cooperating targets of Proviral Integrations of Moloney virus in murine lymphomas suggested early on that PIM serine/threonine kinases play an important role in cancer biology. Whereas elevated levels of PIM1 and PIM2 were mostly found in hematologic malignancies and prostate cancer, increased PIM3 expression was observed in different solid tumors. PIM kinases are constitutively active and their activity supports in vitro and in vivo tumor cell growth and survival through modification of an increasing number of common as well as isoform-specific substrates including several cell cycle regulators and apoptosis mediators. PIM1 but not PIM2 seems also to mediate homing and migration of normal and malignant hematopoietic cells by regulating chemokine receptor surface expression. Knockdown experiments by RNA interference or dominant-negative acting mutants suggested that PIM kinases are important for maintenance of a transformed phenotype and therefore potential therapeutic targets. Determination of the protein structure facilitated identification of an increasing number of potent small molecule PIM kinase inhibitors with in vitro and in vivo anticancer activity. Ongoing efforts aim to identify isoform-specific PIM inhibitors that would not only help to dissect the kinase function but hopefully also provide targeted therapeutics. Here, we summarize the current knowledge about the role of PIM serine/threonine kinases for the pathogenesis and therapy of hematologic malignancies and solid cancers, and we highlight structural principles and recent progress on small molecule PIM kinase inhibitors that are on their way into first clinical trials.
Collapse
Affiliation(s)
- Laurent Brault
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis. Mol Cell Biol 2009; 29:5181-92. [PMID: 19620287 DOI: 10.1128/mcb.00545-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While investigating the mechanism of action of the HOXA9 protein, we serendipitously identified Meis1 as a HOXA9 regulatory target. Since HOXA9 and MEIS1 play key developmental roles, are cooperating DNA binding proteins and leukemic oncoproteins, and are important for normal hematopoiesis, the regulation of Meis1 by its partner protein is of interest. Loss of Hoxa9 caused downregulation of the Meis1 mRNA and protein, while forced HOXA9 expression upregulated Meis1. Hoxa9 and Meis1 expression was correlated in hematopoietic progenitors and acute leukemias. Meis1(+/-) Hoxa9(-/-) deficient mice, generated to test HOXA9 regulation of endogenous Meis1, were small and had reduced bone marrow Meis1 mRNA and significant defects in fluorescence-activated cell sorting-enumerated monocytes, mature and pre/pro-B cells, and functional B-cell progenitors. These data indicate that HOXA9 modulates Meis1 during normal murine hematopoiesis. Chromatin immunoprecipitation analysis did not reveal direct binding of HOXA9 to Meis1 promoter/enhancer regions. However, Creb1 and Pknox1, whose protein products have previously been reported to induce Meis1, were shown to be direct targets of HOXA9. Loss of Hoxa9 resulted in a decrease in Creb1 and Pknox1 mRNA, and forced expression of CREB1 in Hoxa9(-/-) bone marrow cells increased Meis1 mRNA almost as well as HOXA9, suggesting that CREB1 may mediate HOXA9 modulation of Meis1 expression.
Collapse
|
47
|
Abstract
In patients with severe congenital neutropenia (SCN) and mice with growth factor independent-1 (Gfi1) loss of function, arrested myeloid progenitors accumulate, whereas terminal granulopoiesis is blocked. One might assume that Gfi-null progenitors accumulate because they lack the ability to differentiate. Instead, our data indicate that Gfi1 loss of function deregulates 2 separable transcriptional programs, one of which controls the accumulation and lineage specification of myeloid progenitors, but not terminal granulopoiesis. We demonstrate that Gfi1 directly represses HoxA9, Pbx1, and Meis1 during normal myelopoiesis. Gfi1-/- progenitors exhibit elevated levels of HoxA9, Pbx1 and Meis1, exaggerated HoxA9-Pbx1-Meis1 activity, and progenitor transformation in collaboration with oncogenic K-Ras. Limiting HoxA9 alleles corrects, in a dose-dependent manner, in vivo and in vitro phenotypes observed with loss of Gfi1 in myeloid progenitor cells but did not rescue Gfi1-/- blocked granulopoiesis. Thus, Gfi1 integrates 2 events during normal myeloid differentiation; the suppression of a HoxA9-Pbx1-Meis1 progenitor program and the induction of a granulopoietic transcription program.
Collapse
|
48
|
Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D, Devos S, Cheson BD, Damon LE, Said J. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma 2008; 49:2081-90. [PMID: 19021050 PMCID: PMC4011712 DOI: 10.1080/10428190802419640] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The proliferation index in mantle cell lymphoma (MCL) has not been validated in the context of aggressive therapy regimens in the rituximab era. We assessed Ki67 and PIM1 (a cell cycle-related gene upregulated in blastoid MCL) expression by immunohistochemistry in a phase II study Cancer and Leukemia Group B 59909 of aggressive chemotherapy and rituximab followed by autologous stem cell transplantation plus rituximab in untreated MCL patients <70 years of age. As a continuous variable or using a cutoff of 35%, higher image analysis (IA Ki67, n = 52) was associated with shorter progression free survival (PFS) (P < or = 0.030) and event free survival (EFS) (P < or = 0.017). PIM1 expression (n = 50) was associated with PFS (P = 0.033) and EFS (P = 0.043). Bivariate Cox models showed IA Ki67 and PIM1 were independent of clinical factors. High Ki67 (>35%) is an important independent prognostic marker in aggressively treated MCL in the rituximab era. PIM1 expression predicts poor outcome and, given its potential role as a therapeutic target, deserves further study.
Collapse
Affiliation(s)
- Eric D Hsi
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
HoxA9 induces insulin-like growth factor-1 receptor expression in B-lineage acute lymphoblastic leukemia. Leukemia 2008; 22:1161-9. [DOI: 10.1038/leu.2008.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int J Hematol 2007; 87:10-8. [DOI: 10.1007/s12185-007-0009-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/20/2007] [Indexed: 10/22/2022]
|