1
|
Endo-Umeda K, Makishima M. Exploring the Roles of Liver X Receptors in Lipid Metabolism and Immunity in Atherosclerosis. Biomolecules 2025; 15:579. [PMID: 40305368 PMCID: PMC12024750 DOI: 10.3390/biom15040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Hypercholesterolemia causes atherosclerosis by inducing immune cell migration and chronic inflammation in arterial walls. Recent single-cell analyses reveal the presence of lipid-enriched foamy macrophages, as well as other macrophage subtypes, neutrophils, T cells, and B cells, in atherosclerotic plaques in both animal models and humans. These cells interact with each other and other cells, including non-immune cells such as endothelial cells and smooth muscle cells. They thereby regulate metabolic, inflammatory, phagocytic, and cell death processes, thus affecting the progression and stability of atherosclerotic plaques. The nuclear receptors liver X receptor (LXR)α and LXRβ are transcription factors that are activated by oxysterols and regulate lipid metabolism and immune responses. LXRs regulate cholesterol homeostasis by controlling cholesterol's transport, absorption, synthesis, and breakdown in the liver and intestine. LXRs are also highly expressed in tissue-resident and monocyte-derived macrophages and other immune cells, including both myeloid cells and lymphocytes, and they regulate both innate and adaptive immune responses. Interestingly, LXRs have immunosuppressive and immunoregulatory functions that are cell-type-dependent. In animal models of atherosclerosis, LXRs have been shown to be involved in both progression and regression phases. The pharmacological activation of LXR enhances cholesterol efflux from macrophages and promotes atherosclerosis progression. Deleting LXR in immune cells, especially myeloid cells, accelerates atherosclerosis by increasing monocyte migration, macrophage proliferation and activation, and neutrophil extracellular traps (NETs); furthermore, the deletion of hematopoietic LXRs impairs the regression of atherosclerotic plaques. Therefore, LXRs in immune cells may be a potent therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| | | |
Collapse
|
2
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Domínguez-Luis MJ, Castro-Hernández J, Santos-Concepción S, Díaz-Martín A, Arce-Franco M, Pérez-González N, Díaz M, Castrillo A, Salido E, Machado JD, Gumá M, Corr M, Díaz-González F. Modulation of the K/BxN arthritis mouse model and the effector functions of human fibroblast-like synoviocytes by liver X receptors. Eur J Immunol 2024; 54:e2451136. [PMID: 39148175 DOI: 10.1002/eji.202451136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The role of liver X receptors (LXR) in rheumatoid arthritis (RA) remains controversial. We studied the effect of LXR agonists on fibroblast-like synoviocytes (FLS) from RA patients and the K/BxN arthritis model in LXRα and β double-deficient (Nr1h2/3-/-) mice. Two synthetic LXR agonists, GW3965 and T0901317, were used to activate LXRs and investigate their effects on cell growth, proliferation and matrix metalloproteinases, and chemokine production in cultured FLS from RA patients. The murine model K/BxN serum transfer of inflammatory arthritis in Nr1h2/3-/- animals was used to investigate the role of LXRs on joint inflammation in vivo. LXR agonists inhibited the FLS proliferative capacity in response to TNF, the chemokine-induced migration, the collagenase activity in FLS supernatant and FLS CXCL12 production. In the K/BxN mouse model, Nr1h2/3-/- animals showed aggravated arthritis, histological inflammation, and joint destruction, as well as an increase in synovial metalloproteases and expression of proinflammatory mediators such as IL-1β and CCL2 in joints compared with wild type animals. Taken together, these data underscore the importance of LXRs in modulating the joint inflammatory response and highlight them as potential therapeutic targets in RA.
Collapse
MESH Headings
- Animals
- Humans
- Liver X Receptors/metabolism
- Liver X Receptors/genetics
- Mice
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Fibroblasts/metabolism
- Mice, Knockout
- Disease Models, Animal
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Cells, Cultured
- Male
- Cell Proliferation
- Female
- Mice, Inbred C57BL
- Benzylamines/pharmacology
Collapse
Affiliation(s)
| | - Javier Castro-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | - Ana Díaz-Martín
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | - Mayte Arce-Franco
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Mercedes Díaz
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Salido
- Departamento de Anatomía Patológica, Universidad de La Laguna, La Laguna, Spain
| | - José David Machado
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Mónica Gumá
- Department of Medicine, University of California, San Diego, California, USA
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, California, USA
| | - Federico Díaz-González
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
- Departamento de Medicina Interna, Dermatología, Universidad de La Laguna, La Laguna, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
4
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
5
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
6
|
Zhang H, Wang J, Sun J, Wang Q, Guo L, Ju X. Regulatory mechanism underlying liver X receptor effects on the tumor microenvironment, inflammation and tumorigenesis. Expert Opin Ther Targets 2023; 27:989-998. [PMID: 37753584 DOI: 10.1080/14728222.2023.2264513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Liver X receptors (LXRs) have emerged as novel targets for tumor treatment. LXRs within the tumor microenvironment show the capacity to impact tumorigenesis and tumor development by regulating the infiltration of immune cells and release of cytokines to moderate inflammation. AREAS COVERED In this review, we present a systematic description of recent progress in understanding the impact of LXRs on the tumor microenvironment and tumorigenesis. We also summarize the antitumor effects mediated by LXRs via their regulation of cytokine expression. Additionally, we discuss the limitations of LXR research in tumor studies to date. EXPERT OPINION Previous studies have demonstrated abnormal LXR expression in tumor tissues, and activation of LXRs has been shown to inhibit tumorigenesis and promote apoptosis in tumor cells. However, LXRs can also affect tumorigenesis by regulating immune cell functions within the tumor immune microenvironment. By summarizing the impact of LXRs on immune cells, we provide new insights into the multifaceted nature of LXRs as antitumor targets.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jing Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Bosteels V, Maréchal S, De Nolf C, Rennen S, Maelfait J, Tavernier SJ, Vetters J, Van De Velde E, Fayazpour F, Deswarte K, Lamoot A, Van Duyse J, Martens L, Bosteels C, Roelandt R, Emmaneel A, Van Gassen S, Boon L, Van Isterdael G, Guillas I, Vandamme N, Höglinger D, De Geest BG, Le Goff W, Saeys Y, Ravichandran KS, Lambrecht BN, Janssens S. LXR signaling controls homeostatic dendritic cell maturation. Sci Immunol 2023; 8:eadd3955. [PMID: 37172103 DOI: 10.1126/sciimmunol.add3955] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sandra Maréchal
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Molecular Signaling and Cell Death, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Simon J Tavernier
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jessica Vetters
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Evelien Van De Velde
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | | | - Julie Van Duyse
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Cédric Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ria Roelandt
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Annelies Emmaneel
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Louis Boon
- Polpharma Biologics, Utrecht, Netherlands
| | - Gert Van Isterdael
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Isabelle Guillas
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris F-75013, France
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | - Wilfried Le Goff
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris F-75013, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
de Freitas FA, Levy D, Reichert CO, Cunha-Neto E, Kalil J, Bydlowski SP. Effects of Oxysterols on Immune Cells and Related Diseases. Cells 2022; 11:cells11081251. [PMID: 35455931 PMCID: PMC9031443 DOI: 10.3390/cells11081251] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are the products of cholesterol oxidation. They have a wide range of effects on several cells, organs, and systems in the body. Oxysterols also have an influence on the physiology of the immune system, from immune cell maturation and migration to innate and humoral immune responses. In this regard, oxysterols have been involved in several diseases that have an immune component, from autoimmune and neurodegenerative diseases to inflammatory diseases, atherosclerosis, and cancer. Here, we review data on the participation of oxysterols, mainly 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, in the immune system and related diseases. The effects of these oxysterols and main oxysterol receptors, LXR and EBI2, in cells of the immune system (B cells, T cells, macrophages, dendritic cells, oligodendrocytes, and astrocytes), and in immune-related diseases, such as neurodegenerative diseases, intestinal diseases, cancer, respiratory diseases, and atherosclerosis, are discussed.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy (LIM60), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil;
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
| | - Jorge Kalil
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
- Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence:
| |
Collapse
|
9
|
Bogie JFJ, Vanmierlo T, Vanmol J, Timmermans S, Mailleux J, Nelissen K, Wijnands E, Wouters K, Stinissen P, Gustafsson JÅ, Steffensen KR, Mulder M, Zelcer N, Hendriks JJA. Liver X receptor beta deficiency attenuates autoimmune-associated neuroinflammation in a T cell-dependent manner. J Autoimmun 2021; 124:102723. [PMID: 34481107 DOI: 10.1016/j.jaut.2021.102723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
The initiation and progression of autoimmune disorders such as multiple sclerosis (MS) is linked to aberrant cholesterol metabolism and overt inflammation. Liver X receptors (LXR) are nuclear receptors that function at the crossroads of cholesterol metabolism and immunity, and their activation is considered a promising therapeutic strategy to attenuate autoimmunity. However, despite clear functional heterogeneity and cell-specific expression profiles, the impact of the individual LXR isoforms on autoimmunity remains poorly understood. Here, we show that LXRα and LXRβ have an opposite impact on immune cell function and disease severity in the experimental autoimmune encephalomyelitis model, an experimental MS model. While Lxrα deficiency aggravated disease pathology and severity, absence of Lxrβ was protective. Guided by flow cytometry and by using cell-specific knockout models, reduced disease severity in Lxrβ-deficient mice was primarily attributed to changes in peripheral T cell physiology and occurred independent from alterations in microglia function. Collectively, our findings indicate that LXR isoforms play functionally non-redundant roles in autoimmunity, potentially having broad implications for the development of LXR-based therapeutic strategies aimed at dampening autoimmunity and neuroinflammation.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Tim Vanmierlo
- University MS Center Hasselt, Pelt, Belgium; Neuro-Immune Connections and Repair Lab, Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; School for Mental Health and Neuroscience, Division Translational Neuroscience, Maastricht University, the Netherlands
| | - Jasmine Vanmol
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Silke Timmermans
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Jo Mailleux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Katherine Nelissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Erwin Wijnands
- Department of Internal Medicine, Maastricht University Medical Centre+ (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University Medical Centre+ (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, United States; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Knut R Steffensen
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Monique Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
10
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
11
|
Kim D, Chung H, Lee JE, Kim J, Hwang J, Chung Y. Immunologic Aspects of Dyslipidemia: a Critical Regulator of Adaptive Immunity and Immune Disorders. J Lipid Atheroscler 2021; 10:184-201. [PMID: 34095011 PMCID: PMC8159760 DOI: 10.12997/jla.2021.10.2.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/09/2022] Open
Abstract
Dyslipidemia is a major cause of cardiovascular diseases which represent a leading cause of death in humans. Diverse immune cells are known to be involved in the pathogenesis of cardiovascular diseases such as atherosclerosis. Conversely, dyslipidemia is known to be tightly associated with immune disorders in humans, as evidenced by a higher incidence of atherosclerosis in patients with autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosus. Given that the dyslipidemia-related autoimmune diseases are caused by autoreactive T cells and B cells, dyslipidemia seems to directly or indirectly regulate the adaptive immunity. Indeed, accumulating evidence has unveiled that proatherogenic factors can impact the differentiation and function of CD4+ T cells, CD8+ T cells, and B cells. This review discusses an updated overview on the regulation of adaptive immunity by dyslipidemia and proposes a potential therapeutic strategy for immune disorders by targeting lipid metabolism.
Collapse
Affiliation(s)
- Daehong Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hayeon Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeong-Eun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jiyeon Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Junseok Hwang
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Sun Y, Zhou L, Chen W, Zhang L, Zeng H, Sun Y, Long J, Yuan D. Immune metabolism: a bridge of dendritic cells function. Int Rev Immunol 2021; 41:313-325. [PMID: 33792460 DOI: 10.1080/08830185.2021.1897124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing number of researches have shown that cell metabolism regulates cell function. Dendritic cells (DCs), a professional antigen presenting cells, connect innate and adaptive immune responses. The preference of DCs for sugar or lipid affects its phenotypes and functions. In many diseases such as atherosclerosis (AS), diabetes mellitus and tumor, altered glucose or lipid level in microenvironment makes DCs exert ineffective or opposite immune roles, which accelerates the development of these diseases. In this article, we review the metabolism pathways of glucose and cholesterol in DCs, and the effects of metabolic changes on the phenotype and function of DCs. In addition, we discuss the effects of changes in glucose and lipid levels on DCs in the context of different diseases for better understanding the relationship between DCs and diseases. The immune metabolism of DCs may be a potential intervention link to treat metabolic-related immune diseases.
Collapse
Affiliation(s)
- Yuting Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Weikai Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hongbo Zeng
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yunxia Sun
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Souto FO, Castanheira FVS, Trevelin SC, Lima BHF, Cebinelli GCM, Turato WM, Auxiliadora-Martins M, Basile-Filho A, Alves-Filho JC, Cunha FQ. Liver X Receptor Activation Impairs Neutrophil Functions and Aggravates Sepsis. J Infect Dis 2021; 221:1542-1553. [PMID: 31783409 DOI: 10.1093/infdis/jiz635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Liver X receptors (LXRs) are nuclear receptors activated by oxidized lipids and were previously implicated in several metabolic development and inflammatory disorders. Although neutrophils express both LXR-α and LXR-β, the consequences of their activation, particularly during sepsis, remain unknown. METHODS We used the model of cecal ligation and puncture (CLP) to investigate the role of LXR activation during sepsis. RESULTS In this study, we verified that LXR activation reduces neutrophil chemotactic and killing abilities in vitro. Mice treated with LXR agonists showed higher sepsis-induced mortality, which could be associated with reduced neutrophil infiltration at the infectious foci, increased bacteremia, systemic inflammatory response, and multiorgan failure. In contrast, septic mice treated with LXR antagonist showed increased number of neutrophils in the peritoneal cavity, reduced bacterial load, and multiorgan dysfunction. More important, neutrophils from septic patients showed increased ABCA1 messenger ribonucleic acid levels (a marker of LXR activation) and impaired chemotactic response toward CXCL8 compared with cells from healthy individuals. CONCLUSIONS Therefore, our findings suggest that LXR activation impairs neutrophil functions, which might contribute to poor sepsis outcome.
Collapse
Affiliation(s)
- Fabrício O Souto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Brazil
| | - Fernanda V S Castanheira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvia C Trevelin
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,King's College London, British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Braulio H F Lima
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Walter M Turato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Auxiliadora-Martins
- Department of Pharmacology, Surgery and Anatomy, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anibal Basile-Filho
- Department of Pharmacology, Surgery and Anatomy, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Lamb MC, Tootle TL. Fascin in Cell Migration: More Than an Actin Bundling Protein. BIOLOGY 2020; 9:biology9110403. [PMID: 33212856 PMCID: PMC7698196 DOI: 10.3390/biology9110403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Cell migration is an essential biological process that regulates both development and diseases, such as cancer metastasis. Therefore, understanding the factors that promote cell migration is crucial. One of the factors known to regulate cell migration is the actin-binding protein, Fascin. Fascin is typically thought to promote cell migration through bundling actin to form migratory structures such as filopodia and invadapodia. However, Fascin has many other functions in the cell that may contribute to cell migration. How these novel functions promote cell migration and are regulated is still not well understood. Here, we review the structure of Fascin, the many functions of Fascin and how they may promote cell migration, how Fascin is regulated, and Fascin’s role in diseases such as cancer metastasis. Abstract Fascin, an actin-binding protein, regulates many developmental migrations and contributes to cancer metastasis. Specifically, Fascin promotes cell motility, invasion, and adhesion by forming filopodia and invadopodia through its canonical actin bundling function. In addition to bundling actin, Fascin has non-canonical roles in the cell that are thought to promote cell migration. These non-canonical functions include regulating the activity of other actin-binding proteins, binding to and regulating microtubules, mediating mechanotransduction to the nucleus via interaction with the Linker of the Nucleoskeleton and Cytoskeleton (LINC) Complex, and localizing to the nucleus to regulate nuclear actin, the nucleolus, and chromatin modifications. The many functions of Fascin must be coordinately regulated to control cell migration. While much remains to be learned about such mechanisms, Fascin is regulated by post-translational modifications, prostaglandin signaling, protein–protein interactions, and transcriptional means. Here, we review the structure of Fascin, the various functions of Fascin and how they contribute to cell migration, the mechanisms regulating Fascin, and how Fascin contributes to diseases, specifically cancer metastasis.
Collapse
|
15
|
Glaría E, Letelier NA, Valledor AF. Integrating the roles of liver X receptors in inflammation and infection: mechanisms and outcomes. Curr Opin Pharmacol 2020; 53:55-65. [PMID: 32599447 DOI: 10.1016/j.coph.2020.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/10/2023]
Abstract
Liver X receptors (LXRs) are transcription factors from the nuclear receptor family that can be pharmacologically activated by high-affinity agonists. LXR activation exerts a combination of metabolic and anti-inflammatory actions that result in the modulation of immune responses and in the amelioration of inflammatory disorders. In addition, LXR agonists modulate the metabolism of infected cells and limit the infectivity and/or growth of several pathogens. This review gives an overview of the recent advances in understanding the complexity of the mechanisms through which the LXR pathway controls inflammation and host-cell pathogen interaction.
Collapse
Affiliation(s)
- Estibaliz Glaría
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Nicole A Letelier
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain.
| |
Collapse
|
16
|
Vivas W, Leonhardt I, Hünniger K, Häder A, Marolda A, Kurzai O. Multiple Signaling Pathways Involved in Human Dendritic Cell Maturation Are Affected by the Fungal Quorum-Sensing Molecule Farnesol. THE JOURNAL OF IMMUNOLOGY 2019; 203:2959-2969. [DOI: 10.4049/jimmunol.1900431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
|
17
|
Li X, Li S, Wang X, Zhao S, Liu H. [Knocking down fascin inhibits cervical cancer cell proliferation and tumorigenesis in nude mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1409-1414. [PMID: 30613006 DOI: 10.12122/j.issn.1673-4254.2018.12.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To study the effect of knocking down fascin on cervical cancer cell proliferation and tumorigenicity in nude mice. METHODS Cervical cancer CaSki cells were infected with a lentiviral vector carrying fascin siRNA or with a negative control lentivirus, and fascin mRNA and protein expressions in the cells were detected using qRT-PCR and Western blotting. MTT assay was used to determine the proliferation of CaSki cells with fascin knockdown. CaSki cells transfected with fascin siRNA or the control lentiviral vector and non-transfected CaSki cells were inoculated subcutaneously in nude mice, and the volume and weight of the transplanted tumor were measured; Western blotting was used to detect the expressions of proliferating cell nuclear antigen (PCNA), survivin, cyclin dependent kinase 4 (CDK4) and p21 proteins in the tumor xenograft. RESULTS Infection with the lentiviral vector carrying fascin siRNA, but not the negative control vector, caused significant reductions in the expression levels of fascin mRNA and protein in CaSki cells (P < 0.05). Fascin knockdown resulted in significantly reduced proliferation of CaSki cells in vitro (P < 0.05). The nude mice inoculated with CaSki cells with fascin knockdown showed reduced tumor volume and weight, lowered levels of PCNA, survivin and CDK4, and increased expression of p21 protein in the tumor xenograft compared with the control mice. The negative control lentivirus did not affect the proliferation or tumorigenicity of CaSki cells in nude mice or the expression levels of PCNA, survivin, CDK4 or p21 proteins in the xenografts. CONCLUSIONS Knocking down fascin can inhibit the growth and tumorigenicity of cervical cancer cells in nude mice.
Collapse
Affiliation(s)
- Xian Li
- College of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Shanshan Li
- College of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Xinxin Wang
- College of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Surong Zhao
- College of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- College of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
18
|
Tel-Karthaus N, Kers-Rebel ED, Looman MW, Ichinose H, de Vries CJ, Ansems M. Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Front Immunol 2018; 9:1797. [PMID: 30123220 PMCID: PMC6085422 DOI: 10.3389/fimmu.2018.01797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system. Proper function of DCs is crucial to elicit an effective immune response against pathogens and to induce antitumor immunity. Different members of the nuclear receptor (NR) family of transcription factors have been reported to affect proper function of immune cells. Nur77 is a member of the NR4A subfamily of orphan NRs that is expressed and has a function within the immune system. We now show that Nur77 is expressed in different murine DCs subsets in vitro and ex vivo, in human monocyte-derived DCs (moDCs) and in freshly isolated human BDCA1+ DCs, but its expression is dispensable for DC development in the spleen and lymph nodes. We show, by siRNA-mediated knockdown of Nur77 in human moDCs and by using Nur77-/- murine DCs, that Nur77-deficient DCs have enhanced inflammatory responses leading to increased T cell proliferation. Treatment of human moDCs with 6-mercaptopurine, an activator of Nur77, leads to diminished DC activation resulting in an impaired capacity to induce IFNγ production by allogeneic T cells. Altogether, our data show a yet unexplored role for Nur77 in modifying the activation status of murine and human DCs. Ultimately, targeting Nur77 may prove to be efficacious in boosting or diminishing the activation status of DCs and may lead to the development of improved DC-based immunotherapies in, respectively, cancer treatment or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nina Tel-Karthaus
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther D Kers-Rebel
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike W Looman
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Carlie J de Vries
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Marleen Ansems
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
19
|
Raaijmakers TK, Ansems M. Microenvironmental derived factors modulating dendritic cell function and vaccine efficacy: the effect of prostanoid receptor and nuclear receptor ligands. Cancer Immunol Immunother 2018; 67:1789-1796. [PMID: 29998375 PMCID: PMC6208817 DOI: 10.1007/s00262-018-2205-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/09/2018] [Indexed: 01/20/2023]
Abstract
Dendritic cells (DCs) are widely used in DC-based immunotherapies because of their capacity to steer immune responses. So far treatment success is limited and more functional knowledge on how DCs initiate and stably drive specific responses is needed. Many intrinsic and extrinsic factors contribute to how DCs skew the immune response towards immunity or tolerance. The origin and type of DC, its maturation status, but also factors they encounter in the in vitro or in vivo microenvironment they reside in during differentiation and maturation affect this balance. Treatment success of DC vaccines will, therefore, also depend on the presence of these factors during the process of vaccination. Identification and further knowledge of natural and pharmacological compounds that modulate DC differentiation and function towards a specific response may help to improve current DC-based immunotherapies. This review focuses on factors that could improve the efficacy of DC vaccines in (pre-)clinical studies to enhance DC-based immunotherapy, with a particular emphasis on compounds acting on prostanoid or nuclear receptor families.
Collapse
Affiliation(s)
- Tonke K Raaijmakers
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Riganti C, Castella B, Massaia M. ABCA1, apoA-I, and BTN3A1: A Legitimate Ménage à Trois in Dendritic Cells. Front Immunol 2018; 9:1246. [PMID: 29937767 PMCID: PMC6002486 DOI: 10.3389/fimmu.2018.01246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic pAg recognized by Vγ9Vδ2 T cells. B-cell derived tumor cells (i.e., lymphoma and myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because they generate significant amounts of IPP which can be boosted with zoledronic acid (ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophilin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activation remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent a unique opportunity to further characterize the role of BTN3A1 and other molecules in the recognition of soluble IPP by Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S. Croce e Carle, Cuneo, Italy
| |
Collapse
|
21
|
Mukwaya A, Lennikov A, Xeroudaki M, Mirabelli P, Lachota M, Jensen L, Peebo B, Lagali N. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 2018; 21:395-413. [PMID: 29445990 PMCID: PMC5878196 DOI: 10.1007/s10456-018-9604-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Maria Xeroudaki
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Mieszko Lachota
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden.
| |
Collapse
|
22
|
Liver X Receptor Nuclear Receptors Are Transcriptional Regulators of Dendritic Cell Chemotaxis. Mol Cell Biol 2018; 38:MCB.00534-17. [PMID: 29507185 DOI: 10.1128/mcb.00534-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/10/2018] [Indexed: 12/20/2022] Open
Abstract
The liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migration in vitro and in vivo Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR-/-) LDLR-/- mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation.
Collapse
|
23
|
Youlin K, Weiyang H, Simin L, Xin G. Prostaglandin E 2 Inhibits Prostate Cancer Progression by Countervailing Tumor Microenvironment-Induced Impairment of Dendritic Cell Migration through LXR α/CCR7 Pathway. J Immunol Res 2018; 2018:5808962. [PMID: 29850633 PMCID: PMC5904800 DOI: 10.1155/2018/5808962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/11/2018] [Accepted: 02/20/2018] [Indexed: 11/22/2022] Open
Abstract
Migration and homing of dendritic cells (DCs) to lymphoid organs are quite crucial for T cell-induced immune response against tumor. However, tumor microenvironment can make some tumor cells escape immune response by impairing DC migration. Prostaglandin E2 (PGE2) plays important roles in initiating and terminating inflammatory responses. In this study, we investigated whether PGE2 could inhibit murine prostate cancer progression by countervailing tumor microenvironment-induced impairment of dendritic cell migration. We found that murine prostate cancer cell line RM-1-conditioned medium impaired chemotactic movement of marrow-derived DCs and splenic cDCs toward CC chemokine receptor-7 (CCR7) ligand CCL19 in vitro and migration to draining lymph gland in vivo. Meanwhile, it also induced LXRα activation and CCR7 inhibition on maturing DCs. However, the treatment of PGE2 rescued this impairment of DC migration with upregulation of CCR7 and inhibition of LXRα. Further, it was observed that PGE2 also increased MMP9 expression and activated Notch1 signaling on DCs. In RM-1-bearing mouse model, PGE2 treatment was identified to inhibit tumor growth and induce more tumor-infiltrating T cells and CD11c dendritic cells in tumor sites. Therefore, our findings may demonstrate a new perspective for therapeutic interventions on prostate cancer immunoescape.
Collapse
Affiliation(s)
- Kuang Youlin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - He Weiyang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liang Simin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gou Xin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
24
|
Elizondo DM, Andargie TE, Kubhar DS, Gugssa A, Lipscomb MW. CD40-CD40L cross-talk drives fascin expression in dendritic cells for efficient antigen presentation to CD4+ T cells. Int Immunol 2018; 29:121-131. [PMID: 28369442 DOI: 10.1093/intimm/dxx013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/17/2017] [Indexed: 01/10/2023] Open
Abstract
Fascin is an actin-bundling protein that, among immune cells, is restricted to expression in dendritic cells (DCs). Previous reports have suggested that fascin plays an important role in governing DC antigen presentation to CD4+ T cells. However, no report has clearly linked the receptor-ligand engagement that can direct downstream regulation of fascin expression. In this study, bone marrow-derived DCs from wild-type versus CD40-knockout C57BL/6 mice were used to elucidate the mechanisms of fascin expression and activity upon CD40-CD40 ligand (CD40L) engagement. These investigations now show that CD40 engagement governs fascin expression in DCs to promote CD4+ T-cell cytokine production. Absence of CD40 signaling resulted in diminished fascin expression in DCs and was associated with impaired CD4+ T-cell responses. Furthermore, the study found that loss of CD40-CD40L engagement resulted in reduced DC-T-cell contacts. Rescue by ectopic fascin expression in CD40-deficient DCs was able to re-establish sustained contacts with T cells and restore cytokine production. Taken together, these results show that cross-talk through CD40-CD40L signaling drives elevated fascin expression in DCs to support acquisition of full T-cell responses.
Collapse
Affiliation(s)
- Diana M Elizondo
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Temesgen E Andargie
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Dineeta S Kubhar
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Ayele Gugssa
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Michael W Lipscomb
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| |
Collapse
|
25
|
Dietary and metabolic modulators of hepatic immunity. Semin Immunopathol 2017; 40:175-188. [PMID: 29110070 DOI: 10.1007/s00281-017-0659-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
The liver is the central metabolic organ of the organism and is thus constantly exposed to gut-derived dietary and microbial antigens. The liver maintains homoeostatic tolerance to these mostly harmless antigens. However, the liver also functions as a barrier organ to harmful pathogens and is thus permissive to liver inflammation. The regulation of the delicate balance between liver tolerance and liver inflammation is of vital importance for the organism. In recent years, a general role for dietary components and metabolites as immune mediators has been emerging. However, although the liver is exposed to a great deal of metabolic mediators, surprisingly, little is known about their actual role in the regulation of hepatic immune responses. Here, we will explore the possible impacts of metabolic mediators for homoeostatic and pathological immunity in the liver, by highlighting selected examples of metabolic immune regulation in the liver.
Collapse
|
26
|
Cholesterol Accumulation in CD11c + Immune Cells Is a Causal and Targetable Factor in Autoimmune Disease. Immunity 2017; 45:1311-1326. [PMID: 28002731 DOI: 10.1016/j.immuni.2016.11.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/25/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Liver X receptors (LXRs) are regulators of cholesterol metabolism that also modulate immune responses. Inactivation of LXR α and β in mice leads to autoimmunity; however, how the regulation of cholesterol metabolism contributes to autoimmunity is unclear. Here we found that cholesterol loading of CD11c+ cells triggered the development of autoimmunity, whereas preventing excess lipid accumulation by promoting cholesterol efflux was therapeutic. LXRβ-deficient mice crossed to the hyperlipidemic ApoE-deficient background or challenged with a high-cholesterol diet developed autoantibodies. Cholesterol accumulation in lymphoid organs promoted T cell priming and stimulated the production of the B cell growth factors Baff and April. Conversely, B cell expansion and the development of autoantibodies in ApoE/LXR-β-deficient mice was reversed by ApoA-I expression. These findings implicate cholesterol imbalance as a contributor to immune dysfunction and suggest that stimulating HDL-dependent reverse cholesterol transport could be beneficial in the setting of autoimmune disease.
Collapse
|
27
|
Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther 2017; 181:1-12. [PMID: 28720427 DOI: 10.1016/j.pharmthera.2017.07.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Liver X Receptors (LXRs) are oxysterol-activated transcription factors that upregulate a suite of genes that together promote coordinated mobilization of excess cholesterol from cells and from the body. The LXRs, like other nuclear receptors, are anti-inflammatory, inhibiting signal-dependent induction of pro-inflammatory genes by nuclear factor-κB, activating protein-1, and other transcription factors. Synthetic LXR agonists have been shown to ameliorate atherosclerosis and a wide range of inflammatory disorders in preclinical animal models. Although this has suggested potential for application to human disease, systemic LXR activation is complicated by hepatic steatosis and hypertriglyceridemia, consequences of lipogenic gene induction in the liver by LXRα. The past several years have seen the development of multiple advanced LXR therapeutics aiming to avoid hepatic lipogenesis, including LXRβ-selective agonists, tissue-selective agonists, and transrepression-selective agonists. Although several synthetic LXR agonists have made it to phase I clinical trials, none have progressed due to unforeseen adverse reactions or undisclosed reasons. Nonetheless, several sophisticated pharmacologic strategies, including structure-guided drug design, cell-specific drug targeting, as well as non-systemic drug routes have been initiated and remain to be comprehensively explored. In addition, recent studies have identified potential utility for targeting the LXRs during therapy with other agents, such as glucocorticoids and rexinoids. Despite the pitfalls encountered to date in translation of LXR agonists to human disease, it appears likely that this accelerating field will ultimately yield effective and safe applications for LXR targeting in humans.
Collapse
Affiliation(s)
- Michael B Fessler
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
28
|
Castella B, Kopecka J, Sciancalepore P, Mandili G, Foglietta M, Mitro N, Caruso D, Novelli F, Riganti C, Massaia M. The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells. Nat Commun 2017; 8:15663. [PMID: 28580927 PMCID: PMC5465356 DOI: 10.1038/ncomms15663] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Vγ9Vδ2 T cells are activated by phosphoantigens, such as isopentenyl pyrophosphate (IPP), which is generated in the mevalonate pathway of antigen-presenting cells. IPP is released in the extracellular microenvironment via unknown mechanisms. Here we show that the ATP-binding cassette transporter A1 (ABCA1) mediates extracellular IPP release from dendritic cells (DC) in cooperation with apolipoprotein A-I (apoA-I) and butyrophilin-3A1. IPP concentrations in the supernatants are sufficient to induce Vγ9Vδ2 T cell proliferation after DC mevalonate pathway inhibition with zoledronic acid (ZA). ZA treatment increases ABCA1 and apoA-I expression via IPP-dependent LXRα nuclear translocation and PI3K/Akt/mTOR pathway inhibition. These results close the mechanistic gap in our understanding of extracellular IPP release from DC and provide a framework to fine-tune Vγ9Vδ2 T cell activation via mevalonate and PI3K/Akt/mTOR pathway modulation. γδT cells are activated by phosphoantigens, and ABCA1 is involved in cholesterol transport. Here the authors link these ideas to show that ABCA1, apoA-I and BTN3A1 regulate extracellular phosphoantigen release by dendritic cells, and implicate ABCA1 in mevalonate-mediated activation of Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Barbara Castella
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Joanna Kopecka
- Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, Torino 10126, Italy
| | - Patrizia Sciancalepore
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Giorgia Mandili
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy
| | - Myriam Foglietta
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Francesco Novelli
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy
| | - Chiara Riganti
- Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy.,Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, Torino 10126, Italy
| | - Massimo Massaia
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy.,SC. Ematologia, AO S. Croce e Carle, Via Michele Coppino 26, Cuneo 12100, Italy
| |
Collapse
|
29
|
The Tax-Inducible Actin-Bundling Protein Fascin Is Crucial for Release and Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1 (HTLV-1). PLoS Pathog 2016; 12:e1005916. [PMID: 27776189 PMCID: PMC5077169 DOI: 10.1371/journal.ppat.1005916] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/05/2016] [Indexed: 01/07/2023] Open
Abstract
The delta-retrovirus Human T-cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T-cells via cell-to-cell transmission. Viruses are transmitted by polarized budding and by transfer of viral biofilms at the virological synapse (VS). Formation of the VS requires the viral Tax protein and polarization of the host cytoskeleton, however, molecular mechanisms of HTLV-1 cell-to-cell transmission remain incompletely understood. Recently, we could show Tax-dependent upregulation of the actin-bundling protein Fascin (FSCN-1) in HTLV-1-infected T-cells. Here, we report that Fascin contributes to HTLV-1 transmission. Using single-cycle replication-dependent HTLV-1 reporter vectors, we found that repression of endogenous Fascin by short hairpin RNAs and by Fascin-specific nanobodies impaired gag p19 release and cell-to-cell transmission in 293T cells. In Jurkat T-cells, Tax-induced Fascin expression enhanced virus release and Fascin-dependently augmented cell-to-cell transmission to Raji/CD4+ B-cells. Repression of Fascin in HTLV-1-infected T-cells diminished virus release and gag p19 transfer to co-cultured T-cells. Spotting the mechanism, flow cytometry and automatic image analysis showed that Tax-induced T-cell conjugate formation occurred Fascin-independently. However, adhesion of HTLV-1-infected MT-2 cells in co-culture with Jurkat T-cells was reduced upon knockdown of Fascin, suggesting that Fascin contributes to dissemination of infected T-cells. Imaging of chronically infected MS-9 T-cells in co-culture with Jurkat T-cells revealed that Fascin’s localization at tight cell-cell contacts is accompanied by gag polarization suggesting that Fascin directly affects the distribution of gag to budding sites, and therefore, indirectly viral transmission. In detail, we found gag clusters that are interspersed with Fascin clusters, suggesting that Fascin makes room for gag in viral biofilms. Moreover, we observed short, Fascin-containing membrane extensions surrounding gag clusters and clutching uninfected T-cells. Finally, we detected Fascin and gag in long-distance cellular protrusions. Taken together, we show for the first time that HTLV-1 usurps the host cell factor Fascin to foster virus release and cell-to-cell transmission. Human T-cell leukemia virus type 1 (HTLV-1) is the only human retrovirus causing cancer and is transmitted via breast feeding, sexual intercourse, and cell-containing blood products. Efficient infection of CD4+ T-cells occurs via polarized budding of virions or via cell surface transfer of viral biofilms at a tight, specialized cell-cell contact, the virological synapse (VS). The viral protein Tax and polarization of the host cell cytoskeleton are crucial for formation of the VS, however, only little is known about the link between Tax and remodeling of the cytoskeleton to foster viral spread. The actin-bundling protein Fascin has evolved as a therapeutic target in several types of cancer. Here, we show that Fascin is also crucial for release and transmission of the tumorvirus HTLV-1. Since Fascin is a transcriptional target gene of Tax in T-cells, our work provides a link between Tax’s activity and virus transmission. Visualization of cell-cell contacts between infected and uninfected T-cells suggests a role of Fascin in viral transmission potentially by facilitating the transport of viral proteins to budding sites. Thus, Fascin is not only crucial for metastasis of tumors, but also for transmission of HTLV-1 and is a new cellular target to counteract HTLV-1.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease is the leading cause of mortality worldwide. The underlying cause of the majority of cardiovascular disease is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. However, today's picture of the pathogenesis of atherosclerosis is much more complex, with a key role for immune cells and inflammation in conjunction with hyperlipidemia, especially elevated (modified) LDL levels. Knowledge on immune cells and immune responses in atherosclerosis has progressed tremendously over the past decades, and the same is true for the role of lipid metabolism and the different lipid components. However, it is largely unknown how lipids and the immune system interact. In this review, we will describe the effect of lipids on immune cell development and function, and the effects of immune cells on lipid metabolism. RECENT FINDINGS Recently, novel data have emerged that show that immune cells are affected, and behave differently in a hyperlipidemic environment. Moreover, immune cells have reported to be able to affect lipid metabolism. SUMMARY In this review, we will summarize the latest findings on the interactions between lipids and the immune system, and we will discuss the potential consequences of these novel insights for future therapies for atherosclerosis.
Collapse
Affiliation(s)
- Frank Schaftenaar
- aDivision of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden bDepartment of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands cInstitute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
31
|
Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism. Curr Allergy Asthma Rep 2015; 15:48. [PMID: 26149587 DOI: 10.1007/s11882-015-0548-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science.
Collapse
|
32
|
Abstract
The liver X receptors (LXRs), LXRα and LXRβ, are transcription factors with well-established roles in the regulation of lipid metabolism and cholesterol homeostasis. In addition, LXRs influence innate and adaptive immunity, including responses to inflammatory stimuli, proliferation and differentiation, migration, apoptosis and survival. However, the majority of work describing the role of LXRs in immune cells has been carried out in mouse models, and there are a number of known species-specific differences concerning LXR function. Here we review what is known about the role of LXRs in human immune cells, demonstrating the importance of these receptors in the integration of lipid metabolism and immune function, but also highlighting the need for a better understanding of the species, isoform, and cell-type specific effects of LXR activation.
Collapse
|
33
|
Salvatore G, Bernoud-Hubac N, Bissay N, Debard C, Daira P, Meugnier E, Proamer F, Hanau D, Vidal H, Aricò M, Delprat C, Mahtouk K. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A. J Lipid Res 2015; 56:1110-22. [PMID: 25833686 DOI: 10.1194/jlr.m054874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2-12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells "foamy DCs" and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A.
Collapse
Affiliation(s)
- Giulia Salvatore
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France Université de Florence, 50134 Florence, Italy
| | - Nathalie Bernoud-Hubac
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Nathalie Bissay
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France
| | - Cyrille Debard
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Patricia Daira
- Functional Lipidomics Platform, Institut Multidisciplinaire de Biochimie des Lipides/Carnot Lisa, INSA-Lyon, 69622 Villeurbanne, France
| | - Emmanuelle Meugnier
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Fabienne Proamer
- Unité Mixte de Recherche Santé UMR S949, Institut National de la Santé et de la Recherche Médicale, 67000 Strasbourg, France Université de Strasbourg, 67400 Strasbourg, France Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, 67000 Strasbourg, France
| | - Daniel Hanau
- Unité Mixte de Recherche Santé UMR S949, Institut National de la Santé et de la Recherche Médicale, 67000 Strasbourg, France Université de Strasbourg, 67400 Strasbourg, France Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, 67000 Strasbourg, France
| | - Hubert Vidal
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Maurizio Aricò
- Istituto Toscano Tumori (I.T.T), 50139 Florence, Italy Azienda Sanitaria Provinciale 7, 97100 Ragusa, Italy
| | - Christine Delprat
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France Institut Universitaire de France, 75005 Paris, France
| | - Karène Mahtouk
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France
| |
Collapse
|
34
|
Frodermann V, van Puijvelde GHM, Wierts L, Lagraauw HM, Foks AC, van Santbrink PJ, Bot I, Kuiper J, de Jager SCA. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2015; 194:2208-18. [PMID: 25653425 DOI: 10.4049/jimmunol.1401843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Modulation of immune responses may form a powerful approach to treat atherosclerosis. It was shown that clearance of apoptotic cells results in tolerance induction to cleared Ags by dendritic cells (DCs); however, this seems impaired in atherosclerosis because Ag-specific tolerance is lacking. This could result, in part, from decreased emigration of DCs from atherosclerotic lesions because of the high-cholesterol environment. Nonetheless, local induction of anti-inflammatory responses by apoptotic cell clearance seems to dampen atherosclerosis, because inhibition of apoptotic cell clearance worsens atherosclerosis. In this study, we assessed whether i.v. administration of oxLDL-induced apoptotic DCs (apop(ox)-DCs) and, as a control, unpulsed apoptotic DCs could modulate atherosclerosis by inducing tolerance. Adoptive transfer of apop(ox)-DCs into low-density lipoprotein receptor knockout mice either before or during feeding of a Western-type diet resulted in increased numbers of CD103(+) tolerogenic splenic DCs, with a concomitant increase in regulatory T cells. Interestingly, both types of apoptotic DCs induced an immediate 40% decrease in Ly-6C(hi) monocyte numbers and a 50% decrease in circulating CCL2 levels, but only apop(ox)-DC treatment resulted in long-term effects on monocytes and CCL2 levels. Although initial lesion development was reduced by 40% in both treatment groups, only apop(ox)-DC treatment prevented lesion progression by 28%. Moreover, progressed lesions of apop(ox)-DC-treated mice showed a robust 45% increase in collagen content, indicating an enhanced stability of lesions. Our findings clearly show that apoptotic DC treatment significantly decreases lesion development, but only apop(ox)-DCs can positively modulate lesion progression and stability. These findings may translate into a safe treatment for patients with established cardiovascular diseases using patient-derived apop(ox)-DCs.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Gijs H M van Puijvelde
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Laura Wierts
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - H Maxime Lagraauw
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Amanda C Foks
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Peter J van Santbrink
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Saskia C A de Jager
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| |
Collapse
|
35
|
Jakobsson T, Vedin LL, Hassan T, Venteclef N, Greco D, D'Amato M, Treuter E, Gustafsson JÅ, Steffensen KR. The oxysterol receptor LXRβ protects against DSS- and TNBS-induced colitis in mice. Mucosal Immunol 2014; 7:1416-28. [PMID: 24803164 DOI: 10.1038/mi.2014.31] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
We examined the function of the oxysterol receptors (LXRs) in inflammatory bowel disease (IBD) through studying dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice and by elucidating molecular mechanisms underlying their anti-inflammatory action. We observed that Lxr-deficient mice are more susceptible to colitis. Clinical indicators of colitis including weight loss, diarrhea and blood in feces appeared earlier and were more severe in Lxr-deficient mice and particularly LXRβ protected against symptoms of colitis. Addition of an LXR agonist led to faster recovery and increased survival. In contrast, Lxr-deficient mice showed slower recovery and decreased survival. In Lxr-deficient mice, inflammatory cytokines and chemokines were increased together with increased infiltration of immune cells in the colon epithelium. Activation of LXRs strongly suppressed expression of inflammatory mediators including TNFα. While LXRα had anti-inflammatory effects in CD11b(+) immune cell populations, LXRβ in addition had anti-inflammatory effects in colon epithelial cells. Lack of LXRβ also induced CD4(+)/CD3(+) immune cell recruitment to the inflamed colon. Expression of both LXRA and LXRB was significantly suppressed in inflamed colon from subjects with IBD compared with non-inflamed colon. Taken together, our observations suggest that the LXRs could provide interesting targets to reduce the inflammatory responses in IBD.
Collapse
Affiliation(s)
- T Jakobsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - L-L Vedin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - T Hassan
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - N Venteclef
- Institute of Cardiometabolism and Nutrition, INSERM, Université Pierre et Marie Curie-Paris 6, Cordeliers Research Center, Paris, France
| | - D Greco
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - M D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - E Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - J-Å Gustafsson
- 1] Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden [2] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - K R Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
36
|
Traversari C, Sozzani S, Steffensen KR, Russo V. LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. Eur J Immunol 2014; 44:1896-903. [PMID: 24777958 DOI: 10.1002/eji.201344292] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
Oxysterols are involved in maintaining cellular cholesterol levels. Recently, oxysterols have been demonstrated to modulate the function of immune cells and tumor growth. These effects can be dependent on the activation of the oxysterol-binding liver X receptors (LXRs) or, as recently demonstrated for T and B cells, DCs and neutrophils, can be independent of LXR activation. LXR-dependent oxysterol effects can be ascribed to the activation of LXRα, LXRβ or LXRαβ isoforms, which induces transcriptional activation or trans-repression of target genes. The prevalent activation of one isoform seems to be cell-, tissue-, or context-specific, as shown in some pathologic processes, i.e., infectious diseases, atherosclerosis, and autoimmunity. Oxysterol-LXR signaling has recently been shown to inhibit antitumor immune responses, as well as to modulate tumor cell growth. Here, we review the mechanisms that link oxysterols to tumor growth, and discuss possible networks at the basis of LXR-dependent and -independent oxysterol effects on immune cells and tumor development.
Collapse
|
37
|
Han M, Liang L, Liu LR, Yue J, Zhao YL, Xiao HP. Liver X receptor gene polymorphisms in tuberculosis: effect on susceptibility. PLoS One 2014; 9:e95954. [PMID: 24788534 PMCID: PMC4006844 DOI: 10.1371/journal.pone.0095954] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/02/2014] [Indexed: 01/06/2023] Open
Abstract
Objectives The Liver X receptors (LXRs), Liver X receptor A (LXRA) and Liver X receptor B (LXRB), regulate lipid metabolism and antimicrobial response. LXRs have a crucial role in the control of Mycobacterium tuberculosis (M.tb). Lacking LXRs mice is more susceptibility to infection M.tb, developing higher bacterial burdens and an increase in the size and number of granulomatous lesions. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRs and risk of tuberculosis. Methods We sequenced the LXRs genes to detect SNPs and to examine genotypic frequencies in 600 patients and 620 healthy controls to investigate for associations with tuberculosis (TB) in the Chinese Han population. DNA re-sequencing revealed eight common variants in the LXRs genes. Results The G allele of rs1449627 and the T allele of rs1405655 demonstrated an increased risk of developing TB (p<0.001, p = 0.002), and the T allele of rs3758673, the T allele of rs2279238, and the C allele of rs1449626 in LXRA and the C allele of rs17373080, the G allele of rs2248949, and the C allele of rs1052677 in LXRB were protective against TB patients compared to healthy controls (p = 0.0002, p = 0.006, p<0.001, p = 0.004, p = 0.008, p = 0.003, respectively). All SNP genotypes were significantly associated with TB. An estimation of the frequencies of haplotypes revealed two potential risk haplotypes,GGCG in LXRB (p = 0.004,) and TTCG in LXRA (p<0.001, p = 0.004). Moreover, three protective haplotypes, TTAT and CCAT in LXRA and CATC in LXRB, were significantly “protective” (p = 0.008, p<0.001, p = 0.031) for TB. Furthermore, we determined that the LXRs SNPs were nominally associated with the clinical pattern of disease. Conclusions Our study data supported that LXRs play a fundamental role in the genetic susceptibility to TB and to different clinical patterns of disease. Thus, further investigation is required in larger populations and in additional areas.
Collapse
Affiliation(s)
- Min Han
- Shanghai Key Laboratory of Mycobacterium Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, P.R. China
| | - Li Liang
- Shanghai Key Laboratory of Mycobacterium Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, P.R. China
| | - Li-rong Liu
- Shanghai Key Laboratory of Mycobacterium Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, P.R. China
| | - Jun Yue
- Shanghai Key Laboratory of Mycobacterium Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, P.R. China
- * E-mail:
| | - Yan-lin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - He-ping Xiao
- Shanghai Key Laboratory of Mycobacterium Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
38
|
Zhong L, Yang Q, Xie W, Zhou J. Liver X receptor regulates mouse GM-CSF-derived dendritic cell differentiation in vitro. Mol Immunol 2014; 60:32-43. [PMID: 24747959 DOI: 10.1016/j.molimm.2014.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/27/2014] [Accepted: 03/18/2014] [Indexed: 12/15/2022]
Abstract
Liver X receptors (LXRs) are nuclear receptors that play an essential role in lipid and cholesterol metabolism. Emerging studies indicate a potential function for LXRs in regulating dendritic cell (DC)-dependent immune responses; however, the role of LXRs in DC differentiation is largely unknown. Here, we report that LXRα regulates the differentiation of mouse GM-CSF-derived DCs. Activation or overexpression of LXRα significantly enhanced myeloid DC differentiation from mouse bone marrow (BM) cells, while siRNA-mediated knockdown of LXRα suppressed DC differentiation. In addition, we demonstrated that LXR agonist-programmed DCs showed an increased capacity for stimulating T-cell proliferation. Mechanistic studies showed that activation of LXR could inhibit the phosphorylation of STAT3 and downregulate the expression of its target, S100A9, an important negative regulator of myeloid DC differentiation. We also found that Histone deacetylase (HDAC) inhibition interfered with the effect of LXR on STAT3 signaling via acetylation of STAT3. Chromatin immunoprecipitation assays confirmed that LXR activation and HDAC inhibition balanced the recruitment of STAT3 to the S100A9 promoter, which involved distinct post-translational modifications of STAT3. In conclusion, our observations demonstrated a novel role for LXRα in GM-CSF-derived DC differentiation and revealed the underlying mechanism.
Collapse
Affiliation(s)
- Limei Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Quan Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Wen Xie
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Chinese Ministry of Education, Guangzhou, China.
| |
Collapse
|
39
|
Schmuth M, Moosbrugger-Martinz V, Blunder S, Dubrac S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:463-73. [PMID: 24315978 DOI: 10.1016/j.bbalip.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/19/2022]
Abstract
Epidermal lipid synthesis and metabolism are regulated by nuclear hormone receptors (NHR) and in turn epidermal lipid metabolites can serve as ligands to NHR. NHR form a large superfamily of receptors modulating gene transcription through DNA binding. A subgroup of these receptors is ligand-activated and heterodimerizes with the retinoid X receptor including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR) and pregnane X receptor (PXR). Several isotypes of these receptors exist, all of which are expressed in skin. In keratinocytes, ligand activation of PPARs and LXRs stimulates differentiation, induces lipid accumulation, and accelerates epidermal barrier regeneration. In the cutaneous immune system, ligand activation of all three receptors, PPAR, LXR, and PXR, has inhibitory properties, partially mediated by downregulation of the NF-kappaB pathway. PXR also has antifibrotic effects in the skin correlating with TGF-beta inhibition. In summary, ligands of PPAR, LXR and PXR exert beneficial therapeutic effects in skin disease and represent promising targets for future therapeutic approaches in dermatology. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | - Stefan Blunder
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
40
|
Spann NJ, Glass CK. Sterols and oxysterols in immune cell function. Nat Immunol 2013; 14:893-900. [PMID: 23959186 DOI: 10.1038/ni.2681] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Intermediates in the cholesterol-biosynthetic pathway and oxysterol derivatives of cholesterol regulate diverse cellular processes. Recent studies have expanded the appreciation of their roles in controlling the functions of cells of the innate and adaptive immune systems. Here we review recent literature reporting on the biological functions of sterol intermediates and oxysterols, acting through transcription factors such as the liver X receptors (LXRs), sterol regulatory element-binding proteins (SREBPs) and the G protein-coupled receptor EBI2, in regulating the differentiation and population expansion of cells of the innate and adaptive immune systems, their responses to inflammatory mediators, their effects on the phagocytic functions of macrophages and their effects on antiviral activities and the migration of immune cells. Such findings have raised many new questions about the production of endogenous bioactive sterols and oxysterols and their mechanisms of action in the immune system.
Collapse
Affiliation(s)
- Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
41
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
42
|
Canavan M, McCarthy C, Larbi NB, Dowling JK, Collins L, O'Sullivan F, Hurley G, Murphy C, Quinlan A, Moloney G, Darby T, MacSharry J, Kagechika H, Moynagh P, Melgar S, Loscher CE. Activation of liver X receptor suppresses the production of the IL-12 family of cytokines by blocking nuclear translocation of NF-κBp50. Innate Immun 2013; 20:675-87. [PMID: 24045337 DOI: 10.1177/1753425913501915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is now convincing evidence that liver X receptor (LXR) is an important modulator of the inflammatory response; however, its mechanism of action remains unclear. This study aimed to examine the effect of LXR on the IL-12 family of cytokines and examined the mechanism by which LXR exerted this effect. We first demonstrated that activation of murine-derived dendritic cells (DC) with a specific agonist to LXR enhanced expression of LXR following activation with LPS, suggesting a role in inflammation. Furthermore, we showed LXR expression to be increased in vivo in dextrane sulphate sodium-induced colitis. LXR activation also suppressed production of IL-12p40, IL-12p70, IL-27 and IL-23 in murine-derived DC following stimulation with LPS, and specifically targeted the p35, p40 and EBI3 subunits of the IL-12 cytokine family, which are under the control of the NF-κB subunit p50 (NF-κBp50). Finally, we demonstrated that LXR can associate with NF-κBp50 in DC and that LXR activation prevents translocation of the p50 subunit into the nucleus. In summary, our study indicates that LXR can specifically suppress the IL-12 family of cytokines though its association with NF-κBp50 and highlights its potential as a therapeutic target for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Mary Canavan
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Ciara McCarthy
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Nadia Ben Larbi
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jennifer K Dowling
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Laura Collins
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Grainne Hurley
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Carola Murphy
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Aoife Quinlan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Gerry Moloney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Trevor Darby
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John MacSharry
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Hiroyuki Kagechika
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, Tokyo, Japan
| | - Paul Moynagh
- Institute of Immunology, National University of Ireland, Maynooth, Ireland
| | - Silvia Melgar
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Christine E Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
43
|
Chen YG, Mordes JP, Blankenhorn EP, Kashmiri H, Kaldunski ML, Jia S, Geoffrey R, Wang X, Hessner MJ. Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes. Genes Immun 2013; 14:387-400. [PMID: 23739610 PMCID: PMC4027975 DOI: 10.1038/gene.2013.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
The dilute plasma cytokine milieu associated with type 1 diabetes (T1D), while difficult to measure directly, is sufficient to drive transcription in a bioassay that uses healthy leukocytes as reporters. Previously, we reported disease-associated, partially IL-1 dependent, transcriptional signatures in both T1D patients and the BioBreeding (BB) rat model. Here, we examine temporal signatures in congenic BBDR.lyp/lyp rats that develop spontaneous T1D, and BBDR rats where T1D progresses only after immunological perturbation in young animals. After weaning, the BBDR temporal signature showed early coincident induction of transcription related to innate inflammation as well as IL-10- and TGF-β-mediated regulation. BBDR plasma cytokine levels mirrored the signatures showing early inflammation, followed by induction of a regulated state that correlated with failure of virus to induce T1D in older rats. In contrast, the BBDR.lyp/lyp temporal signature exhibited asynchronous dynamics, with delayed induction of inflammatory transcription and later, weaker induction of regulatory transcription, consistent with their deficiency in regulatory T cells. Through longitudinal analyses of plasma-induced signatures in BB rats and a human T1D progressor, we have identified changes in immunoregulatory processes that attenuate a preexisting innate inflammatory state in BBDR rats, suggesting a mechanism underlying the decline in T1D susceptibility with age.
Collapse
Affiliation(s)
- Y G Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kidani Y, Bensinger SJ. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol Rev 2013; 249:72-83. [PMID: 22889216 DOI: 10.1111/j.1600-065x.2012.01153.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid metabolism has emerged as an important modulator of innate and adaptive immune cell fate and function. The lipid-activated transcription factors peroxisome proliferator-activated receptor (PPAR) α, β/δ, γ and liver X receptor (LXR) are members of the nuclear receptor superfamily that have a well-defined role in regulating lipid homeostasis and metabolic diseases. Accumulated evidence over the last decade indicates that PPAR and LXR signaling also influence multiple facets of inflammation and immunity, thereby providing important crosstalk between metabolism and immune system. Herein, we provide a brief introduction to LXR and PPAR biology and review recent discoveries highlighting the importance of PPAR and LXR signaling in the modulation of normal and pathologic states of immunity. We also examine advances in our mechanistic understanding of how nuclear receptors impact immune system function and homeostasis. Finally, we discuss whether LXRs and PPARs could be pharmacologically manipulated to provide novel therapeutic approaches for modulation of the immune system under pathologic inflammation or in the context of allergic and autoimmune disease.
Collapse
Affiliation(s)
- Yoko Kidani
- Institute for Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
45
|
Ross FP. An ELIXIR for bone loss? J Bone Miner Res 2012; 27:2438-41. [PMID: 23165427 DOI: 10.1002/jbmr.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Traversari C, Russo V. Control of the immune system by oxysterols and cancer development. Curr Opin Pharmacol 2012; 12:729-35. [PMID: 22832233 DOI: 10.1016/j.coph.2012.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 12/20/2022]
Abstract
Oxysterols/oxysterol receptors have been shown to modulate several immune cell subsets, such as macrophages, T-cells and B-cells, neutrophils and dendritic cells (DCs). They participate in the control of several pathologic processes, that is, infectious diseases, atherosclerosis and autoimmunity. Moreover, some oxysterols have also been shown to favor tumor progression by dampening the antitumor immune response. The cellular responses generated by oxysterols depend on the engagement of Liver X Receptor (LXR) α and/or β isoforms, which induce activation of target genes or trans-repression of pro-inflammatory gene transcription. Recently, some reports have described a different mechanism of action of oxysterols, mediated by the engagement of G-Protein Coupled Receptors. Here, we summarize LXR-dependent and LXR-independent responses of oxysterols on immune cells with possible effects on tumor development.
Collapse
|
47
|
Bruckner M, Dickel D, Singer E, Legler DF. Converse regulation of CCR7-driven human dendritic cell migration by prostaglandin E2and liver X receptor activation. Eur J Immunol 2012; 42:2949-58. [DOI: 10.1002/eji.201242523] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/05/2012] [Accepted: 08/08/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Markus Bruckner
- Biotechnology Institute Thurgau (BITg); University of Konstanz; Kreuzlingen Switzerland
| | - Denise Dickel
- Biotechnology Institute Thurgau (BITg); University of Konstanz; Kreuzlingen Switzerland
| | | | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg); University of Konstanz; Kreuzlingen Switzerland
| |
Collapse
|
48
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
49
|
Biological Roles of Liver X Receptors in Immune Cells. Arch Immunol Ther Exp (Warsz) 2012; 60:235-49. [DOI: 10.1007/s00005-012-0179-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
|
50
|
Jakobsson T, Treuter E, Gustafsson JÅ, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 2012; 33:394-404. [PMID: 22541735 DOI: 10.1016/j.tips.2012.03.013] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/05/2012] [Accepted: 03/26/2012] [Indexed: 01/12/2023]
Abstract
Nuclear receptors (NRs) are master regulators of transcriptional programs that integrate the homeostatic control of almost all biological processes. Their direct mode of ligand regulation and genome interaction is at the core of modern pharmacology. The two liver X receptors LXRα and LXRβ are among the emerging newer drug targets within the NR family. LXRs are best known as nuclear oxysterol receptors and physiological regulators of lipid and cholesterol metabolism that also act in an anti-inflammatory way. Because LXRs control diverse pathways in development, reproduction, metabolism, immunity and inflammation, they have potential as therapeutic targets for diseases as diverse as lipid disorders, atherosclerosis, chronic inflammation, autoimmunity, cancer and neurodegenerative diseases. Recent insights into LXR signaling suggest future targeting strategies aiming at increasing LXR subtype and pathway selectivity. This review discusses the current status of our understanding of LXR biology and pharmacology, with an emphasis on the molecular aspects of LXR signaling that constitute the potential of LXRs as drug targets.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, S-14183 Stockholm, Sweden
| | | | | | | |
Collapse
|