1
|
Ohman MS, Albright ER, Gelbmann CB, Kalejta RF. The Pentamer glycoprotein complex inhibits viral Immediate Early transcription during Human Cytomegalovirus infections. Proc Natl Acad Sci U S A 2024; 121:e2408078121. [PMID: 39292744 PMCID: PMC11441559 DOI: 10.1073/pnas.2408078121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
The Pentamer complex of Human Cytomegalovirus (HCMV) consists of the viral glycoproteins gH, gL, UL128, UL130, and UL131 and is incorporated into infectious virions. HCMV strains propagated extensively in vitro in fibroblasts carry UL128, UL130, or UL131 alleles that do not make a functional complex and thus lack Pentamer function. Adding functional Pentamer to such strains decreases virus growth in fibroblasts. Here, we show that the Pentamer inhibits productive HCMV replication in fibroblasts by repressing viral Immediate Early (IE) transcription. We show that ectopic expression of the viral IE1 protein, a target of Pentamer-mediated transcriptional repression, complements the growth defect of a Pentamer-positive virus. Furthermore, we show that the Pentamer also represses viral IE transcription in cell types where HCMV in vitro latency is studied. Finally, we identify UL130 as a functional subunit of the Pentamer for IE transcriptional repression and demonstrate that cyclic AMP Response Element (CRE) and NFkB sites within the Major Immediate Early Promoter that drives IE1 transcription contribute to this repression. We conclude that the HCMV Pentamer represses viral IE transcription.
Collapse
Affiliation(s)
- Michael S. Ohman
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Emily R. Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Christopher B. Gelbmann
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
2
|
Cimato G, Zhou X, Brune W, Frascaroli G. Human cytomegalovirus glycoprotein variants governing viral tropism and syncytium formation in epithelial cells and macrophages. J Virol 2024; 98:e0029324. [PMID: 38837351 PMCID: PMC11265420 DOI: 10.1128/jvi.00293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Human cytomegalovirus (HCMV) displays a broad cell tropism, and the infection of biologically relevant cells such as epithelial, endothelial, and hematopoietic cells supports viral transmission, systemic spread, and pathogenesis in the human host. HCMV strains differ in their ability to infect and replicate in these cell types, but the genetic basis of these differences has remained incompletely understood. In this study, we investigated HCMV strain VR1814, which is highly infectious for epithelial cells and macrophages and induces cell-cell fusion in both cell types. A VR1814-derived bacterial artificial chromosome (BAC) clone, FIX-BAC, was generated many years ago but has fallen out of favor because of its modest infectivity. By sequence comparison and genetic engineering of FIX, we demonstrate that the high infectivity of VR1814 and its ability to induce syncytium formation in epithelial cells and macrophages depends on VR1814-specific variants of the envelope glycoproteins gB, UL128, and UL130. We also show that UL130-neutralizing antibodies inhibit syncytium formation, and a FIX-specific mutation in UL130 is responsible for its low infectivity by reducing the amount of the pentameric glycoprotein complex in viral particles. Moreover, we found that a VR1814-specific mutation in US28 further increases viral infectivity in macrophages, possibly by promoting lytic rather than latent infection of these cells. Our findings show that variants of gB and the pentameric complex are major determinants of infectivity and syncytium formation in epithelial cells and macrophages. Furthermore, the VR1814-adjusted FIX strains can serve as valuable tools to study HCMV infection of myeloid cells.IMPORTANCEHuman cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and the leading cause of congenital infections. HCMV infects various cell types, including epithelial cells and macrophages, and some strains induce the fusion of neighboring cells, leading to the formation of large multinucleated cells called syncytia. This process may limit the exposure of the virus to host immune factors and affect pathogenicity. However, the reason why some HCMV strains exhibit a broader cell tropism and why some induce cell fusion more than others is not well understood. We compared two closely related HCMV strains and provided evidence that small differences in viral envelope glycoproteins can massively increase or decrease the virus infectivity and its ability to induce syncytium formation. The results of the study suggest that natural strain variations may influence HCMV infection and pathogenesis in humans.
Collapse
Affiliation(s)
| | - Xuan Zhou
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | |
Collapse
|
3
|
Yang NY, Hsieh AYY, Chen Z, Campbell AR, Gadawska I, Kakkar F, Sauve L, Bitnun A, Brophy J, Murray MCM, Pick N, Krajden M, Côté HCF. Chronic and Latent Viral Infections and Leukocyte Telomere Length across the Lifespan of Female and Male Individuals Living with or without HIV. Viruses 2024; 16:755. [PMID: 38793637 PMCID: PMC11125719 DOI: 10.3390/v16050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Chronic/latent viral infections may accelerate immunological aging, particularly among people living with HIV (PLWH). We characterized chronic/latent virus infections across their lifespan and investigated their associations with leukocyte telomere length (LTL). METHODS Participants enrolled in the CARMA cohort study were randomly selected to include n = 15 for each decade of age between 0 and >60 y, for each sex, and each HIV status. Cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), herpes simplex virus 1 (HSV-1), and HSV-2 infection were determined serologically; HIV, hepatitis C (HCV), and hepatitis B (HBV) were self-reported. LTLs were measured using monochrome multiplex qPCR. Associations between the number of viruses, LTL, and sociodemographic factors were assessed using ordinal logistic and linear regression modeling. RESULTS The study included 187 PLWH (105 female/82 male) and 190 HIV-negative participants (105 female/84 male), ranging in age from 0.7 to 76.1 years. Living with HIV, being older, and being female were associated with harbouring a greater number of chronic/latent non-HIV viruses. Having more infections was in turn bivariately associated with a shorter LTL. In multivariable analyses, older age, living with HIV, and the female sex remained independently associated with having more infections, while having 3-4 viruses (vs. 0-2) was associated with a shorter LTL. CONCLUSIONS Our results suggest that persistent viral infections are more prevalent in PLWH and females, and that these may contribute to immunological aging. Whether this is associated with comorbidities later in life remains an important question.
Collapse
Affiliation(s)
- Nancy Yi Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony Y. Y. Hsieh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zhuo Chen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Amber R. Campbell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
| | - Izabella Gadawska
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
| | - Fatima Kakkar
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Laura Sauve
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Ari Bitnun
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Jason Brophy
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada;
| | - Melanie C. M. Murray
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculty of Medicine, Vancouver, BC V5Z 1M9, Canada
| | - Neora Pick
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculty of Medicine, Vancouver, BC V5Z 1M9, Canada
| | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- British Columbia Center for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Hélène C. F. Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
| | | |
Collapse
|
4
|
Poole E, Lau J, Groves I, Roche K, Murphy E, Carlan da Silva M, Reeves M, Sinclair J. The Human Cytomegalovirus Latency-Associated Gene Product Latency Unique Natural Antigen Regulates Latent Gene Expression. Viruses 2023; 15:1875. [PMID: 37766281 PMCID: PMC10536386 DOI: 10.3390/v15091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection can lead to either lytic or latent infection, which is dependent on the regulation of the viral major immediate early promoter (MIEP). Suppression of the MIEP is a pre-requisite for latency and is driven by repressive epigenetic modifications at the MIEP during latent infection. However, other viral genes are expressed during latency and this is correlated with activatory epigenetic modifications at latent gene promoters. Yet the molecular basis of the differential regulation of latent and lytic gene expression by epigenetics is unclear. LUNA, a latent viral transcript, has been suggested to be important for HCMV latency and has also been shown to be important for efficient reactivation likely through its known deSUMOylase activity. Intriguingly, we and others have also observed that LUNA enhances latency-associated expression of the viral UL138 gene. Here, we show that in the absence of LUNA, the expression of multiple latency-associated transcripts is reduced during latent infection, which is correlated with a lack of activatory marks at their promoters. Interestingly, we also show that LUNA interacts with the hematopoietic transcription factor GATA-2, which has previously been shown to bind to a number of latency-associated gene promoters, and that this interaction is dependent on the deSUMOylase domain of LUNA. Finally, we show that the deSUMOylase activity of LUNA is required for the establishment and/or maintenance of an open chromatin configuration around latency-associated gene promoters. As such, LUNA plays a key role in efficient latency-associated viral gene expression and carriage of viral genome during latent carriage.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
- Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jonathan Lau
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Ian Groves
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (I.G.); (K.R.)
| | - Kate Roche
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (I.G.); (K.R.)
| | - Eain Murphy
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (I.G.); (K.R.)
| | | | - Matthew Reeves
- Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
| |
Collapse
|
5
|
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus that establishes lifelong infection in its host and can cause severe comorbidities in individuals with suppressed or compromised immune systems. The lifecycle of HCMV consists of lytic and latent phases, largely dependent upon the cell type infected and whether transcription from the major immediate early locus can ensue. Control of this locus, which acts as a critical "switch" region from where the lytic gene expression cascade originates, as well as regulation of the additional ~235 kilobases of virus genome, occurs through chromatinization with cellular histone proteins after infection. Upon infection of a host cell, an initial intrinsic antiviral response represses gene expression from the incoming genome, which is relieved in permissive cells by viral and host factors in concert. Latency is established in a subset of hematopoietic cells, during which viral transcription is largely repressed while the genome is maintained. As these latently infected cells differentiate, the cellular milieu and epigenetic modifications change, giving rise to the initial stages of virus reactivation from latency. Thus, throughout the cycle of infection, chromatinization, chromatin modifiers, and the recruitment of specific transcription factors influence the expression of genes from the HCMV genome. In this review, we discuss epigenetic regulation of the HCMV genome during the different phases of infection, with an emphasis on recent reports that add to our current perspective.
Collapse
Affiliation(s)
- Stephen M. Matthews
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ian J. Groves
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine M. O'Connor
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
7
|
Crawford LB. Hematopoietic stem cells and betaherpesvirus latency. Front Cell Infect Microbiol 2023; 13:1189805. [PMID: 37346032 PMCID: PMC10279960 DOI: 10.3389/fcimb.2023.1189805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The human betaherpesviruses including human cytomegalovirus (HCMV), human herpesvirus (HHV)-6a and HHV-6b, and HHV-7 infect and establish latency in CD34+ hematopoietic stem and progenitor cells (HPCs). The diverse repertoire of HPCs in humans and the complex interactions between these viruses and host HPCs regulate the viral lifecycle, including latency. Precise manipulation of host and viral factors contribute to preferential maintenance of the viral genome, increased host cell survival, and specific manipulation of the cellular environment including suppression of neighboring cells and immune control. The dynamic control of these processes by the virus regulate inter- and intra-host signals critical to the establishment of chronic infection. Regulation occurs through direct viral protein interactions and cellular signaling, miRNA regulation, and viral mimics of cellular receptors and ligands, all leading to control of cell proliferation, survival, and differentiation. Hematopoietic stem cells have unique biological properties and the tandem control of virus and host make this a unique environment for chronic herpesvirus infection in the bone marrow. This review highlights the elegant complexities of the betaherpesvirus latency and HPC virus-host interactions.
Collapse
Affiliation(s)
- Lindsey B Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
8
|
Zarrella K, Longmire P, Zeltzer S, Collins-McMillen D, Hancock M, Buehler J, Reitsma JM, Terhune SS, Nelson JA, Goodrum F. Human cytomegalovirus UL138 interaction with USP1 activates STAT1 in infection. PLoS Pathog 2023; 19:e1011185. [PMID: 37289831 PMCID: PMC10284425 DOI: 10.1371/journal.ppat.1011185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquitinating complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated in infection and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection.
Collapse
Affiliation(s)
- Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Pierce Longmire
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | | | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason Buehler
- Imanis Life Sciences, Rochester, Minnesota, United States of America
| | - Justin M. Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Abbvie, Chicago, Illinois, United States of America
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
9
|
Zarrella K, Longmire P, Zeltzer S, Collins-McMillen D, Hancock M, Buehler J, Reitsma JM, Terhune SS, Nelson JA, Goodrum F. Human Cytomegalovirus UL138 Interaction with USP1 Activates STAT1 in infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527452. [PMID: 36798153 PMCID: PMC9934528 DOI: 10.1101/2023.02.07.527452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquintase complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection. Importance Human cytomegalovirus (HCMV) is one of nine herpesviruses that infect humans. Following a primary infection, HCMV establishes a life-long latent infection that is marked by sporadic, and likely frequent reactivation events. While these reactivation events are asymptomatic in the immune competent host, they pose important disease risks for the immune compromised, including solid organ or stem cell transplant recipients. Its complex interactions with host biology and deep coding capacity make it an excellent model for defining mechanisms important for viral latency and reactivation. Here we define an interaction with host proteins that commandeer typically antiviral innate immune signaling for the establishment of latency.
Collapse
Affiliation(s)
- Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| | - Pierce Longmire
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| | | | | | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Jason Buehler
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Justin M Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Abbvie, 1 N Waukegan Rd, North Chicago, IL 60064
| | - Scott S Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
10
|
White TM, Bonavita CM, Stanfield BA, Farrell HE, Davis-Poynter NJ, Cardin RD. The CMV-encoded G protein-coupled receptors M33 and US28 play pleiotropic roles in immune evasion and alter host T cell responses. Front Immunol 2022; 13:1047299. [PMID: 36569845 PMCID: PMC9768342 DOI: 10.3389/fimmu.2022.1047299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Human cytomegalovirus (HCMV) is a global health threat due to its ubiquity and lifelong persistence in infected people. During latency, host CD8+ T cell responses to HCMV continue to increase in a phenomenon known as memory inflation. We used murine CMV (MCMV) as a model for HCMV to characterize the memory inflation response to wild-type MCMV (KP) and a latency-defective mutant (ΔM33stop), which lacks M33, an MCMV chemokine receptor homolog. M33 is essential for normal reactivation from latency and this was leveraged to determine whether reactivation in vivo contributes to T cell memory inflation. Methods Mice were infected with wild-type or mutant MCMV and T cell responses were analyzed by flow cytometry at acute and latent time points. Ex vivo reactivation and cytotoxicity assays were carried out to further investigate immunity and virus replication. Quantitative reverse-transcriptase polymerase chain reaction (q-RTPCR) was used to examine gene expression during reactivation. MHC expression on infected cells was analyzed by flow cytometry. Finally, T cells were depleted from latently-infected B cell-deficient mice to examine the in vivo difference in reactivation between wild-type and ΔM33stop. Results We found that ΔM33stop triggers memory inflation specific for peptides derived from the immediate-early protein IE1 but not the early protein m164, in contrast to wild-type MCMV. During ex vivo reactivation, gene expression in DM33stop-infected lung tissues was delayed compared to wild-type virus. Normal gene expression was partially rescued by substitution of the HCMV US28 open reading frame in place of the M33 gene. In vivo depletion of T cells in immunoglobulin heavy chain-knockout mice resulted in reactivation of wild-type MCMV, but not ΔM33stop, confirming the role of M33 during reactivation from latency. Further, we found that M33 induces isotype-specific downregulation of MHC class I on the cell surface suggesting previously unappreciated roles in immune evasion. Discussion Our results indicate that M33 is more polyfunctional than previously appreciated. In addition to its role in reactivation, which had been previously described, we found that M33 alters viral gene expression, host T cell memory inflation, and MHC class I expression. US28 was able to partially complement most functions of M33, suggesting that its role in HCMV infection may be similarly pleotropic.
Collapse
Affiliation(s)
- Timothy M. White
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Cassandra M. Bonavita
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Brent A. Stanfield
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Helen E. Farrell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Rhonda D. Cardin
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States,*Correspondence: Rhonda D. Cardin,
| |
Collapse
|
11
|
Lee S, Kim H, Hong A, Song J, Lee S, Kim M, Hwang SY, Jeong D, Kim J, Son A, Lee YS, Kim VN, Kim JS, Chang H, Ahn K. Functional and molecular dissection of HCMV long non-coding RNAs. Sci Rep 2022; 12:19303. [PMID: 36369338 PMCID: PMC9652368 DOI: 10.1038/s41598-022-23317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022] Open
Abstract
Small, compact genomes confer a selective advantage to viruses, yet human cytomegalovirus (HCMV) expresses the long non-coding RNAs (lncRNAs); RNA1.2, RNA2.7, RNA4.9, and RNA5.0. Little is known about the function of these lncRNAs in the virus life cycle. Here, we dissected the functional and molecular landscape of HCMV lncRNAs. We found that HCMV lncRNAs occupy ~ 30% and 50-60% of total and poly(A)+viral transcriptome, respectively, throughout virus life cycle. RNA1.2, RNA2.7, and RNA4.9, the three abundantly expressed lncRNAs, appear to be essential in all infection states. Among these three lncRNAs, depletion of RNA2.7 and RNA4.9 results in the greatest defect in maintaining latent reservoir and promoting lytic replication, respectively. Moreover, we delineated the global post-transcriptional nature of HCMV lncRNAs by nanopore direct RNA sequencing and interactome analysis. We revealed that the lncRNAs are modified with N6-methyladenosine (m6A) and interact with m6A readers in all infection states. In-depth analysis demonstrated that m6A machineries stabilize HCMV lncRNAs, which could account for the overwhelming abundance of viral lncRNAs. Our study lays the groundwork for understanding the viral lncRNA-mediated regulation of host-virus interaction throughout the HCMV life cycle.
Collapse
Affiliation(s)
- Sungwon Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Hyewon Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Ari Hong
- grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jaewon Song
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Sungyul Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Myeonghwan Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Sung-yeon Hwang
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Dongjoon Jeong
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Jeesoo Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Ahyeon Son
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Young-suk Lee
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - V. Narry Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Jong-seo Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Hyeshik Chang
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kwangseog Ahn
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| |
Collapse
|
12
|
Vinogradskaya GR, Ivanov AV, Kushch AA. Mechanisms of Survival of Cytomegalovirus-Infected Tumor Cells. Mol Biol 2022; 56:668-683. [PMID: 36217337 PMCID: PMC9534468 DOI: 10.1134/s0026893322050132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Human cytomegalovirus (HCMV) DNA and proteins are often detected in malignant tumors, warranting studies of the role that HCMV plays in carcinogenesis and tumor progression. HCMV proteins were shown to regulate the key processes involved in tumorigenesis. While HCMV as an oncogenic factor just came into focus, its ability to promote tumor progression is generally recognized. The review discusses the viral factors and cell molecular pathways that affect the resistance of cancer cells to therapy. CMV inhibits apoptosis of tumor cells, that not only promotes tumor progression, but also reduces the sensitivity of cells to antitumor therapy. Autophagy was found to facilitate either cell survival or cell death in different tumor cells. In leukemia cells, HCMV induces a "protective" autophagy that suppresses apoptosis. Viral factors that mediate drug resistance and their interactions with key cell death pathways are necessary to further investigate in order to develop agents that can restore the tumor sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- G. R. Vinogradskaya
- Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”, 188300 Gatchina, Leningrad oblast Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
13
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
14
|
A Viral Long Non-Coding RNA Protects against Cell Death during Human Cytomegalovirus Infection of CD14+ Monocytes. Viruses 2022; 14:v14020246. [PMID: 35215840 PMCID: PMC8874509 DOI: 10.3390/v14020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA β2.7 is the most highly transcribed viral gene during latent human cytomegalovirus (HCMV) infection. However, as yet, no function has ever been ascribed to β2.7 during HCMV latency. Here we show that β2.7 protects against apoptosis induced by high levels of reactive oxygen species (ROS) in infected monocytes, which routinely support latent HCMV infection. Monocytes infected with a wild-type (WT) virus, but not virus deleted for the β2.7 gene (Δβ2.7), are protected against mitochondrial stress and subsequent apoptosis. Protected monocytes display lower levels of ROS and additionally, stress-induced death in the absence of β2.7 can be reversed by an antioxidant which reduces ROS levels. Furthermore, we show that infection with WT but not Δβ2.7 virus results in strong upregulation of a cellular antioxidant enzyme, superoxide dismutase 2 (SOD2) in CD14+ monocytes. These observations identify a role for the β2.7 viral transcript, the most abundantly expressed viral RNA during latency but for which no latency-associated function has ever been ascribed, and demonstrate a novel way in which HCMV protects infected monocytes from pro-death signals to optimise latent carriage.
Collapse
|
15
|
Cheng S, Zhao F, Wen L, Yang B, Wang XZ, Huang SN, Jiang X, Zeng WB, Sun JY, Zhang FK, Shen HJ, Fortunato E, Luo MH, Cheng H. iTRAQ-Based Proteomics Analysis of Human Cytomegalovirus Latency and Reactivation in T98G Cells. J Virol 2022; 96:e0147621. [PMID: 34730396 PMCID: PMC8791298 DOI: 10.1128/jvi.01476-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and the host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV-infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and the phosphatidylinositol 3-kinase (PI3K) pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomics analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible betaherpesvirus that has a prevalence of 60% to 90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomics analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.
Collapse
Affiliation(s)
- Shuang Cheng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Le Wen
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Yang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Jiang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fu-Kun Zhang
- Changchun Keygen Biological Products Co., Ltd., Changchun, China
| | - Hong-Jie Shen
- Changchun Keygen Biological Products Co., Ltd., Changchun, China
| | - Elizabeth Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Sánchez‐Ponce Y, Fuentes‐Pananá EM. Molecular and immune interactions between β‐ and γ‐herpesviruses in the immunocompromised host. J Leukoc Biol 2022; 112:79-95. [DOI: 10.1002/jlb.4mr1221-452r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yessica Sánchez‐Ponce
- Research Unit in Virology and Cancer Children's Hospital of Mexico Federico Gómez Mexico City Mexico
- Postgraduate Program in Biological Science National Autonomous University of Mexico Mexico City Mexico
| | | |
Collapse
|
17
|
Albright ER, Mickelson CK, Kalejta RF. Human Cytomegalovirus UL138 Protein Inhibits the STING Pathway and Reduces Interferon Beta mRNA Accumulation during Lytic and Latent Infections. mBio 2021; 12:e0226721. [PMID: 34903048 PMCID: PMC8669494 DOI: 10.1128/mbio.02267-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
The cGAS/STING/TBK1 (cyclic guanine monophosphate-AMP synthase/stimulator of interferon genes/Tank-binding kinase 1) innate immunity pathway is activated during human cytomegalovirus (HCMV) productive (lytic) replication in fully differentiated cells and during latency within incompletely differentiated myeloid cells. While multiple lytic-phase HCMV proteins neutralize steps along this pathway, none of them are expressed during latency. Here, we show that the latency-associated protein UL138 inhibits the cGAS/STING/TBK1 innate immunity pathway during transfections and infections, in fully differentiated cells and incompletely differentiated myeloid cells, and with loss of function and restoration of function approaches. UL138 inhibits the pathway downstream of STING but upstream of interferon regulatory factor 3 (IRF3) phosphorylation and NF-κB function and reduces the accumulation of interferon beta mRNA during both lytic and latent infections. IMPORTANCE While a cellular restriction versus viral countermeasure arms race between innate immunity and viral latency is expected, few examples have been documented. Our identification of the first HCMV latency protein that inactivates the cGAS/STING/TBK1 innate immune pathway opens the door to understanding how innate immunity, or its neutralization, impacts long-term persistence by HCMV and other latent viruses.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Clayton K. Mickelson
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
STING facilitates nuclear import of herpesvirus genome during infection. Proc Natl Acad Sci U S A 2021; 118:2108631118. [PMID: 34385328 DOI: 10.1073/pnas.2108631118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Once inside the host cell, DNA viruses must overcome the physical barrier posed by the nuclear envelope to establish a successful infection. The mechanism underlying this process remains unclear. Here, we show that the herpesvirus exploits the immune adaptor stimulator of interferon genes (STING) to facilitate nuclear import of the viral genome. Following the entry of the viral capsid into the cell, STING binds the viral capsid, mediates capsid docking to the nuclear pore complex via physical interaction, and subsequently enables accumulation of the viral genome in the nucleus. Silencing STING in human cytomegalovirus (HCMV)-susceptible cells inhibited nuclear import of the viral genome and reduced the ensuing viral gene expression. Overexpressing STING increased the host cell's susceptibility to HCMV and herpes simplex virus 1 by improving the nuclear delivery of viral DNA at the early stage of infection. These observations suggest that the proviral activity of STING is conserved and exploited by the herpesvirus family. Intriguingly, in monocytes, which act as latent reservoirs of HCMV, STING deficiency negatively regulated the establishment of HCMV latency and reactivation. Our findings identify STING as a proviral host factor regulating latency and reactivation of herpesviruses.
Collapse
|
19
|
Distinguishing Features of Anterior Uveitis Caused by Herpes Simplex Virus, Varicella-Zoster Virus, and Cytomegalovirus. Am J Ophthalmol 2021; 227:191-200. [PMID: 33773985 DOI: 10.1016/j.ajo.2021.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine distinguishing features of the clinical characteristics of anterior uveitis (AU) caused by herpes simplex virus (HSV), varicella-zoster virus (VZV), and cytomegalovirus (CMV). DESIGN Retrospective, multicenter case series. METHODS Consecutive patients with herpetic AU examined at 11 tertiary centers in Japan between January 2012 and December 2017 and who were followed for ≥3 months were evaluated. Diagnosis was made by polymerase chain reaction (PCR) for HSV, VZV, or CMV in the aqueous humor, or classical signs of herpes zoster ophthalmicus. RESULTS This study enrolled 259 herpetic AU patients, including PCR-proven HSV-AU (30 patients), VZV-AU (50), and CMV-AU (147), and herpes zoster ophthalmicus (32). All HSV-AU and VZV-AU patients were unilateral, while 3% of CMV-AU patients were bilateral. Most HSV-AU and VZV-AU patients were sudden onset with an acute clinical course, while CMV-AU had a more insidious onset and chronic course. There were no significant differences for all surveyed symptoms, signs, and complications between HSV-AU and VZV-AU. However, significant differences were detected for many items between CMV-AU and the other two herpetic AU types. Ocular hyperemia and pain, blurring of vision, ciliary injection, medium-to-large keratic precipitates (KPs), cells and flare in the anterior chamber, and posterior synechia significantly more often occurred in HSV-AU and VZV-AU vs CMV-AU. In contrast, small KPs, coin-shaped KPs, diffuse iris atrophy, elevated intraocular pressure, and glaucoma surgery were significantly more frequent in CMV-AU vs HSV-AU and VZV-AU. CONCLUSION This multicenter, retrospective study identified distinguishing features of HSV-AU, VZV-AU, and CMV-AU.
Collapse
|
20
|
Public and private human T-cell clones respond differentially to HCMV antigen when boosted by CD3 copotentiation. Blood Adv 2021; 4:5343-5356. [PMID: 33125463 DOI: 10.1182/bloodadvances.2020002255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(-) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.
Collapse
|
21
|
Epigenetic reprogramming of host and viral genes by Human Cytomegalovirus infection in Kasumi-3 myeloid progenitor cells at early times post-infection. J Virol 2021; 95:JVI.00183-21. [PMID: 33731453 PMCID: PMC10021080 DOI: 10.1128/jvi.00183-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27.Importance.HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.
Collapse
|
22
|
The Zinc Finger Antiviral Protein ZAP Restricts Human Cytomegalovirus and Selectively Binds and Destabilizes Viral UL4/ UL5 Transcripts. mBio 2021; 12:mBio.02683-20. [PMID: 33947766 PMCID: PMC8263000 DOI: 10.1128/mbio.02683-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon-stimulated gene products (ISGs) play a crucial role in early infection control. The ISG zinc finger CCCH-type antiviral protein 1 (ZAP/ZC3HAV1) antagonizes several RNA viruses by binding to CG-rich RNA sequences, whereas its effect on DNA viruses is less well understood. Here, we decipher the role of ZAP in the context of human cytomegalovirus (HCMV) infection, a β-herpesvirus that is associated with high morbidity in immunosuppressed individuals and newborns. We show that expression of the two major isoforms of ZAP, ZAP-S and ZAP-L, is induced during HCMV infection and that both negatively affect HCMV replication. Transcriptome and proteome analyses demonstrated that the expression of ZAP results in reduced viral mRNA and protein levels and decelerates the progression of HCMV infection. Metabolic RNA labeling combined with high-throughput sequencing (SLAM-seq) revealed that most of the gene expression changes late in infection result from the general attenuation of HCMV. Furthermore, at early stages of infection, ZAP restricts HCMV by destabilizing a distinct subset of viral mRNAs, particularly those from the previously uncharacterized UL4-UL6 HCMV gene locus. Through enhanced cross-linking immunoprecipitation and sequencing analysis (eCLIP-seq), we identified the transcripts expressed from this HCMV locus as the direct targets of ZAP. Moreover, our data show that ZAP preferentially recognizes not only CG, but also other cytosine-rich sequences, thereby expanding its target specificity. In summary, this report is the first to reveal direct targets of ZAP during HCMV infection, which strongly indicates that transcripts from the UL4-UL6 locus may play an important role for HCMV replication.IMPORTANCE Viral infections have a large impact on society, leading to major human and economic losses and even global instability. So far, many viral infections, including human cytomegalovirus (HCMV) infection, are treated with a small repertoire of drugs, often accompanied by the occurrence of resistant mutants. There is no licensed HCMV vaccine in sight to protect those most at risk, particularly immunocompromised individuals or pregnant women who might otherwise transmit the virus to the fetus. Thus, the identification of novel intervention strategies is urgently required. In this study, we show that ZAP decelerates the viral gene expression cascade, presumably by selectively handpicking a distinct set of viral transcripts for degradation. Our study illustrates the potent role of ZAP as an HCMV restriction factor and sheds light on a possible role for UL4 and/or UL5 early during infection, paving a new avenue for the exploration of potential targets for novel therapies.
Collapse
|
23
|
Elder EG, Krishna BA, Poole E, Perera M, Sinclair J. Regulation of host and viral promoters during human cytomegalovirus latency via US28 and CTCF. J Gen Virol 2021; 102:001609. [PMID: 34042564 PMCID: PMC8295918 DOI: 10.1099/jgv.0.001609] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Viral latency is an active process during which the host cell environment is optimized for latent carriage and reactivation. This requires control of both viral and host gene promoters and enhancers often at the level of chromatin, and several viruses co-opt the chromatin organiser CTCF to control gene expression during latency. While CTCF has a role in the latencies of alpha- and gamma-herpesviruses, it was not known whether CTCF played a role in the latency of the beta-herpesvirus human cytomegalovirus (HCMV). Here, we show that HCMV latency is associated with increased CTCF expression and CTCF binding to the viral major lytic promoter, the major immediate early promoter (MIEP). This increase in CTCF binding is dependent on the virally encoded G protein coupled receptor, US28, and contributes to suppression of MIEP-driven transcription, a hallmark of latency. Furthermore, we show that latency-associated upregulation of CTCF represses expression of the neutrophil chemoattractants S100A8 and S100A9 which we have previously shown are downregulated during HCMV latency. As with downregulation of the MIEP, CTCF binding to the enhancer region of S100A8/A9 drives their suppression, again in a US28-dependent manner. Taken together, we identify CTCF upregulation as an important mechanism for optimizing latent carriage of HCMV at both the levels of viral and cellular gene expression.
Collapse
Affiliation(s)
- Elizabeth G. Elder
- Department of Medicine, University of Cambridge, Cambridge, UK
- Present address: Public Health Agency of Sweden, Solna, Sweden
| | | | - Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marianne Perera
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Cell signaling and cytomegalovirus reactivation: what do Src family kinases have to do with it? Biochem Soc Trans 2021; 48:667-675. [PMID: 32311019 PMCID: PMC7200638 DOI: 10.1042/bst20191110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Primary infection with human cytomegalovirus (HCMV) is usually asymptomatic and leads to the establishment of lifelong latent infection. A major site of latency are the CD34+ hematopoietic progenitor cells. Importantly, normal cellular differentiation of CD34+ cells to a macrophage or dendritic cell phenotype is concomitant with viral reactivation. Molecular studies of HCMV latency have shown that the latent viral genome is associated with histone proteins and that specific post-translational modifications of these histones correlates with the transcriptional activity of the genome arguing that expression of key viral genes that dictate latency and reactivation are subject to the rules of the histone code hypothesis postulated for the regulation of eukaryotic gene expression. Finally, many studies now point to a key role for multiple signaling pathways to provide the cue for HCMV reactivation. The challenge now is to understand the complex interplay between cell identity, transcriptional regulation and cell signaling that occurs to promote reactivation and, additionally, how HCMV may further manipulate these events to support reactivation. Understanding how HCMV utilizes these pathways to drive HCMV reactivation will provide new insight into the mechanisms that govern viral and host gene expression and, potentially, illuminate new, host-directed, therapeutic opportunities to support our attempts to control this important medical pathogen of immune-compromised individuals.
Collapse
|
25
|
CD34 + Hematopoietic Progenitor Cell Subsets Exhibit Differential Ability To Maintain Human Cytomegalovirus Latency and Persistence. J Virol 2021; 95:JVI.02105-20. [PMID: 33177198 DOI: 10.1128/jvi.02105-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
In human cytomegalovirus (HCMV)-seropositive patients, CD34+ hematopoietic progenitor cells (HPCs) provide an important source of latent virus that reactivates following cellular differentiation into tissue macrophages. Multiple groups have used primary CD34+ HPCs to investigate mechanisms of viral latency. However, analyses of mechanisms of HCMV latency have been hampered by the genetic variability of CD34+ HPCs from different donors, availability of cells, and low frequency of reactivation. In addition, multiple progenitor cell types express surface CD34, and the frequencies of these populations differ depending on the tissue source of the cells and culture conditions in vitro In this study, we generated CD34+ progenitor cells from two different embryonic stem cell (ESC) lines, WA01 and WA09, to circumvent limitations associated with primary CD34+ HPCs. HCMV infection of CD34+ HPCs derived from either WA01 or WA09 ESCs supported HCMV latency and induced myelosuppression similar to infection of primary CD34+ HPCs. Analysis of HCMV-infected primary or ESC-derived CD34+ HPC subpopulations indicated that HCMV was able to establish latency and reactivate in CD38+ CD90+ and CD38+/low CD90- HPCs but persistently infected CD38- CD90+ cells to produce infectious virus. These results indicate that ESC-derived CD34+ HPCs can be used as a model for HCMV latency and that the virus either latently or persistently infects specific subpopulations of CD34+ cells.IMPORTANCE Human cytomegalovirus infection is associated with severe disease in transplant patients and understanding how latency and reactivation occur in stem cell populations is essential to understand disease. CD34+ hematopoietic progenitor cells (HPCs) are a critical viral reservoir; however, these cells are a heterogeneous pool with donor-to-donor variation in functional, genetic, and phenotypic characteristics. We generated a novel system using embryonic stem cell lines to model HCMV latency and reactivation in HPCs with a consistent cellular background. Our study defined three key stem cell subsets with differentially regulated latent and replicative states, which provide cellular candidates for isolation and treatment of transplant-mediated disease. This work provides a direction toward developing strategies to control the switch between latency and reactivation.
Collapse
|
26
|
Peppenelli M, Buehler J, Goodrum F. Human Hematopoietic Long-Term Culture (hLTC) for Human Cytomegalovirus Latency and Reactivation. Methods Mol Biol 2021; 2244:83-101. [PMID: 33555583 PMCID: PMC11079795 DOI: 10.1007/978-1-0716-1111-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Of the many research challenges posed by the study of human cytomegalovirus (HCMV) latency, one of the most notable is the requirement for the use of primary hematopoietic cell culture. Culturing hematopoietic progenitor subpopulations requires that consideration be given to maintaining their physiological relevance. We describe a long-standing primary CD34+ hematopoietic progenitor cell (HPC) system as an in vitro model to study HCMV latent infection. Key aspects of the model include infection of primary human CD34+ HPCs prior to ex vivo expansion, a long-term culture with a stromal cell support designed to maintain the ability of stem cells to support hematopoietic reconstitution, and an assay to quantify infectious centers produced prior to and following a reactivation stimulus. Importantly, this system has been used to identify a number of viral determinants of latency or reactivation and findings have been recapitulated in vivo using a humanized mouse model for HCMV latency. Therefore, this system offers a powerful approach to defining virus-host interactions and mechanisms important for HCMV latency and reactivation.
Collapse
Affiliation(s)
| | - Jason Buehler
- Department of Immunobiology, BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| | - Felicia Goodrum
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
27
|
Poole E, Groves I, Jackson S, Wills M, Sinclair J. Using Primary Human Cells to Analyze Human Cytomegalovirus Biology. Methods Mol Biol 2021; 2244:51-81. [PMID: 33555582 DOI: 10.1007/978-1-0716-1111-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The extensive tropism of human cytomegalovirus (HCMV) results in the productive infection of multiple cell types within the human host. However, infection of other cell types, such as undifferentiated cells of the myeloid lineage, give rise to nonpermissive infections. This aspect has been used experimentally to model latent infection, which is known to be established in the pluripotent CD34+ hematopoietic progenitor cell population resident in the bone marrow in vivo. The absence of a tractable animal model for studies of HCMV has resulted in a number of laboratories employing experimental infection of cells in vitro to simulate both HCMV lytic and latent infection. Herein, we will focus on the techniques used in our laboratory for the isolation and use of primary cells to study aspects of HCMV latency, reactivation, and lytic infection.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK.
| | - Ian Groves
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Sarah Jackson
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Mark Wills
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - John Sinclair
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Regulation of the MIE Locus During HCMV Latency and Reactivation. Pathogens 2020; 9:pathogens9110869. [PMID: 33113934 PMCID: PMC7690695 DOI: 10.3390/pathogens9110869] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.
Collapse
|
29
|
Chinta P, Garcia EC, Tajuddin KH, Akhidenor N, Davis A, Faure L, Spencer JV. Control of Cytokines in Latent Cytomegalovirus Infection. Pathogens 2020; 9:pathogens9100858. [PMID: 33096622 PMCID: PMC7589642 DOI: 10.3390/pathogens9100858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) has evolved a number of mechanisms for long-term co-existence within its host. HCMV infects a wide range of cell types, including fibroblasts, epithelial cells, monocytes, macrophages, dendritic cells, and myeloid progenitor cells. Lytic infection, with the production of infectious progeny virions, occurs in differentiated cell types, while undifferentiated myeloid precursor cells are the primary site of latent infection. The outcome of HCMV infection depends partly on the cell type and differentiation state but is also influenced by the composition of the immune environment. In this review, we discuss the role of early interactions between HCMV and the host immune system, particularly cytokine and chemokine networks, that facilitate the establishment of lifelong latent infection. A better understanding of these cytokine signaling pathways could lead to novel therapeutic targets that might prevent latency or eradicate latently infected cells.
Collapse
|
30
|
New Insights Into the Molecular Mechanisms and Immune Control of Cytomegalovirus Reactivation. Transplantation 2020; 104:e118-e124. [PMID: 31996662 PMCID: PMC7790173 DOI: 10.1097/tp.0000000000003138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) is a β-herpesvirus that establishes lifelong latency in infected hosts. Following transplantation of a latently infected organ, reactivation can occur and consists of a spectrum of clinically apparent syndromes from mild symptoms to tissue-invasive, resulting in both direct and indirect sequelae. Before the advent of effective antiviral agents, the primary treatment was reduction in immunosuppression (IS). While antiviral agents provide effective prophylaxis, there are several important caveats associated with their use, including drug toxicity and resistance. The traditional view attributes CMV reactivation and the ensuing clinical disease primarily to IS, either intrinsic to disease-related immune compromise or from the extrinsic administration of IS agents. However, previous data from both animal models and human subjects showed that inflammatory signals could induce upregulation of latent viral gene expression. New data demonstrate that ischemia/reperfusion is necessary and sufficient to induce CMV reactivation following murine transplantation of a latently infected graft. In this article, we review a growing body of evidence that suggests that reactivation of both human CMV and murine CMV is first triggered by molecular events that activate CMV gene expression and lytic infection and viral dissemination are then facilitated by IS. The initial activation of viral gene expression may be mediated by oxidative stress, DNA damage, or inflammatory cytokines, and these factors may act synergistically. New therapeutic approaches are needed to capture this complex array of targets.
Collapse
|
31
|
Chaturvedi S, Klein J, Vardi N, Bolovan-Fritts C, Wolf M, Du K, Mlera L, Calvert M, Moorman NJ, Goodrum F, Huang B, Weinberger LS. A molecular mechanism for probabilistic bet hedging and its role in viral latency. Proc Natl Acad Sci U S A 2020; 117:17240-17248. [PMID: 32632017 PMCID: PMC7382263 DOI: 10.1073/pnas.1914430117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms underlying bet hedging remain unclear. Here, we report that large variability in protein abundance within individual herpesvirus virion particles enables probabilistic bet hedging between viral replication and latency. Superresolution imaging of individual virions of the human herpesvirus cytomegalovirus (CMV) showed that virion-to-virion levels of pp71 tegument protein-the major viral transactivator protein-exhibit extreme variability. This super-Poissonian tegument variability promoted alternate replicative strategies: high virion pp71 levels enhance viral replicative fitness but, strikingly, impede silencing, whereas low virion pp71 levels reduce fitness but promote silencing. Overall, the results indicate that stochastic tegument packaging provides a mechanism enabling probabilistic bet hedging between viral replication and latency.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Jonathan Klein
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Noam Vardi
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Cynthia Bolovan-Fritts
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Marie Wolf
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Kelvin Du
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Luwanika Mlera
- Department of Cell & Molecular Medicine, University of Arizona, Tucson, AZ 85721
| | - Meredith Calvert
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Felicia Goodrum
- Department of Cell & Molecular Medicine, University of Arizona, Tucson, AZ 85721
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Leor S Weinberger
- Gladstone Institute for Virology and Immunology, Gladstone|University of California, San Francisco Center for Cell Circuitry, San Francisco, CA 94158;
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| |
Collapse
|
32
|
Poole E, Sinclair J. Understanding HCMV Latency Using Unbiased Proteomic Analyses. Pathogens 2020; 9:E590. [PMID: 32698381 PMCID: PMC7399836 DOI: 10.3390/pathogens9070590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) establishes either a latent (non-productive) or lytic (productive) infection depending upon cell type, cytokine milieu and the differentiation status of the infected cell. Undifferentiated cells, such as precursor cells of the myeloid lineage, support a latent infection whereas terminally differentiated cells, such as monocytes or dendritic cells are an environment conducive to reactivation and support a lytic infection. The mechanisms which regulate HCMV in either a latent or lytic infection have been the focus of intense investigation with a view to developing novel treatments for HCMV-associated disease which can have a heavy clinical burden after reactivation or primary infection in, especially, the immune compromised. To this end, a number of studies have been carried out in an unbiased manner to address global changes occurring within the latently infected cell to address the molecular changes associated with HCMV latency. In this review, we will concentrate on the proteomic analyses which have been carried out in undifferentiated myeloid cells which either stably express specific viral latency associated genes in isolation or on cells which have been latently infected with virus.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, box 157, Level 5 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | | |
Collapse
|
33
|
Mlera L, Moy M, Maness K, Tran LN, Goodrum FD. The Role of the Human Cytomegalovirus UL133-UL138 Gene Locus in Latency and Reactivation. Viruses 2020; 12:E714. [PMID: 32630219 PMCID: PMC7411667 DOI: 10.3390/v12070714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency, the means by which the virus persists indefinitely in an infected individual, is a major frontier of current research efforts in the field. Towards developing a comprehensive understanding of HCMV latency and its reactivation from latency, viral determinants of latency and reactivation and their host interactions that govern the latent state and reactivation from latency have been identified. The polycistronic UL133-UL138 locus encodes determinants of both latency and reactivation. In this review, we survey the model systems used to investigate latency and new findings from these systems. Particular focus is given to the roles of the UL133, UL135, UL136 and UL138 proteins in regulating viral latency and how their known host interactions contribute to regulating host signaling pathways towards the establishment of or exit from latency. Understanding the mechanisms underlying viral latency and reactivation is important in developing strategies to block reactivation and prevent CMV disease in immunocompromised individuals, such as transplant patients.
Collapse
Affiliation(s)
- Luwanika Mlera
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
| | - Melissa Moy
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
| | - Kristen Maness
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Linh N. Tran
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Felicia D. Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| |
Collapse
|
34
|
Liu XF, Swaminathan S, Yan S, Engelmann F, Abbott DA, VanOsdol LA, Heald-Sargent T, Qiu L, Chen Q, Iovane A, Zhang Z, Abecassis MM. A novel murine model of differentiation-mediated cytomegalovirus reactivation from latently infected bone marrow haematopoietic cells. J Gen Virol 2020; 100:1680-1694. [PMID: 31647403 DOI: 10.1099/jgv.0.001327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD34+ myeloid lineage progenitor cells are an important reservoir of latent human cytomegalovirus (HCMV), and differentiation to macrophages or dendritic cells (DCs) is known to cause reactivation of latent virus. Due to its species-specificity, murine models have been used to study mouse CMV (MCMV) latency and reactivation in vivo. While previous studies have shown that MCMV genomic DNA can be detected in the bone marrow (BM) of latently infected mice, the identity of these cells has not been defined. Therefore, we sought to identify and enrich for cellular sites of MCMV latency in the BM haematopoietic system, and to explore the potential for establishing an in vitro model for reactivation of latent MCMV. We studied the kinetics and cellular characteristics of acute infection and establishment of latency in the BM of mice. We found that while MCMV can infect a broad range of haematopoietic BM cells (BMCs), latent virus is only detectable in haematopoietic stem cells (HSCs), myeloid progenitor cells, monocytes and DC-enriched cell subsets. Using three separate approaches, MCMV reactivation was detected in association with differentiation into DC-enriched BMCs cultured in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) followed by lipopolysaccharide (LPS) treatment. In summary, we have defined the kinetics and cellular profile of MCMV infection followed by the natural establishment of latency in vivo in the mouse BM haematopoietic system, including the haematopoietic phenotypes of cells that are permissive to acute infection, establish and harbour detectable latent virus, and can be stimulated to reactivate following DC enrichment and differentiation, followed by treatment with LPS.
Collapse
Affiliation(s)
- Xue-Feng Liu
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Suchitra Swaminathan
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shixian Yan
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Flora Engelmann
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Darryl Adelaide Abbott
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luke Andrew VanOsdol
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor Heald-Sargent
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Longhui Qiu
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andre Iovane
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zheng Zhang
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael M Abecassis
- Comprehensive Transplant Center, Departments of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Poole E, Neves TC, Oliveira MT, Sinclair J, da Silva MCC. Human Cytomegalovirus Interleukin 10 Homologs: Facing the Immune System. Front Cell Infect Microbiol 2020; 10:245. [PMID: 32582563 PMCID: PMC7296156 DOI: 10.3389/fcimb.2020.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Human Cytomegalovirus (HCMV) can cause a variety of health disorders that can lead to death in immunocompromised individuals and neonates. The HCMV lifecycle comprises both a lytic (productive) and a latent (non-productive) phase. HCMV lytic infection occurs in a wide range of terminally differentiated cell types. HCMV latency has been less well-studied, but one characterized site of latency is in precursor cells of the myeloid lineage. All known viral genes are expressed during a lytic infection and a subset of these are also transcribed during latency. The UL111A gene which encodes the viral IL-10, a homolog of the human IL-10, is one of these genes. During infection, different transcript isoforms of UL111A are generated by alternative splicing. The most studied of the UL111A isoforms are cmvIL-10 (also termed the "A" transcript) and LAcmvIL-10 (also termed the "B" transcript), the latter being a well-characterized latency associated transcript. Both isoforms can downregulate MHC class II, however they differ in a number of other immunomodulatory properties, such as the ability to bind the IL10 receptor and induce signaling through STAT3. There are also a number of other isoforms which have been identified which are expressed by differential splicing during lytic infection termed C, D, E, F, and G, although these have been less extensively studied. HCMV uses the viral IL-10 proteins to manipulate the immune system during lytic and latent phases of infection. In this review, we will discuss the literature on the viral IL-10 transcripts identified to date, their encoded proteins and the structures of these proteins as well as the functional properties of all the different isoforms of viral IL-10.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tainan Cerqueira Neves
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Martha Trindade Oliveira
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
36
|
Where do we Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020; 8:microorganisms8050685. [PMID: 32397070 PMCID: PMC7284540 DOI: 10.3390/microorganisms8050685] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance. Here, we review past and current literature that has greatly advanced our understanding of the biology and genetics of HCMV, stressing the urgent need for innovative and safe anti-HCMV therapies and effective vaccines to treat and prevent HCMV infections, particularly in vulnerable populations.
Collapse
|
37
|
Human Cytomegalovirus Congenital (cCMV) Infection Following Primary and Nonprimary Maternal Infection: Perspectives of Prevention through Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020194. [PMID: 32340180 PMCID: PMC7349293 DOI: 10.3390/vaccines8020194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/26/2023] Open
Abstract
Congenital cytomegalovirus (cCMV) might occur as a result of the human cytomegalovirus (HCMV) primary (PI) or nonprimary infection (NPI) in pregnant women. Immune correlates of protection against cCMV have been partly identified only for PI. Following either PI or NPI, HCMV strains undergo latency. From a diagnostic standpoint, while the serological criteria for the diagnosis of PI are well-established, those for the diagnosis of NPI are still incomplete. Thus far, a recombinant gB subunit vaccine has provided the best results in terms of partial protection. This partial efficacy was hypothetically attributed to the post-fusion instead of the pre-fusion conformation of the gB present in the vaccine. Future efforts should be addressed to verify whether a new recombinant gB pre-fusion vaccine would provide better results in terms of prevention of both PI and NPI. It is still a matter of debate whether human hyperimmune globulin are able to protect from HCMV vertical transmission. In conclusion, the development of an HCMV vaccine that would prevent a significant portion of PI would be a major step forward in the development of a vaccine for both PI and NPI.
Collapse
|
38
|
Forte E, Zhang Z, Thorp EB, Hummel M. Cytomegalovirus Latency and Reactivation: An Intricate Interplay With the Host Immune Response. Front Cell Infect Microbiol 2020; 10:130. [PMID: 32296651 PMCID: PMC7136410 DOI: 10.3389/fcimb.2020.00130] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
CMV is an ancient herpesvirus that has co-evolved with its host over millions of years. The 236 kbp genome encodes at least 165 genes, four non-coding RNAs and 14 miRNAs. Of the protein-coding genes, 43-44 are core replication genes common to all herpesviruses, while ~30 are unique to betaherpesviruses. Many CMV genes are involved in evading detection by the host immune response, and others have roles in cell tropism. CMV replicates systemically, and thus, has adapted to various biological niches within the host. Different biological niches may place competing demands on the virus, such that genes that are favorable in some contexts are unfavorable in others. The outcome of infection is dependent on the cell type. In fibroblasts, the virus replicates lytically to produce infectious virus. In other cell types, such as myeloid progenitor cells, there is an initial burst of lytic gene expression, which is subsequently silenced through epigenetic repression, leading to establishment of latency. Latently infected monocytes disseminate the virus to various organs. Latency is established through cell type specific mechanisms of transcriptional silencing. In contrast, reactivation is triggered through pathways activated by inflammation, infection, and injury that are common to many cell types, as well as differentiation of myeloid cells to dendritic cells. Thus, CMV has evolved a complex relationship with the host immune response, in which it exploits cell type specific mechanisms of gene regulation to establish latency and to disseminate infection systemically, and also uses the inflammatory response to infection as an early warning system which allows the virus to escape from situations in which its survival is threatened, either by cellular damage or infection of the host with another pathogen. Spontaneous reactivation induced by cellular aging/damage may explain why extensive expression of lytic genes has been observed in recent studies using highly sensitive transcriptome analyses of cells from latently infected individuals. Recent studies with animal models highlight the potential for harnessing the host immune response to blunt cellular injury induced by organ transplantation, and thus, prevent reactivation of CMV and its sequelae.
Collapse
Affiliation(s)
- Eleonora Forte
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zheng Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Edward B. Thorp
- Department of Pathology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mary Hummel
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
39
|
Zhang L, Yu J, Liu Z. MicroRNAs expressed by human cytomegalovirus. Virol J 2020; 17:34. [PMID: 32164742 PMCID: PMC7069213 DOI: 10.1186/s12985-020-1296-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs about 22 nucleotides in length, which play an important role in gene regulation of both eukaryotes and viruses. They can promote RNA cleavage and repress translation via base-pairing with complementary sequences within mRNA molecules. Main body Human cytomegalovirus (HCMV) encodes a large number of miRNAs that regulate transcriptions of both host cells and themselves to favor viral infection and inhibit the host’s immune response. To date, ~ 26 mature HCMV miRNAs have been identified. Nevertheless, their roles in viral infection are ambiguous, and the mechanisms have not been fully revealed. Therefore, we discuss the methods used in HCMV miRNA research and summarize the important roles of HCMV miRNAs and their potential mechanisms in infection. Conclusions To study the miRNAs encoded by viruses and their roles in viral replication, expression, and infection will not only contribute to the planning of effective antiviral therapies, but also provide new molecular targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Lichen Zhang
- Clinical School, Weifang Medical University, Weifang, 261053, China
| | - Jiaqi Yu
- Clinical School, Weifang Medical University, Weifang, 261053, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
40
|
Abstract
: The use of cytomegalovirus (CMV) as a vaccine vector to express antigens against multiple infectious diseases, including simian immunodeficiency virus, Ebola virus, plasmodium, and mycobacterium tuberculosis, in rhesus macaques has generated extraordinary levels of protective immunity against subsequent pathogenic challenge. Moreover, the mechanisms of immune protection have altered paradigms about viral vector-mediated immunity against ectopically expressed vaccine antigens. Further optimization of CMV-vectored vaccines, particularly as this approach moves to human clinical trials will be augmented by a more complete understanding of how CMV engenders mechanisms of immune protection. This review summarizes the particulars of the specific CMV vaccine vector that has been used to date (rhesus CMV strain 68-1) in relation to CMV natural history.
Collapse
|
41
|
Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV. Viruses 2019; 12:v12010035. [PMID: 31905677 PMCID: PMC7019358 DOI: 10.3390/v12010035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects more than 70% of the human population worldwide. HCMV is responsible for high morbidity and mortality in immunocompromised patients and remains the leading viral cause of congenital birth defects. Despite considerable efforts in vaccine and therapeutic development, HCMV infection still represents an unmet clinical need and a life-threatening disease in immunocompromised individuals and newborns. Immune repertoire interrogation of HCMV seropositive patients allowed the identification of several potential antigens for vaccine design. However, recent HCMV vaccine clinical trials did not lead to a satisfactory outcome in term of efficacy. Therefore, combining antigens with orthogonal technologies to further increase the induction of neutralizing antibodies could improve the likelihood of a vaccine to reach protective efficacy in humans. Indeed, presentation of multiple copies of an antigen in a repetitive array is known to drive a more robust humoral immune response than its soluble counterpart. Virus-like particles (VLPs) and nanoparticles (NPs) are powerful platforms for multivalent antigen presentation. Several self-assembling proteins have been successfully used as scaffolds to present complex glycoprotein antigens on their surface. In this review, we describe some key aspects of the immune response to HCMV and discuss the scaffolds that were successfully used to increase vaccine efficacy against viruses with unmet medical need.
Collapse
|
42
|
Mikell I, Crawford LB, Hancock MH, Mitchell J, Buehler J, Goodrum F, Nelson JA. HCMV miR-US22 down-regulation of EGR-1 regulates CD34+ hematopoietic progenitor cell proliferation and viral reactivation. PLoS Pathog 2019; 15:e1007854. [PMID: 31725809 PMCID: PMC6855405 DOI: 10.1371/journal.ppat.1007854] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/11/2019] [Indexed: 11/25/2022] Open
Abstract
Reactivation of latent Human Cytomegalovirus (HCMV) in CD34+ hematopoietic progenitor cells (HPCs) is closely linked to hematopoiesis. Viral latency requires maintenance of the progenitor cell quiescence, while reactivation initiates following mobilization of HPCs to the periphery and differentiation into CD14+ macrophages. Early growth response gene 1 (EGR-1) is a transcription factor activated by Epidermal growth factor receptor (EGFR) signaling that is essential for the maintenance of CD34+ HPC self-renewal in the bone marrow niche. Down-regulation of EGR-1 results in mobilization and differentiation of CD34+ HPC from the bone marrow to the periphery. In the current study we demonstrate that the transcription factor EGR-1 is directly targeted for down-regulation by HCMV miR-US22 that results in decreased proliferation of CD34+ HPCs and a decrease in total hematopoietic colony formation. We also show that an HCMV miR-US22 mutant fails to reactivate in CD34+ HPCs, indicating that expression of EGR-1 inhibits viral reactivation. Since EGR-1 promotes CD34+ HPC self-renewal in the bone marrow niche, HCMV miR-US22 down-regulation of EGR-1 is a necessary step to block HPC self-renewal and proliferation to induce a cellular differentiation pathway necessary to promote reactivation of virus.
Collapse
Affiliation(s)
- Iliyana Mikell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jennifer Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jason Buehler
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
43
|
Lee JH, Pasquarella JR, Kalejta RF. Cell Line Models for Human Cytomegalovirus Latency Faithfully Mimic Viral Entry by Macropinocytosis and Endocytosis. J Virol 2019; 93:e01021-19. [PMID: 31391271 PMCID: PMC6803280 DOI: 10.1128/jvi.01021-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) enters primary CD34+ hematopoietic progenitor cells by macropinocytosis, where it establishes latency in part because its tegument-transactivating protein, pp71, remains associated with endosomes and is therefore unable to initiate productive, lytic replication. Here we show that multiple HCMV strains also enter cell line models used to study latency by macropinocytosis and endocytosis. In all latency models tested, tegument-delivered pp71 was found to be colocalized with endosomal markers and was not associated with the seven other cytoplasmic localization markers tested. Like the capsid-associated pp150 tegument protein, we initially detected capsid proteins in association with endosomes but later detected them in the nucleus. Inhibitors of macropinocytosis and endocytosis reduced latent viral gene expression and precluded reactivation. Importantly, we utilized electron microscopy to observe entry by macropinocytosis and endocytosis, providing additional visual corroboration of the findings of our functional studies. Our demonstration that HCMV enters cell line models for latency in a manner indistinguishable from that of its entry into primary cells illustrates the utility of these cell lines for probing the mechanisms, host genetics, and small-molecule-mediated inhibition of HCMV entry into the cell types where it establishes latency.IMPORTANCE Primary cells cultured in vitro currently provide the highest available relevance for examining molecular and genetic requirements for the establishment, maintenance, and reactivation of HCMV latency. However, their expense, heterogeneity, and intransigence to both long-term culture and molecular or genetic modification create rigor and reproducibility challenges for HCMV latency studies. There are several cell line models for latency not obstructed by deficiencies inherent in primary cells. However, many researchers view cell line studies of latency to be physiologically irrelevant because of the perception that these models display numerous and significant differences from primary cells. Here, we show that the very first step in a latent HCMV infection, entry of the virus into cells, occurs in cell line models in a manner indistinguishable from that in which it occurs in primary CD34+ hematopoietic progenitor cells. Our data argue that experimental HCMV latency is much more similar than it is different in cell lines and primary cells.
Collapse
Affiliation(s)
- Jeong-Hee Lee
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph R Pasquarella
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
44
|
Gelbmann CB, Kalejta RF. The Golgi sorting motifs of human cytomegalovirus UL138 are not required for latency maintenance. Virus Res 2019; 270:197646. [PMID: 31260705 PMCID: PMC6697590 DOI: 10.1016/j.virusres.2019.197646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Human cytomegalovirus (HCMV) establishes latency within incompletely differentiated cells of the myeloid lineage. The viral protein UL138 participates in establishing and maintaining this latent state. UL138 has multiple functions during latency that include silencing productive phase viral gene transcription and modulating intracellular protein trafficking. Trafficking and subsequent downregulation of the multidrug resistance-associated protein 1 (MRP1) by UL138 is mediated by one of four Golgi sorting motifs within UL138. Here we investigate whether any of the Golgi sorting motifs of UL138 are required for the establishment and/or maintenance of HCMV latency in model cell systems in vitro. We determined that a mutant UL138 protein lacking an acidic cluster dileucine sorting motif unable to downregulate MRP1, as well as another mutant lacking all four Golgi sorting motifs still silenced viral immediate early (IE) gene expression and prevented progeny virion formation during latency. We conclude that the Golgi sorting motifs are not required for latency establishment or maintenance in model cell systems in vitro.
Collapse
Affiliation(s)
- Christopher B Gelbmann
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
45
|
Dupont L, Du L, Poulter M, Choi S, McIntosh M, Reeves MB. Src family kinase activity drives cytomegalovirus reactivation by recruiting MOZ histone acetyltransferase activity to the viral promoter. J Biol Chem 2019; 294:12901-12910. [PMID: 31273084 PMCID: PMC6721939 DOI: 10.1074/jbc.ra119.009667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/29/2019] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency and reactivation rely on a complex interplay between cellular differentiation, cell signaling pathways, and viral gene functions. HCMV reactivation in dendritic cells (DCs) is triggered by IL-6 and extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase signaling. However, activation of the same pathway fails to reactivate HCMV in other myeloid cell types, despite this signaling axis being active in those cells. We hypothesized that IL-6-induced ERK activation initiates the changes in chromatin structure required for viral reactivation but that a concomitant signal is necessary to complete the changes in chromatin structure required for gene expression to occur. Using a differential phosphoproteomics approach in cells that do or do not support IL-6-induced viral reactivation, we identified the concomitant activation of an Src family kinase (SFK), hematopoietic cell kinase (HCK), specifically in DCs in response to IL-6. Pharmacological and genetic inhibition of HCK activity indicated that HCK is required for HCMV reactivation. Furthermore, the HCK/SFK activity was linked to recruitment of the monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase to the viral promoter, which promoted histone acetylation after ERK-mediated histone phosphorylation. Importantly, pharmacological and genetic inhibition of MOZ activity prevented reactivation. These results provide an explanation for the selective activation of viral gene expression in DCs by IL-6, dependent on concomitant SFK and ERK signaling. They also reveal a previously unreported role for SFK activity in the regulation of chromatin structure at promoters in eukaryotic cells via MOZ histone acetyltransferase activity.
Collapse
Affiliation(s)
- Liane Dupont
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Lily Du
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Madeleine Poulter
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Stephanie Choi
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Megan McIntosh
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, Royal Free Hospital, University College London, Hampstead, London NW3 2PF, United Kingdom, Supported by Wellcome Trust Grant WT/204870/Z/16/Z. To whom correspondence should be addressed. Tel.:
44-203-1086783; E-mail:
| |
Collapse
|
46
|
Crawford LB, Caposio P, Kreklywich C, Pham AH, Hancock MH, Jones TA, Smith PP, Yurochko AD, Nelson JA, Streblow DN. Human Cytomegalovirus US28 Ligand Binding Activity Is Required for Latency in CD34 + Hematopoietic Progenitor Cells and Humanized NSG Mice. mBio 2019; 10:e01889-19. [PMID: 31431555 PMCID: PMC6703429 DOI: 10.1128/mbio.01889-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection of CD34+ hematopoietic progenitor cells (CD34+ HPCs) provides a critical reservoir of virus in stem cell transplant patients, and viral reactivation remains a significant cause of morbidity and mortality. The HCMV chemokine receptor US28 is implicated in the regulation of viral latency and reactivation. To explore the role of US28 signaling in latency and reactivation, we analyzed protein tyrosine kinase signaling in CD34+ HPCs expressing US28. US28-ligand signaling in CD34+ HPCs induced changes in key regulators of cellular activation and differentiation. In vitro latency and reactivation assays utilizing CD34+ HPCs indicated that US28 was required for viral reactivation but not latency establishment or maintenance. Similarly, humanized NSG mice (huNSG) infected with TB40E-GFP-US28stop failed to reactivate upon treatment with granulocyte-colony-stimulating factor, but viral genome levels were maintained. Interestingly, HCMV-mediated changes in hematopoiesis during latency in vivo and in vitro was also dependent upon US28, as US28 directly promoted differentiation toward the myeloid lineage. To determine whether US28 constitutive activity and/or ligand-binding activity were required for latency and reactivation, we infected both huNSG mice and CD34+ HPCs in vitro with HCMV TB40E-GFP containing the US28-R129A mutation (no CA) or Y16F mutation (no ligand binding). TB40E-GFP-US28-R129A was maintained during latency and exhibited normal reactivation kinetics. In contrast, TB40E-GFP-US28-Y16F exhibited high levels of viral genome during latency and reactivation, indicating that the virus did not establish latency. These data indicate that US28 is necessary for viral reactivation and ligand binding activity is required for viral latency, highlighting the complex role of US28 during HCMV latency and reactivation.IMPORTANCE Human cytomegalovirus (HCMV) can establish latency following infection of CD34+ hematopoietic progenitor cells (HPCs), and reactivation from latency is a significant cause of viral disease and accelerated graft failure in bone marrow and solid-organ transplant patients. The precise molecular mechanisms of HCMV infection in HPCs are not well defined; however, select viral gene products are known to regulate aspects of latency and reactivation. The HCMV-encoded chemokine receptor US28, which binds multiple CC chemokines as well as CX3CR1, is expressed both during latent and lytic phases of the virus life cycle and plays a role in latency and reactivation. However, the specific timing of US28 expression and the role of ligand binding in these processes are not well defined. In this report, we determined that US28 is required for reactivation but not for maintaining latency. However, when present during latency, US28 ligand binding activity is critical to maintaining the virus in a quiescent state. We attribute the regulation of both latency and reactivation to the role of US28 in promoting myeloid lineage cell differentiation. These data highlight the dynamic and multifunctional nature of US28 during HCMV latency and reactivation.
Collapse
Affiliation(s)
- Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Andrew H Pham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Taylor A Jones
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Patricia P Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University at Shreveport, Shreveport, Louisiana, USA
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
47
|
Human cytomegalovirus glycoprotein B variants affect viral entry, cell fusion, and genome stability. Proc Natl Acad Sci U S A 2019; 116:18021-18030. [PMID: 31427511 DOI: 10.1073/pnas.1907447116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human cytomegalovirus (HCMV), like many other DNA viruses, can cause genome instability and activate a DNA damage response (DDR). Activation of ataxia-telangiectasia mutated (ATM), a kinase activated by DNA breaks, is a hallmark of the HCMV-induced DDR. Here we investigated the activation of caspase-2, an initiator caspase activated in response to DNA damage and supernumerary centrosomes. Of 7 HCMV strains tested, only strain AD169 activated caspase-2 in infected fibroblasts. Treatment with an ATM inhibitor or inactivation of PIDD or RAIDD inhibited caspase-2 activation, indicating that caspase-2 was activated by the PIDDosome. A set of chimeric HCMV strains was used to identify the genetic basis of this phenotype. Surprisingly, we found a single nucleotide polymorphism within the AD169 UL55 ORF, resulting in a D275Y amino acid exchange within glycoprotein B (gB), to be responsible for caspase-2 activation. As gB is an envelope glycoprotein required for fusion with host cell membranes, we tested whether gB(275Y) altered viral entry into fibroblasts. While entry of AD169 expressing gB(275D) proceeded slowly and could be blocked by a macropinocytosis inhibitor, entry of wild-type AD169 expressing gB(275Y) proceeded more rapidly, presumably by envelope fusion with the plasma membrane. Moreover, gB(275Y) caused the formation of syncytia with numerous centrosomes, suggesting that cell fusion triggered caspase-2 activation. These results suggest that gB variants with increased fusogenicity accelerate viral entry, cause cell fusion, and thereby compromise genome stability. They further suggest the ATM-PIDDosome-caspase-2 signaling axis alerts the cell of potentially dangerous cell fusion.
Collapse
|
48
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
49
|
Human Cytomegalovirus Enters the Primary CD34 + Hematopoietic Progenitor Cells Where It Establishes Latency by Macropinocytosis. J Virol 2019; 93:JVI.00452-19. [PMID: 31118259 DOI: 10.1128/jvi.00452-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022] Open
Abstract
Viral entry is targeted by immunological and pharmacological measures to inhibit viral infection. Human cytomegalovirus (HCMV) entry into cells where it initiates productive infection has been well studied, but its entry into cell types where it establishes latency has not. Therefore, we examined the entry of HCMV into CD34+ hematopoietic progenitor cells where the virus establishes latency. We determined that HCMV enters into the primary CD34+ hematopoietic progenitor cells in which it establishes latency by macropinocytosis. The capsid-associated tegument protein pp150 is released from maturing endosomes and migrates to the nucleus, whereas other tegument proteins, including pp71, remain endosome associated in the cytoplasm. The inhibition of macropinocytosis impairs entry, thereby diminishing latency-associated transcription and reducing viral reactivation. We conclude that HCMV virions enter CD34+ cells by macropinocytosis but fail to fully uncoat or disassemble their tegument layers, leading to the establishment of latency.IMPORTANCE Virion entry is targeted by antivirals and natural immunity to prevent infection. Natural preexisting immunity is ineffective at clearing an HCMV infection, and an incomplete understanding of the viral glycoproteins and cellular receptors that mediate entry has hampered inhibitor development. Nevertheless, HCMV entry remains a viable drug target. Our characterization here of HCMV entry into primary CD34+ hematopoietic progenitor cells through macropinocytosis and our comparison to viral entry into fibroblast cells highlight virion uncoating and tegument disassembly as a divergence point between productive and latent infections. Further definition of tegument disassembly may permit the development of interventions to inhibit this process to block productive infection or to trigger it in incompletely differentiated cells to prevent the seeding of the latent reservoirs that make HCMV infections incurable.
Collapse
|
50
|
Generation, maintenance and tissue distribution of T cell responses to human cytomegalovirus in lytic and latent infection. Med Microbiol Immunol 2019; 208:375-389. [PMID: 30895366 PMCID: PMC6647459 DOI: 10.1007/s00430-019-00598-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Understanding how the T cell memory response directed towards human cytomegalovirus (HCMV) develops and changes over time while the virus persists is important. Whilst HCMV primary infection and periodic reactivation is well controlled by T cell responses in healthy people, when the immune system is compromised such as post-transplantation, during pregnancy, or underdeveloped such as in new-born infants and children, CMV disease can be a significant problem. In older people, HCMV infection is associated with increased risk of mortality and despite overt disease rarely being seen there are increases in HCMV-DNA in urine of older people suggesting that there is a change in the efficacy of the T cell response following lifelong infection. Therefore, understanding whether phenomenon such as “memory inflation” of the immune response is occurring in humans and if this is detrimental to the overall health of individuals would enable the development of appropriate treatment strategies for the future. In this review, we present the evidence available from human studies regarding the development and maintenance of memory CD8 + and CD4 + T cell responses to HCMV. We conclude that there is only limited evidence supportive of “memory inflation” occurring in humans and that future studies need to investigate immune cells from a broad range of human tissue sites to fully understand the nature of HCMV T cell memory responses to lytic and latent infection.
Collapse
|