1
|
Wurtzel JGT, Lazar S, Askari S, Zhao X, Severa J, Ayombil F, Michael JV, Camire RM, McKenzie SE, Stalker TJ, Ma P, Goldfinger LE. Plasma growth factors maintain constitutive translation in platelets to regulate reactivity and thrombotic potential. Blood Adv 2024; 8:1550-1566. [PMID: 38163324 PMCID: PMC10982986 DOI: 10.1182/bloodadvances.2023011734] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Mechanisms of proteostasis in anucleate circulating platelets are unknown and may regulate platelet function. We investigated the hypothesis that plasma-borne growth factors/hormones (GFHs) maintain constitutive translation in circulating platelets to facilitate reactivity. Bio-orthogonal noncanonical amino acid tagging (BONCAT) coupled with liquid chromatography-tandem mass spectrometry analysis revealed constitutive translation of a broad-spectrum translatome in human platelets dependent upon plasma or GFH exposure, and in murine circulation. Freshly isolated platelets from plasma showed homeostatic activation of translation-initiation signaling pathways: phosphorylation of p38/ERK upstream kinases, essential intermediate MNK1/2, and effectors eIF4E/4E-BP1. Plasma starvation led to loss of pathway phosphorylation, but it was fully restored with 5-minute stimulation by plasma or GFHs. Cycloheximide or puromycin infusion suppressed ex vivo platelet GpIIb/IIIa activation and P-selectin exposure with low thrombin concentrations and low-to-saturating concentrations of adenosine 5'-diphosphate (ADP) or thromboxane analog but not convulxin. ADP-induced thromboxane generation was blunted by translation inhibition, and secondary-wave aggregation was inhibited in a thromboxane-dependent manner. Intravenously administered puromycin reduced injury-induced clot size in cremaster muscle arterioles, and delayed primary hemostasis after tail tip amputation but did not delay neither final hemostasis after subsequent rebleeds, nor final hemostasis after jugular vein puncture. In contrast, these mice were protected from injury-induced arterial thrombosis and thrombin-induced pulmonary thromboembolism (PE), and adoptive transfer of translation-inhibited platelets into untreated mice inhibited arterial thrombosis and PE. Thus, constitutive plasma GFH-driven translation regulates platelet G protein-coupled receptor reactivity to balance hemostasis and thrombotic potential.
Collapse
Affiliation(s)
- Jeremy G. T. Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Sophia Lazar
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Shayan Askari
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Xuefei Zhao
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Jenna Severa
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - James V. Michael
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Rodney M. Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steven E. McKenzie
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Timothy J. Stalker
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Peisong Ma
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
2
|
Fernández DI, Troitiño S, Sobota V, Tullemans BME, Zou J, van den Hurk H, García Á, Honarnejad S, Kuijpers MJE, Heemskerk JWM. Ultra-high throughput-based screening for the discovery of antiplatelet drugs affecting receptor dependent calcium signaling dynamics. Sci Rep 2024; 14:6229. [PMID: 38486006 PMCID: PMC10940705 DOI: 10.1038/s41598-024-56799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.
Collapse
Affiliation(s)
- Delia I Fernández
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sara Troitiño
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Vladimír Sobota
- IHU-LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33604, Bordeaux, France
- Institut de Mathématiques de Bordeaux, UMR5251, University of Bordeaux, 33 405, Talence, France
| | - Bibian M E Tullemans
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands
| | - Jinmi Zou
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands
| | | | - Ángel García
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Marijke J E Kuijpers
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX, Maastricht, The Netherlands.
| | - Johan W M Heemskerk
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Kapteijn MY, Lanting VR, Kaptein FHJ, Guman NAM, Laghmani EH, Kuipers TB, Mei H, Goeman JJ, Mulder FI, van Duinen SG, Taphoorn MJB, Dirven L, Broekman MLD, van Es N, Klok FA, Koekkoek JAF, Versteeg HH, Buijs JT. RNA-sequencing to discover genes and signaling pathways associated with venous thromboembolism in glioblastoma patients: A case-control study. Thromb Res 2023; 232:27-34. [PMID: 37918288 DOI: 10.1016/j.thromres.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Glioblastoma patients are at high risk of developing venous thromboembolism (VTE). Tumor-intrinsic features are considered to play a role, but the underlying pathophysiological mechanisms remain incompletely understood. OBJECTIVES To identify tumor-expressed genes and signaling pathways that associate with glioblastoma-related VTE by using next generation RNA-sequencing (RNA-Seq). METHODS The tumor gene expression profile of 23 glioblastoma patients with VTE and 23 glioblastoma patients without VTE was compared using an unpaired analysis. Ingenuity Pathway Analysis (IPA) core analysis was performed on the top 50 differentially expressed genes to explore associated functions and pathways. Based on full RNA-Seq data, molecular glioblastoma subtypes were determined by performing cluster analysis. RESULTS Of the 19,327 genes, 1246 (6.4 %) were differentially expressed between glioblastoma patients with and without VTE (unadjusted P < 0.05). The most highly overexpressed gene was GLI1, a classical target gene in the Sonic Hedgehog (Shh) signaling pathway (log2 fold change: 3.7; unadjusted P < 0.0001, adjusted P = 0.219). In line, Shh signaling was among the top canonical pathways and processes associated with VTE. The proportion of patients with the proneural/neural glioblastoma subtype was higher among those with VTE than controls. CONCLUSION Shh signaling may be involved in the development of glioblastoma-related VTE.
Collapse
Affiliation(s)
- Maaike Y Kapteijn
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent R Lanting
- Amsterdam University Medical Center location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands; Tergooi Hospital, Department of Internal Medicine, Hilversum, the Netherlands
| | - Fleur H J Kaptein
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Noori A M Guman
- Amsterdam University Medical Center location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands; Tergooi Hospital, Department of Internal Medicine, Hilversum, the Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jelle J Goeman
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits I Mulder
- Amsterdam University Medical Center location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands; Tergooi Hospital, Department of Internal Medicine, Hilversum, the Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, Den Haag, the Netherlands
| | - Nick van Es
- Amsterdam University Medical Center location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands
| | - Frederikus A Klok
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
de Oliveira ES, Ribas-Filho JM, Sigwalt M, Lourenço ES, Figueiredo FP, Czeczko NG, Giovanini AF. Platelet-rich fibrin improves the osteoneogenesis in non-critical defects in calvaria: a histological and histometric study. Acta Cir Bras 2023; 38:e383423. [PMID: 37851781 PMCID: PMC10578093 DOI: 10.1590/acb383423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/17/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the effect of platelet-rich fibrin (PRF) and autograft on non-critical bone repair. METHODS Four bone defects (8.3 × 2 mm) were produced on the calvarium of 15 rabbits. The surgical defects were treated with either autograft, autograft associated to PRF, PRF alone, and sham. Animals were euthanized on the second, fourth or sixth posteoperative week. Histological analyses for presence of bone development on deffect was evaluated comparing the groups treated with autograft and without the autograft separately within the same period. Mann-Whitney's tests were used to compare the percentage of bone repair in each post-operative period for autograft × autograft + PRF groups and also for control × PRF groups (α = 5%). RESULTS No differences were observed between the groups that received autograft and autograft associated to PRF on the second and fourth postoperative week, but areas treated with PRF demonstrated significant osteogenesis when compared to sham group on the fourth and sixth weeks. The groups that received PRF (with autograft or alone) demonstrated an enlarged bone deposition when compared to their control group. CONCLUSIONS The use of PRF may influence bone repair and improve the bone deposition in late period of repair demonstrating osteoconductive and osteogenic properties.
Collapse
Affiliation(s)
- Evans Soares de Oliveira
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| | - Jurandir Marcondes Ribas-Filho
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| | - Marcos Sigwalt
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| | | | | | - Nicolau Gregori Czeczko
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| | - Allan Fernando Giovanini
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| |
Collapse
|
5
|
Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15041282. [PMID: 36831623 PMCID: PMC9953912 DOI: 10.3390/cancers15041282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.
Collapse
|
6
|
An Insight into Platelets at Older Age: Cellular and Clinical Perspectives. Subcell Biochem 2023; 102:343-363. [PMID: 36600139 DOI: 10.1007/978-3-031-21410-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Higher access to medical care, advanced diagnostic tools, and overall public health improvements have favored increased humans lifespan. With a growing proportion of older adults, the associated costs to care for ageing-associated conditions will continue to grow. This chapter highlights recent cellular and clinical evidence of platelets at an older age, from the hyperreactive phenotype associated with thrombosis to the well-known hallmarks of ageing identifiable in platelets and their potential functional implications on platelets at an older age. Therefore, it is imperative to understand platelets' molecular and cellular mechanisms during ageing in health and disease. New knowledge will favor the development of new ways to prevent some of the age-associated complications where platelets are key players.
Collapse
|
7
|
Khezri MR, Esmaeili A, Ghasemnejad-Berenji M. Platelet Activation and Alzheimer’s Disease: The Probable Role of PI3K/AKT Pathway. J Alzheimers Dis 2022; 90:529-534. [DOI: 10.3233/jad-220663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In recent years, the association between the activity of platelets and risk of Alzheimer’s disease (AD) risk has been noticed in numerous studies. However, there in no investigations on the role of specific intracellular pathways to explain this connection. The phosphatidylinositol 3 kinase (PI3K)/AKT pathway is one of the main regulators of cell survival which regulates cellular responses to environmental changes. This pathway also regulates the activity of platelets, and its aberrant activity has been linked to platelet dysfunction in different pathologies. On the other hand, the PI3K/AKT pathway regulates amyloid-β (Aβ) production through regulation of amyloid-β protein precursor (AβPP), BACE-1, ADAMs, and γ-secretase. In addition, alterations in the activity of all of these factors in platelets has been shown in AD-related pathologies. Therefore, this paper aims to introduce the PI3K/AKT pathway as a molecular inducer of platelet dysfunction during aging and AD progression.
Collapse
Affiliation(s)
| | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Khezri MR, Varzandeh R, Ghasemnejad-Berenji M. The probable role and therapeutic potential of the PI3K/AKT signaling pathway in SARS-CoV-2 induced coagulopathy. Cell Mol Biol Lett 2022; 27:6. [PMID: 35016612 PMCID: PMC8751460 DOI: 10.1186/s11658-022-00308-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is associated with a high mortality rate. The majority of deaths in this disease are caused by ARDS (acute respiratory distress syndrome) followed by cytokine storm and coagulation complications. Although alterations in the level of the number of coagulation factors have been detected in samples from COVID-19 patients, the direct molecular mechanism which has been involved in this pathologic process has not been explored yet. The PI3K/AKT signaling pathway is an intracellular pathway which plays a central role in cell survival. Also, in recent years the association between this pathway and coagulopathies has been well clarified. Therefore, based on the evidence on over-activity of the PI3K/AKT signaling pathway in SARS-CoV-2 infection, in the current review, the probable role of this cellular pathway as a therapeutic target for the prevention of coagulation complications in patients with COVID-19 is discussed.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Sero Road, 5715799313, Urmia, Iran.
| | - Reza Varzandeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Sero Road, 5715799313, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Sero Road, 5715799313, Urmia, Iran. .,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Schrottmaier WC, Mussbacher M, Salzmann M, Kral-Pointner JB, Assinger A. PI3K Isoform Signalling in Platelets. Curr Top Microbiol Immunol 2022; 436:255-285. [PMID: 36243848 DOI: 10.1007/978-3-031-06566-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Platelets are unique anucleated blood cells that constantly patrol the vasculature to seal and prevent injuries in a process termed haemostasis. Thereby they rapidly adhere to the subendothelial matrix and recruit further platelets, resulting in platelet aggregates. Apart from their central role in haemostasis, they also kept some of their features inherited by their evolutionary ancestor-the haemocyte, which was also involved in immune defences. Together with leukocytes, platelets fight pathogenic invaders and guide many immune processes. In addition, they rely on several signalling pathways which are also relevant to immune cells. Among these, one of the central signalling hubs is the PI3K pathway. Signalling processes in platelets are unique as they lack a nucleus and therefore transcriptional regulation is absent. As a result, PI3K subclasses fulfil distinct roles in platelets compared to other cells. In contrast to leukocytes, the central PI3K subclass in platelet signalling is PI3K class Iβ, which underlines the uniqueness of this cell type and opens new ways for potential platelet-specific pharmacologic inhibition. An overview of platelet function and signalling with emphasis on PI3K subclasses and their respective inhibitors is given in this chapter.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, USA
| | - Manuel Salzmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Insulin-like Growth Factor Binding Protein-2 (IGFBP2) Is a Key Molecule in the MACC1-Mediated Platelet Communication and Metastasis of Colorectal Cancer Cells. Int J Mol Sci 2021; 22:ijms222212195. [PMID: 34830078 PMCID: PMC8624049 DOI: 10.3390/ijms222212195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor cell crosstalk with platelets and, subsequently, their activation are key steps in hematogenous tumor metastasis. MACC1 is an oncogene involved in molecular pathogenesis of colorectal cancer (CRC) and other solid tumor entities, mediating motility and metastasis, making MACC1 an accepted prognostic biomarker. However, the impact of MACC1 on platelet activation has not yet been addressed. Here, we investigated the activation of platelets by human CRC cells upon MACC1 modulation, indicated by platelet aggregation and granule release. These approaches led to the identification of insulin-like growth factor binding protein-2 (IGFBP2) as a functional downstream molecule of MACC1, affecting communication with platelets. This was confirmed by an shRNA-mediated IGFBP2 knockdown, while maintaining MACC1 activity. Although IGFBP2 displayed an attenuated platelet activation potential, obviously by scavenging IGF-I as a platelet costimulatory mediator, the MACC1/IGFBP2 axis did not affect the thrombin formation potential of the cells. Furthermore, the IGFBP2/MACC1-driven cell migration and invasiveness was further accelerated by platelets. The key role of IGFBP2 for the metastatic spread in vivo was confirmed in a xenograft mouse model. Data provide evidence for IGFBP2 as a downstream functional component of MACC1-driven metastasis, linking these two accepted oncogenic biomarkers for the first time in a platelet context.
Collapse
|
11
|
Zhu J, Jiang Y, Jia L, Xu L, Cai Y, Chen Y, Zhu N, Li H, Jin J. A multi-conformational virtual screening approach based on machine learning targeting PI3Kγ. Mol Divers 2021; 25:1271-1282. [PMID: 34160714 DOI: 10.1007/s11030-021-10243-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, more and more attention has been attracted to develop selective PI3Kγ inhibitors, but the unique structural features of PI3Kγ protein make it a very big challenge. In the present study, a virtual screening strategy based on machine learning with multiple PI3Kγ protein structures was developed to screen novel PI3Kγ inhibitors. First, six mainstream docking programs were chosen to evaluate their scoring power and screening power; CDOCKER and Glide show satisfactory reliability and accuracy against the PI3Kγ system. Next, virtual screening integrating multiple PI3Kγ protein structures was demonstrated to significantly improve the screening enrichment rate comparing to that with an individual protein structure. Last, a multi-conformational Naïve Bayesian Classification model with the optimal docking programs was constructed, and it performed a true capability in the screening of PI3Kγ inhibitors. Taken together, the current study could provide some guidance for the docking-based virtual screening to discover novel PI3Kγ inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yingmin Jiang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Lei Jia
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yanfei Cai
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nannan Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huazhong Li
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
12
|
Iozon S, Caracostea GV, Páll E, Şoriţău O, Mănăloiu ID, Bulboacă AE, Lupşe M, Mihu CM, Roman AL. Injectable platelet-rich fibrin influences the behavior of gingival mesenchymal stem cells. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:189-198. [PMID: 32747910 PMCID: PMC7728122 DOI: 10.47162/rjme.61.1.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we examined the effects of injectable platelet-rich fibrin (iPRF) on proliferation and osteodifferentiation in mesenchymal stem cells (MSCs) isolated from human gingiva. Gingival MSCs (gMSCs) were grown in experimental culture media with different concentrations of iPRF [5%, 10%, and replacement of fetal calf serum (FCS) in the standard media with 10% iPRF–10% iPRF-FCS]. Immunophenotyping of gMSCs was performed after seven days by flow cytometry, and their proliferation was examined after three and seven days using the Cell Counting Kit-8 method. After 14 days in culture, spontaneous osteogenic differentiation of gMSCs was evaluated via real-time polymerase chain reaction. All gMSCs were positive for cluster of differentiation (CD) 105, CD73, CD90, and CD44, and negative for CD34/45, CD14, CD79a, and human leukocyte antigen, DR isotype (HLA-DR). Reduced expression of some surface antigens was observed in the gMSCs grown in 10% iPRF-FCS medium compared to the other groups. After three days, gMSCs grown in 10% iPRF had proliferated significantly less than the other groups. After seven days, proliferation was significantly higher in the 5% iPRF cells compared to the control, while proliferation in the 10% iPRF and 10% iPRF-FCS groups was significantly lower. No spontaneous osteogenic differentiation was observed in the presence of iPRF, as observed by low runt-related transcription factor 2 (RUNX2) expression. Some expression of secreted protein acidic and cysteine rich (SPARC) and collagen 1 alpha (COL1A) was observed for all the gMSCs regardless of the culture medium composition. gMSCs grown in 10% iPRF had significantly lower SPARC expression. In conclusion, 5% iPRF stimulated gMSC proliferation, and an excessively high concentration of iPRF can impair osteogenic induction.
Collapse
Affiliation(s)
- Sofia Iozon
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Phosphoinositide 3-kinases in platelets, thrombosis and therapeutics. Biochem J 2021; 477:4327-4342. [PMID: 33242335 DOI: 10.1042/bcj20190402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Our knowledge on the expression, regulation and roles of the different phosphoinositide 3-kinases (PI3Ks) in platelet signaling and functions has greatly expanded these last twenty years. Much progress has been made in understanding the roles and regulations of class I PI3Ks which produce the lipid second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3). Selective pharmacological inhibitors and genetic approaches have allowed researchers to generate an impressive amount of data on the role of class I PI3Kα, β, δ and γ in platelet activation and in thrombosis. Furthermore, platelets do also express two class II PI3Ks (PI3KC2α and PI3KC2β), thought to generate PtdIns(3,4)P2 and PtdIns3P, and the sole class III PI3K (Vps34), known to synthesize PtdIns3P. Recent studies have started to reveal the importance of PI3KC2α and Vps34 in megakaryocytes and platelets, opening new perspective in our comprehension of platelet biology and thrombosis. In this review, we will summarize previous and recent advances on platelet PI3Ks isoforms. The implication of these kinases and their lipid products in fundamental platelet biological processes and thrombosis will be discussed. Finally, the relevance of developing potential antithrombotic strategies by targeting PI3Ks will be examined.
Collapse
|
14
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
15
|
Liu Z, Wang Y, Pan S, Zhang Y, Zhu H, Liu Y, Zhu L, Zhang J. Platelets-released insulin-like growth factor 1 is correlated with anxiety in myocardial infarction. Biochem Biophys Res Commun 2019; 520:441-448. [DOI: 10.1016/j.bbrc.2019.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022]
|
16
|
Gligorijevic N, Robajac D, Nedic O. Enhanced Platelet Sensitivity to IGF-1 in Patients with Type 2 Diabetes Mellitus. BIOCHEMISTRY (MOSCOW) 2019; 84:1213-1219. [PMID: 31694517 DOI: 10.1134/s0006297919100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus is characterized by increased platelet activation which is determined by many factors including changes in the expression of membrane proteins. The aim of this study was to investigate the sensitivity of human platelets to the insulin-like growth factor (IGF) system in patients with poorly controlled type 2 diabetes mellitus (DM2). Ligand binding was analyzed using 125I-labelled IGF-1 and insulin, and relative expression of insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) was evaluated by Western blotting. Platelet aggregation in the presence of IGF-1 was studied by the plate aggregometry assay. We found that platelets from DM2 patients exhibited significantly higher IGF-1 binding and upregulation of IGF-1R expression in comparison with healthy individuals. Both insulin binding and IR expression were lower in the DM2 group, but the differences with the healthy control were statistically insignificant. The potentiating effect of IGF-1 on the thrombin-induced activation of platelets was detected in both groups but was significantly more pronounced in the DM2 patients. The initial rate of platelet activation in the presence of IGF-1 positively correlated with the concentration of glycated hemoglobin. Platelets isolated from DM2 patients displayed elevated expression of the IGF-1R subunits, which might have contributed to the higher sensitivity of these cells to IGF-1 in thrombin-initiated aggregation by increasing the rate of platelet activation. However, further experiments are needed to investigate the role of IGF-1 in thrombotic complications that usually accompany diabetes.
Collapse
Affiliation(s)
- N Gligorijevic
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| | - D Robajac
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| | - O Nedic
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, 11080, Serbia.
| |
Collapse
|
17
|
Kardeby C, Fälker K, Haining EJ, Criel M, Lindkvist M, Barroso R, Påhlsson P, Ljungberg LU, Tengdelius M, Rainger GE, Watson S, Eble JA, Hoylaerts MF, Emsley J, Konradsson P, Watson SP, Sun Y, Grenegård M. Synthetic glycopolymers and natural fucoidans cause human platelet aggregation via PEAR1 and GPIbα. Blood Adv 2019; 3:275-287. [PMID: 30700416 PMCID: PMC6373755 DOI: 10.1182/bloodadvances.2018024950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Fucoidans are sulfated fucose-based polysaccharides that activate platelets and have pro- and anticoagulant effects; thus, they may have therapeutic value. In the present study, we show that 2 synthetic sulfated α-l-fucoside-pendant glycopolymers (with average monomeric units of 13 and 329) and natural fucoidans activate human platelets through a Src- and phosphatidylinositol 3-kinase (PI3K)-dependent and Syk-independent signaling cascade downstream of the platelet endothelial aggregation receptor 1 (PEAR1). Synthetic glycopolymers and natural fucoidan stimulate marked phosphorylation of PEAR1 and Akt, but not Syk. Platelet aggregation and Akt phosphorylation induced by natural fucoidan and synthetic glycopolymers are blocked by a monoclonal antibody to PEAR1. Direct binding of sulfated glycopolymers to epidermal like growth factor (EGF)-like repeat 13 of PEAR1 was shown by avidity-based extracellular protein interaction screen technology. In contrast, synthetic glycopolymers and natural fucoidans activate mouse platelets through a Src- and Syk-dependent pathway regulated by C-type lectin-like receptor 2 (CLEC-2) with only a minor role for PEAR1. Mouse platelets lacking the extracellular domain of GPIbα and human platelets treated with GPIbα-blocking antibodies display a reduced aggregation response to synthetic glycopolymers. We found that synthetic sulfated glycopolymers bind directly to GPIbα, substantiating that GPIbα facilitates the interaction of synthetic glycopolymers with CLEC-2 or PEAR1. Our results establish PEAR1 as the major signaling receptor for natural fucose-based polysaccharides and synthetic glycopolymers in human, but not in mouse, platelets. Sulfated α-l-fucoside-pendant glycopolymers are unique tools for further investigation of the physiological role of PEAR1 in platelets and beyond.
Collapse
Affiliation(s)
- Caroline Kardeby
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Knut Fälker
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maarten Criel
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Madelene Lindkvist
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ruben Barroso
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Peter Påhlsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, and
| | - Liza U Ljungberg
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany; and
| | - Marc F Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jonas Emsley
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
- Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Peter Konradsson
- Division of Organic Chemistry, Linköping University, Linköping, Sweden
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Yi Sun
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Magnus Grenegård
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
18
|
Critical roles for the phosphatidylinositide 3-kinase isoforms p110β and p110γ in thrombopoietin-mediated priming of platelet function. Sci Rep 2019; 9:1468. [PMID: 30728366 PMCID: PMC6365529 DOI: 10.1038/s41598-018-37012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022] Open
Abstract
Thrombopoietin (TPO) enhances platelet activation through activation of the tyrosine kinase; JAK2 and the lipid kinase phosphatidylinositide 3-kinase (PI3K). The aim of our study was to identify the PI3K isoforms involved in mediating the effect of TPO on platelet function and elucidate the underlying mechanism. We found that p110β plays an essential role in TPO-mediated (i) priming of protease-activated receptor (PAR)-mediated integrin αIIbβ3 activation and α-granule secretion, (ii) synergistic enhancement of PAR-mediated activation of the small GTPase RAP1, a regulator of integrin activation and (iii) phosphorylation of the PI3K effector Akt. More importantly, the synergistic effect of TPO on phosphorylation of extracellular-regulated kinase (ERK1/2) and thromboxane (TxA2) synthesis was dependent on both p110β and p110γ. p110β inhibition/deletion, or inhibition of p110γ, resulted in a partial reduction, whereas inhibiting both p110β and p110γ completely prevented the synergistic effect of TPO on ERK1/2 phosphorylation and TxA2 synthesis. The latter was ablated by inhibition of MEK, but not p38, confirming a role for ERK1/2 in regulating TPO-mediated increases in TxA2 synthesis. In conclusion, the synergistic effect of TPO on RAP1 and integrin activation is largely mediated by p110β, whereas p110β and p110γ contribute to the effect of TPO on ERK1/2 phosphorylation and TxA2 formation.
Collapse
|
19
|
|
20
|
Laurent PA, Hechler B, Solinhac R, Ragab A, Cabou C, Anquetil T, Severin S, Denis CV, Mangin PH, Vanhaesebroeck B, Payrastre B, Gratacap MP. Impact of PI3Kα (Phosphoinositide 3-Kinase Alpha) Inhibition on Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:2041-2053. [PMID: 30354258 DOI: 10.1161/atvbaha.118.311410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- PI3Kα (phosphoinositide 3-kinase alpha) is a therapeutic target in oncology, but its role in platelets and thrombosis remains ill characterized. In this study, we have analyzed the role of PI3Kα in vitro, ex vivo, and in vivo in 2 models of arterial thrombosis. Approach and Results- Using mice selectively deficient in p110α in the megakaryocyte lineage and isoform-selective inhibitors, we confirm that PI3Kα is not mandatory but participates to thrombus growth over a collagen matrix at arterial shear rate. Our data uncover a role for PI3Kα in low-level activation of the GP (glycoprotein) VI-collagen receptor by contributing to ADP secretion and in turn full activation of PI3Kβ and Akt/PKB (protein kinase B). This effect was no longer observed at high level of GP VI agonist concentration. Our study also reveals that over a vWF (von Willebrand factor) matrix, PI3Kα regulates platelet stationary adhesion contacts under arterial flow through its involvement in the outside-in signaling of vWF-engaged αIIbβ3 integrin. In vivo, absence or inhibition of PI3Kα resulted in a modest but significant decrease in thrombus size after superficial injuries of mouse mesenteric arteries and an increased time to arterial occlusion after carotid lesion, without modification in the tail bleeding time. Considering the more discrete and nonredundant role of PI3Kα compared with PI3Kβ, selective PI3Kα inhibitors are unlikely to increase the bleeding risk at least in the absence of combination with antiplatelet drugs or thrombopenia. Conclusions- This study provides mechanistic insight into the role of PI3Kα in platelet activation and arterial thrombosis.
Collapse
Affiliation(s)
- Pierre-Alexandre Laurent
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Béatrice Hechler
- INSERM, EFS Grand Est, BPPS UMR-S 949, FMTS, Université de Strasbourg, France (B.H., P.H.M.)
| | - Romain Solinhac
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Ashraf Ragab
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Cendrine Cabou
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Typhaine Anquetil
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Sonia Severin
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Cécile V Denis
- INSERM, UMR-S 1176, University of Paris-Sud, Université Paris-Saclay, France (C.V.D.)
| | - Pierre H Mangin
- INSERM, EFS Grand Est, BPPS UMR-S 949, FMTS, Université de Strasbourg, France (B.H., P.H.M.)
| | - Bart Vanhaesebroeck
- Cell Signaling, UCL Cancer Institute, University College London, United Kingdom (B.V.)
| | - Bernard Payrastre
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
- CHU de Toulouse, Laboratoire d'Hématologie, France (B.P.)
| | - Marie-Pierre Gratacap
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| |
Collapse
|
21
|
IGF-1 facilitates thrombopoiesis primarily through Akt activation. Blood 2018; 132:210-222. [DOI: 10.1182/blood-2018-01-825927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Key Points
IGF-1 has the ability to promote megakaryocyte differentiation, PPF, and platelet release. The effect of IGF-1 on thrombopoiesis is mediated primarily by AKT activation with the assistance of SRC-3.
Collapse
|
22
|
The importance of blood platelet lipid signaling in thrombosis and in sepsis. Adv Biol Regul 2017; 67:66-73. [PMID: 28993230 DOI: 10.1016/j.jbior.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
Blood platelets are the first line of defense against hemorrhages and are also strongly involved in the processes of arterial thrombosis, a leading cause of death worldwide. Besides their well-established roles in hemostasis, vascular wall repair and thrombosis, platelets are now recognized as important players in other processes such as inflammation, healing, lymphangiogenesis, neoangiogenesis or cancer. Evidence is accumulating they are key effector cells in immune and inflammatory responses to host infection. To perform their different functions platelets express a wide variety of membrane receptors triggering specific intracellular signaling pathways and largely use lipid signaling systems. Lipid metabolism is highly active in stimulated platelets including the phosphoinositide metabolism with the phospholipase C (PLC) and the phosphoinositide 3-kinase (PI3K) pathways but also other enzymatic systems producing phosphatidic acid, lysophosphatidic acid, platelet activating factor, sphingosine 1-phosphate and a number of eicosanoids. While several of these bioactive lipids regulate intracellular platelet signaling mechanisms others are released by activated platelets acting as autocrine and/or paracrine factors modulating neighboring cells such as endothelial and immune cells. These bioactive lipids have been shown to play important roles in hemostasis and thrombosis but also in vessel integrity and dynamics, inflammation, tissue remodeling and wound healing. In this review, we will discuss some important aspects of platelet lipid signaling in thrombosis and during sepsis that is an important cause of death in intensive care unit. We will particularly focus on the implication of the different isoforms of PI3Ks and on the generation of eicosanoids released by activated platelets.
Collapse
|
23
|
Wysokinski WE, Tafur A, Ammash N, Asirvatham SJ, Wu Y, Gosk-Bierska I, Grill DE, Slusser JP, Mruk J, McBane RD. Impact of atrial fibrillation on platelet gene expression. Eur J Haematol 2017; 98:615-621. [PMID: 28306170 DOI: 10.1111/ejh.12879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 02/01/2023]
Abstract
AIMS Platelets retain cytoplasmic messenger RNA and are capable of protein biosynthesis. Several diseases are known to impact the platelet transcriptome but the effect of non-valvular atrial fibrillation (NVAF) on platelet RNA transcript is essentially unknown. The aim of this study was to evaluate the impact of NVAF on platelet RNA transcript by measuring platelet genes expression in consecutive NVAF patients before and 3-4 months after pulmonary vein isolation (PVI) and compared to normal sinus rhythm controls (NSR). METHODS AND RESULTS RNA from isolated platelets were reverse transcribed, assayed against 15 genes using real-time qPCR, and expressed as mean cycle threshold (ΔCt) using beta-2-microglobulin as endogenous control. Expression of all evaluated genes, except cathepsin A gene, was significantly lower (higher ΔCt) in 103 NVAF patients compared to 55 NSR controls. Insulin-like growth factor binding protein acid labile subunit gene (IGFALS) had expression more than 16 fold-lower (17.0±2.8 vs 12.5±3.8, P<.001), follow by genes encoding for prostacyclin receptor, and for von Willebrand factor which had fourfold lower expression compared to NSR controls. Gender, type of atrial fibrillation, heart failure, hypertension, prior stroke, diabetes mellitus, and atherosclerosis were associated with different gene expression. Following PVI, expression of four genes significantly increased, particularly IGFALS gene (increased 256-fold) and ADAMT gene increased 16-fold); expression of three genes significantly decreased, and expression of eight genes has not changed. CONCLUSIONS Platelets are capable to respond to the circulatory environment of NVAF by altering transcript and changing prothrombotic status. This shows platelet potential for molecular "reprogramming" possibly induced by flow disturbances of NVAF.
Collapse
Affiliation(s)
| | - Alfonso Tafur
- Department of Cardiovascular Medicine, Vascular Surgery and Medicine Section, NorthShore University HealthSystem, Skokie, USA
| | - Naser Ammash
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| | | | - Yanhong Wu
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| | | | - Diane E Grill
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| | - Joshua P Slusser
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| | - Jozef Mruk
- Department of Internal Medicine, University of Kansas, School of Medicine-Wichita, Wichita, KS, USA
| | - Robert D McBane
- Mayo Clinic and Foundation for Education and Research, Rochester, MN, USA
| |
Collapse
|
24
|
TGF-β1 along with other platelet contents augments Treg cells to suppress anti-FVIII immune responses in hemophilia A mice. Blood Adv 2016; 1:139-151. [PMID: 28164173 DOI: 10.1182/bloodadvances.2016001453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Platelets are a rich source of many cytokines and chemokines including transforming growth factor β 1 (TGF-β1). TGF-β1 is required to convert conventional CD4+ T (Tconv) cells into induced regulatory T (iTreg) cells that express the transcription factor Foxp3. Whether platelet contents will affect Treg cell properties has not been explored. In this study, we show that unfractionated platelet lysates (pltLys) containing TGF-β1 efficiently induced Foxp3 expression in Tconv cells. The common Treg cell surface phenotype and in vitro suppressive activity of unfractionated pltLys-iTreg cells were similar to those of iTreg cells generated using purified TGF-β1 (purTGFβ-iTreg) cells. However, there were substantial differences in gene expression between pltLys-iTreg and purTGFβ-iTreg cells, especially in granzyme B, interferon γ, and interleukin-2 (a 30.99-, 29.18-, and 17.94-fold difference, respectively) as determined by gene microarray analysis. In line with these gene signatures, we found that pltLys-iTreg cells improved cell recovery after transfer and immune suppressive function compared with purTGFβ-iTreg cells in factor VIII (FVIII)-deficient (F8null, hemophilia A model) mice after recombinant human FVIII (rhF8) infusion. Acute antibody-mediated platelet destruction in F8null mice followed by rhF8 infusion increased the number of Treg cells and suppressed the antibody response to rhF8. Consistent with these data, ex vivo proliferation of F8-specific Treg cells from platelet-depleted animals increased when restimulated with rhF8. Together, our data suggest that pltLys-iTreg cells may have advantages in emerging clinical applications and that platelet contents impact the properties of iTreg cells induced by TGF-β1.
Collapse
|
25
|
Valet C, Severin S, Chicanne G, Laurent PA, Gaits-Iacovoni F, Gratacap MP, Payrastre B. The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis. Adv Biol Regul 2015; 61:33-41. [PMID: 26714793 DOI: 10.1016/j.jbior.2015.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
Abstract
Blood platelets play a pivotal role in haemostasis and are strongly involved in arterial thrombosis, a leading cause of death worldwide. Besides their critical role in pathophysiology, platelets represent a valuable model to investigate, both in vitro and in vivo, the biological roles of different branches of the phosphoinositide metabolism, which is highly active in platelets. While the phospholipase C (PLC) pathway has a crucial role in platelet activation, it is now well established that at least one class I phosphoinositide 3-kinase (PI3K) is also mandatory for proper platelet functions. Except class II PI3Kγ, all other isoforms of PI3Ks (class I α, β, γ, δ; class II α, β and class III) are expressed in platelets. Class I PI3Ks have been extensively studied in different models over the past few decades and several isoforms are promising drug targets to treat cancer and immune diseases. In platelet activation, it has been shown that while class I PI3Kδ plays a minor role, class I PI3Kβ has an important function particularly in thrombus growth and stability under high shear stress conditions found in stenotic arteries. This class I PI3K is a potentially interesting target for antithrombotic strategies. The role of class I PI3Kα remains ill defined in platelets. Herein, we will discuss our recent data showing the potential impact of inhibitors of this kinase on thrombus formation. The role of class II PI3Kα and β as well as class III PI3K (Vps34) in platelet production and function is just emerging. Based on our data and those very recently published in the literature, we will discuss the impact of these three PI3K isoforms in platelet production and functions and in thrombosis.
Collapse
Affiliation(s)
- Colin Valet
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | - Sonia Severin
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | | | | | | | - Bernard Payrastre
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059, Toulouse Cedex 03, France.
| |
Collapse
|
26
|
Lupieri A, Smirnova N, Malet N, Gayral S, Laffargue M. PI3K signaling in arterial diseases: Non redundant functions of the PI3K isoforms. Adv Biol Regul 2015; 59:4-18. [PMID: 26238239 DOI: 10.1016/j.jbior.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Cardiovascular diseases are the most common cause of death around the world. This includes atherosclerosis and the adverse effects of its treatment, such as restenosis and thrombotic complications. The development of these arterial pathologies requires a series of highly-intertwined interactions between immune and arterial cells, leading to specific inflammatory and fibroproliferative cellular responses. In the last few years, the study of phosphoinositide 3-kinase (PI3K) functions has become an attractive area of investigation in the field of arterial diseases, especially since inhibitors of specific PI3K isoforms have been developed. The PI3K family includes 8 members divided into classes I, II or III depending on their substrate specificity. Although some of the different isoforms are responsible for the production of the same 3-phosphoinositides, they each have specific, non-redundant functions as a result of differences in expression levels in different cell types, activation mechanisms and specific subcellular locations. This review will focus on the functions of the different PI3K isoforms that are suspected as having protective or deleterious effects in both the various immune cells and types of cell found in the arterial wall. It will also discuss our current understanding in the context of which PI3K isoform(s) should be targeted for future therapeutic interventions to prevent or treat arterial diseases.
Collapse
Affiliation(s)
- Adrien Lupieri
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Natalia Smirnova
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Nicole Malet
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Stéphanie Gayral
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Muriel Laffargue
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France.
| |
Collapse
|
27
|
Blair TA, Moore SF, Hers I. Circulating primers enhance platelet function and induce resistance to antiplatelet therapy. J Thromb Haemost 2015; 13:1479-93. [PMID: 26039631 PMCID: PMC4599128 DOI: 10.1111/jth.13022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/08/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Aspirin and P2Y12 antagonists are antiplatelet compounds that are used clinically in patients with thrombosis. However, some patients are 'resistant' to antiplatelet therapy, which increases their risk of developing acute coronary syndromes. These patients often present with an underlying condition that is associated with altered levels of circulating platelet primers and platelet hyperactivity. Platelet primers cannot stimulate platelet activation, but, in combination with physiologic stimuli, significantly enhance platelet function. OBJECTIVES To explore the role of platelet primers in resistance to antiplatelet therapy, and to evaluate whether phosphoinositide 3-kinase (PI3K) contributes to this process. METHODS AND RESULTS We used platelet aggregation, thromboxane A2 production and ex vivo thrombus formation as functional readouts of platelet activity. Platelets were treated with the potent P2Y12 inhibitor AR-C66096, aspirin, or a combination of both, in the presence or absence of the platelet primers insulin-like growth factor-1 (IGF-1) and thrombopoietin (TPO), or the Gz-coupled receptor ligand epinephrine. We found that platelet primers largely overcame the inhibitory effects of antiplatelet compounds on platelet functional responses. IGF-1-mediated and TPO-mediated, but not epinephrine-mediated, enhancements in the presence of antiplatelet drugs were blocked by the PI3K inhibitors wortmannin and LY294002. CONCLUSIONS These results demonstrate that platelet primers can contribute to antiplatelet resistance. Furthermore, our data demonstrate that there are PI3K-dependent and PI3K-independent mechanisms driving primer-mediated resistance to antiplatelet therapy.
Collapse
Affiliation(s)
- T A Blair
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - S F Moore
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - I Hers
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
28
|
Guidetti GF, Canobbio I, Torti M. PI3K/Akt in platelet integrin signaling and implications in thrombosis. Adv Biol Regul 2015; 59:36-52. [PMID: 26159296 DOI: 10.1016/j.jbior.2015.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023]
Abstract
Blood platelets are anucleated circulating cells that play a critical role in hemostasis and are also implicated in arterial thrombosis, a major cause of death worldwide. The biological function of platelets strongly relies in their reactiveness to a variety of extracellular agonists that regulate their adhesion to extracellular matrix at the site of vascular injury and their ability to form rapidly growing cell aggregates. Among the membrane receptors expressed on the cell surface, integrins are crucial for both platelet activation, adhesion and aggregation. Integrin affinity for specific ligands is regulated by intracellular signaling pathways activated in stimulated platelets, and, once engaged, integrins themselves generate and propagate signals inside the cells to reinforce and consolidate platelet response and thrombus formation. Phosphatidylinositol 3-Kinases (PI3Ks) have emerged as crucial players in platelet activation, and they are directly implicated in the regulation of integrin function. This review will discuss the contribution of PI3Ks in platelet integrin signaling, focusing on the role of specific members of class I PI3Ks and their downstream effector Akt on both integrin inside-out and outside-in signaling. The contribution of the PI3K/Akt pathways stimulated by integrin engagement and platelet activation in thrombus formation and stabilization will also be discussed in order to highlight the possibility to target these enzymes in effective anti-thrombotic therapeutic strategies.
Collapse
Affiliation(s)
- Gianni F Guidetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
29
|
Moore SF, Williams CM, Brown E, Blair TA, Harper MT, Coward RJ, Poole AW, Hers I. Loss of the insulin receptor in murine megakaryocytes/platelets causes thrombocytosis and alterations in IGF signalling. Cardiovasc Res 2015; 107:9-19. [PMID: 25902782 PMCID: PMC4476412 DOI: 10.1093/cvr/cvv132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/03/2015] [Indexed: 12/21/2022] Open
Abstract
Aims Patients with conditions that are associated with insulin resistance such as obesity, type 2 diabetes mellitus, and polycystic ovary syndrome have an increased risk of thrombosis and a concurrent hyperactive platelet phenotype. Our aim was to determine whether insulin resistance of megakaryocytes/platelets promotes platelet hyperactivation. Methods and results We generated a conditional mouse model where the insulin receptor (IR) was specifically knocked out in megakaryocytes/platelets and performed ex vivo platelet activation studies in wild-type (WT) and IR-deficient platelets by measuring aggregation, integrin αIIbβ3 activation, and dense and α-granule secretion. Deletion of IR resulted in an increase in platelet count and volume, and blocked the action of insulin on platelet signalling and function. Platelet aggregation, granule secretion, and integrin αIIbβ3 activation in response to the glycoprotein VI (GPVI) agonist collagen-related peptide (CRP) were significantly reduced in platelets lacking IR. This was accompanied by a reduction in the phosphorylation of effectors downstream of GPVI. Interestingly, loss of IR also resulted in a reduction in insulin-like growth factor-1 (IGF-1)- and insulin-like growth factor-2 (IGF-2)-mediated phosphorylation of IRS-1, Akt, and GSK3β and priming of CRP-mediated platelet activation. Pharmacological inhibition of IR and the IGF-1 receptor in WT platelets recapitulated the platelet phenotype of IR-deficient platelets. Conclusions Deletion of IR (i) increases platelet count and volume, (ii) does not cause platelet hyperactivity, and (iii) reduces GPVI-mediated platelet function and platelet priming by IGF-1 and IGF-2.
Collapse
Affiliation(s)
- Samantha F Moore
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Christopher M Williams
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Edward Brown
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Thomas A Blair
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Matthew T Harper
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Richard J Coward
- School of Clinical Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Alastair W Poole
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Medical Sciences Building, Bristol BS8 1TD, UK
| |
Collapse
|
30
|
Role of insulin-like growth factor 1 in stent thrombosis under effective dual antiplatelet therapy. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2014; 10:242-9. [PMID: 25489317 PMCID: PMC4252321 DOI: 10.5114/pwki.2014.46765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/19/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022] Open
Abstract
Introduction Accumulating evidence now indicates that insulin-like growth factors (IGF) and their regulatory proteins are growth promoters for arterial cells and mediators of cardiovascular diseases. Aim We hypothetised that IGF-1 levels could play a role in the development of stent thrombosis (ST), and aimed to investigate the associations between stent thrombosis under effective dual antiplatelet therapy and IGF-1 levels and other related factors such as disease severity and LV ejection fraction in patients undergoing coronary stent placement. Material and methods A total of 128 patients undergoing coronary stent implantation were included in the analysis. Seventy-seven patients experiencing ST in the first year after stent implantation were defined as the ST group. Fifty-one patients without ST at least 1 year after stent implantation were defined as the no-thrombosis (NT) group. The IGF-1 levels, Gensini scores, and other related factors were measured. Results The IGF-1 levels were significantly higher in the stent thrombosis group than in the no-thrombosis group (122.22 ±50.61 ng/ml vs. 99.52 ±46.81 ng/ml, respectively, p < 0.039). The left ventricle ejection fraction (LVEF) values were significantly lower (44.13 ±9.25% vs. 55.81 ±8.77%, p < 0.0001) and Gensini scores were significantly higher (63.74 ±26.54 vs. 48.87 ±23.7, p < 0.004) in the ST group than in the NT group, respectively. In the linear regression analysis, IGF-1, Gensini score, LVEF, total cholesterol, and triglycerides were found to be independent risk factors for ST. Conclusions This study revealed that the plasma IGF-1 levels, disease severity, were significantly higher and LVEF was lower in patients with ST. High IGF-1 levels may identify patients who are at increased risk for ST. Future trials are necessary to confirm these results.
Collapse
|
31
|
Blair TA, Moore SF, Williams CM, Poole AW, Vanhaesebroeck B, Hers I. Phosphoinositide 3-kinases p110α and p110β have differential roles in insulin-like growth factor-1-mediated Akt phosphorylation and platelet priming. Arterioscler Thromb Vasc Biol 2014; 34:1681-8. [PMID: 24903091 DOI: 10.1161/atvbaha.114.303954] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Platelet hyperactivity is a contributing factor in the pathogenesis of cardiovascular disease and can be induced by elevated levels of circulating growth factors, such as insulin-like growth factor-1 (IGF-1). IGF-1 is a primer that cannot stimulate platelet activation by itself, but in combination with physiological stimuli can potentiate platelet functional responses via a phosphoinositide 3-kinase-dependent mechanism. In this study, we explored the role of the phosphoinositide 3-kinase p110α isoform in IGF-1-mediated enhancement of platelet function. APPROACH AND RESULTS Using a platelet-specific p110α knockout murine model, we demonstrate that genetic deletion, similar to pharmacological inactivation of p110α, did not affect proteinase-activated receptor 4 signaling to Akt/protein kinase B but significantly reduced IGF-1-mediated Akt phosphorylation. The p110β inhibitor TGX-221 abolished IGF-1-induced Akt phosphorylation in p110α-deficient platelets, demonstrating that both p110α and p110β contribute to IGF-1-mediated Akt phosphorylation. Genetic deletion of p110α had no effect on IGF-1-mediated increases in thrombus formation on collagen and enhancement of proteinase-activated receptor 4-mediated integrin activation and α-granule secretion. In contrast, pharmacological inhibition of p110α blocked IGF-1-mediated potentiation of integrin activation and α-granule secretion. Functional enhancement by IGF-1 in p110α knockout samples was lost after TGX-221 treatment, suggesting that p110β drives priming in the absence of the p110α isoform. CONCLUSIONS Together, these results demonstrate that both p110α and p110β are involved in Akt signaling by IGF-1, but that it is the p110α isoform that is responsible for IGF-1-mediated potentiation of platelet function.
Collapse
Affiliation(s)
- Thomas A Blair
- From the School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.A.B., S.F.M., C.M.W., A.W.P., I.H.); and Research Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom (B.V.)
| | - Samantha F Moore
- From the School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.A.B., S.F.M., C.M.W., A.W.P., I.H.); and Research Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom (B.V.)
| | - Christopher M Williams
- From the School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.A.B., S.F.M., C.M.W., A.W.P., I.H.); and Research Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom (B.V.)
| | - Alastair W Poole
- From the School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.A.B., S.F.M., C.M.W., A.W.P., I.H.); and Research Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom (B.V.)
| | - Bart Vanhaesebroeck
- From the School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.A.B., S.F.M., C.M.W., A.W.P., I.H.); and Research Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom (B.V.)
| | - Ingeborg Hers
- From the School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.A.B., S.F.M., C.M.W., A.W.P., I.H.); and Research Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom (B.V.).
| |
Collapse
|
32
|
Holy EW, Jakob P, Eickner T, Camici GG, Beer JH, Akhmedov A, Sternberg K, Schmitz KP, Lüscher TF, Tanner FC. PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design. Eur Heart J 2014; 35:808-20. [PMID: 24334406 DOI: 10.1093/eurheartj/eht496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Impaired re-endothelialization and stent thrombosis are a safety concern associated with drug-eluting stents (DES). PI3K/p110α controls cellular wound healing pathways, thereby representing an emerging drug target to modulate vascular homoeostasis after injury. METHODS AND RESULTS PI3K/p110α was inhibited by treatment with the small molecule inhibitor PIK75 or a specific siRNA. Arterial thrombosis, neointima formation, and re-endothelialization were studied in a murine carotid artery injury model. Proliferation and migration of human vascular smooth muscle cell (VSMC) and endothelial cell (EC) were assessed by cell number and Boyden chamber, respectively. Endothelial senescence was evaluated by the β-galactosidase assay, endothelial dysfunction by organ chambers for isometric tension. Arterial thrombus formation was delayed in mice treated with PIK75 when compared with controls. PIK75 impaired arterial expression and activity of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1); in contrast, plasma clotting and platelet aggregation did not differ. In VSMC and EC, PIK75 inhibited expression and activity of TF and PAI-1. These effects occurred at the transcriptional level via the RhoA signalling cascade and the transcription factor NFkB. Furthermore, inhibition of PI3K/p110α with PIK75 or a specific siRNA selectively impaired proliferation and migration of VSMC while sparing EC completely. Treatment with PIK75 did not induce endothelial senescence nor inhibit endothelium-dependent relaxations. In line with this observation, treatment with PIK75 selectively inhibited neointima formation without affecting re-endothelialization following vascular injury. CONCLUSION Following vascular injury, PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization. Hence, PI3K/p110α represents an attractive new target in DES design.
Collapse
Affiliation(s)
- Erik W Holy
- Cardiology, Cardiovascular Center, University Hospital Zürich, Rämistrasse 100, Zurich 8091, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Laurent PA, Severin S, Gratacap MP, Payrastre B. Class I PI 3-kinases signaling in platelet activation and thrombosis: PDK1/Akt/GSK3 axis and impact of PTEN and SHIP1. Adv Biol Regul 2014; 54:162-174. [PMID: 24095650 DOI: 10.1016/j.jbior.2013.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Class I phosphoinositide 3-kinases (PI3K) have been extensively studied in different models these last years and several isoforms are now promising drug targets to treat cancer and immune diseases. Blood platelets are non-nucleated cells critical for hemostasis and strongly involved in arterial thrombosis, a leading cause of death worldwide. Besides their role in hemostasis and thrombosis, platelets provide an interesting model to characterize the implication of the different isoforms of PI3K in signaling. They are specialized for regulated adhesion, particularly under high shear stress conditions found in arteries and use highly regulated signaling mechanisms to form and stabilize a thrombus. In this review we will highlight the role of class I PI3K in these processes and the pertinence of targeting them in the context of antithrombotic strategies but also the potential consequences on the bleeding risk of inhibiting the PI3K signaling in cancer therapy. The implication of upstream regulators of the most important isoforms of PI3K in platelets and their downstream effectors such as protein kinase B (PKB or Akt) and its target glycogen synthase kinase 3 (GSK3) will be discussed as well as the impact of PTEN and SHIP phosphatases as modulators of this pathway.
Collapse
Affiliation(s)
| | - Sonia Severin
- Inserm U1048, I2MC and Université Paul Sabatier, 31024 Toulouse Cedex 03, France
| | | | - Bernard Payrastre
- Inserm U1048, I2MC and Université Paul Sabatier, 31024 Toulouse Cedex 03, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France.
| |
Collapse
|
34
|
Platelet defects in congenital variant of Rett syndrome patients with FOXG1 mutations or reduced expression due to a position effect at 14q12. Eur J Hum Genet 2013; 21:1349-55. [PMID: 23632790 DOI: 10.1038/ejhg.2013.86] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
The Forkhead box G1 (FOXG1) gene encodes a transcriptional repressor essential for early development of the telencephalon. Intragenic mutations and gene deletions leading to haploinsufficiency cause the congenital variant of Rett syndrome. We here describe Rett syndrome-like patients, three of them carrying a balanced translocation with breakpoint in the chromosome 14q12 region, and one patient having a 14q12 microdeletion excluding the FOXG1 gene. The hypothesis of long-range FOXG1-regulatory elements in this region was supported by our finding of reduced FOXG1 mRNA and protein levels in platelets and skin fibroblasts from these cases. Given that FOXG1 is not only expressed in brain but also in platelets, we have studied platelet morphology in these patients and two additional patients with FOXG1 mutations. Electron microscopy of their platelets showed some enlarged, rounder platelets with often abnormal alpha, and fewer dense granules. Platelet function studies were possible in one 14q12 translocation patient with a prolonged Ivy bleeding time and a patient with a heterozygous FOXG1 c.1248C>G mutation (p.Tyr416X). Both have a prolonged PFA-100 occlusion time with collagen and epinephrine and reduced aggregation responses to low dose of ADP and epinephrine. Dense granule ATP secretion was normal for strong agonists but absent for epinephrine. In conclusion, our study shows that by using platelets functional evidence of cis-regulatory elements in the 14q12 region result in reduced FOXG1 levels in patients' platelets having translocations or deletions in that region. These platelet functional abnormalities deserve further investigation regarding a non-transcriptional regulatory role for FOXG1 in these anucleated cells.
Collapse
|
35
|
Stolla MC, Li D, Lu L, Woulfe DS. Enhanced platelet activity and thrombosis in a murine model of type I diabetes are partially insulin-like growth factor 1-dependent and phosphoinositide 3-kinase-dependent. J Thromb Haemost 2013; 11:919-29. [PMID: 23406214 DOI: 10.1111/jth.12170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/29/2013] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To determine whether dysregulation of platelet signaling mechanisms contributes to the increased risk of thrombosis associated with diabetes, using a type I diabetes mouse model. METHODS AND RESULTS Type I diabetes was induced in C57Bl6 mice following streptozotocin injection. Arterial thrombosis, platelet signaling and function were assessed 4 weeks later in comparison with non-diabetic control mice. Fifty-seven per cent of diabetic mice (glucose level of > 250 mg dL(-1) ) developed stable occlusive thrombi after FeCl3 injury, as compared with 5% of their non-diabetic counterparts, suggesting that diabetic mice are more sensitive to arterial injury (P ≤ 0.02). Platelets from diabetic mice were more sensitive to protease-activated receptor 4 (PAR4) agonist-induced fibrinogen binding than platelets from non-diabetic mice, and the average Akt phosphorylation induced by PAR4 agonist peptide was greater (P ≤ 0.01) in platelets from diabetic mice. Recent studies suggest that insulin-like growth factor 1 (IGF-1) potentiates Akt phosphorylation in platelets. To determine whether IGF-1 signaling contributes to the increase in PAR4 sensitivity in platelets from diabetic mice, platelet signaling and function were evaluated in the presence of inhibitors of the IGF-1 receptor. IGF-1 receptor inhibition reduced Akt phosphorylation and fibrinogen binding in platelets from diabetic mice to levels consistent with those seen in normoglycemic platelets, but had no significant effect on platelets from non-diabetic mice. CONCLUSIONS The results suggest that platelets from mice with streptozotocin-induced diabetes show enhanced platelet Akt phosphorylation and activity resulting from IGF-1-dependent mechanisms. Increases in platelet Akt activation may explain the enhanced sensitivity to thrombotic insult seen in diabetic mice.
Collapse
Affiliation(s)
- M C Stolla
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
36
|
Expression of regulatory platelet microRNAs in patients with sickle cell disease. PLoS One 2013; 8:e60932. [PMID: 23593351 PMCID: PMC3625199 DOI: 10.1371/journal.pone.0060932] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/04/2013] [Indexed: 02/06/2023] Open
Abstract
Background Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets.
Collapse
|
37
|
|
38
|
Dysfunction of the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway underlies ex vivo platelet hypoactivity in essential thrombocythemia. Blood 2012; 121:1209-19. [PMID: 23243278 DOI: 10.1182/blood-2012-05-431288] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Patients with myeloproliferative disorders (MPDs), such as essential thrombocythemia (ET) have increased risk of thrombosis and bleeding, which are major sources of morbidity and mortality. Most MPD patients have a gain of function mutation in Janus kinase 2 (JAK2V617F), but little is known how JAK2V617F affects platelet function. Here, we demonstrate that platelets from ET patients have impaired SFLLRN-mediated fibrinogen binding and have lost the potentiating effect of thrombopoietin (which couples to JAK2) on this pathway. In contrast, SFLLRN-mediated P-selectin expression, ATP secretion, phosphorylation of the PKC substrate pleckstrin, and Ca(2+) mobilization were unaffected in JAK2V617F positive platelets. In addition, thrombopoietin-mediated JAK2 phosphorylation was unchanged, suggesting that signaling pathways activated downstream of JAK2 are impaired. Indeed, we found that platelets from JAK2V617F positive ET patients have significantly reduced phosphorylation of the PI3 kinase substrate Akt, and have reduced activation of Rap1 in response to thrombopoietin, IGF-1,ADP, SFLLRN, and thrombin. This effect was independent of Giα P2Y12 purinergic receptor function as ADP-mediated inhibition of VASP phosphorylation was unchanged. These results demonstrate that the PI3 kinase/Rap1 pathway is intrinsically impaired in platelets from JAK2V617F-positive ET patients, resulting in diminished thrombin and thrombopoietin-mediated integrin α(IIb)β(3) activation.
Collapse
|
39
|
A novel small molecule 1,2,3,4,6-penta-O-galloyl-α-D-glucopyranose mimics the antiplatelet actions of insulin. PLoS One 2011; 6:e26238. [PMID: 22073153 PMCID: PMC3206812 DOI: 10.1371/journal.pone.0026238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
Background We have shown that 1,2,3,4,6-penta-O-galloyl-α-D-glucopyranose (α-PGG), an orally effective hypoglycemic small molecule, binds to insulin receptors and activates insulin-mediated glucose transport. Insulin has been shown to bind to its receptors on platelets and inhibit platelet activation. In this study we tested our hypothesis that if insulin possesses anti-platelet properties then insulin mimetic small molecules should mimic antiplatelet actions of insulin. Principal Findings Incubation of human platelets with insulin or α-PGG induced phosphorylation of insulin receptors and IRS-1 and blocked ADP or collagen induced aggregation. Pre-treatment of platelets with α-PGG inhibited thrombin-induced release of P-selectin, secretion of ATP and aggregation. Addition of ADP or thrombin to platelets significantly decreased the basal cyclic AMP levels. Pre-incubation of platelets with α-PGG blocked ADP or thrombin induced decrease in platelet cyclic AMP levels but did not alter the basal or PGE1 induced increase in cAMP levels. Addition of α-PGG to platelets blocked agonist induced rise in platelet cytosolic calcium and phosphorylation of Akt. Administration of α-PGG (20 mg kg−1) to wild type mice blocked ex vivo platelet aggregation induced by ADP or collagen. Conclusions These data suggest that α-PGG inhibits platelet activation, at least in part, by inducing phosphorylation of insulin receptors leading to inhibition of agonist induced: (a) decrease in cyclic AMP; (b) rise in cytosolic calcium; and (c) phosphorylation of Akt. These findings taken together with our earlier reports that α-PGG mimics insulin signaling suggest that inhibition of platelet activation by α-PGG mimics antiplatelet actions of insulin.
Collapse
|
40
|
Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal 2011; 23:1515-27. [PMID: 21620960 DOI: 10.1016/j.cellsig.2011.05.004] [Citation(s) in RCA: 1145] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 11/25/2022]
Abstract
Akt (also known as protein kinase B or PKB) comprises three closely related isoforms Akt1, Akt2 and Akt3 (or PKBα/β/γ respectively). We have a very good understanding of the mechanisms by which Akt isoforms are activated by growth factors and other extracellular stimuli as well as by oncogenic mutations in key upstream regulatory proteins including Ras, PI3-kinase subunits and PTEN. There are also an ever increasing number of Akt substrates being identified that play a role in the regulation of the diverse array of biological effects of activated Akt; this includes the regulation of cell proliferation, survival and metabolism. Dysregulation of Akt leads to diseases of major unmet medical need such as cancer, diabetes, cardiovascular and neurological diseases. As a result there has been substantial investment in the development of small molecular Akt inhibitors that act competitively with ATP or phospholipid binding, or allosterically. In this review we will briefly discuss our current understanding of how Akt isoforms are regulated, the substrate proteins they phosphorylate and how this integrates with the role of Akt in disease. We will furthermore discuss the types of Akt inhibitors that have been developed and are in clinical trials for human cancer, as well as speculate on potential on-target toxicities, such as disturbances of heart and vascular function, metabolism, memory and mood, which should be monitored very carefully during clinical trial.
Collapse
Affiliation(s)
- Ingeborg Hers
- School of Physiology and Pharmacology, University of Bristol, UK
| | | | | |
Collapse
|
41
|
Delgado-Martín C, Escribano C, Pablos JL, Riol-Blanco L, Rodríguez-Fernández JL. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem 2011; 286:37222-36. [PMID: 21878648 DOI: 10.1074/jbc.m111.294116] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemokines control several cell functions in addition to chemotaxis. Although much information is available on the involvement of specific signaling molecules in the control of single functions controlled by chemokines, especially chemotaxis, the mechanisms used by these ligands to regulate several cell functions simultaneously are completely unknown. Mature dendritic cells (maDCs) migrate through the afferent lymphatic vessels to the lymph nodes, where they regulate the initiation of the immune response. As maDCs are exposed to chemokine CXCL12 (receptors CXCR4 and CXCR7) during their migration, its functions are amenable to be regulated by this ligand. We have used maDCs as a model system to analyze the mechanisms whereby CXCL12 simultaneously controls chemotaxis and survival in maDCs. We show that CXCL12 uses CXCR4, but not CXCR7, and the components of a signaling core that includes G(i)/Gβγ, PI3K-α/-δ/-γ, Akt, ERK1/2 and mammalian target of rapamycin complex 1 (mTORC1), which organize hierarchically to control both functions. Downstream of Akt, Forkhead box class O (FOXO) regulates CXCL12-dependent survival, but not chemotaxis, suggesting that downstream of the aforementioned signaling core, additional signaling molecules may control more selectively CXCL12-dependent chemotaxis or survival. Finally, the data obtained also show that CXCR4 uses a signaling signature that is different from that used by CCR7 to control similar functions.
Collapse
Affiliation(s)
- Cristina Delgado-Martín
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Textor JA, Norris JW, Tablin F. Effects of preparation method, shear force, and exposure to collagen on release of growth factors from equine platelet-rich plasma. Am J Vet Res 2011; 72:271-8. [PMID: 21281204 DOI: 10.2460/ajvr.72.2.271] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To test the hypotheses that preparation method, exposure to shear force, and exposure to collagen affect the release of growth factors from equine platelet-rich plasma (PRP). SAMPLE POPULATION PRP obtained from 6 horses. PROCEDURES PRP was prepared via 2 preparation methods (tube and automated) and subjected to 6 treatment conditions (resting, detergent, exposure to shear via 21- and 25-gauge needles, and exposure to collagen [10 and 20 μg/mL]). Concentrations of platelet-derived growth factor, isoform BB (PDGF-BB); transforming growth factor β, isoform 1 (TGFβ₁); and insulin-like growth factor, isoform 1 (IGF-1) were quantified by use of ELISAs. Statistical analysis was conducted via repeated-measures ANOVA. RESULTS Platelet numbers were significantly higher in tube-prepared PRP than in automated-prepared PRP Growth factor concentrations did not differ significantly between preparation methods. Mean PDGF-BB concentration ranged from 134 to 7,157 pg/mL, mean TGFβ₁ concentration ranged from 1,153 to 22,677 pg/mL, and mean IGF-1 concentration ranged from 150 to 280 ng/mL. Shear force did not affect growth factor concentrations. Dose-dependent increases in PDGF-BB and TGFβ₁ were detected in response to collagen, but equalled only 10% of the estimated total platelet content. Concentrations of IGF-1 were not significantly different among treatments and negative or positive control treatments. Serum concentrations of PDGF-BB and TGFβ₁ exceeded concentrations in PRP for most treatment conditions. CONCLUSIONS AND CLINICAL RELEVANCE Release of growth factors from equine PRP was negligible as a result of the injection process alone. Investigation of platelet-activation protocols is warranted to potentially enhance PRP treatment efficacy in horses.
Collapse
Affiliation(s)
- Jamie A Textor
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
43
|
Nash CA, Séverin S, Dawood BB, Makris M, Mumford A, Wilde J, Senis YA, Watson SP. Src family kinases are essential for primary aggregation by G(i) -coupled receptors. J Thromb Haemost 2010; 8:2273-82. [PMID: 20738760 DOI: 10.1111/j.1538-7836.2010.03992.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION AND BACKGROUND Adrenaline stimulates biphasic aggregation in plasma through the G(i) -coupled α(2A) -adrenoreceptor. In the present study, we demonstrate that both primary and secondary wave aggregation induced by adrenaline in plasma is blocked by two structurally distinct inhibitors of Src family kinases, dasatinib and PD0173952. METHODS AND RESULTS In contrast, primary aggregation is partially inhibited or unaffected in the presence of inhibitors of cyclo-oxygenase, phosphoinositide (PI) 3-kinases, and P2Y(1) and P2Y(12) ADP receptors, although secondary aggregation is abolished. The ability of adrenaline to inhibit adenylyl cyclase and to synergize with platelet agonists in mediating platelet activation in plasma is retained in the presence of Src family kinase inhibition. Moreover, adrenaline does not activate Src family kinases, as determined by western blotting of their regulatory tyrosines, suggesting that constitutive signaling from Src family kinases may underlie their role in activation. Adrenaline is widely used in clinical laboratories for investigation of patients with suspected bleeding disorders. In a group of 90 unrelated patients with a clinically diagnosed platelet bleeding disorder, we identified four who did not exhibit primary wave aggregation in response to adrenaline, although the catecholamine potentiated the response to other agonists, and five who failed to undergo secondary wave aggregation. In contrast, adrenaline stimulated biphasic aggregation in 60 controls. All of the patients with a defective response to adrenaline had impaired ADP-induced platelet activation. CONCLUSIONS The present results indicate a previously unappreciated role for Src family kinases in mediating G(i) signaling in plasma, and demonstrate heterogeneity in response to adrenaline in patients with a clinically diagnosed platelet disorder.
Collapse
Affiliation(s)
- C A Nash
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cosemans JMEM, Van Kruchten R, Olieslagers S, Schurgers LJ, Verheyen FK, Munnix ICA, Waltenberger J, Angelillo-Scherrer A, Hoylaerts MF, Carmeliet P, Heemskerk JWM. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J Thromb Haemost 2010; 8:1797-808. [PMID: 20546121 DOI: 10.1111/j.1538-7836.2010.03935.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Interaction of murine Gas6 with the platelet Gas6 receptors Tyro3, Axl and Mer (TAM) plays an important role in arterial thrombus formation. However, a role for Gas6 in human platelet activation has been questioned. OBJECTIVE To determine the role of Gas6 in human and murine platelet activation and thrombus formation. METHODS AND RESULTS Gas6 levels appeared to be 20-fold higher in human plasma than in platelets, suggesting a predominant role of plasma-derived Gas6. Human Gas6 synergizes with ADP-P2Y(12) by enhancing and prolonging the phosphorylation of Akt. Removal of Gas6 from plasma impaired ADP-induced platelet aggregation. Under flow conditions, absence of human Gas6 provoked gradual platelet disaggregation and integrin α(IIb) β(3) inactivation. Recombinant human Gas6 reversed the effects of Gas6 removal. In mouse blood, deficiency in Gas6 or in one of the TAM receptors led to reduced thrombus formation and increased disaggregation, which was completely antagonized by external ADP. In contrast, collagen-induced platelet responses were unchanged by the absence of Gas6 in both human and mouse systems. CONCLUSIONS The ADP-P2Y(12) and Gas6-TAM activation pathways synergize to achieve persistent α(IIb) β(3) activation and platelet aggregation. We postulate a model of thrombus stabilization in which plasma Gas6, by signaling via the TAM receptors, extends and enhances the platelet-stabilizing effect of autocrine ADP, particularly when secretion becomes limited.
Collapse
Affiliation(s)
- J M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Role of phosphoinositide 3-kinase beta in platelet aggregation and thromboxane A2 generation mediated by Gi signalling pathways. Biochem J 2010; 429:369-77. [PMID: 20441566 DOI: 10.1042/bj20100166] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PI3Ks (phosphoinositide 3-kinases) play a critical role in platelet functional responses. PI3Ks are activated upon P2Y12 receptor stimulation and generate pro-aggregatory signals. P2Y12 receptor has been shown to play a key role in the platelet aggregation and thromboxane A2 generation caused by co-stimulation with Gq or Gz, or super-stimulation of Gi pathways. In the present study, we evaluated the role of specific PI3K isoforms alpha, beta, gamma and delta in platelet aggregation, thromboxane A2 generation and ERK (extracellular-signal-regulated kinase) activation. Our results show that loss of the PI3K signal impaired the ability of ADP to induce platelet aggregation, ERK phosphorylation and thromboxane A2 generation. We also show that Gq plus Gi- or Gi plus Gz-mediated platelet aggregation, ERK phosphorylation and thromboxane A2 generation in human platelets was inhibited by TGX-221, a PI3Kbeta-selective inhibitor, but not by PIK75 (a PI3Kalpha inhibitor), AS252424 (a PI3Kgamma inhibitor) or IC87114 (a PI3Kdelta inhibitor). TGX-221 also showed a similar inhibitory effect on the Gi plus Gz-mediated platelet responses in platelets from P2Y1-/- mice. Finally, 2MeSADP (2-methyl-thio-ADP)-induced Akt phosphorylation was significantly inhibited in the presence of TGX-221, suggesting a critical role for PI3Kbeta in Gi-mediated signalling. Taken together, our results demonstrate that PI3Kbeta plays an important role in ADP-induced platelet aggregation. Moreover, PI3Kbeta mediates ADP-induced thromboxane A2 generation by regulating ERK phosphorylation.
Collapse
|
46
|
Abstract
Akt is a Ser-Thr kinase with pleiotropic effects on cell survival, growth and metabolism. Recent evidence from gene-deletion studies in mice, and analysis of human platelets treated with Akt inhibitors, suggest that Akt regulates platelet activation, with potential consequences for thrombosis. Akt activation is regulated by the level of phosphoinositide 3-phosphates, and proteins that regulate concentrations of this lipid also regulate Akt activation and platelet function. Although the effectors through which Akt contributes to platelet activation are not definitively known, several candidates are discussed, including endothelial nitric oxide synthase, glycogen synthase kinase 3β, phosphodiesterase 3A and the integrin β(3) tail. Selective inhibitors of Akt isoforms or of proteins that contribute to its activation, such as individual PI3K isoforms, may make attractive targets for antithrombotic therapy. This review summarizes the current literature describing Akt activity and its regulation in platelets, including speculation regarding the future of Akt or its regulatory pathways as targets for the development of antithrombotic therapies.
Collapse
Affiliation(s)
- Donna S Woulfe
- Thomas Jefferson University, Philadelphia, PA 19107, USA Tel.: +1 215 503 5152
| |
Collapse
|
47
|
Gilio K, Munnix ICA, Mangin P, Cosemans JMEM, Feijge MAH, van der Meijden PEJ, Olieslagers S, Chrzanowska-Wodnicka MB, Lillian R, Schoenwaelder S, Koyasu S, Sage SO, Jackson SP, Heemskerk JWM. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation. J Biol Chem 2009; 284:33750-62. [PMID: 19815551 PMCID: PMC2797144 DOI: 10.1074/jbc.m109.048439] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/11/2009] [Indexed: 11/06/2022] Open
Abstract
Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kalpha or -beta strongly and selectively suppressed GPVI-induced Ca(2+) mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cgamma2 by PI3Kalpha/beta. That PI3Kalpha and -beta have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca(2+) increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kalpha/beta was blocked or p85alpha was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kdelta or -gamma. Furthermore, PI3Kalpha/beta, but not PI3Kgamma, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kalpha and -beta isoforms are required for full GPVI-dependent platelet Ca(2+) signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kalpha an interesting new target for anti-platelet therapy.
Collapse
Affiliation(s)
| | | | - Pierre Mangin
- the Australian Centre for Blood Diseases, Monash University, Alfred Medical Research Centre and Education Precinct, Melbourne, 3800 Victoria, Australia
| | | | | | | | - Servé Olieslagers
- Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, 6200 MD Maastricht, The Netherlands
| | | | - Rivka Lillian
- the Australian Centre for Blood Diseases, Monash University, Alfred Medical Research Centre and Education Precinct, Melbourne, 3800 Victoria, Australia
| | - Simone Schoenwaelder
- the Australian Centre for Blood Diseases, Monash University, Alfred Medical Research Centre and Education Precinct, Melbourne, 3800 Victoria, Australia
| | - Shigeo Koyasu
- the Department of Microbiology and Immunology, Keio University School of Medicine, 160–8582 Tokyo, Japan, and
| | - Stewart O. Sage
- the Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Shaun P. Jackson
- the Australian Centre for Blood Diseases, Monash University, Alfred Medical Research Centre and Education Precinct, Melbourne, 3800 Victoria, Australia
| | | |
Collapse
|
48
|
Resende RR, Adhikari A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal 2009; 7:20. [PMID: 19712465 PMCID: PMC2744676 DOI: 10.1186/1478-811x-7-20] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/27/2009] [Indexed: 11/14/2022] Open
Abstract
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | | |
Collapse
|
49
|
Kim S, Mangin P, Dangelmaier C, Lillian R, Jackson SP, Daniel JL, Kunapuli SP. Role of phosphoinositide 3-kinase beta in glycoprotein VI-mediated Akt activation in platelets. J Biol Chem 2009; 284:33763-72. [PMID: 19700402 DOI: 10.1074/jbc.m109.048553] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glycoprotein (GP) VI is a critical platelet collagen receptor. Phosphoinositide 3-kinase (PI3K) plays an important role in GPVI-mediated platelet activation, yet the major PI3K isoforms involved in this process have not been identified. In addition, stimulation of GPVI results in the activation of Akt, a downstream effector of PI3K. Thus, we investigated the contribution of PI3K isoforms to GPVI-mediated platelet activation and Akt activation. A protein kinase C inhibitor GF 109203X or a P2Y(12) receptor antagonist AR-C69931MX partly reduced GPVI-induced Akt phosphorylation. Platelets from mice dosed with clopidogrel also showed partial Akt phosphorylation, indicating that GPVI-mediated Akt phosphorylation is regulated by both secretion-dependent and -independent pathways. In addition, GPVI-induced Akt phosphorylation in the presence of ADP antagonists was completely inhibited by PI3K inhibitor LY294002 and PI3Kbeta inhibitor TGX-221 indicating an essential role of PI3Kbeta in Akt activation directly downstream of GPVI. Moreover, GPVI-mediated platelet aggregation, secretion, and intracellular Ca(2+) mobilization were significantly inhibited by TGX-221, and less strongly inhibited by PI3Kalpha inhibitor PIK75, but were not affected by PI3Kgamma inhibitor AS252424 and PI3Kdelta inhibitor IC87114. Consistently, GPVI-induced integrin alpha(IIb)beta(3) activation of PI3Kgamma(-/-) and PI3Kdelta(-/-) platelets also showed no significant difference compared with wild-type platelets. These results demonstrate that GPVI-induced Akt activation in platelets is dependent in part on G(i) stimulation through P2Y(12) receptor activation by secreted ADP. In addition, a significant portion of GPVI-dependent, ADP-independent Akt activation also exists, and PI3Kbeta plays an essential role in GPVI-mediated platelet aggregation and Akt activation.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abbas A, Grant PJ, Kearney MT. Role of IGF-1 in glucose regulation and cardiovascular disease. Expert Rev Cardiovasc Ther 2008; 6:1135-49. [PMID: 18793116 DOI: 10.1586/14779072.6.8.1135] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IGF-1 is a peptide hormone that is expressed in most tissues. It shares significant structural and functional similarities with insulin, and is implicated in the pathogenesis of insulin resistance and cardiovascular disease. Recombinant human IGF-1 has been used in Type 2 diabetes to improve insulin sensitivity and aid glycemic control. There is evidence supporting IGF-1 as a vascular protective factor and it may also be beneficial in the treatment of chronic heart failure. Further understanding of the effects of IGF-1 signaling in health and disease may lead to novel approaches to the prevention and treatment of diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Afroze Abbas
- BHF Clinical Research Fellow, Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|